
SIGGRAPH'03 Tutorial Course #11

Interactive Geometric & Scientific Computations
Using Graphics Hardware

http://gamma.cs.unc.edu/SIG03_COURSE

Organized by

Dinesh Manocha
University of North Carolina at Chapel Hill

i

http://gamma.cs.unc.edu/SIG03_COURSE

Speakers

Dinesh Manocha
University of North Carolina at Chapel Hill

Michael Doggett
ATI

Shankar Krishnan
AT & T Labs

Ming C. Lin
University of North Carolina at Chapel Hill

Marc Pollefeys
University of North Carolina at Chapel Hill

Timothy Purcell
Stanford

Peter Schröder
Caltech

Matthias Wloka
NVIDIA

ii

Abstract

Fast graphics hardware including dedicated vertex processing, 3D rasterization, texturing,
and pixel processing is becoming as ubiquitous as floating-point hardware. The ubiquity
and performance of this hardware leads us to consider the extent to which this hardware
can be harnessed to solve geometric and scientific problems beyond the conventional
domain of image synthesis for the sake of pretty animation. In particular, there are a
number of complicated geometric and scientific problems whose solutions provide the
basis for many application areas in graphics, robotics, vision, simulation, computer
gaming, visualization and high-performance computing. Many of the sophisticated
"behind-the-curtain" geometric computations are often hard to perform accurately and
robustly with reasonable efficiency. At the same time, the graphics processing units offer
a lot of potential as generally programmable SIMD and streaming units. This course
covers all aspects of using graphics rasterization hardware for interactive geometric and
scientific computations.

This course will start with an overview with some of the graphics hardware features that
lend themselves to solving geometric and scientific problems. Next we will talk about
software APIs and issues in implementing some basic geometric queries on this
hardware. After that the course will deal with three main different application areas:
geometric arrangements, collision and reconstruction problems, scientific computation
including linear solvers, Fast Fourier transforms dynamic and fluid simulation and finally
global illumination and interactive walkthroughs. Each talk will present some novel
algorithms for these geometric or scientific problems that make use of the capabilities of
the rasterization hardware. The speakers will also summarize their experiences in
implementing different algorithms on graphics processors, surprises and technical lessons

iii

Course Presenters Information

• Dinesh Manocha
Professor, Department of Computer Science,
CB #3175 University of North Carolina,
Chapel Hill, NC 27599-3175
Phones: (919) 962-1749 (office)
Fax: (919) 962-1799
Email: dm@cs.unc.edu
URL: http://www.cs.unc.edu/~dm

Biography: Dinesh Manocha is currently a professor of computer science at the
University of North Carolina at Chapel Hill. He received his B.Tech. degree in
computer science and engineering from the Indian Institute of Technology, Delhi in
1987; M.S. and Ph.D. in computer science at the University of California at Berkeley
in 1990 and 1992, respectively. During the summers of 1988 and 1989, he was a
visiting researcher at the Olivetti Research Lab and General Motors Research Lab,
respectively. He received Alfred and Chella D. Moore fellowship and IBM graduate
fellowship in 1988 and 1991, respectively, and a Junior Faculty Award in 1992. He
was selected an Alfred P. Sloan Research Fellow, received NSF Career Award in
1995, Office of Naval Research Young Investigator Award in 1996, and Hettleman
Prize for scholarly achievement at UNC Chapel Hill in 1998. His research interests
include geometric and solid modeling, interactive computer graphics, physically
based modeling, virtual environments, robotics and scientific computation. He has
published more than 120 papers in leading conferences and journals on computer
graphics, geometric and solid modeling, robotics, symbolic and numeric
computation, virtual reality, molecular modeling and computational geometry. He
has served as a program committee member for many leading conferences on virtual
reality, computer graphics, computational geometry, geometric and solid modeling
and molecular modeling. He was the program co-chair for the first ACM Siggraph
workshop on simulation and interaction in virtual environments and program chair of
first ACM Workshop on Applied Computational Geometry. He was the guest editor
of special issues of International Journal of Computational Geometry and
Applications. He has also edited and co-authored two research monographs and
consulted for a number of companies including Intel, Mechanical Dynamics, Boeing,
Division, TC2 corporation etc.
He has been working on topics related to interactive computer graphics and
geometric algorithms for more than ten years. These include collision detection,
proximity computations, interactive walkthroughs, visibility, motion planning, multi-
pass rendering, and discretized geometric computations. Some of the software
systems developed by his research groups have been widely used. He has taught
courses on computer graphics, computational geometry and scientific computing at
the University of North Carolina for the last six years. He has given invited talks at a
number of conferences and workshops and has been a speaker in SIGGRAPH
courses. He has also organized other SIGGRAPH courses in the past.

iv

• Michael Doggett

ATI Research
62 Forest Street
Marlborough, MA 01752
(508) 303-3900 x3863 (o)
MDoggett@ati.com

Biography: Michael Doggett works as an architect on graphics hardware at ATI
Research. He completed his B.S. degree in Computer Science in 1990, B.E. degree in
Electrical Engineering in 1992, and Ph.D. in 1997 all at the School of Computer
Science and Engineering at The University of New South Wales, Sydney, Australia.
From 1996 to 1998 he worked as Chief Engineer at Conja Pty Ltd, a Special Effects,
Animation and Design company. From 1998 to 2001 he was a member of the
research staff of the Computer Graphics Laboratory (GRIS) at the Computer Science
Department of the University of Tuebingen as a PostDoc where he worked on
custom hardware for Volume Rendering and Displacement Mapping. He has been
involved in teaching courses at the University of New South Wales and the
University of Tuebingen. He is the paper co-chair for Graphics Hardware 2002 and
has served on the program and review committee for several conferences. He has
published numerous papers and is a member of IEEE Computer Society, and ACM.

