
Interactive Shadow Generation in Complex Environments

Naga K. Govindaraju Brandon Lloyd Sung-Eui Yoon Avneesh Sud Dinesh Manocha
University of North Carolina at Chapel Hill
{naga,blloyd,sungeui,sud,dm}@cs.unc.edu

http://gamma.cs.unc.edu/Shadow

Figure 1: The left image shows a snapshot generated from the application of our hybrid shadow generation algorithm to the powerplant

model (12.7M triangles). The middle image shows a different viewpoint generated using perspective shadow maps. Notice the aliasing

artifacts. The right image highlights the shadows generated by our interactive algorithm from the same viewpoint with sharper boundaries.

Abstract: We present a new algorithm for interactive
generation of hard-edged, umbral shadows in complex en-
vironments with a moving light source. Our algorithm is
based on a hybrid approach that combines some of the ef-
ficiencies of image-precision techniques along with the im-
age quality of object-precision methods. We present inter-
active algorithms based on levels-of-detail (LODs) and vis-
ibility culling to compute the potential shadow-casters and
shadow-receivers. We further reduce their size based on a
novel cross-visibility culling algorithm. Finally, we use a
combination of shadow polygons and shadow maps to gener-
ate shadows. We also present techniques for LOD-selection
that eliminate the artifacts in self-shadows. Our algorithm
can generate sharp shadow edges and reduce aliasing. We
have implemented the algorithm on a three PC system with
NVIDIA GeForce-4 cards and applied it to three complex en-
vironments composed of millions of triangles. It can render
the scene and generate shadows at 7− 25 frames per second
on these models.
CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]:Picture/Image Generation–Bitmap and
framebuffer operations; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism-Color, shading, shadow-
ing, and texture

Keywords: Shadow generation, object space, image space,
visibility, level-of-detail, interactive display, parallel render-
ing

1 Introduction
The generation of shadows is a classic problem in computer
graphics. Shadows provide important spatial cues and can
greatly enhance the visual realism of computer-generated
images. In this paper, we address the problem of interactive
and accurate calculation of hard-edged, umbral shadows cast
by a moving point or directional source in complex static en-
vironments. These environments may be architectural mod-

els, urban datasets, or CAD models of a large structure such
as an airplane, oil tanker, or a power plant. These types of
scenes may consist of thousands of objects or millions of
polygons and can have a wide depth range.

The design review and evaluation of complex environ-
ments benefits greatly from the ability to generate inter-
active walkthroughs. Shadows are helpful in walkthroughs
because they provide additional information about an ob-
ject’s shape and its relative placement in the environment.
[Wanger 1992]. Walkthroughs can further benefit from the
use of dynamic light sources. The shifting of shadows caused
by a moving light source amplifies the viewer’s understand-
ing of the 3D environment.

The problem of shadow generation is well-studied in com-
puter graphics. Two classes of algorithms have been popular
for generation of real-time shadows: shadow maps [Williams
1978] and shadow volumes [Crow 1977]. Shadow mapping
is an image-based approach that is easy to use. The trans-
formations and depth comparisons necessary to do shadow
mapping are available on current graphics hardware. The
main drawback of shadow maps is aliased shadow edges due
to their limited resolution. Aliasing is especially problem-
atic in walkthroughs of large models because the viewer is
often very close to the scene geometry while the light source
is placed over the head at a distance so as to cover the entire
scene (as shown in Fig. 1). Shadow volumes avoid the alias-
ing problem by computing object-based shadow boundaries.
Shadow volume calculations can be accelerated on graphics
hardware using the stencil buffer. Unfortunately, the ap-
proach does not scale well for very large models due to the
large number of shadow-casters.

Main Contributions: We present a new algorithm for in-
teractive shadow generation in complex environments. Our
algorithm is based on a hybrid approach that combines the
image quality of object-precision shadow generation tech-
niques with the simplicity and efficiencies of image-precision

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 1 of 10

methods. We use a combination of hierarchical represen-
tations, LODs and visibility culling algorithms to compute
the potentially visible set (PVS) from the light-view and
the eye-view. The resulting sets are classified as potential
shadow-casters and shadow-receivers, respectively. We re-
duce the size of these sets by performing additional cross-
visibility culling computations. Finally, we compute the
shadow-polygons using an object space clipping algorithm
and use them along with shadow maps. The shadows are
rendered in two passes using a one-bit stencil buffer.

We use image-space occlusion queries along with hierar-
chical representations of the objects in the scene graph to
perform significant culling. As a result, the sizes of shadow-
casters and shadow-receivers are small and we are able to
compute the shadow-polygons efficiently. We have imple-
mented the algorithm on three PCs, each with a NVIDIA
GeForce 4 graphics card. Our process-parallel implementa-
tion introduces a frame of latency in the pipeline, in addition
to double-buffering. Our system has been applied to three
complex environments with a moving light source: a power
plant model composed of 12.7 million triangles, a tanker
model of more than 82M triangles, and a house model con-
taining more than 1.3 million triangles. The power plant and
the tanker models contain long, thin structures which cause
considerable aliasing in shadow maps. Long and narrow tri-
angles are challenging for pure object-precision approaches
as they result in a very large number of shadow-polygons.
Our system runs at 7− 25 frames per second, depending on
the light and eye positions.

New Results: Some novel aspects of our work include:

1. An improved PVS computation algorithm for complex
environments that can be used to accelerate both ren-
dering and shadow generation.

2. An LOD-selection algorithm designed to reduce the er-
rors in shadow generation, self-shadowing artifacts, and
popping.

3. A cross-culling visibility algorithm, between shadow-
casters and shadow-receivers, that can accelerate the
performance of object-precision shadow generation al-
gorithms.

4. A hybrid shadow computation algorithm that uses a
combination of shadow maps and shadow polygons to
generate shadows at interactive rates.

Compared to earlier approaches, our hybrid approach offers
many advantages. It makes no assumptions about the input
model or connectivity information. It can generate sharp
shadow edges and greatly reduces aliasing. Finally, it can
compute sharp shadows from a moving light source at inter-
active rates in complex environments.

Organization: The rest of the paper is organized in the
following manner. We give a brief overview of related work
in Section 2. Section 3 presents the PVS computation al-
gorithm and techniques to bound the error due to LODs in
shadow computation. We present the hybrid shadow gener-
ation algorithm in Section 4. Section 5 describes our imple-
mentation and highlights its performance on different mod-
els. We analyze performance of the system and discuss some
of its limitations in Section 6.

