
Visual Simulation of Shockwaves

Jason Sewall∗,a, Nico Galoppob, Georgi Tsankova, Ming Lina

aUniversity of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175 USA
bIntel Corporation, Jones Farm 2, 2111 N.E. 25th Avenue, Hillsboro, OR 97124-5961 USA

Abstract

We present an efficient method for visual simulations of shock phenomena in compressible, inviscid fluids. Our algorithm
is derived from one class of the finite volume method especially designed for capturing shock propagation, but offers
improved efficiency through physically-based simplification and adaptation for graphical rendering. Our technique is
capable of handling complex, bidirectional object-shock interactions stably and robustly. We describe its applications
to various visual effects, including explosion, sonic booms and turbulent flows. Furthermore, we explore parallelization
schemes and demonstrate the scalability of our method on shared-memory, multi-core architectures.

Key words: physically-based modeling, animation, fluid simulation, parallel algorithms, shockwaves

1. Introduction

Recent developments in simulating natural phenomena
have made it possible to incorporate stunning, realistic
animations of complex natural scenes filled with flowing,
bubbling, and burning fluids. Computer-animated and
live-action films alike have made great use of these ad-
vances in modeling to recreate familiar and interesting ef-
fects. Notably, little investigation has been made on how
to properly capture shocks and propagate discontinuities
in visual simulation. These remarkable phenomena give
rise to dramatic events such as explosions, turbulent flows,
and sonic booms. Such effects are common in films and
are notoriously difficult to handle with numerical methods.
Additionally, many state-of-the-art simulation techniques
do not fully take advantage of the kind of new, powerful
hardware that is emerging; these algorithms are often not
designed to handle large domains efficiently and many that
are based on specially simplified formulations often are not
applicable to phenomena occurring at large spatial scales.

This paper presents a method for efficient simulations
of nonlinear, compressible gas dynamics and describes how
it may be best utilized to generate visually interesting,
plausible animations. Many natural phenomena are non-
linear but can often be reasonably approximated through
linearization; one example is the linear formulation of elas-
ticity that is commonly used in graphics-targeted simula-
tion. The equations of fluid motion are not generally suit-
able for linearization — waves crashing on the beach, curl-
ing smoke, and surging shockwaves all arise from the non-
linear characteristics of the system. To solve these highly

∗Corresponding author
Email addresses: sewall@cs.unc.edu (Jason Sewall),

nico.galoppo@intel.com (Nico Galoppo), gtsankov@cs.unc.edu
(Georgi Tsankov), lin@cs.unc.edu (Ming Lin)

nonlinear equations in a reasonable amount of time, nu-
merical methods typically discretize simplifications of the
true equations that still capture the nonlinearity of the
system.

Furthermore, shocks that arise in problems of gas dy-
namics themselves present a numerical challenge; a shock
is a region of rapid spatial variation in a small interval that
propagates with tremendous speed — the blast wave that
emanates from an explosion or the bow shock that forms
around a supersonic projectile are some examples of these
phenomena. These have a striking effect on the fluid mo-
tion but are very difficult to simulate properly with tradi-
tional numerical methods; the scale of motion we desire to
capture (namely the space the shock traverses) is at odds
with the need to represent the shock itself. Many numeri-
cal techniques behave poorly or fail completely in the pres-
ence of discontinuous solutions — to simulate shocks with
such methods, the resolution of the discretization must be
high enough for the shock to appear as a smooth transi-
tion, and thus can be prohibitively expensive to compute.

Physically correct methods for shockwave modeling fo-
cus less on conventional metrics of accuracy (such as or-
der of convergence) and emphasize the ability to prop-
agate discontinuities stably and with minimal diffusion.
Specifically, techniques based on the finite volume method
(FVM) have been developed that handle discontinuities
well and allow for relatively coarse grids to capture shock
behavior. Our method, through judicious simplification
and application, adapts and improves the efficiency of a
class of FVM techniques designed to capture shocks on
coarse grids efficiently.

We have demonstrated our method on generating ani-
mations of complex fluid motion, including chambered ex-
plosions, nuclear detonations, and the turbulence and bow
shock around a supersonic projectile (see Figs. 5, 6, 7).

Preprint submitted to Graphical Models October 7, 2009

Our method is also able to describe the interaction of
coupled fluids and objects; we demonstrate shockwaves
knocking over stacked objects and blowing a brick house
to pieces, as well as the effects of an explosion within a
tower of heavy blocks. Our method is able to consider-
ably reduce the computational complexity of these highly
complex effects to the level comparable to existing fluid
animation techniques in graphical simulation.

Furthermore, while a näıve parallelization of our method
achieves only mediocre scalability, it is possible to achieve
much better scaling with a more carefully constructed par-
allelization scheme. We explore the components of such
a near-optimal scheme and its application to the shared-
memory, multi-core architectures that are becoming com-
monplace. The essential locality of the numerical schemes
used in our method allows us to achieve parallel perfor-
mance far greater than that typical of methods for fluid
simulation in graphics.

2. Previous Work

In addition to many decades of research in computa-
tional fluid dynamics, there is a considerable amount of
literature on the modeling of fluid phenomena in computer
graphics [1, 2, 3, 4, 5]. The seminal works of Foster and
Metaxas [6], Stam [1], and Foster and Fedkiw [7] on in-
compressible fluid simulation were among the first to ex-
amine this topic for visual simulation. For a detailed ex-
planation of the numerical methods and the mathematics
behind them, we refer the readers to the recent book by
Bridson [8].

Recent work on fluid simulation based on Finite Vol-
ume Methods has been discretized on irregular grids [9, 10,
11]. Subsequent improvements [12, 13, 4] to these methods
have combined the best features of the initial publications
to achieve impressive results.

The finite volume method has received much attention
from the aeronautics community; our technique uses nu-
merical Riemann solvers based on the work done by Roe
[14], van Leer [15], and others. For a superb introduction
to the topic of the finite volume method and Riemann
solvers, see [16].

The problem of describing the evolution of shocks —
known as “shock capturing” — has been addressed from a
variety of directions. Our work follows the vein of Riemann-

solver based approaches that strive to treat areas with
and without shocks with the same numerical technique.
Another family of approaches, generally known as front-

tracking methods, uses standard solvers in areas away from
shocks and explicitly models shocks as evolving surfaces
in the domain. Front-tracking approaches have been suc-
cessful, but are extremely complicated for two- and three-
dimensional simulations and have difficulty handling situa-
tions where multiple shocks interact. The survey of Fedkiw
et al. [17] gives a good overview of the topic.

Relatively little work in computer graphics has utilized
the Euler equations — that is, the compressible, inviscid

simplification of the Navier-Stokes system of equations —
all of the aforementioned methods from the graphics com-
munity are based on an incompressible simplification of
the equations. Yngve et al. [18] present a method for
high-energy, compressible fluid simulation based on finite
differences, which they use to simulate explosions and their
secondary effects. Sewall et al. [19] use a method similar
to finite volume on irregular grids to simulate compressible
flow.

Feldman et al. [20] simulate combustive phenomena
based on an incompressible model of flow with additional
density tracers, and Selle et al. [21] present an approach
that generates what they describe as “rolling explosions”.
Like Feldman et al., they use an incompressible model of
fluid, which precludes the presence of shocks. Our ap-
proach aims to model phenomena similar to those ad-
dressed by Yngve et al. [18]. The greater fidelity and
higher efficiency afforded by our method opens up a wide
range of new applications of these phenomena to visual
effects.