• Shankar Krishnan

Principal Technical Staff Member
AT&T Shannon Laboratory
180 Park Avenue, Room E-201
Florham Park, NJ 07932
(973) 360-8609 (Work)
(973) 660-0336 (Home)
(973) 360-8077 (Fax)
krishnas@research.att.com

Biography: Shankar Krishnan is a Principal Technical Staff Member at AT&T Labs
Research and a member of the Information Visualization and Display Research
department, where he contributes towards the development of practical new
techniques for working with geometric representations of information, with a
particular emphasis on problems concerning large-scale networks and services. Prior
to joining AT&T Labs, Shankar graduated with a Ph.D. from the University of North
Carolina at Chapel Hill. Shankar's primary research interests include 3D computer
graphics, hardware-assisted geometric algorithms, and reliable geometric and
numeric computation. Shankar has authored several papers in these areas and has
given a number of technical presentations in leading conferences in computer
graphics, computational geometry and geometric modeling.

v

mailto:MDoggett@ati.com
mailto:krishnas@research.att.com

• Ming C. Lin

Associate Professor, Department of Computer Science
CB #3175 University of North Carolina,
Chapel Hill, NC 27599-3175
Phones: (919) 962-1974 (office)
Fax: (919) 962-1799
Email: lin@cs.unc.edu
URL: http://www.cs.unc.edu/~lin

Biography: Ming C. Lin received her B.S., M.S., Ph.D. degrees in Electrical
Engineering and Computer Science in 1988, 1991, 1993 respectively from the
University of California, Berkeley. She is currently an assistant professor in the
Computer Science Department at the University of North Carolina (UNC), Chapel
Hill. Prior to joining UNC, she was an assistant professor in the Computer Science
Department at both Naval Postgraduate School and North Carolina A&T State
University, and a Program Manager at the U.S. Army Research Office. She received
the NSF Young Faculty Career Award in 1995 and Honda Research Initiation award
in 1997. Her research interests include real time 3D graphics for virtual
environments, applied computational geometry, physically based modeling, robotics
and distributed interactive simulation. She has served as a program committee
member for many leading conferences on virtual reality, computer graphics, and
computational geometry. She was the general chair of the First ACM Workshop on
Applied Computational Geometry and the co-Chair of 1999 ACM Symposium on
Solid Modeling and Applications. She is also a guest editor of the International
Journal on Computational Geometry and Applications, the co-editor of "Applied
Computation Geometry", and the Category Editor of ACM Computing Reviews in
Computer Graphics. She has also consulted for a number of companies including
Intel, Mechanical Dynamics and Division.
Ming has been working in computational geometry, computer graphics and virtual
environments for more than nine years. Over the last five years, she has led the
development of a number of algorithms and systems for interactive collision
detection. These include I-COLLIDE, RAPID, V-COLLIDE, S-COLLIDE, H-
COLLIDE, SWIFT, SWIFT++, PIVOT, PQP and DEEP. They have been widely
used by a number of researchers and the technology has been licensed by more than
30 commercial organizations. Over the last five years, she has taught courses on
computer graphics, physically based modeling, computational geometry and robotics
at Naval Postgraduate School, NC A & T University and the University of North
Carolina at Chapel Hill. She has given invited lectures at many conferences and
meetings, including Computer Games Developers Conference and SIGGRAPH.

vi

http://www.cs.unc.edu/~lin

• Marc Pollefeys

Assistant Professor
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
Phone: (919) 962-1845
Fax: (919) 962-1799
Email: marc@cs.unc.edu

Biography: Marc Pollefeys is an Assistant Professor of Computer Vision in the
Department of Computer Science at the University of North Carolina at Chapel Hill.
Previously he was a postdoctoral researcher at the Katholieke Universiteit Leuven in
Belgium, where he also received his M.S. and Ph.D. degrees in 1994 and 1999,
respectively. One of his main research goals is to develop flexible approaches to
capture visual representations of real world objects, scenes and events. Dr. Pollefeys
has received several prizes for his research, including the prestigious Marr prize at
ICCV '98. He is the author or co-author of more than 70 technical papers. He is a
regular reviewer for most of the major vision, graphics and photogrammetry
journals. He has organized workshops and has served on the program committees of
many conferences.
He has organized courses on 'obtaining 3D models with a hand-held camera' at
SIGGRAPH 2000, 2001 and 2002, as well as related courses at ECCV 2000, 3DIM
2001. He has co-organized a course on 'multiple view geometry' at CVPR 2001 with
Anders Heyden and will be co-organizing a similar course at CVPR 2003 with
Andrew Zisserman. He has also contributed to the course on /'acquisition and
rendering of surface lightfields/Image-based modeling/' organized at SIGGRAPH
2001 and 2002.

• Timothy Purcell

Gates Computer Science Building, Room 398
Stanford University
Stanford, CA 94305
phones: (650) 723-1367 (work), (650) 497-2251 (home)
fax: (650) 723-0033
email: tpurcell@graphics.stanford.edu
url: http://graphics.stanford.edu/~tpurcell

Biography: Tim Purcell is currently finishing his Ph.D. in computer science at
Stanford University. He received a B.S. in computer science from the University of
Utah in 1998 and an M.S. in computer science from Stanford University in 2001. He
is a recipient of the National Science Foundation Graduate Research Fellowship, and
is a 2002-03 NVIDIA fellowship winner. His current research interests include
stream programming, ray tracing, and leveraging GPUs for non-traditional uses. He
has given a number of technical presentations including a SIGGRAPH course in
2001 and paper talk in 2002. He has also given several invited talks about his

vii

http://graphics.stanford.edu/~tpurcell

viii

research to various companies and organizations including Intel, NVIDIA, and the
Silicon Valley ACM SIGGRAPH Chapter.