2 Related Work
In this section, we give a brief overview of previous work
on shadow generation and interactive display of complex
environments. Woo et al. [1990] give a survey of some
of the basic shadowing techniques. We limit ourselves to
algorithms that compute hard-edged umbral shadows cast.
In general, shadowing algorithms can be classified as either
image-precision or object-precision. A few hybrid combina-
tions have also been proposed.

2.1 Image Precision Methods

Shadow maps were introduced by Williams [1978] as an
image-precision solution for generating shadows. A shadow
map is simply a depth map generated from the light-view.
To determine whether a point lies in shadow, its light-space
depth is compared to the depth value stored in the shadow
map. Shadow maps can be implemented with standard hard-
ware [Segal et al. 1992; Heidrich and Seidel 1999] and recent
graphics cards have improved support for handling shadow
mapping efficiently. By using parabolic projections, shadow
maps can be used for hemispherical and omni-directional
light sources. [Brabec et al. 2002].

One of the main drawbacks of shadow maps is aliasing.
Aliasing can occur when a shadow map pixel projected on
the scene subtends more than one pixel in the eye view.
There are two main types of aliasing - perspective alias-
ing and projective aliasing [Stamminger and Drettakis 2002].
Perspective aliasing occurs when a point is much closer to
the eye than to the light source. Projective aliasing occurs
when the angle formed with a surface normal is greater for
the light direction than the view direction. These situations
arise often in walkthroughs of complex models with curved
objects and wide depth range.

Many techniques have been proposed to handle aliasing
of shadow edges. Reeves et al. [1978] introduced percent-
age closer filtering which improves the appearance of aliased
edges by blurring them. In some situations the blurring may
be excessive or even undesirable. Brabec et al. [2001] applied
this filtering for hardware-based shadow map rendering. Fer-
nando et al. [2001] presented adaptive shadow maps which
are used to increase the effective shadow map resolution in
areas where edge aliasing occurs. Unfortunately, adaptive
shadow maps require software rendering, which is too slow
for interactive rendering of large models. Adaptive shadow
maps also use progressive refinement, which may not work
well for scenes with a moving light source. Another approach
similar to adaptive shadow maps uses multiple shadow maps
of varying resolution [Tadamura et al. 2001]. Perspective
shadow maps [Stamminger and Drettakis 2002] ameliorate
aliasing by warping the depth buffer in order to allocate more
samples near the viewer. Though perspective shadow maps
can often reduce perspective aliasing, their performance is
highly view-dependent and they do not reduce projection
aliasing.

Other image-precision methods for shadow generation
are based on ray-tracing. Many algorithms for fast
ray-tracing have been proposed on shared-memory multi-
processor systems [Parker et al. 1999] as well on a cluster of
PCs [Wald et al. 2001].

2.2 Object-Precision Approaches

Object-precision approaches avoid the edge aliasing problem
by computing exact shadow boundaries. These approaches
include projection techniques that calculate shadow bound-
aries on the scene polygons. Atherton et al. [1978] clipped
the scene polygons against each other from the light-view.
The resulting clipped polygons, representing the lit surfaces,
are attached to the original polygons as surface detail. Blinn
[1988] rendered shadows by projecting the vertices of an oc-
cluder object into the plane of a receiver polygon and used
the resulting polygons to modulate the surface color. These
techniques do not scale well to large models in practice.

One of the most popular object-precision techniques is
the shadow volume algorithm introduced by Crow [1977]. A
shadow volume is the set of points that lie in shadow behind
a shadow-caster. For a polygonal shadow-caster, the shadow
volume is a semi-infinite frustum extending away from the
edges of the polygon to infinity. The shadow volume algo-
rithm checks if a particular point is in shadow by counting
the crossings with shadow frusta polygons on any ray ex-

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 2 of 10

tending away from the point. Bergeron [1985] generalized
shadow volumes for non-manifold objects and non-planar
polygons. BSP trees have been used to represent shadow vol-
umes [Chin and Feiner 1989; Chrysanthou and Slater 1995].
These techniques do not work well with dynamic lights be-
cause the entire tree has to be rebuilt when the light source
moves. Heidmann [1991] showed that shadow volumes can
be implemented in hardware by using the stencil buffer to
count crossings. Recently, techniques have been proposed
to ensure that hardware shadow volumes are not clipped
“open” by the near and far clipping planes [Everitt and Kil-
gard 2002]. The enhanced robustness of the algorithm has
led to shadow volumes to become increasingly more popular
in games, e.g. Doom-3.

Shadow volumes do not scale well for complex models.
The number of shadow polygons can be extremely large.
A common configuration in walkthroughs is a light source
overhead with geometry such as beams or trusses above the
viewer. The shadow frustum polygons created by the over-
head geometry may fill the whole screen, yet the shadows
they define are very small. In the presence of many large
shadow volumes, the application will quickly become fill-
bound.

2.3 Hybrid Approaches

Some combinations of object-space and image-space tech-
niques have been proposed for shadow generation and re-
lated computations. Brotman and Badler [1984] combined
shadow volumes with a software-based, depth-buffered, tiled
renderer to generate soft shadows. McCool [2000] extracts
edges from a shadow map to create shadow volumes. While
the technique replaces aliased edges with sharp edges, it does
not replace the details lost due to the limited resolution of
the shadow map. Udeshi and Hansen [1999] presented an im-
proved shadow volume algorithm using multiple CPUs and
graphics processors on a shared memory architecture, but
they only rendered relatively small indoor scenes.

2.4 Interactive Display Of Complex Environments

The problem of interactive display of complex environments
has been well-studied in computer graphics and related dis-
ciplines. Many rendering acceleration techniques based on
visibility culling, levels-of-detail (LODs) and image-based
representations have been proposed. An excellent survey
of visibility algorithms has been given in [Cohen-Or et al.
2001] and of LOD methods in [Luebke et al. 2002]. Many
hybrid algorithms that combine LODs methods with occlu-
sion culling have been proposed as well [Andujar et al. 2000;
El-Sana et al. 2001; Baxter et al. 2002; Govindaraju et al.
2002].