Work done by Müller et al. [22] and Adams et al. [3]
on particle-based fluid with the Smooth Particle Hydrody-
namics (SPH) method strives to represent incompressible
flow. The natural tendency of the space between particles
to expand and collapse suggests potential future applica-
tion to compressible phenomena.

Several methods have addressed the considerable chal-
lenge of coupling fluids to objects. Geneveaux et al. [23]
suggest an explicit method for the bidirectional coupling of
grid-based fluids to solid bodies using a particle represen-
tation of the surface. Carlson et al. [24] use distributed La-
grange multipliers to achieve stable fluid-object coupling
and Guendelman et al. [25] describe how to handle the
interaction of infinitely thin shells with fluids. Chentanez
et al. [13] use an implicitly-coupled model of fluid and
elastic bodies to obtain stable interactions. Batty et al.
[5] use variational principles to develop a simple extension
to the pressure projection step to achieve stable two-way
coupling in incompressible fluids. We achieve bidirectional
coupling through voxelization (as in [24] and [5]). We use
simple modifications to the Riemann solvers on boundary
interfaces to affect the interaction.

There has been some work on simulating the effects of
blast waves through analytical models of blast propaga-
tion. Mazarak et al. [26] used an expanding ball to de-
termine forces on bodies to fracture or propel them. Neff
and Fiume [27] use similar analytic models of blast waves
to fracture objects and are unable to generate the afore-
mentioned effects of shock dynamics. These approaches
are typically quite fast, but their extremely simple model
of blast dynamics does not allow for the effects of shock-
object interaction — notably reflection and vortex shed-
ding — nor do they have the ability to visualize the blast
itself.

2

3. Method

The key challenge is to simulate shockwave and com-
pressible gas dynamics by designing a practical numerical
method that can stably handle moving boundary condi-
tions in three-dimensional space and is efficient enough to
be used in a visual simulation production pipeline. We
present a basic introduction to the finite volume method
and refer the readers to [16] for more detail.

3.1. Conservation laws

We seek solutions to the Euler equations of gas dynam-
ics. These equations form a hyperbolic conservation law,
the general, three dimensional form of which is:

qt + F(q)x + G(q)y + H(q)z = 0 (1)

where subscripts indicate partial differentiation.
Here q is the vector of unknowns and F, G, and H

are vector-valued flux functions specific to each conser-
vation law. A conservation law states that a quantity of
unknowns q over an arbitrary domain S changes in time
due only to the flux across the boundary ∂S of the domain.

3.1.1. Integral form

The derivatives found in partial differential equations
such as Eq. (1) are not defined around discontinuities; to
capture them properly we use an integral form of the equa-
tions.

In one dimension, consider an interval [a, b]; the change
in q over that interval is due to the flux at a and the flux
at b. More formally,

d

dt

∫ b

a

q(x, t) dx = F(q(a, t)) − F(q(b, t)) (2)

where F is a flux function such as F, G, or H from Eq. (1)
and we follow the convention that ‘positive flux’ is left-
going and ‘negative flux’ right-going.

3.2. The finite volume method

The finite volume method (FVM) on regular grids fol-
lows directly from Eq. (2); the presentation here is for
scalar equations in one dimension with scalar unknowns q

and scalar fluxes f , but the formulae for systems of equa-
tions in multiple dimensions are straightforward extensions
of these.

We discretize the spatial interval [a, b] into m intervals
(“cells”) of equal size ∆x = b−a

m
. For each time tn, we

have m quantities Qn
i defined as the average value of q

over the cell:

Qn
i =

1

∆x

∫ χr
i

χl
i

q (x, tn) dx (3)

where we have χl
i = a + i∆x, and χr

i = χl
i + ∆x as the

positions of the cell boundaries. Observe that χr
i−1 = χl

i.
We will also occasionally refer to these boundary positions

with half-index increments; for example, the flux at χl
i is

Fi− 1
2
.

We apply Eq. (2) to each of the intervals i

d

dt

∫ χr
i

χl
i

q(x, t) dx = f
(

q
(

χl
i, t

)

)

− f
(

q
(

χr
i , t

)

)

(4)

and integrate Eq. (4) from tn to tn+1

∫ χr
i

χl
i

q (x, tn+1) dx −
∫ χr

i

χl
i

q (x, tn) dx =

∫ tn+1

tn

f
(

q
(

χl
i, t

)

)

− f
(

q
(

χr
i , t

)

)

dt (5)

Observe that we can substitute Eq. (3) if we divide Eq. (5)
by ∆x.

Qn+1
i − Qn

i =
1

∆x

∫ tn+1

tn

f
(

q
(

χl
i, t

)

)

− f
(

q
(

χr
i , t

)

)

dt

(6)

The right-hand side of this equation is a flux difference

that cannot generally be evaluated exactly; we approxi-
mate the integrals with averages over the cell interfaces
from [tn, tn+1]:

Fn
χl

i
≈ 1

∆t

∫ tn+1

tn

f
(

q
(

χl
i, t

)

)

dt (7)

Substituting Eq. (7) into Eq. (6), we obtain the most basic
FVM update scheme (Eq. (8)):

Qn+1
i = Qn

i − ∆t

∆x

(

Fn
χl

i
− Fn

χr
i

)

(8)

This scheme is first-order and is subject to the numer-
ical viscosity typical of first-order methods. Second-order
schemes such as the Law-Wendroff scheme [28] can be em-
ployed with comparable computation effort; we comple-
ment this with a flux limiter, which minimizes diffusive
and dispersive artifacts. We have used the MC limiter of
van Leer [15] in our method.

3.3. The Riemann problem

According to Eq. (7), the flux at Fi− 1
2

is dependent on
the state Qi− 1

2
at the interface between Qi−1 and Qi over

the interval (tn, tn+1); thus we must determine the value
at this interface as it evolves in time. Qi here is the vector
version of the discrete unknowns first introduced in 3.2.

Given the initial data:

Q(x, 0) =

{

Ql, x < 0
Qr, x ≥ 0

(9)

we wish to solve for Q(x, t) for t > 0 subject to the
governing equations. This formulation is known as the
Riemann problem; the resulting Q(0, t) obtained can then
be used to compute the flux at the cell interface.

3

Numerical methods based on Riemann solvers can of-
ten succeed where other methods fail because their solu-
tion is achieved through analysis of the governing equa-
tions. Whereas many techniques are developed through
the mechanical application of numerical stencils to the
terms of an equation, Riemann solvers inherently incor-
porate more information about the equation in their for-
mulation.

3.3.1. Riemann problem for linear systems

Let us consider linear, constant-coefficient (but not
necessary scalar) hyperbolic conservation laws, i.e. Eq. (1)
where the flux function F takes the form F(q) = Aq,
where A is a flux matrix. (Assume that the other flux
functions G, and H are of the same form).

Such a system of order n can be diagonalized into n

decoupled equations Q+
t +ΛQ+

x = 0, where Q+ = R−1Q.
Here R is the matrix of right eigenvectors of A, and Λ is
a diagonal matrix of the eigenvalues of A satisfying A =
RΛR−1.