• Peter Schröder

Professor of Computer Science and Applied and Computational Mathematics
California Institute of Technology
Computer Science
1200 E. California Boulevard
MC 256-80
Pasadena, CA 91125
Phones: (626) 395-4269 (office)
Fax: (626) 792-4257
Email: ps@cs.caltech.edu
URL: http://www.multires.caltech.edu/~ps/

Biography: Peter Schröder is a professor of computer science and applied &
computational mathematics at Caltech where he directs the Multi-Res Modeling
Group. His research focuses on efficient and robust numerical methods for computer
graphics and simulation applications. He is best known for his contributions to the
theory and algorithms underlying wavelets, subdivision surfaces, and more broadly,
Digital Geometry Processing. In recognition of this work he has received many
awards including Sloan and Packard Foundation Fellowships. His work has been
published widely including many contributions to the SIGGRAPH conference. As
organizer and speaker he has been involved in many highly successful SIGGRAPH
courses on Wavelets, Subdivision, and Digital Geometry Processing. He is now
applying his experience in massively parallel computers to programmable graphics
cards and recently taught a new undergraduate class at Caltech on ``Hacking the
GPU.''

• Matthias Wloka
Technical Developer Relations
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050, MS 08
408 486 2698
mwloka@nvidia.com

Biography: Matthias Wloka works in the technical developer relations group at
Nvidia. There, he gets to collaborate with game-developers on, for example,
performance-optimizations and advising how to efficiently implement desired effects
into their game. Matthias is always tinkering with the latest graphics hardware to
explore the limits of interactive real-time rendering. Before joining Nvidia, Matthias
was a game developer himself, working for GameFX/THQ Inc. He received his
M.Sc in computer science from Brown University in 1990, and his B.Sc from
Christian Albrechts University in Kiel, Germany in 1987.

mailto:lin@cs.unc.edu
http://www.multires.caltech.edu/~ps/

Table of Contents

Introduction 1-6

Dinesh Manocha, University of North Carolina at Chapel Hill

Interactive Geometric Computations Using Graphics Hardware

Overview of Graphics Hardware 7-60

Matthias M Wloka, NVIDIA

 Slides - Overview of Graphics Hardware 8-16

Graphics Hardware Functionality for Geometric Computations 17-27

 with Open GL, Circa Spring 2002

Practical and Robust Stenciled Shadow Volumes for Hardware- 28-35
Accelerated Rendering

Hardware Shadow Mapping 36-49

Interactive Order-Independent Transparency 50-60

Fast and Approximation Computation of Geometric Arrangements 61-86
using GPUs I

 Shankar Krishnan, AT & T Research Labs

Application of the Two-Sided Depth Test to CSG Rendering 62-66

Streaming Geometric Optimization using Graphics Hardware 67-81

Short Note on Algorithm for Penetration Depth using Graphics 82-86

 Hardware

Fast and Approximation Computation of Geometric 87-112
Arrangements using GPUs II

Dinesh Manocha, University of North Carolina at Chapel Hill

 Efficient Computation of A Simplified Medial Axis 88-100

 Fast Swept Volume Approximation of Complex Polyhedral Models 101-112

ix

Computer Vision using Graphics Hardware 113-120

 Marc Pollefeys, University of North Carolina at Chapel Hill

 Computer Vision on Graphics Hardware 114-120

Scientific Computations using Graphics Hardware 121-131

 Peter Schröder, California Institute of Technology

 Sparce Matrix Solvers on the GPU: Conjugant Gradient 122-131
 and Multigrids
 Sparse Matrix Solvers

Implementing a GPU-Efficient FFT 132-137

Matthias M Wloka, NVIDIA

Implementing a GPU-Efficient FFT 133-137

Physically-Based Modeling and Interactive Navigation using 138-164
Graphics Hardware

Ming Lin, University of North Carolina at Chapel Hill

Fast 3D Geometric Proximity Queries between Rigid and 139-148
Deformable Models Using Graphics Hardware Acceleration

Constraint-Based Motion Planning for Virtual Prototyping 149-156

 CULLIDE: Interactive Collision Detection Between Complex 157-164

 Models in Large Environments using Graphics Hardware

Ray Tracing and Global Illumination using Graphics Hardware 165-200

 Timothy J. Purcell, Stanford University

 Ray Tracing and Global Illumination on Programmable Graphics 166-175
 Hardware

x

The Ray Engine 176-185
 Copyright 2002 The European Association for Computer Graphics.

Included here by permission. Originally published as Nathan A. Carr,
Jesse D. Hall and John C. Hart. The Ray Engine. Proc. Graphics
Hardware 2002, Sep. 2002.

 Slides 186-200
Ray Tracing on Programmable Graphics Hardware
Copyright 2002 ACM, Inc. Included here by permission.
Originally published as Timothy J. Purcell, Ian Buck,
William R. Mark, Pat Hanrahan. Ray Tracing on Programmable
Graphics Hardware. ACM Transactions on Graphics. 21 (3),
pp. 703-712, 2002. (Proceedings of ACM SIGGRAPH 2002).

Interactive Walkthroughs using Multiple GPUs 201-225

Dinesh Manocha, University of North Carolina at Chapel Hill

Interactive Visibility Culling in Complex Environments using 202-212
Occlusion-Switches

GigaWalk: Interactive Walkthrough of Complex Environments 213-225

xi

xii

Interactive Geometric and Scientific Computations Using Graphics Hardware

Ming C. Lin and Dinesh Manocha

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175
{lin,dm}@cs.unc.edu

http://gamma.cs.unc.edu

Abstract

Fast graphics hardware, including dedicated vertex processing, 3D rasterization, texturing, and pixel
processing, is becoming as ubiquitous as floating-point hardware. The development time between new
generations of graphics processor units (GPUs) is currently much less than the development cycle for
CPUs. Moreover, the rasterization performance of the GPUs appears to be progressing at a rate faster
than Moore’s law. Along with multi-pass capabilities, programmability and fast readback bandwidth,
the GPUs are becoming useful co-processors for diverse applications that are beyond the conventional
domain of image synthesis.