3 LOD-based Interactive PVS Computation
Visibility computation is an integral part of any shadow gen-
eration algorithm. Given a point source, the hard-edged um-
bral shadows can be determined by partitioning the visible-
surface of the eye-view with respect to visibility to the light-
view. Regions not visible to the light lie in shadow. However,
exact computation of the visible-surface is too slow for in-
teractive applications and is prone to geometric robustness
problems.

In this section, we present an interactive potentially vis-
ible set (PV S) computation algorithm. We use this algo-
rithm to compute the PV S from the eye-view (PV SE) and
the PV S from the light-view (PV SL). We use levels-of-
detail (LODs) to accelerate the algorithm and also present
techniques to select appropriate LODs from each view.

Our PVS computation algorithm is based on recent work
of [Govindaraju et al. 2002] that uses a pair of graphics pro-
cessors to perform occlusion culling. One graphics proces-
sor computes the occlusion representation, while the other
performs culling at an object level using image-space occlu-

Figure 2: Scene graph hierarchy used for PVS computation and
shadow generation. This figure also highlights the sub-object hier-
archy associated with a HLOD. Each sub-object is shown in green.

sion queries. The algorithm described in [Govindaraju et al.
2002] has two limitations. First, a process-parallel imple-
mentation of the algorithm on two separate PCs introduces
one frame of additional latency in the overall pipeline. Sec-
ond, the culling is performed only at the object level. As a
result, the size of the PVS can be overly conservative, rang-
ing anywhere from 200K − 450K triangles. The size of a
PVS, or an object, refers to the total number of triangles
it contains. Although we can render the resulting PVS at
interactive rates on current graphics processors, the PVS is
too large for our hybrid shadow generation algorithm. We
present an improved algorithm that lowers the latency in the
pipeline and reduces the size of PVS by almost one order of
magnitude.

3.1 Scene Graph Representation

We use the scene graph representation presented in [Govin-
daraju et al. 2002] and augment it with a sub-object hier-
archy. A scene is described as a collection of objects com-
posed of triangles. We use a combination of partitioning
and clustering algorithms to ensure that all objects in the
scene have roughly the same size. Each node in the scene
graph stores references to its children and to the bounding
box enclosing them. The algorithm pre-computes LODs for
each object along with hierarchical levels-of-detail (HLODs)
for intermediate nodes [Govindaraju et al. 2002]. A HLOD
associated with an intermediate node represents a simplifica-
tion of all objects contained in the tree rooted at that node.
Each LOD and HLOD is associated with an object-space
Hausdorff error deviation metric.

We subdivide each LOD and HLOD into a group of sub-
objects and represent them using a sub-object hierarchy (as
shown in Fig. 2). A sub-object is composed of k triangles,
where k is typically a small number (say 1 − 10). The sub-
object hierarchy is typically 1− 2 levels deep and each node
consists of multiple children. A deeper hierarchy can lead
to stalls, which can happen when performing image-space
occlusion queries at multiple levels. This is explained further
in Section 5.1.

3.2 Scene Traversal and Occlusion Culling

Given the eye-view or light-view, the algorithm traverses the
scene graph and performs view frustum culling and occlusion
culling. It also checks whether any LOD or HLOD associated
with a node satisfies the screen-space error threshold. The
set of LODs and HLODs of visible objects selected by the
algorithm form a cut across the scene graph representing the
entire model (as shown in Fig. 2).

The occlusion culling algorithm proceeds in two steps.
It first creates an occlusion representation (OR) and then
performs scene graph culling (SGC) to cull away objects and
sub-objects that are not visible from the viewpoint.
Computing occlusion representation (OR): The algo-
rithm uses the PVS from the previous frame as an approx-
imation of occluders for the current frame [Greene et al.
1993]. It renders the objects and sub-objects in the PVS

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 3 of 10

Figure 3: Artifacts in self-shadows generated due to a naive LOD
selection algorithm. We correct this problem by using LODE during
PV SL computation and not LODL.

based on the current camera location and generates a depth
map. Note that the depth map resulting from the computa-
tion of PV SL is the same as the shadow map.
Scene graph culling (SGC): Given the occlusion repre-
sentation, the algorithm traverses the scene graph in a top-
down manner using image-space occlusion queries to check
whether the bounding box of each node is visible. These
hardware-supported queries rasterize the bounding box and
check if any fragment passes the depth test. We traverse the
scene graph and perform these queries at multiple levels of
the hierarchy.

• Object Culling: We render the bounding box of the
object and check whether it is occluded by the occlu-
sion representation. If the object is visible, we check
whether any LOD or HLOD associated with that node
satisfies the user-specified screen-space error bound. If
it is within the error bound, we separately check each
sub-object associated with the LOD or HLOD for vis-
ibility. Otherwise, we apply the algorithm recursively
to its children nodes in the scene graph. Note that we
perform sub-object level culling after determining all
the visible objects.

• Sub-object culling: We render all the triangles con-
tained in a sub-object and check whether they have
been occluded by the occlusion representation. The
visible sub-objects at the leaf nodes of the sub-object
hierarchy are added to the PVS.

Two factors affect the overall performance of the occlusion
culling algorithm. The first factor is whether sub-object
culling is performed at all. Sub-object culling takes more
time because of additional occlusion queries, but results in
a smaller PVS. The second factor is the number of triangles
used per primitive (k). A higher value of k reduces the num-
ber of sub-objects per object, thereby reducing the number
of occlusion queries to be performed. On the other hand, a
lower value of k results in a much smaller PV S. If k = 1,
the algorithm computes the smallest PVS for a given LOD
error threshold.

A smaller PV S improves the overall performance of our
shadow generation algorithm. It results in a smaller set of
occluders rendered during OR generation. As a result, we
compute the occlusion representation and perform SGC on
the same graphics processor. This is different than comput-
ing them on separate graphics processors, as proposed in
[Govindaraju et al. 2002], . This results in reduced latency
in the overall pipeline. Moreover, a process-parallel imple-
mentation lowers the load in terms of network bandwidth
and latency.

3.3 LODs and Shadow Generation

The use of LODs and HLODs in PVS computation intro-
duces inaccuracies in shadow boundaries and can cause ar-
tifacts in self-shadows. In this section, we highlight the arti-
facts and present our LOD selection algorithm to minimize
their affect.

