2
7ZZVIDIA.

PC Graphics (Current)

CPU GPU
(3 GHz) (500 MHz)

System Memory Video Memory
(1 GB) AGP 8x Bus (256 MB)
i H AGP Memor; (2 GB/s)
Overview of Graphics Hardware y
(512 MB)
John Spitzer
NVIDIA Corporation CC-_”_‘.
BYIDIA.
Usual Co-Processor Pitfalls GPU as a Co-Processor? Careful!
< Synchronization temporarily idles ALL processors - CPU programmed as von Neumann architecture
. Specialized co-processor architecture - GPU designed to render graphics
<~ GPU’s deep pipeline means restart is expensive < MAY be able to abuse it for other computations
- Different mind-set needed to map problems to
architecture < GPU is NOT von Neumann architecture
- Deep pipeline architecture
- Pipeline stages are multi-pipe SIMD designs
- Stages are vector-processors
. - Optimized for large table look-ups (textures)
@’; < AGP interconnect not symmetric Ccl’;
BVIDIA. BVIDIA.

GPU Schematic

GPU
Vertex
(2 GBJs) Proce S =

AGP 8x Bus

Setup/Raster

7S

\V4

Textures /
Framebuffer

Fragment

—_—
(180 MB/s) Shaders

<

RVIDIA.

AGP Bus Considerations

- Optimized for graphics:
< CPU hands GPU (lots of) data
- GPU produces image on monitor
- AGP read-back (generally) unused

~ Best for “Deep Thought” kind of problems:

Lotsﬁ*

~ of Data i\ Deep
//\ A / Thought
‘ <

“q9
42 BVIDIA.

AGP Performance

< Write AGP data in 32 or 64 byte blocks
< Otherwise AGP write-combining reads, then writes

< Avoid reading from GPU data-structures

- Communicate intended use to driver
- Static versus dynamic vertex buffers or textures
< Declare data as write-only
< Placement into video-, AGP-, or system-memory

< Allow vertex buffer renaming (avoid syncs) (C};
< Use discard/no-overwrite and var/fence BVIDIA.

Programmable Vertex Processors
< No connectivity info/no access to neighbors (SIMD)

< 1.5 Billion VECTOR operations/s! (~6 GFlops/s)
- |[EEE s23e8 32 bit floating point per component
- “Simple” operations include dot4, mad, sin, pow, Ig2
< Vector swizzles/conditional writes are free

~ Post TnL vertex caches: >>100 Million lit tris/s

~ Per-vertex data-dependent:
- Branches, loops
< Subroutines

<

BVIDIA.

Vertex Processing Performance

< Proportional to number of vertices

< Proportional to number of (assembly) instructions:F
-~ Compute constant expressions on CPU

Shader

compiler

< Post TnL cache critical
takes care

< Much more so than lists versus strips!

< Must use indexed primitives to access it

- Allows for drawing up to 1 tri/0.5 vertices computed
- Free tools reorder your mesh optimally

< http://developer.nvidia.com <ij—-
BVIDIA.

Setup/Rasterization

- Collects post TnL vertices into triangles

< Culls and clips

- Rasterizes triangles into fragments

~ Per-Vertex data interpolates to per-fragment

< linearly
< perspective-correct

<

RVIDIA.

Setup/Rasterization Performance

< Not much control over it, but...
. Does not matter: rarely the bottleneck

- Degenerate triangles are free
< Likely that all vertices hit PostTnL cache
< No rasterization cost
- Even up to 25% degenerates are okay

<

HVIDIA.

Programmable Fragment Shader

< No connectivity info/no access to neighbors (SIMD)

- ~8 Billion VECTOR operations/s! (~32GFlops/s)
< Multiple parallel fragment pipes
- Parallel RGB vector plus alpha scalar pipe
- Multiple operations per pipe and clock

- “Simple” operations include dot4, mad, sin, pow,
g2, table (texture) look-ups

- Vector swizzles/conditional writes are free

<

BVIDIA.

Fragment Shader Data Formats

< IEEE s23e8 32 bit floating point per component

- Optional OpenEXR s10e5 16 bit fp per component
- Same format as endorsed by ILM and other studios
< In case 16 bit floating point is good enough
< And performance is critical

< 12 bit fixed point precision

Table (Texture) Look-Ups

Additional free operations:
< Bi-Linear filtering for table (texture) look-up
< Mip-level computations
- Partial derivative computations

Shadow maps (free depth compare on read)

Up to 16 different textures
- Sampled an arbitrary number of times

< < Unlimited dependent texture reads <
BVIDIA. BYIDIA.
Texture and Render Target Features Fragment Shader Performance
< 1D, 2D, 3D, cube-map, rectangle textures < Wider formats more expensive
< Requires more bandwidth
< Textures and render targets with (per component) - Requires more computation
- 8 bit fixed point
- OpenEXR 16 bit floating point < More temporaries more expensive Shader
- IEEE s23e8 32 bit floating point compiler
2 Mix and match above < Longer shaders more expensive takes care
- Free texture compression: HILO and S3TC < Non-local texture look-ups more expensive
< But 2D neighborhood is cached
< Vertex array render targets @{' - Behavior still better than L1 cache-misses @ﬂ
HVIDIA.

BVIDIA.

Other Free Computation Units

< Occlusion queries

< Last century’s tech:
< Frame-Buffer blending and alpha-testing

- Stencil operations
- Super-Accelerated via two-sided stencil, stencil-only

- Z-Buffer operations
- Super-Accelerated via early z-cull, z-compression

<=

RVIDIA.

Available Z and Stencil Operations

< Selectable stencil test
- Test against value in stencil buffer
- Reject fragment if test fails
- Perform distinct stencil operation when
- Stencil-Test fails
< Z-Test fails
- Z-Test passes

- Selectable z-test
< Reject fragment if test fails

<

RVIDIA.

