
1

Overview of Graphics HardwareOverview of Graphics Hardware

John Spitzer
NVIDIA Corporation

PC Graphics (Current)

AGP 8x Bus
(2 GB/s)

Video Memory
(256 MB)

CPU
(3 GHz)

System Memory
(1 GB)

AGP Memory
(512 MB)

GPU
(500 MHz)

Usual Co-Processor Pitfalls

Synchronization temporarily idles ALL processors

Specialized co-processor architecture
GPU’s deep pipeline means restart is expensive
Different mind-set needed to map problems to
architecture

GPU as a Co-Processor? Careful!

CPU programmed as von Neumann architecture

GPU designed to render graphics
MAY be able to abuse it for other computations

GPU is NOT von Neumann architecture
Deep pipeline architecture
Pipeline stages are multi-pipe SIMD designs
Stages are vector-processors
Optimized for large table look-ups (textures)
AGP interconnect not symmetric

2

GPU Schematic

AGP 8x Bus

(2 GB/s)

(180 MB/s)

GPU

1

n

Vertex
Processors

Setup/Raster

1Textures /
Framebuffer

m

Fragment
Shaders

AGP Bus Considerations

Optimized for graphics:
CPU hands GPU (lots of) data
GPU produces image on monitor
AGP read-back (generally) unused

Best for “Deep Thought” kind of problems:

Deep
Thought

Lots
of Data

“42”

AGP Performance

Write AGP data in 32 or 64 byte blocks
Otherwise AGP write-combining reads, then writes

Avoid reading from GPU data-structures

Communicate intended use to driver
Static versus dynamic vertex buffers or textures
Declare data as write-only
Placement into video-, AGP-, or system-memory

Allow vertex buffer renaming (avoid syncs)
Use discard/no-overwrite and var/fence

Programmable Vertex Processors

No connectivity info/no access to neighbors (SIMD)

1.5 Billion VECTOR operations/s! (~6 GFlops/s)
IEEE s23e8 32 bit floating point per component
“Simple” operations include dot4, mad, sin, pow, lg2
Vector swizzles/conditional writes are free

Post TnL vertex caches: >>100 Million lit tris/s

Per-vertex data-dependent:
Branches, loops
Subroutines

3

Vertex Processing Performance

Proportional to number of vertices

Proportional to number of (assembly) instructions
Compute constant expressions on CPU

Post TnL cache critical
Much more so than lists versus strips!
Must use indexed primitives to access it
Allows for drawing up to 1 tri/0.5 vertices computed
Free tools reorder your mesh optimally

http://developer.nvidia.com

Shader
compiler

takes care

Setup/Rasterization

Collects post TnL vertices into triangles

Culls and clips

Rasterizes triangles into fragments

Per-Vertex data interpolates to per-fragment
linearly
perspective-correct

Setup/Rasterization Performance

Not much control over it, but…

Does not matter: rarely the bottleneck

Degenerate triangles are free
Likely that all vertices hit PostTnL cache
No rasterization cost
Even up to 25% degenerates are okay

Programmable Fragment Shader

No connectivity info/no access to neighbors (SIMD)

~8 Billion VECTOR operations/s! (~32GFlops/s)
Multiple parallel fragment pipes
Parallel RGB vector plus alpha scalar pipe
Multiple operations per pipe and clock
“Simple” operations include dot4, mad, sin, pow,
lg2, table (texture) look-ups
Vector swizzles/conditional writes are free

4

Fragment Shader Data Formats

IEEE s23e8 32 bit floating point per component

Optional OpenEXR s10e5 16 bit fp per component
Same format as endorsed by ILM and other studios
In case 16 bit floating point is good enough
And performance is critical

12 bit fixed point precision

Table (Texture) Look-Ups

Additional free operations:
Bi-Linear filtering for table (texture) look-up
Mip-level computations
Partial derivative computations

Shadow maps (free depth compare on read)

Up to 16 different textures
Sampled an arbitrary number of times

Unlimited dependent texture reads

Texture and Render Target Features

1D, 2D, 3D, cube-map, rectangle textures

Textures and render targets with (per component)
8 bit fixed point
OpenEXR 16 bit floating point
IEEE s23e8 32 bit floating point
Mix and match above

Free texture compression: HILO and S3TC

Vertex array render targets

Fragment Shader Performance

Wider formats more expensive
Requires more bandwidth
Requires more computation

More temporaries more expensive

Longer shaders more expensive

Non-local texture look-ups more expensive
But 2D neighborhood is cached
Behavior still better than L1 cache-misses

Shader
compiler

takes care

5

Other Free Computation Units

Occlusion queries

Last century’s tech:
Frame-Buffer blending and alpha-testing

Stencil operations
Super-Accelerated via two-sided stencil, stencil-only

Z-Buffer operations
Super-Accelerated via early z-cull, z-compression

Available Z and Stencil Operations

Selectable stencil test
Test against value in stencil buffer
Reject fragment if test fails
Perform distinct stencil operation when