For a visible node, the rendering algorithm projects the
object-space error bound associated with the node’s LODs
or HLODs into screen-space. The coarsest LOD or HLOD
with a screen-space error less than the user-specified error-
threshold (δ) is selected for rendering. This ensures maxi-
mum deviation of δ pixels in an object’s screen-space silhou-
ette.
Inaccuracy in Shadow Boundaries: Our algorithm uses
LODs to compute PV SL as well as PV SE . They corre-
spond to potential shadow-casters and shadow-receivers, re-
spectively. The projection of a shadow-caster’s silhouette
onto objects in the scene corresponds to the shadow bound-
ary. The deviation in the silhouette due to LODs causes a
deviation in the shadow boundary. There are two factors
leading to error in the shadow boundaries due to the use of
LODs. First, the LOD deviation is magnified as the distance
between a shadow-caster and a shadow-receiver is increased.
Second, the error increases as the angle between the shadow-
receiver’s normal and the light-source direction approaches
90 degrees. The second factor can be seen on the right side
of the shadow in Fig. 3. While we cannot bound error in-
troduced by the orientation factor, we can bound the error
caused by the distance factor. Our LOD selection scheme
computes this bound implicitly because distance is included
in the projection of the object-space error bound onto the
image plane. The absolute error bound will be different at
each point due to its distance and orientation with respect
to the light, but all shadow boundary deviations are guar-
anteed to meet that bound.
Self-Shadows: To avoid self-shadowing artifacts, we need
to select the LODs properly. Lets consider an object in the
scene. Let LODL and LODE be the LODs of the object
selected from the light-view and the eye-view, respectively.
Depending on the position of this object in the scene, there
are three possibilities:

1. The object is visible from both the views. As a result,
it is a potential shadow-caster and a potential shadow-
receiver. If LODL and LODE are not the same, self-
shadowing artifacts can occur (as shown in Fig. 3).

2. If the object is not seen by the light-view, it lies com-
pletely in shadow.

3. If the object is not seen by the eye-view, no shadows
are computed on it.

In the second and third case, the LODs for the objects can
be chosen independently, from the light-view and the eye-
view. However, we still need to ensure that LODL is the
same as LODE for objects visible in both the views. This
can cause a sudden switch in the LOD selection if LODL
and LODE vary independently, which results in visible pop
in the object or its shadow. To avoid this popping we use
the same LOD selection for the light-view as is used for the
eye-view.
Recomputing PVSL: Whenever the user moves, LODE
for any visible object in the scene can change. As a result, we
need to recompute PV SL, even though the light source may
be static. We do this to avoid any artifacts in self-shadows
and popping in the final image. This implies that there is
no additional overhead of using a moving light source, as
compared to a static light source.

4 Hybrid Shadow Generation Algorithm
In this section, we give an overview of our hybrid shadow
generation algorithm. This algorithm uses a combination of

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 4 of 10

Figure 4: Overview of our hybrid approach. This left-to-right sequence shows the four stages of our algorithm and the intermediate
computations.

object-precision and image-precision techniques to compute
the set of triangles that are fully or partially in shadow and
renders them using the stencil buffer (as shown in Fig. 4).
We also present a process-parallel architecture, which uses
three graphics cards and takes into account network latency
and bandwidth to improve the overall performance.

Given the eye-view and the light-view, our algorithm
computes PV SE and PV SL, using the algorithm described
above. Next it performs cross-culling followed by shadow
generation.

4.1 Cross-Culling

Every triangle in PV SL is a potential shadow-caster and ev-
ery triangle in PV SE is a potential shadow-receiver. Cross-
culling performs visibility computations between PV SE and
PV SL and prunes the number of potential shadow-casters
and shadow-receivers. In particular, cross-culling checks
the visibility of triangles in PV SE with respect to PV SL
and partitions the triangles in PV SE into three subsets (as
shown in Fig. 4):

• Fully-lighted (FV): These triangles are fully visible
from the light-view and are not in shadow at all.

• Fully-shadowed receivers (SRF): These triangles
are totally occluded from the light-view and therefore,
are fully in shadow.

• Partially-shadowed receivers (SRP): These trian-
gles are partially visible from the light-view.

Moreover, we compute a subset of PV SL that casts shadows
on SRP . We refer to the resulting triangles as the shadow-
casters, SC. The cross-culling algorithm proceeds in two
steps:

1. Consider all the triangles belonging to PV SE and check
whether they are occluded by PV SL. Based on occlu-
sion queries, our algorithm partitions PV SE into FV,
SRF and SRP .

2. The algorithm evaluates each triangles in PV SL and
culls away the triangles that do not cast a shadow on
SRP . The remaining triangles, SC, are used for shadow
generation.

In the first step, we render the PV SL and generate the depth
map from the light-view. We render the triangles in PV SE
and perform occlusion queries. Based on the outcome of the
query, we classify the triangles as either occluded (SRF)
or non-occluded. The non-occluded subset computed by
these queries is further partitioned into triangles that are
fully visible (FV) from the light-view or only partially vis-
ible (SRP). To compute FV and SRP , we set the depth
function to GL GREATER and perform occlusion queries
by rendering the resulting triangles. Note that we do not
modify the depth buffer while performing occlusion queries.
Also, the use of shadow maps for occlusion culling provides
the advantages for shadow-caster fusion.

In the second step, we compute a subset of PV SL that
corresponds to the triangles that cast shadows on SRP . We
compute the shadowed regions by enabling the stencil and
rendering SRP from the light-view. The depth mask is dis-
abled and the stencil is set to 1 in regions where the triangles
in SRP project and fail the depth test. We set the stencil
test to pass in regions where the stencil is 1 and use occlusion
queries while rendering triangles of PV SL. The resulting tri-
angles (SC) that pass both the occlusion and the stencil tests
form the potential shadow-casters and are used for shadow
generation.