In this paper, we give a brief overview of using GPUs for geometric and scientific applications. These
include developing real-time algorithms for different geometric problems including intersection queries,
Voronoi diagrams and distance fields, penetration depth computation, robot motion planning, visibil-
ity determination and model simplification as well as scientific computations including sparse matrix
solvers, conjugate gradient and optimization. All these algorithms effectively utilize the SIMD capabili-
ties and treat GPUs as an efficient processor of images. The main issues, as compared to CPU-based im-
plementations, include lack of general-purpose programming tools for the GPUs, limited precision and
storage. We also demonstrate some applications of these algorithms to fast physically-based simulation,
real-time navigation of dynamic environments, and interactive display of complex 3D environments.

1 Introduction

High-performance 3D graphics systems are becoming as ubiquitous as floating-point hardware. They are
now a part of almost every personal computer or game console. In fact, the two major computational
components of a computer system are its main processor (CPU) and its graphics processor, also known as
the GPU. While the CPUs are used for general purpose computation, the GPUs were primarily designed
for drawing and filling primitives, geometric transformations and texturing. The main application has been
fast rendering of lighted, smooth shaded, depth buffered, texture mapped, anti-aliased triangles for visual
simulation, virtual reality, and computer gaming. Some of the recent GPUs also include advanced features
like multi-texturing [MH99, SAFL99], pixel textures [HS99], programmable shading and programmable
vertex engines [LKM01], and support for floating-point fragment pipelines and frame buffers [POAU00].
As graphics hardware becomes more programmable, the barrier between the CPU and the GPU is being
redefined. The GPU can also be regarded as an efficient processor of images or a useful co-processor for
many diverse applications.

One of the first GPUs was the Geometry Engine (GE) proposed by Clark [Cla82]. It was fabricated
using a3µm feature size and housed in a40-pin package. The GPUs have progressed at a fast rate over
the last two decades, both in terms of chip complexity as well as rendering performance. Compared to the
first GE, a recent GPU like NVIDIA’s GeForce3 was manufactured using a0.18µm process with a550-pin
package. Its peak fill-rate is3.84 billion AA samples/second, can perform960 billion operations per second
and has memory bandwidth of8 GB/sec. Its overall performance is more than three and a half orders of
magnitude higher as compared to the first GPU released about15 years. Details of different GPUs are
shown in Fig. 1. The performance growth curve of GPUs has an average slope of2.4X, whereas the CPUs
have improved in performance by1.7X (per year) over the same time period. In other words, the GPUs
have been progressing at a rate faster than Moore’s law and this trend is likely to continue in the near-future.

Peak
Performance
(∆'s/sec)

Year

HP CRX
SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX

HP TVRX

SGI SkyWriter

SGI

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz)

SGI
RE2

RE1
Megatek

86 88 90 92 94 96 98 00
104

105

106

107

108

109

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat
shading

Gouraud
shading

Antialiasing

Slope ~2.4x/year
(Moore's Law ~ 1.7x/year) SGI

IR
E&S
Harmony

SGI
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division
Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia TNT
3DLabs

GeForce 3
& Radeon

Figure 1: Performance of Graphics GPUs. They have been progressing at a rate faster than Moore’s law. Data
Courtesy of John Poulton, UNC Chapel Hill.

The current GPUs are optimized for rasterization of 3D geometric primitives. They can also be re-
garded as an efficient processor of images. Moreover, the vertex and pixel shaders provide the application

programmer a great deal of flexibility and power. Because of these capabilities, an incredible array of new
algorithms and real-time implementations of old algorithms have been made possible.

One of the recent trend in computer graphics has been to use the computation power of CPUs for real-
time software rendering. Some examples include real-time ray-tracing of complex scenes using shared
memory systems or clusters of PCs [PMS+99, WSB01]. In contrast with these efforts, we focus on using
GPUs as a co-processor for geometric and scientific applications.

Why Geometric and Scientific Applications:Many geometric algorithms deal with discretized
inputs or outputs [GY86, GGHT97, GM95]. In many cases, the underlying operations can be performed
in parallel. This is somewhat similar to rendering algorithms that are implemented in a GPU and are very
amenable to pipelining. Furthermore, many applications demand very high computation power for inter-
active performance and current CPUs are relatively slower by one or two orders of magnitude. Examples
of such problems include proximity computations, contact analysis between rigid and deformable mod-
els for dynamic simulation, motion planning and navigation in complex static and dynamic environments,
visibility computations and model simplification for real-time walkthroughs, visual simulation of diverse
dynamic phenomena, such as fluids, clouds and smoke etc. The need to compute real-time solutions of these
problems arises in interactive computer graphics, virtual environments, simulation-based design, computer
gaming, robotics and scientific applications.