The solution to the Riemann problem for these equa-
tions is given by n weighted eigenvectors Wi = αiri (also
known as waves) propagating with speeds λi, the corre-
sponding eigenvalues.

The waves Wi are determined by projecting the jump
in the initial states ∆Q = Qr −Ql onto the space formed
by the eigenvectors of the system:

∑

i

Wi =
∑

i

αiri = ∆Q (10)

Ra = ∆Q (11)

a = R−1∆Q (12)

where a = [α0, α1, . . . , αn−1]
T

The waves define k intermediate states Q∗i = Ql +
∑i

j=0 Wj , and the solution to the Riemann problem is
therefore the piecewise-constant function

Q(x, t) =

Ql, x < λ1t
...

...
Q∗i , λit < x ≤ λi+1t

...
...

Qr, x ≥ λnt

(13)

3.3.2. The Riemann problem for nonlinear systems

For nonlinear systems such as the Euler equations, the
wave structure of the solution is much more complicated
and costly to compute — typically, iterative root-finding
methods must be employed at each cell interface to deter-
mine the intermediate states Q∗i .

However, it is often possible to obtain good results by
approximately solving the Riemann problem; through lin-
earizations of the flux evaluated at carefully chosen states,
we can obtain solutions that fit Eq. (13). Such approx-
imate Riemann solvers must be used with care, as they

can often produce non-physical solutions. We discuss the
applicability of these solvers and how these undesirable
conditions can be addressed in Sec. 3.4.1.

3.3.3. Upwinding flux splitting

The basic FVM Eq. (8) update scheme developed in
Sec. 3.2 is not able to stably handle hyperbolic systems;
we need to modify it to obey the principle of upwinding.
We must take care to ensure that waves traveling in the
positive direction use information from the negative direc-
tion.

Rather than use Eq. (8) to compute cell updates, we
employ a scheme

Qn+1
i = Qn

i − ∆t

∆x

(

Fn+
χr

i
+ Fn−

χl
i

)

(14)

where Fn−
χr

i
is the part of the flux Fn

χr
i

traveling in the neg-

ative direction and Fn+
χr

i
the part traveling in the positive

direction.
The waves Wi and speeds λi from the solution to a

Riemann problem at χr
i is then

Fn−
χr

i
=

j
∑

c=0

λcWc Fn+
χr

i
=

k
∑

c=j

λcWc (15)

Where . . . < λj < 0 < λj+1 < . . .; waves traveling with
negative speeds are added to Fn− while those traveling
with positive speed are added to Fn+.

3.3.4. Solution procedure

Given cell values Qn for time tn, a timestep is per-
formed as follows to compute Qn+1:

1. For each interface between cells, compute the wave-
speeds λi and fluxes Fn

i by solving the Riemann
problem at that interface (described in Sec. 3.4.2)

2. Find the wavespeed with largest magnitude from
|λi| to compute timestep length ∆t as described in
Sec. 3.4.4.

3. For each cell i, advance to next time Qn+1 using the
fluxes Fn at its neighboring interfaces χl

i, χr
i using

Eq. (14).

For three-dimensional problems (see Sec. 3.4.4), we
must compute three fluxes for each cell in the domain;
solving the Riemann problems in step 1 becomes the com-
putational bottleneck for non-trivial systems of equations.
While expensive to obtain, carefully calculated fluxes are
the key to handling discontinuous solutions on a coarse
grid. Next, we describe what the Riemann problem is and
how it can be used to compute flux between cells.

3.4. The Euler equations

We are interested in studying the motion of a com-
pressible gas; the natural choice is the Euler system of
equations. The simplification of Navier-Stokes that omits

4

viscous terms results in this nonlinear hyperbolic system
of conservation laws. The omission of viscosity is a reason-
able one to make for many physical problems in gas dy-
namics, just as the incompressible simplification of Navier-
Stokes frequently used in graphics is reasonable for liquid
simulation.

The Euler equations in conservation form (see Eq. (1))
are

q =

ρ

ρu

ρv

ρw

E

, F(q) =

ρu

ρu2 + p

ρuv

ρuw

(E + p)u

G(q) =

ρv

ρvu

ρv2 + p

ρvw

(E + p)v

, H(q) =

ρw

ρwu

ρwv

ρw2 + p

(E + p)w

(16)

Here ρ is density, u, v, and w the components of velocity,
p the pressure, and E the total energy. An additional
equation of state completes the system

E =
p

γ − 1
+

ρ

2

(

u2 + v2 + w2
)

(17)

where γ is the adiabatic exponent of the fluid — typically
1.4 for air. It should be noted that for solutions to be
physically valid, ρ, p, and E must all be strictly greater
than zero.

3.4.1. Approximate Riemann solutions

As discussed in Sec. 3.3.2, computing the exact solu-
tion to the Riemann problem for nonlinear systems such as
the Euler equations is prohibitively expensive for practical
problems. Suitably approximated solutions to the Rie-
mann problem are often able to achieve acceptable results
for a fraction of the cost of solving them exactly.

We would like to apply the method for solving Rie-
mann problems for linear systems presented in Sec. 3.3.1
to nonlinear problems; to this end we desire a matrix A

such that A approximates F′(Q); here F′(Q) is the Ja-
cobian of F as seen in the quasilinear form of the conser-
vation law. This is simply the chain rule applied to (1):
Qt − F(Q)x = Qt − F′(Q)Qx = 0.

In a seminal paper, Roe [14] presented a simple method
for approximating F′(Q) that preserves important condi-
tions of the system, and it is this method that we have
adapted for our solver. Roe’s method uses a flux matrix
A that is F′(Q̄) evaluated at a specially chosen state Q̄

given Ql and Qr — this state has come to be known as
the Roe average state.

Eigenvectors and eigenvalues of the flux Jacobian. The
eigenvectors of the Jacobian F′(Q) give the waves nec-
essary to compute the intermediate states as in Sec. 3.3.1,
and its eigenvalues give the characteristic speeds λi with

which these waves propagate. The eigenvalues of the flux
Jacobian F′ as computed from (16) are:

λ0...4 = (u − c, u, u, u, u + c) (18)

and the corresponding eigenvectors are:

r1 =

1
u − c

v

w

H − uc

r2 =

1
u

v

w
1
2
(u2 + v2 + w2)

r3 =

0
0
1
0
v

r4 =

0
0
0
1
w

r4 =

1
u + c

v

w

H + uc

(19)

Here c =
√

γp

ρ
is the speed of sound and H = E+p

ρ
the

total specific enthalpy. We have given only the eigenvalues
and eigenvectors for F′, but those for the Jacobians of the
other flux functions G′ and H′ have similar structure.

Roe average state. Given two states Ql = [ρl, ul, vl, wl, El]
and Qr = [ρr, ur, vr, wr , Er], the Roe average is

Q̄ =
[

ρ̄, ū, v̄, w̄, H̄
]T

ρ̄ = ρl+ρr

2
(20)

ū =

√
ρ

l
ul +

√
ρ

r
ur√

ρ
l
+
√

ρ
r

v̄ =
√

ρ
l
vl+

√
ρ

r
vr√

ρ
l
+
√

ρ
r

(21)

w̄ =

√
ρ

l
wl +

√
ρ

r
wr√

ρ
l
+
√

ρ
r

H̄ =
El+pl
√

ρl
+

Er+pr
√

ρr√
ρ

l
+
√

ρ
r

(22)

The specific variables shown here (in contrast to the con-
servative variables given in (16)) appear because they are
precisely what is necessary to evaluate the eigenvalues
Eq. (18) and eigenvectors Eq. (19) and obtain the waves
and speeds for a given Riemann problem.