4.2 Shadow Generation

We compute the object-precision shadows either in software
or use a hybrid approach. The sizes of the resulting SRP
and SC are often quite small (e.g. a few thousand triangles).
Moreover, the triangles in SRP and SC tend to have a fairly
low depth complexity, We compute the shadow-polygons ex-
plicitly on the CPU rather than implicitly using GPU-based
shadow volumes. Even with a small SC of a few thousand
triangles, rendering shadow volumes tends to be fill bound
on the latest graphics cards because the shadow volumes are
large. On the other hand, the shadow-polygons computed by
our algorithm tend to be quite small. Our shadow generation
algorithm uses a variation of the classic Atherton-Weiler-
Greenberg algorithm [Atherton et al. 1978]. The triangles
in SRP are clipped against the shadow frusta formed by each
of the triangles in SC. The resulting shadow-polygons are
calculated by repeatedly clipping the scene triangles against
the planes of the shadow frusta. We chose this technique
because clipping a triangle against a plane is quick, simple,
and robust.

We must compute the shadow-polygons efficiently. Ini-
tially, we subdivide the light’s screen-space into a 2D grid of
bins. Each bin contains a list of triangles from the shadow-
casters, SC, that overlap with the bin. We clip each triangle
in SRP against the shadow-casters contained in the bins
that the triangle overlaps. This procedure results in a col-
lection of convex shadow-polygons. To avoid duplicate tests
with shadow-casters that may appear in more than one bin,
we employ a simple mail-boxing scheme, where each shadow
caster stores the last shadow receiver triangles it was tested
against. If the triangles are uniformly distributed and are
proportional in size to the bins, the algorithm’s expected be-
havior is O(N), where N is the number of triangles in SC
and SRP . If most of the triangles fall in the same bin or the
scene consists of a high number of long and skinny triangles,
the number of intersections can grow to O(N2) in the worst
case.
Hybrid Scheme: If the number of shadow-polygons is very
high (e.g. more than 50K), it may not be possible to cal-
culate all the intersections at interactive rates on the CPU.
It turns out that the shadow-polygons on many surfaces are
so small or so far away from the eye-view that they make

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 5 of 10

Figure 5: Architecture of the Process-Parallel Algorithm: This fig-
ure highlights different components of our hybrid shadow generation
algorithm. Each color represents a separate graphics processor or
CPU.

little or no contribution to the final image. These shadows
can easily be rendered with a shadow map. Therefore, we
use a hybrid approach for generating shadows. We compute
shadow-polygons only where it will make a significant dif-
ference in image quality and use a shadow map everywhere
else.

To guarantee an acceptable frame rate we establish a
fixed budget of intersection tests. The triangles in SRP are
processed one at a time, computing each triangle’s intersec-
tions with the shadow-casters until the budget is exceeded.
We prioritize the triangles using a heuristic to quantify the
visual impact of aliasing on each triangle. Aliasing occurs
wherever the pixels in the shadow map project to larger than
a pixel on the screen. Using the formulation in [Stamminger
and Drettakis 2002], we define the resolution mismatch fac-
tor, m, as the ratio of the projected area of a shadow map
pixel on a surface to that of an image pixel:

m =
dsrs/cos(α)

diri/cos(β)
,

where ds and di are the sizes of the pixels on the shadow and
image planes, α and β are the angles formed by the surface
normal and the light-view and eye-view directions, and rs
and ri are the distances from the point to the light and
eye, respectively. We assign a priority to a triangle as the
maximum of the resolution mismatch value computed at its
vertices and centroid. A triangle with mismatch values less
than one can be rendered without aliasing by the shadow
map and is not considered further. The priorities of the
remaining triangles are weighted according to their projected
area based on the observation that aliasing is perceptually
most apparent on large flat surfaces and is somewhat masked
on small, thin structures.
Rendering: The shadows are rendered in two passes using
a one-bit stencil buffer. In the first pass the triangles of SRF
and SRP are rendered with only ambient lighting. Then the
shadow-polygons computed by the clipping algorithm are
rendered to the stencil buffer with the depth test enabled.
At this point the stencil is set wherever there is shadow. In
the second pass the triangles in SRP and FV are rendered
with full lighting using the stencil test to prevent writing in
the shadowed regions. A small amount of triangle offset may
be required for the shadow-polygons to account for errors
due to limited depth precision.

4.3 Process-Parallel Algorithm

It may not be possible to compute the PV SE and PV SL,
and perform cross-culling and shadow generation on a single
graphics processor at interactive rates. As a result, we use a
process-parallel algorithm that uses three graphics cards (on
three different PCs) and pipelines the computation. How-
ever, our algorithm introduces one frame of additional la-
tency in the pipeline. An architecture of the resulting sys-
tem is shown in Fig. 5. The three graphics cards and the
CPUs perform the following operations:

Figure 6: A snapshot generated from an application of our inter-
active shadow generation algorithm to the house model. The model
has about 1.3M triangles. No LODs were used.

• GPU1: Computes PV SE .

• GPU2: Computes PV SL.

• GPU3 & CPU : Perform cross-culling, shadow genera-
tion and render the final scene.

At the beginning of each frame, the PC withGPU3 transmits
the current light-view and eye-view to the other GPUs and
receives the corresponding PVSs for the previous frame. All
the communication between the PCs is synchronized using
acknowledgements.

4.3.1 Network Transmission

Our algorithm assumes that the scene graph is replicated on
each PC. Instead of sending a list of visible triangles com-
puted by sub-object culling, our algorithm uses id’s for each
sub-object in the scene graph and transmits those id’s to
GPU3. Each id is represented by 4 integers and requires 16
bytes. In most cases, a small change occurs in the PVS com-
puted between successive frames. Instead of sending a list
of all the visible triangles in the sub-objects, the algorithm
keeps track of changes between successive frames and only
transmits those changes. Overall, frame-to-frame coherence
results in lower network traffic between the PCs.

5 Implementation and Performance
In this section, we describe the implementation of our algo-
rithm and highlight its performance on three complex envi-
ronments.

5.1 Implementation

We have implemented our hybrid algorithm on 3 Dell Preci-
sion workstations, with dual 1.8 GHz pentium CPUs, 2 GB
of main memory and a NVIDIA GeForce-4 Ti 4600 GPU.
Typically, we are able to render 2M triangles in immediate
mode and about 14M triangles in retained mode. We repli-
cate our scene database across each PC.

For higher performance, we allocate 72MB out of 128MB
on each GPU to store the vertices of objects, sub-objects,
and bounding boxes. The memory allocated in the graphics
card is sufficient to hold 6 million vertices. We use memory
management if we exceed this limit. We also use NVIDIA
vertex arrays in video memory to accelerate rendering. Our
algorithm keeps track of the starting location of the ver-
tices of each object in the video memory. Vertex arrays
in NVIDIA GeForce-4 card have an index limit of 1 million,
each object. Objects must store their position in video mem-
ory so that if they are not within this limit, the vertex array
pointer may be changed.