Performance Considerations

< Occlusion query: use it asynchronously
< Alpha blending: reads and writes frame buffer
< Stencil-Only pass (no z- or color-writes): extra fast
. Z-Cull: render coarsely sorted front-to-back
« Clear() best way to clear color, stencil, or z
- Turn off color-, stencil-, or z-writes when unneeded

< But do not mask individual color components @i
BVIDIA.

And the Future Is Blindingly Bright...

GPU CPU MHz

200 TRy MTris 7Pty
GPU 32-bit AA Fill /] 000

150 § — — GPU GFlops . 4

——CPU MHz ,
e 4 3000
100 —

— 7 / + 2000
50 —— — v T 1000

0

0

GeForce3
Ti

GeForce4
Ti

GeforceFX

2H97 | 1H98 | 2H98 | 1H99 | 2H99 | 1HOO | 2HOO | 1HO1 | 2HO1 | 1HO2 | 2HO2

Avg. 18month CPU Speedup: 2.2

Avg. 18month GPU Speedup: 3.0-3.7 <

BVIDIA.

Last Year’s Intro Revisited

< Programmability: Lack of programming
tools

~'Lack of precision
< Formal models for performance evaluation

< Only a certain class of problems can be
mapped to the graphics hardware <

RVIDIA.

Lack of Programming Tools?

< Cg
~ C-Like high-level language
- Compiles to vertex-/pixel-shader profiles
< Integrated with OpenGL and/or DirectX
< Cross-0S support: Windows, Linux, ...
< DirectX HLSL compatible

< DirectX's HLSL (Windows/DirectX only)

< OpenGL’s SLang (when spec finalized) <
WVIDIA.

Lack of Precision?

< Yes, limited to 32bit floating point per component
< No support for doubles

< But 32bit floating point from start to finish of pipe
< No ifs, buts, or whens
- At least on NVIDIA’'s Geforce FX family of GPUs

< Smaller formats available for optimizations
< When 32bit floating point is overkill

@‘v).

HVIDIA.

Formal Performance Eval. Models?

- Not aware; architectures are still changing rapidly

< But: Lots of good stuff available in the trenches
- Websites, e.g., http://developer.nvidia.com
- Lots of GPU performance presentations
- Lots of GPU performance white-papers
< IHV’s Developer Relations
- Game Developer Conferences
< Lots of GPU performance talks and discussions

- Shader compilers/drivers optimize for you <
BVIDIA.

Only Certain Problems Map to GPU

Known GPU (Ab)Uses

- GPU likes
- Not needing to know about neighbors
- Closed form solutions (CPU prefers iterative)
< Table-Lookups (CPU dislikes if causing cache thrash)
- ‘Deep Thought’ problems
- Vector operations
< All pipe processors busy all the time

~ CSG via stencil ops:
< [Wiegand 1996]
- [Stewart, Leach, John 1998, 2002]

¢ ©

< GPU dislikes
< Synchronizing to the CPU (and vice versa!) cone U sphere cone N sphere cone — sphere
> MIMD &l <o
< Branching BVIDIA. RVIDIA.
Depth Peeling Order Independent Transparency
- Display pixels

at nthlayer of
depth

< Repeatedly
render to depth
buffer, but
reject pixels
previously
determined to
be ‘closest’

<>

BVIDIA.

~ Corollary to depth peeling [Everitt 2001]:
< Compute all depth peels
- Stop when no pixels rendered (occlusion query)
- Blend depth peels back-to-front

Com
BVIDIA.

Particle System Physics

Game of Life/Fire Simulation

< Translate iterative
computations to closed form

- Solve closed form physics for
every particle (vertex)

< [Wloka 2001]

<=

RVIDIA.

< Sample render-target
texture multiple
times to determine
neighbors’ state

~ Use dependent
‘rule’-texture read to |
determine new state’

< [James 2001]

RVIDIA.

Height-Based Water Simulation

< Simulate height-field dynamics
< Generate normals from height field
< [James 2001], [Elder Scrolls lll: Morrowind] <

Boiling (2D and 3D)
Rayleigh-Bénard Convection (2D)

< [Harris 2002]

<
BVIDIA.

Simple Collision Detection/Response

All the Previous Stuff Runs On...

~ Check every
vertex for
. intersection w/
W e sphere
' e - Displace vertex
out of sphere

< [Wioka 2001]

< Geforce 3, anno early 2001 !!!
- More restrictive pixel-shaders
- No floating point formats
< Only 4 textures, 1 sample per texture (per pass)
- Maximally 8 math instructions
- None of the fancy ‘simple’ instructions
< Much lower performance

~ 2003: All features described here available

| & i
< As PC graphics cards
e < At multitude of price-points ($79 and up) e
AVIDIA. < Corresponding to performance AVIDIA.
Advertisement:
Current GPUs Allow Implementing a GPU-Efficient FFT
~ RPay-Trﬁlci?gl 2002 = Case study of:
LG] - Take a highly CPU-optimized algorithm and ...
2C titt I GPU
~ Cloth simulation via onvertitto run (well) on
render to vertex-buffer S
[Green 2002] ~ Feasibility checks
_ Scientific computations | < Step-By-Step CPU to GPU conversion ,
E: /, < Things to avoid /
- Things to strive for
B @ < Optimizing the GPU implementation &

BVIDIA.

- Taking advantage of GPU'’s peculiarities

BVIDIA.

Thanks to...

- Dinesh Manocha for organizing this course

- Matthias Wloka for writing this presentation

<=

RVIDIA.

Questions, Comments, Feedback?

< John Spitzer, spit@nvidia.com

< http://developer.nvidia.com

<

RVIDIA.

10