Stencil-Test fails
Z-Test fails
Z-Test passes

Selectable z-test
Reject fragment if test fails

Performance Considerations

Occlusion query: use it asynchronously

Alpha blending: reads and writes frame buffer

Stencil-Only pass (no z- or color-writes): extra fast

Z-Cull: render coarsely sorted front-to-back

Clear() best way to clear color, stencil, or z
Turn off color-, stencil-, or z-writes when unneeded
But do not mask individual color components

And the Future Is Blindingly Bright…

0

50

100

150

200

R
iv

a
12

8

R
iv

a
ZX

R
iv

a
TN

T

TN
T2

G
eF

or
ce

G
eF

or
ce

2

G
eF

or
ce

2
U

ltr
a

G
eF

or
ce

3

G
eF

or
ce

3
Ti

G
eF

or
ce

4
Ti

G
ef

or
ce

FX

2H97 1H98 2H98 1H99 2H99 1H00 2H00 1H01 2H01 1H02 2H02

GPU

0

1000

2000

3000

4000

5000
CPU MHz

GPU MTris
GPU 32-bit AA Fill
GPU GFlops
CPU MHz

Avg. 18month CPU Speedup: 2.22.2
Avg. 18month GPU Speedup: 3.03.0--3.73.7

6

Last Year’s Intro Revisited

Programmability: Lack of programming
tools

Lack of precision

Formal models for performance evaluation

Only a certain class of problems can be
mapped to the graphics hardware

Lack of Programming Tools?

Cg
C-Like high-level language
Compiles to vertex-/pixel-shader profiles
Integrated with OpenGL and/or DirectX
Cross-OS support: Windows, Linux, …
DirectX HLSL compatible

DirectX’s HLSL (Windows/DirectX only)

OpenGL’s SLang (when spec finalized)

Lack of Precision?

Yes, limited to 32bit floating point per component
No support for doubles

But 32bit floating point from start to finish of pipe
No ifs, buts, or whens
At least on NVIDIA’s Geforce FX family of GPUs

Smaller formats available for optimizations
When 32bit floating point is overkill

Formal Performance Eval. Models?

Not aware; architectures are still changing rapidly

But: Lots of good stuff available in the trenches
Websites, e.g., http://developer.nvidia.com

Lots of GPU performance presentations
Lots of GPU performance white-papers

IHV’s Developer Relations
Game Developer Conferences

Lots of GPU performance talks and discussions

Shader compilers/drivers optimize for you

7

GPU likes
Not needing to know about neighbors
Closed form solutions (CPU prefers iterative)
Table-Lookups (CPU dislikes if causing cache thrash)
‘Deep Thought’ problems
Vector operations
All pipe processors busy all the time

GPU dislikes
Synchronizing to the CPU (and vice versa!)
MIMD
Branching

Only Certain Problems Map to GPU Known GPU (Ab)Uses

CSG via stencil ops:
[Wiegand 1996]
[Stewart, Leach, John 1998, 2002]

cone − spherecone ∩ spherecone sphere

∩
Depth Peeling

Display pixels
at nth layer of
depth
Repeatedly
render to depth
buffer, but
reject pixels
previously
determined to
be ‘closest’

Layer 0

Layer 1

Layer 2

Layer 3

Order Independent Transparency

Corollary to depth peeling [Everitt 2001]:
Compute all depth peels

Stop when no pixels rendered (occlusion query)
Blend depth peels back-to-front

8

Particle System Physics

Translate iterative
computations to closed form
Solve closed form physics for
every particle (vertex)
[Wloka 2001]

Game of Life/Fire Simulation

Sample render-target
texture multiple
times to determine
neighbors’ state
Use dependent
‘rule’-texture read to
determine new state
[James 2001]

Height-Based Water Simulation

Simulate height-field dynamics
Generate normals from height field
[James 2001], [Elder Scrolls III: Morrowind]

Boiling (2D and 3D)
Rayleigh-Bénard Convection (2D)

[Harris 2002]

9

Simple Collision Detection/Response

Check every
vertex for
intersection w/
sphere
Displace vertex
out of sphere
[Wloka 2001]

All the Previous Stuff Runs On…

Geforce 3, anno early 2001 !!!
More restrictive pixel-shaders

No floating point formats
Only 4 textures, 1 sample per texture (per pass)
Maximally 8 math instructions
None of the fancy ‘simple’ instructions

Much lower performance

2003: All features described here available
As PC graphics cards
At multitude of price-points ($79 and up)
Corresponding to performance

Current GPUs Allow

Ray-Tracing
[Purcell et al 2002]

Cloth simulation via
render to vertex-buffer
[Green 2002]

Scientific computations

Advertisement:
Implementing a GPU-Efficient FFT

Case study of:
Take a highly CPU-optimized algorithm and …
Convert it to run (well) on GPU

Feasibility checks

Step-By-Step CPU to GPU conversion
Things to avoid
Things to strive for

Optimizing the GPU implementation
Taking advantage of GPU’s peculiarities

10

Thanks to...

Dinesh Manocha for organizing this course

Matthias Wloka for writing this presentation

Questions, Comments, Feedback?

John Spitzer, spit@nvidia.com

http://developer.nvidia.com