We use the NVIDIA OpenGL extension
GL NV occlusion query to perform image-based oc-
clusion queries. In order to avoid stalls in the graphics

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 6 of 10

Figure 7: A sequence generated by a light source moving over the power plant away from the viewer. Our algorithm can generate shadows
at 10 frames per second on average.

Figure 8: This graph highlights the frame rates obtained for each
model. The house model was rendered without any LODs. The
frame rate is lower on the power plant and the tanker model be-
cause of long and thin objects. This results in a higher number of
primitives in SRP and SC.

pipeline, we perform all the queries at once and then
obtain the results at the end. In theory, current graph-
ics processors can perform these queries at the rate of
rasterization. However, we have observed a considerable
overhead due to implementation of current drivers, which
limit the number of queries performed. The current driver
for NVIDIA GeForce 4 performs about 240K queries per
second on the Linux OS. In order to work around this
limitation we introduce sub-objects to the hierarchy instead
of performing occlusion culling directly at the triangle
level. We allocate 8 triangles per sub-object (i.e. k = 8).
We perform around 20K occlusion queries per frame (on
average) to do cross-culling. We have utilized stencil tests
along with depth tests in these occlusion queries to compute
the shadow-casters. In order to maintain interactive frame
rates we use a a budget of 50K shadow-polygon intersections
in the hybrid shadow generation algorithm.

5.2 Performance

In this section, we highlight the performance of our algo-
rithm on three models. We generated multiple paths through
each model. The graphs show the performance of different
culling algorithms used for shadow generation (as shown in
Fig. 9) in a portion of the path through the powerplant

and the tanker. In these paths, PV SE is more than PV SL.
Moreover, cross-culling is able to reduce the size of potential
shadow-casters and shadow-receivers by almost one order of
magnitude.

We tested our system on three complex models with mov-
ing light sources:

• A power plant model (shown in Fig. 1) composed of
more than 1, 200 objects and 12.7M triangles. It is
a very challenging environment for real-time rendering
and shadow generation algorithms. It consists of many
long, thin pipes, which cause considerable aliasing in
shadow maps. The pipes are made up of narrow trian-
gles that increase the number of shadow-polygons gen-
erated by the clipping algorithm. Therefore, it would
be very difficult for a purely object-based approach to
generate shadows at interactive rates on this model. We
generated multiple paths inside and outside the power
plant (as shown in the video). Fig. 7 shows a sequence
of images generated by the moving light source in the
power plant model.

• A Double Eagle tanker model (shown in Fig. 10) com-
posed of more than 82 million triangles. Like the power
plant, it has long and thin objects as well. We use a
point light source and moved it on top of a deck the
tanker, as the eye-view follows it. We also generate a
path in the engine room. We also generate a path in
the engine room.

• An architectural model (shown in Fig. 6) of a replicated
house composed of more than 1.3 million triangles. It
consists of a number of rooms with furniture. We gen-
erated a path inside the house such that a pure shadow
map based approach will result in projective aliasing.

We highlight the frame rates obtained over the different
paths in each model in Fig. 8. The upper bound on the
number of shadow-polygons is 50, 000. The objects in the
house model are not over-tessellated. As a result, we do not
use LODs in the PVS computation algorithm. The culling
algorithm works quite well and the size of SRP and SC is
relatively small. The power plant and the tanker model are
much more challenging. They have about 38K and 54K
objects, obtained after partitioning and clustering. As a re-
sult, the PVS computation algorithm spends more time in
traversing the tree and performing object culling and sub-
object culling. These structures consist of many long and
thin triangles. As a result, the size of SRP and SC is rel-
atively big (as compared to the house model). The average

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 7 of 10

(a) Double Eagle Tanker model at 20 pixels of error (b) Powerplant model at 10 pixels of error

Figure 9: These graphs highlights the performance of our culling algorithms. The OCE refers to the number of triangles after object culling.
The PVS’s are obtained by performing sub-object culling. Notice almost one order of magnitude reduction in PV SE as compared to OCE.
The cross-culling algorithms perform significant culling and the size of potential shadow-casters (SC) and shadow-receivers (SRP and SRF)
is of the order of few thousands (three orders of magnitude less than the original model size).

frame-rate in the power plant and tanker model is 10 and 7,
respectively.

6 Analysis and Limitations
In this section, we analyze the performance of our algorithm
and highlight some of its limitations.

6.1 Analysis

The overall performance of our algorithm is governed by
a number of factors. These include the model complex-
ity, scene graph representation, the relative positions of the
light-view and the eye-view, and the rate at which we can
perform the occlusion queries. We have already highlighted
the issues that arise from the use of LODs in Section 3.3.
We address some other factors in this section.
Image-space Occlusion Queries: Our PVS computation
and shadow generation algorithms use image-space occlusion
queries to accelerate the visibility computations. These are
performed at image-precision. It is possible that the projec-
tion of some object is smaller than a pixel or that it covers
only a portion of a pixel. The object’s visibility may there-
fore be mis-classified. A mis-classification results in missing
shadows or polygons that are incorrectly deemed to be fully
shadowed. The seriousness of this problem depends on the
resolution used for occlusion culling. In practice, we have
seen very few of these artifacts.
Cross-culling: The purpose of cross-culling is to limit the
number of potential shadow-casters and shadow-receivers. It
has additional overhead due to the occlusion queries (about
20−40 milli-seconds in our current benchmarks). Its benefit
depends on the relative size of SRPwith respect to PV SE
and that of SCwith respect to PV SL.

6.2 Interactive Performance and Load Balancing

The performance of the overall algorithm is governed by the
performance of each stage (as shown in Fig. 4) as well as
the network latency between the PCs. Because we utilize
frame-to-frame coherence, the relative change in the size of
PV S is typically low; and therefore, network bandwidth or
latency is typically not a significant factor in the overall per-
formance. The main factors that affect the system perfor-
mance are the LOD error threshold and the capabilities of
the graphics processors. A higher LOD threshold improves

Figure 10: A snapshot of the tanker model rendered using our
system. The tanker has more than 82 million triangles. This view
highlights the shadows generated by the long and thin pipes on the
deck. The average frame rate is 7 frames per second.

the performance of the overall algorithm, at the cost of im-
age quality. A faster GPU will speed up both rendering and
occlusion culling.