Interpolation-based graphics rasterization hardware is increasingly being used for different geomet-
ric applications. These include visibility and shadow computations [ZMHH97], CSG rendering [EJR89,
GHF86, Wie96], proximity queries [RMS92, HCK+99, HZLM01], morphing [KR92], motion planning
[DLRG90, PHLM00], object reconstruction [MBR+00, Lok01] etc. A recent survey on different applica-
tions is given in [TPK01]. All these algorithms perform computations in the 2-D discretized image-space
and their accuracy is governed by the underlying pixel resolution. While the initial results are promising,
the current approaches can either handle only 2D (or 2.5D) inputs at interactive rates. Other major issues
in using GPUs are the difficulty of programmings, lack of high precision and storage. Some of the recent
trends, including higher level languages (e.g. NVIDIA’s Cg, DirectX’s HLSL and OpenGL’s SLang), sup-
port for 32bit floating point from start to finish of the pipeline, etc. seem to be overcomming these barriers.
They have recently been used for many interesting applications including interactive visibility computa-
tions on very large models [GSYM02, GLY+03], sparse matric conjugate gradient solver and multigrid
solvers [BFGS03], ray-tracing [PBMH02], visual simulation of some dynamic phenomena based on the
coupled map lattice [HCSL02], non-linear diffusion [SR01], etc. More information about some of these
recent applications is available at:

http://wwwx.cs.unc.edu/˜harrism/gpgpu/index.shtml .

Goals of the Course:This course highlights many issues in effectively using the GPUs for different
geometric problems. These include:

1. Can we treat GPUs as co-processors and design faster algorithms for geometric computations? What
formal models do we use to analyze their performance?

2. What are the main limitations arising from the lack of high precision and programming tools for the
GPUs? How can we improve their accuracy?

3. What kind of applications can benefit from the features and capabilities of GPUs?

In particular, we will cover these topics.

• Faster Algorithms for Geometric Problems: We will consider three classes of geometric problems.
These include proximity computations, arrangements and visibility computations.

• Faster algorithms for Scientific Problems: We will survey some fast algorithms for sparse matrix
conjugate solvers, regular-grid multigrid solvers and fast fourier transforms as well as some applica-
tions to fluid dynamics.

• Programmability Issues: We will provide a brief survey of the current set of tools and languages
available to program the GPUs. We also address a number of issues in implementing the algorithms
on current GPUs.

• Applications: We will highlight a number of applications to physically-based simulation, computer
vision, robot motion planning, simulation of natural phenomenan and real-time rendering.

References

[BFGS03] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. The gpu as numerical simulation engine.
Proc. of ACM SIGGRAPH, 2003. To Appear.

[Cla82] J.H. Clark. The geometry engine: A vlsi geometry system for graphics.Proc. of ACM SIG-
GRAPH, pages 127–133, 1982.

[DLRG90] B. R. Donald, J. Lengyel, M. Reichert, and D. Greenberg. Real-time robot motion planning
using rasterizing computer graphics hardware.Comput. Graph., 24(4):327–335, 1990. Proc.
of ACM SIGGRAPH.

[EJR89] D. Epstein, F. Jansen, and J. Rossignac. Z-buffering rendering from csg: The trickle algorithm.
Technical report, IBM Research Report RC15182, 1989.

[GGHT97] M. Goodrich, L. J. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding line segments
efficiently in two and three dimensions. InProc. 13th Annu. ACM Sympos. Comput. Geom.,
pages 284–293, 1997.

[GHF86] Jack Goldfeather, Jeff P. M. Hultquist, and Henry Fuchs. Fast constructive-solid geometry
display in the Pixel-Powers graphics system. InProc. of ACM SIGGRAPH, volume 20, pages
107–116, 1986.

[GLY+03] N. Govindaraju, B. Lloyd, S. Yoon, A. Sud, and D. Manocha. Interactive shadow generation
in complex environments. Technical report, University of North Carolina, 2003. To Appear in
Proc. of ACM SIGGRAPH 2003.

[GM95] Leonidas Guibas and David Marimont. Rounding arrangements dynamically. InProc. 11th
Annu. ACM Sympos. Comput. Geom., pages 190–199, 1995.

[GSYM02] N. Govindaraju, A. Sud, S. Yoon, and D. Manocha. Interactive visibility culling in complex
environments with occlusion-switches. Technical Report CS-02-027, University of North Car-
olina, 2002. To appear in Proc. of ACM Symposium on Interactive 3D Graphics.

[GY86] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. InProc. 27th Annu.
IEEE Sympos. Found. Comput. Sci., pages 143–152, 1986.

[HCK+99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of generalized
voronoi diagrams using graphics hardw are.Proceedings of ACM SIGGRAPH, pages 277–
286, 1999.

[HCSL02] M. Harris, G. Coombe, G. Scheuermann, and A. Lastra. Physically-based visual simulation on
graphics hardware.SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2002.

[HS99] W. Heidrich and H. P. Seidel. Realistic hardware-accelerated shading and lighting. InProc. of
ACM SIGGRAPH, pages 171–178, 1999.

[HZLM01] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple geometric proximity queries
using graphics hardware.Proc. of ACM Symposium on Interactive 3D Graphics, 2001.

[KR92] A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation of
pips. Computer and Graphics, 16:107–116, 1992.

[LKM01] E. Lindholm, M. Kilgard, and H. Moreton. A user-programmable vertex engine.Proc. of ACM
SIGGRAPH, pages 149–158, 2001.

[Lok01] B. Lok. Online model reconstruction for interactive virtual environments.Proc. of Symposium
on Interactive 3D Graphics, pages 69–72, 2001.

[MBR+00] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-based visual hulls.
Proc. of ACM SIGGRAPH, pages 369–374, 2000.

[MH99] M. McCool and W. Heidrich. Texture shaders. InSIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 117–126, 1999.

[PBMH02] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on programmable graphics hard-
ware.ACM Trans. on Graphics (Proc. of SIGGRAPH’02), 21(3):703–712, 2002.

[PHLM00] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for a rigid body
based on hardware accelerated voronoi sampling. InProc. of 4th International Workshop on
Algorithmic Foundations of Robotics, 2000.