This average state has attractive properties when con-
sidering the structure of the Riemann problem; were we to
choose a simple arithmetic average of the quantities at Ql

and Qr, the resulting eigenvectors may fail to be distinct
and the solution would fail entirely. The criteria behind
this particular choice of average are explained in detail
in [14] and [16].

Enforcing physicality. Using the Roe average state (Eq. (20))
to approximately solve the Riemann problem is signifi-
cantly faster then computing the exact solution to the
Riemann problem, but the solver is known to generate
nonphysical states for certain inputs Ql and Qr. While
the exact solution to the Riemann problem could be com-
puted to obtain the physically valid intermediate state,
this is unnecessary and overly expensive for visual simu-
lation. When the approximate Riemann solver produces
invalid states, we apply slight corrections to enforce phys-
icality. We clamp ρ and p to be no less than 0.05 — in the
case of p, this entails adjusting E according to Eq. (17).

5

For example, the fluid-rigid body simulations illustrated
in Figs. 6, 9, 1, and 2 demonstrate plausible motion, and
would not be possible using a simple approximate Riemann
solver without these corrections.

3.4.2. Riemann solver for Euler equations

We have developed the theory of Riemann solvers for
the Euler equations sufficiently to present the procedure
for computing the Riemann solution at an interface given
left and right states Ql and Qr:

1. Compute Roe average Q̄ using Eq. (20)

2. Make Q̄ physically valid if needed, as per Sec. 3.4.1

3. Compute wavespeeds λi using Eq. (18)

4. Compute eigenvectors ri using Eq. (19)

5. Project ∆Q onto the eigenspace by computing the
wave coefficients αi and waves Wi using Eq. (12)

6. Compute left and right fluctuations Fn± using Eq. (15)

3.4.3. Boundary conditions

We apply boundary conditions where needed through
modified Riemann solvers; these do not solve for the flux
at an interface due to two adjacent cells; we compute a
‘ghost’ intermediate state at the interface to determine
these fluxes. In practice, we have found three types of
boundary conditions useful:

Free-slip: This common boundary condition simply states
that the component of flow normal to the interface
is zero. We obtain this by modifying the Roe aver-
age Eq. (20) used in the cell to have zero velocity in
the component normal to the boundary; thus ū on a
free-slip boundary normal to the x-direction is set to
zero. Other components of the intermediate state Q̄

are simply treated as though Ql were equal to Qr.

Velocity: This is a generalization of free-slip boundary
conditions; rather than enforce zero velocity along an
interface, some user-specified velocity is imposed as
the intermediate component of velocity in the appro-
priate direction. Other components are treated as
though the two adjacent cells were identical except
for the energy E; given an imposed velocity ū and
the same component of velocity in the adjacent cell
ur, the velocity in the ghost cell is ul = 2ū(ū − ur).
Due to this difference in velocity, the energy in the
ghost cell is not equal to its neighbor and is adjusted
with Eq. (17).

Absorbing: It is often desirable to perform simulations
where outgoing waves are simply absorbed rather
than reflected; the computational domain behaves as
if it were suspended in an infinite passive medium.
At these interfaces, the fluxes in the Riemann prob-
lem are simply set to zero.

3.4.4. Dimensional splitting

The discussion so far has been limited to one dimension
— our Eqs. (16) are three-dimensional, but the solution
procedure in Sec. 3.3.4 performs updates in only a single
dimension.

To solve three-dimensional problems, we perform di-

mensional splitting. To advance from time tn to tn+1, we
make sub-step “passes” of a one-dimensional solver in each
direction — first using the flux function F along x for all
rows of constant y and z, then using G along y for all
rows of constant x and z, and finally using H along z for
all rows of constant x and y.

This approach allows us to apply the one-dimensional
techniques previously described here in a straightforward
manner; however, we must address how best to choose the
timestep to take over the three passes.

Choosing a timestep. The timestep size ∆t that we are
able to take while advancing the solution with Eq. (8) is
limited by the maximum characteristic speed λmax from
Eq. (18) in the solution we are updating, as per the Courant-
Friedrichs-Lewy (CFL) condition [29]. For simulation in
a single dimension, the procedure in Sec. 3.3.4 works per-
fectly — we compute the solution to all Riemann problems
in the domain, which gives us the maximum characteristic
speed, which we use to compute the timestep ∆t = ∆x

λmax
.

With dimensional splitting, we are not able to compute
the maximum speed in dimension y prior to advancing the
solution in x with some previously chosen ∆t; the maxi-
mum speed in y depends on the results of the x-pass and
is not generally equal to the λmax from the x pass.

There are several ways to address this problem — for
example, we could adopt a guess-and-check approach of es-
timating a timestep, advancing the solution with it, check-
ing to see if it satisfies the CFL condition based on the
maximum speed of the next level, and rewinding the whole
computation if not, but this would be prohibitively expen-
sive.

We take the very simple approach of always advanc-
ing the solution in a dimension with the largest timestep
that satisfies the CFL condition in that dimension. This
method clearly has effects on the solution; effectively, the
grid is ‘warped’ over a timestep based on the ratios of max-
imum speeds in each dimension. However, we have found
these effects to be negligible in the simulations we have
run, even in cases where the flow (and therefore λmax) is
highly biased along a single dimension (see for example
Figs. 6, 7, and 9).

Our approach has an advantage over other methods
and is particularly desirable for visual simulation; each
dimension is advanced according to the chosen CFL num-
ber of the simulation. No dimension is forced to take a
timestep at a low CFL number because of other, higher
speed dimensions. This technique helps reduce the nu-
merical artifacts that frequently plague visual simulations
of natural phenomena.

6

3.5. Fluid-object interaction

Figure 1: Tower (without cap) blown apart by internal blast

Figure 2: Tower (with cap) blown apart by internal blast

We employ a method for bi-directional fluid-object cou-
pling that is simple, stable, and efficient. At each timestep,
solid objects are voxelized onto the grid and cells occupied
by solids marked as such.

To capture the objects’ effect on the fluid, we use the
aforementioned free-slip modification to the Riemann solver
along the boundary (in Sec. 3.4.3). This solver ensures
that incoming waves are reflected off of solid bodies and
enables effects like those seen in Figs. 1, 2, 6, 8, and 9;
these demonstrate the effects of the solids in the scene on
the flow.

The force exerted by the fluid on the objects is obtained
by multiplying the pressures at each incident cell by the in-
terface’s normal direction and applying the resulting force

to the object. This simple technique is responsible for the
forces buffeting the objects in Figs. 1, 2, 6, and 9.

Any rigid body simulator is suitable for use with our
method; we have used the Bullet collision and dynamics
engine [30] because of its completeness and availability.
Our voxelization is a simple custom tool based on triangle-
grid intersections.