The first stage of the algorithm computes the PVS from
the eye-view and the light-view. If a scene does not have high
depth complexity, we need not perform occlusion culling us-
ing separate graphics processors. Otherwise, we compute
each PVS in parallel on separate PCs. Both of them tra-
verse the scene graph using an identical LOD selection crite-
rion (based on the eye-view). The difference in their perfor-
mance depends on the extent of culling obtained via view-
frustum and occlusion culling. Within each PVS compu-
tation, the sub-object culling step typically requires more
occlusion queries than the object-culling step. Therefore,

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 8 of 10

Figure 11: Comparison of shadows generated by uniform shadow maps (left), perspective shadow maps (middle) and our hybrid algorithm
(right). Each image also includes a zoomed view of the shadow boundaries on the top-left corner. Perspective shadow reduce some of the
aliasing artifacts as compared to uniform shadow maps. However, they are unable to generate sharp shadows in many scenarios.

more time is spent in SGC than computing the occlusion
representation.

The performance of cross-culling depends on the size of
PV SL and PV SE . The size of FV, SRF and SRP is
governed by the position of the light-view relative to the
eye-view. The performance of shadow generation routine is
mostly determined by the size of SC and SRP . In general,
the smaller the size of these sets, the more shadow poly-
gons can be generated, leading to higher image quality. The
number of shadow-polygons that can be computed by our
algorithm is bounded by the speed of the CPU.
Load Balancing: It is possible that the algorithm spends
more time in PVS computation than the other stages. In this
case we can either increase the LOD threshold use a higher
value of k, the number of triangles per sub-object, to reduce
the number of occlusion queries that are performed. If cross-
culling or shadow generation becomes the bottle neck we use
a smaller k. This lowers the size of PV SE and PV SL, as
well as the number of potential shadow-casters and shadow-
receivers.

6.3 Comparison with Other Approaches

In this section, we briefly compare our algorithm with earlier
approaches.
Shadow Maps: Our 3-PC based hybrid shadowing al-
gorithm can greatly reduce the aliasing artifacts that are
present in shadow map based approaches (shown in Fig.
11). Uniform shadow maps [Williams 1978] are simple to
use but suffer from the aliasing. Perspective shadow maps
greatly reduce the aliasing problem for many view configura-
tions [Stamminger and Drettakis 2002], but cannot always
eliminate it completely. This is especially true when the
field-of-view is narrow or when the near plane must be kept
close to the viewpoint. Our hybrid algorithm improves the
shadow quality in parts of the scene where the aliasing ar-
tifacts are the worst. Overall, it yields higher quality and
sharper shadows, as compared to pure image-precision ap-
proaches.
Shadow Volumes: Shadow volumes are too slow for large
models because the current graphics systems cannot handle
the sheer number of shadow-casters. Asymptotically, the
running time for shadow volumes is linear in the number
of shadow-casters, while our shadow-polygon computation
algorithm is super-linear. However, the cost of shadow vol-
umes is dominated by the fill-rate. It is likely that future
graphics systems will have sufficiently high fill rates that
shadow volumes can be used in place of our current shadow

generation algorithm (in the third stage). Note that our al-
gorithms for PVS computation and cross-culling can be used
to improve the performance of a pure shadow volume based
approach.
Shadow Volume Reconstruction from Depth Maps:
Our hybrid algorithm is different from that of [McCool 2000]
in that our shadow boundaries can have object-precision.
McCool [2000] uses only the information in the depth buffer
to construct shadow boundaries. We use the depth buffer
as part of the culling step to determine which objects are
casting shadows. Ultimately the object-space precision of
the shadow-casters is used to compute shadow boundaries
where shadow maps are not sufficient. As a result, we get
sub-pixel accuracy and sharp edges. Moreover, McCool’s al-
gorithm requires depth-buffer readback during each frame,
which can be slow on current graphics systems (e.g. 50 milli-
seconds at 1K × 1K resolution from a high-end PC with
NVIDIA GeForce 4 card). This overhead limits the useful-
ness of the algorithm for interactive performance in complex
environments.

6.4 Limitations

Our current algorithm can only generate hard-shadows from
point-light sources. In theory, we can use more than one
light-source, but this requires additional graphics processors
(one per each light source). Moreover, we will have to per-
form more visibility computations during cross-culling and
shadow generation. One of the main limitations of our cur-
rent system is the additional latency in the pipeline. This
latency is mainly introduced by the PVS computation algo-
rithm, which is performed on separate graphics processors.
Typically, this latency is slightly less than one frame. This
is in addition to double-buffering and can be a major issue
for latency-sensitive applications.

Our algorithm expects high coherence between successive
locations of the eye-view and the light-view. If either view
undergoes drastic motion, the set of visible primitives from
the previous frame may not approximate well to the poten-
tial occluders for the current frame. As a result, the sizes
of the PVS’s, SC and SRP , can become large and this can
increase the frame time.

The use of LODs can introduce visual artifacts as well
as inaccurate shadow boundaries. We have highlighted the
inaccuracies in the shadow boundaries in Section 3. The
use of LODs can result in popping, as the PVS computation
algorithm switches between different LODs. Some of these
artifacts can be eliminated by performing view-dependent

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 9 of 10

simplification.
Object-space calculation of shadow polygons may not

work well for highly tessellated curved models. If the num-
ber of shadow-polygons is very high, the cost of performing
intersection tests can increase rapidly to the point that the
CPU cannot handle it at interactive rates. In these cases,
the intersection test budget may be exceeded long before
significant aliasing is removed. Our algorithm works best in
environments with large, flat polygons.

Figure 12: A color-coded classification of the polygons in Fig. 11
using our hybrid approach. Blue polygons are rendered as shadow-
polygons. Red polygons are rendered with the shadow map. Yellow
polygons are completely shadowed. Magenta polygons are completely
visible.