[PMS+99] S. Parker, W. Martic, P. Sloan, P. Shirley, B. Smits, and C. Hansen. Interactive ray tracing.
Symposium on Interactive 3D Graphics, 1999.

[POAU00] M. Peercy, M. Olano, J. Airey, and J. Ungar. Interactive multi-pass programmable shading.
Proc. of ACM SIGGRAPH, pages 425–432, 2000.

[RMS92] Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider. Interactive inspection of solids:
Cross-sections and interferences. In Edwin E. Catmull, editor,Computer Graphics (SIG-
GRAPH ’92 Proceedings), volume 26, pages 353–360, July 1992.

[SAFL99] M. Segal, K. Akeley, C. Frazier, and J. Leech.The OpenGL Graphics System: A Specification
(Version 1.2.1). Silicon Graphics, Inc., 1999.

[SR01] R. Strzodka and M. Rumpf. Nonlinear diffusion in graphics hardware.Visualization, pages
75–84, 2001.

[TPK01] T. Theoharis, G. Papaiannou, and E. Karabassi. The magic of the z-buffer: A survey.Proc.
of 9th International Conference on Computer Graphics, Visualization and Computer Vision,
WSCG, 2001.

[Wie96] T F Wiegand. Interactive rendering of csg models.Computer Graphics Forum, 15(4):249–261,
1996.

[WSB01] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed ray-tracing of highly complex
models. InRendering Techniques, pages 274–285, 2001.

[ZMHH97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using hierarchical occlusion
maps.Proc. of ACM SIGGRAPH, 1997.

Overview of Graphics Hardware

 Matthias M Wloka, NVIDIA

1

SIGGRAPH 2002 Course 31: Interactive Geometric Computations Using Graphics Hardware
Practical & Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

Overview of Graphics HardwareOverview of Graphics Hardware

Matthias Wloka
NVIDIA Corporation

PC Graphics (Current)

AGP 8x Bus
(2 GB/s)

Video Memory
(256 MB)

CPU
(3 GHz)

System Memory
(1 GB)

AGP Memory
(512 MB)

GPU
(500 MHz)

Usual Co-Processor Pitfalls

Synchronization temporarily idles ALL processors

Specialized co-processor architecture
GPU’s deep pipeline means restart is expensive
Different mind-set needed to map problems to
architecture

GPU as a Co-Processor? Careful!

CPU programmed as von Neumann architecture

GPU designed to render graphics
MAY be able to abuse it for other computations

GPU is NOT von Neumann architecture
Deep pipeline architecture
Pipeline stages are multi-pipe SIMD designs
Stages are vector-processors
Optimized for large table look-ups (textures)
AGP interconnect not symmetric

2

GPU Schematic

AGP 8x Bus

(2 GB/s)

(180 MB/s)

GPU

1

n

Vertex
Processors

Setup/Raster

1Textures /
Framebuffer

m

Fragment
Shaders

AGP Bus Considerations

Optimized for graphics:
CPU hands GPU (lots of) data
GPU produces image on monitor
AGP read-back (generally) unused

Best for “Deep Thought” kind of problems:

Deep
Thought

Lots
of Data

“42”

AGP Performance

Write AGP data in 32 or 64 byte blocks
AGP-Write combining needs to read then write

Avoid reading from graphics data-structures

Communicate intended use to driver
Static versus dynamic vertex buffers or textures
Declare data as write-only
Placement into video-, AGP-, or system-memory

Allow vertex buffer renaming (avoid syncs)
Use discard/no-overwrite and var/fence

Programmable Vertex Processors

No connectivity info/no access to neighbors (SIMD)

1.5 Billion VECTOR operations/s! (~6B ops/s)
IEEE s23e8 32 bit floating point per component
“Simple” operations include dot4, mad, sin, pow, lg2
Oh yeah, vector swizzles/conditional writes are free

Post TnL vertex caches: >>100 Million lit tris/s

Per-vertex data-dependent:
Branches, loops
Subroutines

3

Vertex Processing Performance

Proportional to number of vertices

Proportional to number of (assembly) instructions
Compute constant expressions on CPU

Post TnL cache critical
Much more so than lists versus strips!
Must use indexed primitives to access it
Allows for drawing up to 1 tri/0.5 vertices computed
Free tools reorder your mesh optimally

http://developer.nvidia.com

Cg
takes
care

Setup/Rasterization

Collects post TnL vertices into triangles

Culls and clips

Rasterizes triangles into fragments

Per-Vertex data interpolates to per-fragment
linearly
perspective-correct

Setup/Rasterization Performance

Not much control over it, but…

Does not matter: very rarely the bottleneck

Degenerate triangles are free
Likely that all vertices hit PostTnL cache
No rasterization cost
Setup engine ok w/ up to 25% degenerates

Use target resolution as needed, no more
Don’t alpha-, z-, or stencil-cull the whole triangle

Programmable Fragment Shader

No connectivity info/no access to neighbors (SIMD)

~8 Billion VECTOR operations/s! (~32B ops/s)
Multiple parallel fragment pipes
Parallel RGB vector plus alpha scalar pipe
Multiple operations per pipe and clock
“Simple” operations include dot4, mad, sin, pow,
lg2, table (texture) look-ups
Vector swizzles/conditional writes are free

4

Fragment Shader Data Formats

IEEE s23e8 32 bit floating point per component

Optional OpenEXR s10e5 16 bit fp per component
Same format as endorsed by Pixar and ILM
In case 16 bit floating point is good enough
And performance is critical

12 bit fixed point precision

Table (Texture) Look-Ups

Additional free operations:
Bi-Linear filtering for table (texture) look-up
Mip-level computations
Partial derivative computations

Shadow maps (free depth compare on read)