Considerable work [24, 13, 5] has been done to achieve
stable fluid-solid interactions in the past, but these meth-
ods have focused on the interaction of rigid and deformable
bodies with incompressible fluids. Stability problems fre-
quently arise in such situations because of the differing
needs of the rigid body dynamics and the fluid simulator;
the implicit solver for incompressible fluid simulation gen-
erally takes large timesteps, which can result in a loosely-
coupled, unstable simulation when rigid bodies are han-
dled näıvely. Our method naturally takes many small,
inexpensive timesteps to advance the solution; this allows
tighter communication between the rigid body and fluid
simulators and results in a more stable interaction.

4. Parallelization

The vast majority of the computation time in the algo-
rithm described in Sec. 3.3.4, is spent in two kernels; the
computation of solutions to the many Riemann problems
across the grid (as described in Sec. 3.4.2) and the appli-
cation of these Riemann solutions to the cells of the grid
to advance to the next timestep (see Eq. (14)). We exe-
cute each of these kernels once per dimensional pass (as
described in Sec. (3.4.4.))

The computation of Riemann solutions is essentially
independent across all cell interfaces along the current di-
mension. Given the two cells adjacent to a given interface,
we compute the fluxes and speeds that comprise the Rie-
mann solution at that interface.

The update procedure is similarly data-parallel across
each grid cell; to update a cell, we need only the global
timestep being used for this dimensional pass (computed
as per Sec. 3.4.4) and the Riemann solutions corresponding
to the two interfaces shared with the cell’s neighbors along
the current dimension.

We therefore expect to achieve significant performance
scaling from a parallelization of these kernels across the
grid. As we shall see, there are a great number of factors to
take into consideration when developing an effective par-
allel computation scheme.

4.1. Näıve parallelization

The two computation kernels described above are par-
allel across each interface and grid cell, respectively, but
the number of these generally exceeds the number of pro-
cessors available by several orders of magnitude, so it is
reasonable to assign groups of these computations to each
processor.

An obvious way of doing this is to group ‘rows’ of com-
putation — for both kernels, we consider the computation

7

performed on the interfaces or cells along each row of the
current pass as a single task. These tasks may then them-
selves be partitioned among the available processors; Fig. 3
depicts this scheme.

Figure 3: Computation of Riemann solutions and solution updates
done in a pass are divided among threads

This scheme is exceedingly simple to implement atop
an existing serial implementation but scales poorly, achiev-
ing about 8x scaling on 16 processors. Fig. 12 shows the
scaling results for this scheme.

At first, the poor behavior of this approach may seem
surprising, since it has many of the hallmarks of a good
parallel algorithm. There is no explicit communication
between threads, only synchronization barriers at the end
of each kernel. The threads execute nearly identical code
paths on equally-sized portions of the grid; we can there-
fore be confident that each thread performs a similar amount
of work in each kernel. Additionally, the algorithm is
compute-intensive — the Riemann solution kernel per-
forms over 400 floating-point operations per interface, so
concerns over bandwidth are mitigated.

The reason why this approach scales poorly becomes
apparent when we consider the memory hierarchy of mod-
ern computer architecture and multi-core processor layout;
after taking the memory layout into account, we can con-
struct a superior parallelization scheme.

4.2. Hardware considerations

Modern processors — specifically, those found in com-
modity desktop and laptop computers — utilize a hierar-
chical memory layout, with several levels of cache between
the processor and main memory. The latency of cache
memory is typically an order of magnitude faster than that
of main memory; multiple transactions with a given mem-
ory location can be greatly sped up if the contents of said
memory can be kept in the cache.

Performance-minded implementations of important al-
gorithms — such as the linear algebra operations found in
the Automatically Tuned Linear Algebra Software (AT-
LAS) [31] package and the fast Fourier transforms found
in the Fastest Fourier Transform in the West (FFTW) [32]
library — are designed with CPU caches in mind, care-
fully blocking access patterns to maximize the effects of
the cache’s fast memory.

A serial implementation of our algorithm can be de-
signed to traverse memory in a “cache-friendly” manner,

but cannot be blocked in the same manner as some ma-
trix operations. Ideally, the memory accesses during a
timestep could be partitioned such that a portion of the
grid is loaded into the cache and all operations necessary
for that partition during the timestep would be performed
before moving on to the next partition. The multi-pass
nature of our algorithm requires that we traverse the grid
multiple times — for each dimensional pass, once to com-
pute the solutions to the Riemann problems and determine
the maximum speed, and again to apply the updates to the
grid.

However, an implementation on a parallel system will
typically have much more cache available, albeit divided
up among the various processors in the system. To ef-
fectively take advantage of the capabilities of a multi-core
system it is therefore essential that we take the various
caches available into account.

The cache structure found in multi-core computers is
quite intricate and can vary greatly from system to sys-
tem. For example, Intel’s Pentium D processor featured
two cores, each with a separate 1MB L2 cache, while In-
tel’s Core 2 Duo processor’s two cores share a single 4MB
L2 cache. The system upon which we performed our paral-
lelization benchmarks has four sockets, each with an Intel
Xeon processor — these processors are in turn composed
of four cores and two 2MB L2 caches, with each cache
shared by two of the cores.

Let us consider how the näıve parallelization scheme
presented in Sec. 4.1 behaves with a mind to memory ac-
cess and cache behavior. For any single dimensional pass,
each thread is assigned a disjoint portion of the grid to
work with; assuming (for the moment) suitably aligned
data, it is safe to say that no two threads will try to read
or write the same location in memory.

However, each dimensional pass divides the grid up dif-
ferently — for x, groups of rows of constant y and z, for
y, groups rows of constant x and z, and for z groups of
rows of constant y and z. This means that the portion
of the grid assigned to each thread changes for each di-
mensional pass; in between each pass, all of the changes
written by the pass’s update kernel must be flushed out
of all caches and exchanged. What initially looked like a
moderately memory-intensive algorithm turns out to re-
quire tremendous amounts of bandwidth to satisfy the
constantly-changing mapping of data to threads.

Cache lines and alignment. The above discussion of the
effects of the system’s caches on the näıve parallelization is
itself simplified; to fully appreciate the subtleties of caches
and how they affect a parallel program’s performance, we
must consider how caches are filled.

Caches always fetch and store contiguous groups of
memory of fixed length in quanta known as cache lines.
The size of a cache line varies with architecture; the Xeon
processors in the 16-core machine we used for our paral-
lelization benchmarks use 64-byte cache lines.

Every address in memory maps to exactly one cache

8

line and a transaction with an address will result in the
cache line to which it belongs being read into the cache.
This has the ramification that certain memory access pat-
terns can be very inefficient; access with strides greater
than a cache line, for example, can result in wasted band-
width and cache use.

Parallel programs are subject to a more subtle issue
due to cache lines: false sharing. Consider a situation in
which a region of memory is partitioned among multiple
threads, such as the partitioning of groups of rows in our
näıve parallelization scheme. Depending on how the mem-
ory is partitioned and its alignment with respect to cache
line boundaries, it is possible for multiple threads to be
assigned the same cache line. If these threads are writ-
ing to these shared cache lines, a considerable amount of
bandwidth and time is consumed as the cache line is read,
written to and flushed by one thread after another.

False sharing can be prevented by ensuring that no two
threads are reading and writing the same cache line; this
is typically accomplished by ensuring that data structures
are allocated along cache line boundaries and that shared
portions of memory are padded appropriately.