7 Summary and Future Work
We have presented a hybrid algorithm for interactive shadow
generation in complex environments with a moving light
source. Our algorithm can generate shadows with sharp
edges and reduces the aliasing artifacts that are present in
pure image-precision approaches. We have applied it to three
large models and our preliminary results are very encourag-
ing. We have also presented an improved algorithm for PVS
computation, which can be useful for other rendering appli-
cations. Moreover, our cross-culling algorithm can accelerate
the performance of a pure shadow volume based approach.

There are many avenues for future work. Our current ap-
proach only handles point and directional light sources. We
would like to extend the object-space computation to cal-
culate penumbras from area light sources to produce more
natural looking shadows. Our algorithm can be extended
to handle omni-directional or multiple light sources by us-
ing additional graphics processors. We would like to de-
velop an out-of-core system that doesn’t need to replicate
the database on 3 PCs and load the entire scene graph in
the main memory. Finally, it will be useful to use view-
dependent simplification as compared to static LODs, as it
can reduce the popping artifacts.

References
Andujar, C., Saona-Vazquez, C., Navazo, I., and Brunet, P. 2000.

Integrating occlusion culling and levels of detail through hardly-
visibly sets. In Proceedings of Eurographics.

Atherton, P., Weiler, K., and Greenberg, D. 1978. Polygon shadow
generation. In Computer Graphics (SIGGRAPH ’78 Proceed-
ings), vol. 12, 275–281.

Baxter, B., Sud, A., Govindraju, N., and Manocha, D. 2002.
Gigawalk: Interactive walkthrough of complex 3d environments.
Proc. of Eurographics Workshop on Rendering.

Bergeron, P. 1985. Shadow volumes for non-planar polygons. In
Graphics Interface ’85 Proceedings, 417–418.

Blinn, J. 1988. Jim blinn’s corner: Me and my (fake) shadow. IEEE
Computer Graphics and Applications 8, 1 (Jan.), 82–86.

Brabec, S., Annen, T., and Seidel, H. 2001. Hardware-accelerated
rendering of antialiased shadows. In Proc. of Computer Graphics
International.

Brabec, S., Annen, T., and Seidel, H. 2002. Shadow mapping for
hemispherical and omnidirectional light sources. In Proc. of Com-
puter Graphics International.

Brotman, L. S., and Badler, N. I. 1984. Generating soft shadows
with a depth buffer algorithm. IEEE Computer Graphics and
Applications 4, 10, 71–81.

Chin, N., and Feiner, S. 1989. Near real-time shadow generation using
BSP trees. In Computer Graphics (SIGGRAPH ’89 Proceedings),
vol. 23, 99–106.

Chrysanthou, Y., and Slater, M. 1995. Shadow volume BSP trees for
computation of shadows in dynamic scenes. In 1995 Symposium
on Interactive 3D Graphics, 45–50.

Cohen-Or, D., Chrysanthou, Y., and Silva, C. 2001. A survey of
visibility for walkthrough applications. SIGGRAPH Course Notes
30 .

Crow, F. 1977. Shadow algorithms for computer graphics. vol. 11,
242–248.

El-Sana, J., Sokolovsky, N., and Silva, C. 2001. Integrating occlusion
culling with view-dependent rendering. Proc. of IEEE Visualiza-
tion.

Everitt, C., and Kilgard, M. 2002. Practical and robust sten-
ciled shadow volumes for hardware-accelerated rendering. In SIG-
GRAPH 2002 Course Notes, vol. 31.

Fernando, R., Fernandez, S., Bala, K., and Greenberg, D. 2001.
Adaptive shadow maps. In Proceedings of ACM SIGGRAPH
2001, 387–390.

Govindaraju, N., Sud, A., Yoon, S., and Manocha, D. 2002. Inter-
active visibility culling with occlusion-switches. Tech. Rep. CS-02-
027, University of North Carolina. To appear in Proc. of ACM
Symposium on Interactive 3D Graphics.

Greene, N., Kass, M., and Miller, G. 1993. Hierarchical z-buffer
visibility. In Proc. of ACM SIGGRAPH, 231–238.

Heidmann, T. 1991. Real shadows real time. IRIS Universal, 18.
Heidrich, W., and Seidel, H. P. 1999. Realistic hardware-accelerated

shading and lighting. In Proc. of ACM SIGGRAPH, 171–178.
Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and

Huebner, R. 2002. Level of Detail for 3D Graphics. Morgan-
Kaufmann.

McCool, M. 2000. Shadow volume reconstruction from depth maps.
ACM Trans. on Graphics 19, 1, 1–26.

Parker, S., Martic, W., Sloan, P., Shirley, P., Smits, B., and

Hansen, C. 1999. Interactive ray tracing. Symposium on In-
teractive 3D Graphics.

Reeves, W., Salesin, D., and Cook, R. 1987. Rendering antialiased
shadows with depth maps. In Computer Graphics (ACM SIG-
GRAPH ’87 Proceedings), vol. 21, 283–291.

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., and Hae-

berli, P. 1992. Fast shadows and lighting effects using texture
mapping. In Computer Graphics (SIGGRAPH ’92 Proceedings),
vol. 26, 249–252.

Stamminger, M., and Drettakis, G. 2002. Perspective shadow maps.
In Proceedings of ACM SIGGRAPH 2002, 557–562.

Tadamura, K., Qin, X., Jiao, G., and Nakamae, E. 2001. Render-
ing optimal solar shadows with plural sunlight depth buffers. The
Visual Computer 17, 2.

Udeshi, T., and Hansen, C. 1999. Towards interactive photorealis-
tic rendering of indoor scenes: A hybrid approach. In Rendering
Techniques ’99, D. Lischinski and G. W. Larson, Eds., 63–76.

Wald, I., Slusallek, P., and Benthin, C. 2001. Interactive distributed
ray-tracing of highly complex models. In Rendering Techniques,
274–285.

Wanger, L. 1992. The effect of shadow quality on the perception of
spatial relationships in computer generated imagery. In Computer
Graphics (1992 Symposium on Interactive 3D Graphics), vol. 25,
39–42.

Williams, L. 1978. Casting curved shadows on curved surfaces. In
Computer Graphics (SIGGRAPH ’78 Proceedings), vol. 12, 270–
274.

Woo, A., Poulin, P., and Fournier, A. 1990. A survey of shadow
algorithms. IEEE Computer Graphics and Applications 10, 6
(Nov.), 13–32.

Interactive Shadow Generation in Complex Environments: UNC-CH TR03-004 Page 10 of 10

