Implementing a GPU-Efficient FFT

John Spitzer
NVIDIA Corporation

Why Fast Fourier Transform?
“Classic” algorithm
Computationally intensive
Useful
Imaging
Signal analysis
Procedural texturing

What is a FFT?
Fourier transform
Transform function from spatial- to frequency-domain
\[H(f) = \int h(t) e^{2\pi i ft} dt \]

Inverse Fourier transform
\[h(t) = \frac{1}{\sqrt{N}} \sum_{n=-N/2}^{N/2-1} H(n) e^{2\pi i nt/N} \]

Discrete Forms for Series of Samples
Discrete Fourier transform
\[H_n = \sum_{k=0}^{N-1} h_k e^{2\pi i kn/N} \]

Inverse discrete Fourier transform
\[h_k = \frac{1}{N} \sum_{n=0}^{N-1} H_n e^{-2\pi i nk/N} \]
Solving Fourier Transforms

- As matrix equation:
 \[H_n = \sum_{k=0}^{N-1} W_{nk} h_k \]
 \[\hat{H} = W \hat{h} \]
 \[O(N^2) \] operations

- Recursive (Fast Fourier Transform):
 \[F_k = \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j \]
 \[F_k = F_k^* + W F_k^o \]
 \[O(N \log N) \] operations

Fast Fourier Transform Implementations

- [Numerical Recipes in C]
 - Loop over elements for bit-reversal
 - Loop log N times to recombine neighbors
 - Weights are computed iteratively

- Fastest Fourier Transform in the West
 - http://fftw.org
 - Optimized for current CPU architectures
 - Adapts itself to current CPU cache sizes

Application Example: SETI@home

- SETI@home Pulse Search
 - Search for dispersed pulses of intrinsically short duration, e.g., pulsars

- Computation task at hand:
 - Have ~2.5 years of data
 - Need to examine every .8ms of that data
 - Each examination requires ~0.34 GFlops
 - mostly in the form of FFTs
 - ~33,507,000,000 GFlops computation

 - Needs every help it can get

GPU FFT Feasibility

- 2048 element FFT requires
 - ~8 * 2048 * log(2048) = ~180 KFlops
 - 2048 * 8 = 16KB of data

- Computational limits for GeForceFX 5900 (NV35)
 - Vertex: .450 GHz * 3 units * 4 FLOPS/unit = 5.4 GFLOPS
 - Pixel: .450 GHz * 4 units * 12 FLOPS/unit = 21.6 GFLOPS
 - Total: 27 GFLOPS

- Theoretical times for GPU
 - Download: 16k @ 2.0 GB/s = 8 us (AGP 8X)
 - Computation: 180KGFlop @ 27 GFLOPS = ~7 us
 - Upload: 16k @ 0.18 GB/s = 90 us (PCI)
FFT Algorithm Overview

Pass 0: Bit Reversal
Pass 1: combine 1-neighbors
Pass 2: combine 2-neighbors
... (multiple passes)
Pass log N: combine N/2-neighbors

Mapping Data-Structures to GPU

1D texture (from AGP)
1D float texture (render target)
1D float texture (render target to be read back to system memory)

GPU Algorithm Overview

- Download FFT data to GPU as a 1D texture
 - 2k by 1 texels big
- Render quad into float texture render-target
 - Quad is 2k pixels wide and 1 pixel high
 - Use x pixel position to index texture
- Bit-Reversal done as:
 - Pass address of pixel as texture coordinate
 - Fragment(x) = tex(bitreversal(x))
 - Bitreversal() is simply texture look-up

GPU Algorithm Overview (cont.)

- Log N combination passes
 - Fragment(x) = tex(index0(x)) * w(index1(x)) * tex(index1(x))
 - w(), index0(), and index1() are textures
 - Different for every pass
 - Pre-computed
- Read final render-target back into system memory
Red Flags for GPU Performance

- $1 + \log N$ passes
- All data stays on GPU (good)
- Per-vertex computations trivial (good)
- Lots of API calls for CPU to instruct GPU what to do
- GPU has to finish each pass before next one starts

- Only 1D textures
 - GPUs highly optimized for 2D textures
- Complex number computations
 - Complex numbers are 2D
 - But hardware is optimized for 4-vectors

Batching Many FFT Transforms

- Download 2D texture of coefficients
- Compute hundreds of FFTs per pass
- Cuts driver calls by hundreds of times
- Fully utilizes multi-pipe fragment processing hardware

- Basically uses the same fragment programs
 - Only differ in needing a 2nd texture coordinate

Using Vector Operations

- Store 2 complex numbers per texture
 - $(t0.r, t0.g)$ is first number
 - $(t0.b, t0.a)$ is second number

- Store 4 complex numbers in 2 textures
 - $(t0.r, t0.g, t0.b, t0.a)$ are real parts
 - $(t1.r, t1.g, t1.b, t1.a)$ are imaginary parts
 - Code is more symmetric
 - But more temporaries are used

Real World Performance

CPU
- FFTW algorithm
- 3.0 GHz Intel Pentium 4
- 2048 FFT takes 12 us
- 1.5 GLOPS

GPU
- Algorithm outlined here
- NVIDIA GeForceFX 5900 Ultra (NV35 @ 450 MHz)
- 2048 FFT takes 16 us (32 us with readback over PCI)
- 1.1 GLOPS (.6 GFLOPS with readback)
Optimization Possibilities

- Range and precision of computation and results
 - Is 16-bit floating point sufficient for registers?
 - Conversion to lower precision has double benefit:
 - Faster to compute
 - Faster to transfer back to CPU
- If range and precision of input is limited
 - Don’t compute results, but rather...
 - Replace N passes with table look-up
- Tap into over 5 GLOPS of unused vertex processing

Conclusions

- GPU useful now as co-processor to CPU
- Keep the faith!
 - Faster access to (and particularly from) graphics subsystem is critical, but coming soon
 - GPU parallelism outstripping that of CPUs
 - GPUs will continue to enjoy an advantage over CPUs in dedicated memory bandwidth

Future Work

- Integrate more of the Pulse Search problem
- Straightforward power computations and thresholding after FFT
- Thresholding translates to rejecting a fragment
 - Potentially saves memory bandwidth
 - Use occlusion queries to determine if read-back is unnecessary

Thanks to...

- Dinesh Manocha for organizing this course
- Matthias Wloka for preparing this material
- Jeremy Zelsnack for implementing the GPU FFT
Questions, Comments, Feedback?

- John Spitzer, spit@nvidia.com