Processor affinities. We have heretofore used the terms
threads and processors interchangeably, assuming that each
thread in the parallelization runs on a single processor for
the entirety of its lifetime. In fact, operating systems are
free to assign threads to any processor and migrate them
to other processors during runtime.

Thread migration can result in a significant perfor-
mance penalty for an algorithm designed to maximize the
benefits of cache locality. Fortunately, most modern oper-
ating systems support the assignment of affinity masks to
threads, which enumerate the set of processors the thread
may execute on. Through this mechanism, we are able to
request that each thread to run on a specific processor and
therefore ameliorate the effects of thread migration.

Clearly, the näıve approach to parallelization described
in Sec. 4.1 does not scale as well as we would like. Consid-
ering the effects of cache contention that occurs between
dimensional passes and the likelihood of false sharing, the
poor performance is understandable. With the limitations
of this inferior scheme in mind, we will now describe a new
parallelization scheme that performs much better.

4.3. Domain decomposition

Given a grid of dimension l × m × n and a number
of processors p, we split the grid into p rectilinear tiles

using planes in x, y, and z. Note that we are presenting
this algorithm in three dimensions, but is easily applied to
two-dimensional problems.

The exact arrangement of the tiles depends on the fac-
tors of p, but we would like each tile to represent an equal
amount of work along each dimension. For example, given
a 64×64×64 grid and 12 processors, we might decompose
the problem into 2 × 3 × 2 tiles, with 8 tiles of dimension

32 × 21 × 32 and 4 tiles of dimension 32 × 22 × 32 (see
Fig. 4).

Figure 4: Decomposition of a 643 grid into 12 tiles: 2 × 3 × 2

Within each tile, the solution is updated according to
the serial algorithm described in Sec.3.3.4 except:

• Step 1 and step 3 are each computed within synchro-
nization barriers across all threads.

• In each dimensional pass, step 2 computes ∆t based
on the largest speed found in all tiles and the result-
ing ∆t is used in step 3 in each tile.

• The Riemann problems computed at interior bound-
aries — that is, those boundaries shared by adja-
cent tiles — must take into account the cells of the
adjacent tiles. Boundaries that tiles share with the
original grid are computed as described in Sec. 3.4.3.

To properly handle the computation of Riemann prob-
lems at interior boundaries, we need to make the values
of the cells along the boundary shared with each adjacent
tile available. For each tile, for each adjacent tile (with
which it necessarily shares an internal boundary), we keep
a buffer into which a copy of the necessary cells is writ-
ten directly before the data is needed for the associated
Riemann solution pass. Then, rather than computing a
special simplified variant of the Riemann problem based
on the boundary condition as in the standard algorithm,
we use the values from the appropriate neighbor buffer.

During the neighbor-update step for a dimensional pass,
each tile copies the necessary values from its down grid
data to the appropriate buffers belonging to its neighbors.
Note that it may be tempting to eliminate the need for
these buffers by simply have a tile read the data directly
from a appropriate neighbor tile’s grid, but doing so risks
false sharing behavior and wasted bandwidth.

Indeed, rather than share one global grid data structure
as in the näıve scheme, we eliminate the possibility of false
sharing by having each tile allocate its own grid, suitably
aligned and padded so as to share no cache lines with other
tiles’ data. This slightly complicates the output of grid
data, as each tile must carefully copy its own portion of
the aggregate grid to the output location.

9

The results of this scheme are shown in Fig. 13; the
scaling has improved slightly for small grid sizes, but is
slightly worse than the näıve scheme for larger grid sizes.

One more optimization is necessary to achieve the scal-
ing we desire. A decrease in scaling for large grid sizes
suggests that the method is bandwidth limited; for these
large grid sizes, each tile’s portion of the grid no longer
fits in cache, and the increased accesses to main memory
begins to saturate the bus for large numbers of processors.

4.3.1. Reducing memory usage

To reduce the bandwidth requirements of the algorithm
and improve scalability, we must reduce the working set
associate with each tile. The original solution procedure as
described in Sec. 3.3.4 computes the full Riemann solution
at each interfaces in step 1, uses the computed speed to
determine ∆t in step 2, and saves the computed fluxes for
the updates in step 3.

This memoization saves computation but consumes a
considerable amount of bandwidth; the full Riemann solu-
tion for an interface of the 3-dimensional Euler equations
contains 5 waves (which are vectors of 5 values) and 5
speeds, whereas a single cell of the grid has only a single
vector of 5 values (see Eqns. (18) and (19)). Since there
are roughly the same number of interfaces where these Rie-
mann solutions are stored as there are actual cells, saving
the solution to all of the Riemann solutions in a pass re-
quires 6 times the storage of the grid alone.

We can modify our algorithm to instead compute just
the maximum speeds at each interface in step 1 and com-
pute the full Riemann solutions as they are needed to ad-
vance the solution in step 3. There is a net increase in
actual computation, since we are computing a significant
portion of the Riemann solution at each interface in step
1 just to determine the maximum speeds, but we expect
the reduced bandwidth to greatly improve the scaling of
the algorithm.

As demonstrated in Fig. 14, the scaling is now very
close to linear for the larger problem sizes. The 323 grid
does not scale as well because the relative overhead of
copying data during the neighbor-update as compared to
the work done computing the solution is larger for a smaller
grid.

The dip in performance in the 323 grid for 14 threads
is due to the factors being 2 and 7; the grid cannot be
divided evenly among 7 tiles in one dimension, thus there
are 6 tiles with a dimension along one axis of 4 while the
remaining has a dimension of 9. This disparity in workload
size is particularly exaggerated at the small grid size.

5. Results

We have implemented and tested our algorithm on sev-
eral challenging scenarios. In this section, we first show
some demonstrations of our algorithm, then describe our
rendering methods, and finally discuss timing.

5.1. Applications

Figure 5: A mushroom cloud generated by our method

Figure 6: A stack of rigid bodies knocked over by a shock

We have constructed a number of scenarios that demon-
strate the ability of our method to simulate visually inter-
esting phenomena. The first segment of supplementary
video is a two-dimensional simulation demonstrating vor-
tex shedding — a traveling shock crosses a sharp obstacle
and a powerful vortex forms in its wake. Further reflec-
tions of the shocks create new vortices which combine and
travel around the domain.

Fig. 5 shows a mushroom cloud formed in the after-
math of a nuclear explosion; a low-density, high-temperature
region left by the expanding shock is forced upwards by the
pressure gradient caused by gravity; as it rises, the region
expands and curls downward, forming a distinctive mush-
room shape.

Fig. 6 demonstrates our method’s ability to interact
with moving boundary conditions; the stack of rigid bodies
in this scene are bidirectionally coupled to the fluid. A
traveling shock topples them, reflects off a nearby wall,
and rebounds on the objects, throwing them away. The

10

(a) (b) (c)

Figure 9: Rigid body-fluid interaction

Figure 7: A bow shock and turbulence formed by the passage of a
supersonic bullet

bodies’ force upon the fluid creates vorticial patterns in
the gas.

Fig. 7 shows a 2D slice of a 3D simulation of a projectile
traveling faster than the speed of sound. The bow shock
ahead of the body is typical of this type of rounded object
and the rarefaction region behind the projectile creates a
twisting trail of turbulence.