Up to 16 different textures
Sampled an arbitrary number of times

Unlimited dependent texture reads

Texture and Render Target Features

1D, 2D, 3D, cube-map, rectangle textures

Textures and render targets with (per component)
8 bit fixed point
OpenEXR 16 bit floating point
IEEE s23e8 32 bit floating point
Mix and match above

Free texture compression: HILO and S3TC

Vertex array render targets

Fragment Shader Performance

Wider formats more expensive
Requires more bandwidth
Requires more computation

More temporaries more expensive

Longer shaders more expensive

Non-local texture look-ups more expensive
But 2D neighborhood is cached
Behavior still much better than L1 cache-misses

Cg
takes
care

5

Other Free Computation Units

Occlusion queries

Last century’s tech:
Frame-Buffer blending and alpha-testing

Stencil operations
Super-Accelerated via two-sided stencil, stencil-only

Z-Buffer operations
Super-Accelerated via early z-cull, z-compression

Available Z and Stencil Operations

Selectable stencil test
Test against value in stencil buffer
Reject fragment if test fails
Perform distinct stencil operation when

Stencil-Test fails
Z-Test fails
Z-Test passes

Selectable z-test
Reject fragment if test fails

Performance Considerations

Occlusion query: use it asynchronously

Alpha blending: reads and writes frame buffer

Stencil-Only pass (no z- or color-writes): extra fast

Z-Cull: render lightly sorted front-to-back

Clear() best way to clear color, stencil, or z
Turn off color-, stencil-, or z-writes when unneeded
But do not mask individual color components

And the Future Is Blindingly Bright…

0

50

100

150

200

Ri
va

 1
28

Ri
va

 Z
X

Ri
va

 T
NT

TN
T2

Ge
Fo

rc
e

Ge
Fo

rc
e2

Ge
Fo

rc
e2

Ul
tra

Ge
Fo

rc
e3

Ge
Fo

rc
e3

Ti

Ge
Fo

rc
e4

Ti

Ge
fo

rc
eF

X

2H97 1H98 2H98 1H99 2H99 1H00 2H00 1H01 2H01 1H02 2H02

GPU

0

1000

2000

3000

4000

5000
CPU MHz

GPU MTris
GPU 32-bit AA Fill
GPU GFlops
CPU MHz

Avg. 18month CPU Speedup: 2.22.2
Avg. 18month GPU Speedup: 3.03.0--3.73.7

6

Last Year’s Intro Revisited

Programmability: Lack of programming
tools

Lack of precision

Formal models for performance evaluation

Only a certain class of problems can be
mapped to the graphics hardware

Lack of Programming Tools?

NVIDIA’s Cg
C-Like high-level language
Compiles to vertex-/pixel-shader profiles
Integrated with OpenGL and/or DirectX
Cross-OS support: Windows, Linux, …
DirectX HLSL compatible

DirectX’s HLSL (Windows/DirectX only)

OpenGL’s SLang (when spec finalized)

Lack of Precision?

Yes, limited to 32bit floating point per component
No support for doubles

But 32bit floating point from start to finish of pipe
No ifs, buts, or whens
At least on NVIDIA’s Geforce FX family of GPUs

Smaller formats available for optimizations
When 32bit floating point is overkill

Formal Performance Eval. Models?

Not aware; architectures are still changing rapidly

But: Lots of good stuff available in the trenches
Websites, e.g., http://developer.nvidia.com

Lots of GPU performance presentations
Lots of GPU performance white-papers

IHV’s Developer Relations
Game Developer Conferences

Lots of GPU performance talks and discussions

Shader compilers/drivers optimize for you

7

GPU likes
Not needing to know about neighbors
Closed form solutions (CPU prefers iterative)
Table-Lookups (CPU dislikes if causing cache thrash)
‘Deep Thought’ problems
Vector operations
All pipe processors busy all the time

GPU dislikes
Synchronizing to the CPU (and vice versa!)
MIMD
Branching

Only Certain Problems Map to GPU Known GPU (Ab)Uses

CSG via stencil ops:
[Wiegand 1996]
[Stewart, Leach, John 1998, 2002]

cone − spherecone ∩ spherecone sphere

∩
Depth Peeling

Display pixels
at nth layer of
depth
Repeatedly
render to depth
buffer, but
reject pixels
previously
determined to
be ‘closest’

Layer 0

Layer 1

Layer 2

Layer 3

Order Independent Transparency

Corollary to depth peeling [Everitt 2001]:
Compute all depth peels

Stop when no pixels rendered (occlusion query)
Blend depth peels back-to-front

8

Particle System Physics

Translate iterative
computations to closed form
Solve closed form physics for
every particle (vertex)
[Wloka 2001]

Game of Life/Fire Simulation

Sample render-target
texture multiple
times to determine
neighbors’ state
Use dependent
‘rule’-texture read to
determine new state
[James 2001]

Height-Based Water Simulation

Simulate height-field dynamics
Generate normals from height field
[James 2001], [Elder Scrolls III: Morrowind]

Boiling (2D and 3D)
Rayleigh-Bénard Convection (2D)

[Harris 2002]

9

All the Previous Stuff Runs On…

Geforce 3, anno early 2001 !!!
More restrictive pixel-shaders

No floating point formats
Only 4 textures, 1 sample per texture (per pass)
Maximally 8 math instructions
None of the fancy ‘simple’ instructions

Much lower performance

2003: Geforce FX architectures available for $79
Same full feature-set as described earlier
Only lower performance

Current GPUs Allow

Ray-Tracing
[Purcell et al 2002]

Cloth simulation via
render to vertex-buffer
[Green 2002]

Scientific computations

Advertisement:
Implementing a GPU-Efficient FFT

Case study of:
Take a highly CPU-optimized algorithm and …
Convert it to run (well) on GPU

Feasibility checks

Step-By-Step CPU to GPU conversion
Things to avoid
Things to strive for

Optimizing the GPU implementation
Taking advantage of GPU’s peculiarities

Questions, Comments, Feedback?