Fig. 1 and Fig. 2 are similar; in each, a cylindrical tower
of 600 bricks is toppled by an explosion from within. Fig. 1
has no cap; the explosion forces nearly all of the air out of
the cylinder as it bursts out of the top. The low-pressure
area formed inside the cylinder causes it to collapse in
upon itself while the force of the explosion venting from
the top of the structure send bricks flying. Fig. 2 has a
very heavy cap atop it; the explosive force cannot escape
so easily and is partially reflected back into the structure,
forcing a hole in the base and blowing out bricks near the
top.

Fig. 8 shows an explosion occurring in an enclosed area;
the force of the explosion forces air through the small open-
ings in the chamber and creates high-density, turbulent
tendrils.

Fig. 9 shows a series of frames from a simulation where
a “house” made of 480 concrete bricks is struck by a pow-
erful shock, causing the bricks to fly in all directions. The
bricks shape and reflect the shock as it propagates through
the scene.

Fig. 10 is a visual recreation of the first moments of the

Figure 8: An explosion in a confined space

detonation of the first nuclear bomb ‘Trinity’. The glossy
“bubble” around the explosion is the expanding shock-
front; the heat at the interface is such that light traveling
through the region is dramatically refracted. Inside the
shock, dust and flame are rising with a bright glow.

5.2. Rendering

Our 3D demonstrations were modeled in Blender [33]
and rendered with the V-Ray raytracer [34]; the visual-
ization of fluid effects in 3D were handled by our Monte
Carlo volume raytracer plug-in for V-Ray. Atmospheric
scattering was not used; these renders use ρ as advected
by the fluid for the emissive and absorbing factors for the
volume tracer, with color determined by a linear mapping
of ρ into a blackbody colormap.

The 2D demonstrations were rendered with our sim-
ple custom 2D plotting tool; those using a monochrome
colormap demonstrate our method’s preservation of sharp
shock features through a schlieren plot — namely, we plot
√

|∇ρ|. The term schlieren refers to a particular type of
image formed by the passage of light through inhomoge-
neous media that causes shadows to appear in areas of
high inhomogeneity; see the book by Settles [35] for more
detail.

11

Figure 10: The initial moments of the “Trinity test” — the first
atomic bomb

Table 1: Demonstrative timings of our method
Scene resolution sim. fps avg. ∆t sim. time
Blast chamber 120×80×120 1.56 1.4e-4 s 16.25 min
Rigids w/ refl. 60×60×100 0.779 2.5e-4 s 29.93 min
Tower (top) 60×80×60 1.14 7.2e-4 s 30.21 min
Trinity 200×75×200 0.102 2.9e-5 s 32.88 min
Tower (no top) 60×100×60 0.939 6.8e-4 s 51.74 min
Mush. cloud 120×100×120 0.243 2.4e-2 s 57.74 min
House 100×100×100 0.310 4.6e-5 s 58.35 min
Projectile 250×100×100 0.191 1.0e-5 s 191.5 min

Timings showing grid resolution, simulation frames per
second, average simulation timestep, and the total

computation time needed for the entire simulation run.

5.3. Timings

We present performance data in Table. 1; these timings
were collected on a 2GHz Core 2 laptop. Memory usage
is linear in the number of grid cells — each demonstration
fits within 500MB of memory. These timings are all for
a single thread of computation; our parallelization results
were discussed in Sec. 4.

Direct comparisons with previous works are difficult to
produce because little or no timing information is available
for these papers. Figure 2 in [18] shows a 2D slice of a 1013

simulation of a shockwave interacting with a stationary
wall; they reported a simulation time of ‘overnight’. We
reproduced this simulation with our method; for a 1013

grid, we recorded a total simulation time of 15 minutes.
Conservatively estimating that our single core of our hard-
ware is nearly 7 times faster and that ‘overnight’ is about
10 hours, the serial version of our method is at least 6
times faster than theirs at equivalent resolutions, and our
simulation contains more visual detail. See Fig. 11 for a
comparison.

To demonstrate the ability of our method to produce
detailed results at coarse resolutions, we performed the
same simulation on a 603 grid; this took less than 2 min-

utes (roughly 45x faster) and the generated results exhibit
more detail than the results computed on a 1013 grid using

Figure 11: Left: Image from Yngve et al.’s paper; blast diffaction on
a 1013 grid. Right: Our method in similar scenario, 603 grid.

[18]. We have included these results in our supplementary
video; the corresponding video from Yngve et al. can be
found at [36].

5.4. Parallelization

Figs. 12, 13, 14 demonstrate the scaling for the various
parallel schemes described in Sec. 4. These timings were
collected on system with four Intel Xeon X7350 quad-core
processors running at 2.93GHz; the system runs Microsoft
Windows Server 2003 (64-bit) and has 16GB of physical
memory.

Figure 12: A näıve parallelization scheme scales poorly with the
number of threads

Figure 13: Scaling of the initial version of the tiled parallelization.
Memoization of Riemann solutions leads to bandwidth saturation for
large numbers of processors.

12

Figure 14: Scaling of the revised version of the tiled parallelization.
The reduction in bandwidth requirements greatly improves scaling.

6. Conclusion

We have presented a method for efficient simulations
of supersonic flows in compressible, inviscid fluids that is
based on the finite volume method. We have demonstrated
the ability of our method to capture the behavior of shocks
and to handle complex, bidirectional object-shock interac-
tions stably. We have also demonstrated an effective par-
allelization scheme based on architectural considerations
that achieves near-linear scaling on modern multi-core ar-
chitectures.

6.1. Limitations

Hyperbolic systems of equations (i.e. the compressible,
inviscid Euler equations simulated here) are subject to the
CFL condition as a requirement for convergence and sta-
bility. The unconditionally stable solvers popular for in-
compressible fluid dynamics are subject to the CFL condi-
tion for convergence, but not stability — indeed, the con-
vention seems to take the CFL condition as a “guideline”
and use CFL numbers upwards of 5.

Our technique performs well at simulating truly hy-
perbolic phenomena such as compressible, inviscid fluid
dynamics, but cannot handle nearly incompressible phe-
nomena (e.g. liquids) as efficiently as those simulations
currently used in computer graphics. This fundamental
limitation is due to the choice of equations — the actual
propagation of acoustic waves so important to compress-
ible fluids has a negligible effect on incompressible fluids.

6.2. Future work

There are a number of promising areas for future work.
Many natural phenomena give rise to shocks — of partic-
ular interest to graphics are hydraulic jumps in the Saint-
Venant (or shallow water) equations.

The tiled parallelization scheme we employ scales very
well compared to a näıve parallel decomposition, but there
is potential for further improvement with a nuanced inves-
tigation of further cache effects, operating system scaling,
and processor layout. We also would like to investigate the

extension of our method to new parallel architectures, such
as Intel’s Larrabee, IBM’s Cell, next-generation graphics
cards leveraging OpenCL and CUDA.

Acknowledgement: The authors would like to thank
Yuri Dotsenko, Naga Govindaraju, Brandon Lloyd, Rick
Molloy, and Avneesh Sud for helpful discussions on parallel
algorithms.

This research is supported in part by the Army Re-
search Office, National Science Foundation, U.S. Army
RDECOM Intel Corporation, and Carolina Development.

References

[1] J. Stam, Stable fluids, in: A. Rockwood (Ed.), Siggraph 1999,
Computer Graphics Proceedings, Addison Wesley Longman,
Los Angeles, 1999, pp. 121–128.

[2] F. Losasso, F. Gibou, R. Fedkiw, Simulating water and smoke
with an octree data structure, in: ACM SIGGRAPH ’04, ACM
Press, New York, NY, USA, 2004, pp. 457–462.

[3] B. Adams, M. Pauly, R. Keiser, L. J. Guibas, Adaptively sam-
pled particle fluids, in: ACM SIGGRAPH ’07, ACM, New York,
NY, USA, 2007, p. 48.

[4] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien,
J. R. Shewchuk, Liquid simulation on lattice-based tetrahe-
dral meshes, in: SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 2007, pp. 219–228.

[5] C. Batty, F. Bertails, R. Bridson, A fast variational frame-
work for accurate solid-fluid coupling, in: ACM SIGGRAPH
’07, 2007.

[6] N. Foster, D. Metaxas, Realistic animation of liquids, Graph.
Models Image Process. 58 (5) (1996) 471–483.

[7] N. Foster, R. Fedkiw, Practical animation of liquids, in: ACM
SIGGRAPH ’01, ACM Press, New York, NY, USA, 2001, pp.
23–30.

[8] R. Bridson, Fluid Simulation for Computer Graphics, AK Pe-
ters Ltd, 2008.

[9] B. E. Feldman, J. F. O’Brien, B. M. Klingner, Animating gases
with hybrid meshes, in: ACM SIGGRAPH ’05, ACM Press,
New York, NY, USA, 2005, pp. 904–909.

[10] S. Elcott, Y. Tong, E. Kanso, P. Schröder, M. Desbrun, Stable,
circulation-preserving, simplicial fluids, ACM Trans. Graph.
26 (1) (2007) 4.

[11] J. Wendt, W. Baxter, I. Oguz, M. Lin, Finite-volume flow sim-
ulations in arbitrary domains, Graphical Models 69 (1) (2007)
19–32.

[12] B. M. Klingner, B. E. Feldman, N. Chentanez, J. F. O’Brien,
Fluid animation with dynamic meshes, in: ACM SIGGRAPH
’06, ACM Press, New York, NY, USA, 2006, pp. 820–825.

[13] N. Chentanez, T. G. Goktekin, B. E. Feldman, J. F. O’Brien, Si-
multaneous coupling of fluids and deformable bodies, in: SCA
’06: Proeedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 2006.

[14] P. Roe, Approximate Riemann solvers, parameter vectors, and
difference schemes, J Comput. Phys. (43) (1981) 357–372.

[15] B. van Leer, Towards the ultimate conservative difference
scheme iv, J. Comp. Phys. (22) (1977) 276–299.

[16] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems,
Cambgridge University Press, New York, 2002.

[17] R. Fedkiw, G. Sapiro, C.-W. Shu, Shock capturing, level sets
and PDE based methods in computer vision and image process-
ing: A review on Osher’s contribution, J. Comput. Phys. (185)
(2003) 309–341.

13

[18] G. D. Yngve, J. F. O’Brien, J. K. Hodgins, Animating explo-
sions, in: ACM SIGGRAPH ’00, ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000, pp. 29–36.

[19] J. Sewall, P. Mecklenburg, S. Mitran, M. Lin, Fast fluid sim-
ulation using residual distribution schemes, in: Eurographics
Workshop on Natural Phenomena 2007, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 2007, pp. 47–54.

[20] B. E. Feldman, J. F. O’Brien, O. Arikan, Animating suspended
particle explosions, in: ACM SIGGRAPH ’03, ACM, New York,
NY, USA, 2003, pp. 708–715.

[21] A. Selle, N. Rasmussen, R. Fedkiw, A vortex particle method for
smoke, water and explosions, in: ACM SIGGRAPH ’05, 2005,
pp. 910–914.

[22] M. Müller, D. Charypar, M. Gross, Particle-based fluid simu-
lation for interactive applications, in: SCA ’03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 2003, pp. 154–159.

[23] O. Genevaux, A. Habibi, J.-M. Dischler, Simulating fluid-solid
interaction, in: Proc. Graphics Interface ’03, 2003.

[24] M. Carlson, P. J. Mucha, G. Turk, Rigid fluid: animating the
interplay between rigid bodies and fluid, ACM Trans. Graph.
23 (3) (2004) 377–384.

[25] E. Guenelman, A. Selle, F. Losasso, R. Fedkiw, Coupling wa-
ter and smoke to thin deformable and rigid shells, in: ACM
SIGGRAPH ’05, ACM Press, New York, NY, USA, 2005, pp.
973–981.

[26] O. Mazarak, C. Martins, J. Amanatides, Animating exploding
objects, in: Proc. Graphics Interface ’99, AK Peters, Wellesley,
MA, USA, 1999, pp. 211–218.

[27] M. Neff, F. Fiume, A visual model for blast waves and fracture,
in: Proc. Graphics Interface ’99, AK Peters, Wellesley, MA,
USA, 1999, pp. 193–202.

[28] P. Lax, B. Wendroff, Systems of conservation laws, Comm. Pure
Appl. Math. (13) (1960) 217–237.

[29] R. Courant, K. Friedrichs, H. Lewy, Über die partiellen dif-
ferenzengleichungen der mathematischen physik, Mathematis-
che Annalen 100 (1) (1928) 32–74.

[30] Bullet Physics Library, http://www.bulletphysics.com/ .
[31] R. C. Whaley, A. Petitet, J. J. Dongarra, Automated empiri-

cal optimization of software and the ATLAS project, Parallel
Computing 27 (1–2) (2001) 3–35, also available as University of
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

[32] M. Frigo, S. G. Johnson, The design and implementation of
FFTW3, Proceedings of the IEEE 93 (2) (2005) 216–231, spe-
cial issue on ”Program Generation, Optimization, and Platform
Adaptation”.

[33] Blender 2.45, http://www.blender.org/ .
[34] V-Ray, http://www.chaosgroup.com/en/2/vray.html .
[35] G. S. Settles, Schlieren and shadowgraph techniques: Visualiz-

ing phenomena in transparent media, Springer-Verlag, 2001.
[36] G. D. Yngve, J. F. O’Brien, J. K. Hodgins,

http://www.cs.berkeley.edu/b-cam/Papers/Yngve-2000-AE/Stuff/wall_pressure.mpeg.

14

http://www.bulletphysics.com/
http://www.blender.org/
http://www.chaosgroup.com/en/2/vray.html
http://www.cs.berkeley.edu/b-cam/Papers/Yngve-2000-AE/Stuff/wall_pressure.mpeg

	Introduction
	Previous Work
	Method
	Conservation laws
	Integral form

	The finite volume method
	The Riemann problem
	Riemann problem for linear systems
	The Riemann problem for nonlinear systems
	Upwinding flux splitting
	Solution procedure

	The Euler equations
	Approximate Riemann solutions
	Riemann solver for Euler equations
	Boundary conditions
	Dimensional splitting

	Fluid-object interaction

	Parallelization
	Naïve parallelization
	Hardware considerations
	Domain decomposition
	Reducing memory usage

	Results
	Applications
	Rendering
	Timings
	Parallelization

	Conclusion
	Limitations
	Future work