Matthias Wloka, mwloka@nvidia.com

http://developer.nvidia.com

Graphics Hardware Functionality for
Geometric Computations with OpenGL,

Circa Spring 2002
Mark J. Kilgard

NVIDIA Corporation, Austin
mjk@nvidia.com

April 2002

Introduction
This paper offers a whirlwind tour of contemporary graphics hardware functionality,

focusing on the task of accelerating geometric computations. NVIDIA’s Quadro4 XGL
and GeForce4 Ti Graphics Processing Units (GPUs) manifest all the functionality to be
discussed. While other GPUs from other vendors may also manifest much identical or
similar functionality, I constrain this papers discussion to NVIDIA’s current (Spring
2002) top-of-the-line GPU generation because these GPUs are widely regarded as the
fastest and most capable GPUs available as of this writing and, pragmatically, my own
expertise is limited to these GPUs. I recognize that other GPUs, such as ATI’s Radeon
8500, provide similar or identical functionality in many cases.

Again due to the limits of my own expertise, I’ll discuss GPU functionality in terms
of the OpenGL programming interface. I recognize that Microsoft’s Direct3D
programming interface exposes similar or identical functionality in most cases. However
OpenGL’s extension mechanism provides a means to expose NVIDIA’s complete GPU
hardware functionality which in a few cases is not otherwise exposed by the most recent
version of Direct3D for the PC, namely DirectX 8.1. For example, general hardware
shadow mapping and hardware occlusion queries are available today just through
OpenGL today.1 Additionally, full OpenGL support is available for Linux and Apple’s
OS X operating system whereas DirectX is only supported on Windows systems so the
functionality described is broadly available on a variety of platforms.

Focus on Functionality for Geometric Computations
GPUs sold today have a comparable design and transistor complexity to CPUs.

Graphics is a highly parallel process with regular and very pipeline-able algorithms. This
combined with the appetite for increasing realistic graphics in markets from scientific
visualization to Computer Aided Design (CAD) to 3D video games means that the
semiconductor industries ever increasing transistor densities and counts makes graphics
hardware ideally positioned to improve in performance at rates consistent with the so-
called Moore’s Law.

1 The version of DirectX for Xbox does support these additional features, but the PC version of

DirectX 8 does not.

mailto:mjk@nvidia.com

Traditionally, the end result of this increasing graphics hardware horsepower has been
rendering images to be displayed to a computer user, whether a CAD designer or teenage
video game enthusiast. Typically, each image is rendered to be displayed to the user, and
then discarded so that yet another image can be displayed within a fraction of a second to
maintain the illusion of animation.

This paper focuses not on the traditional use of graphics hardware for animated
rendering but rather the use of graphics hardware functionality for geometric
computations. The argument for using GPUs for geometric computations is that graphics
hardware is expected to out-strip the performance of conventional CPU hardware for the
class of computations that graphics hardware is designed to accelerate. At the same time,
the trend in graphics hardware design is towards increasing programmability, rather than
mere configurability, of the graphics pipeline. This means that graphics hardware that in
the past was over-specialized for conventional 3D rendering can be brought to bear on
tasks not conventionally though of as being amenable to graphics hardware acceleration.

The point of this paper is not to present such applications but rather to note the
functionalities within contemporary graphics hardware (circa Spring 2002) as embodied
by the set of OpenGL extensions supported by NVIDIA’s current top-of-the-line GPUs,
the NVIDIA GeForce4 Ti and Quadro4 XGL lines.

If geometric computations are to be competitive with CPU algorithms and, in fact,
more efficient, it is critical that the graphics hardware is used efficiently. Not only does
this paper focus on functionality helpful to implementing geometric computation
algorithms using graphics hardware but also highlights the highest performance means to
use contemporary graphics hardware.

The remainder of this paper discusses graphics hardware functionality in roughly the
order of the graphics hardware pipeline. All the OpenGL extensions cited have
specifications that can be found in the OpenGL extension registry [8] or in NVIDIA’s
collection of formatted OpenGL extension specifications [7].

Efficient Vertex Presentation
OpenGL provides multiple methods for sending vertex information to graphics

hardware. Immediate mode uses the classic glVertex3f, etc. commands. While
convenient, immediate mode vertex transfers typically throttle the vertex transfer speeds
due to API overhead and the general inefficiency of transferring per-vertex parameters
one parameter at a time. Display lists provide a more efficient means to “batch up”
immediate mode commands statically for fast play back. OpenGL 1.1 added support for
vertex arrays where the OpenGL implementation is first configured with arrays of per-
vertex parameters in main memory, potentially interleaved arrays or separate arrays.
Then lists of vertex array indices indicate how to present vertices efficiently to the
graphics hardware. The glDrawArrays command can be used for sequential indices
while the glDrawElements command can be passed an array of random indices.

The EXT_compiled_vertex_array extension adds the facility to lock a range of
indices. When a range of indices is locked with glLockArraysEXT, the OpenGL
implementation can assume that the vertex array data references by the indicated range of

vertices will not change until a matching glUnlockArraysEXT unlocks the range. This
mechanism is used by id Software’s Quake3 game engine so most OpenGL
implementations today implement this extension today very efficiently. Be warned that
some OpenGL implementations only optimize vertex array configurations that are very
similar or identical to the configurations used by Quake3; NVIDIA’s recent drivers
provide very general acceleration to this functionality however.

NVIDIA provides an even more optimized variation on vertex arrays through its
NV_vertex_array_range extension. Applications seeking to achieve the very best
vertex processing rates are recommended to use this extension however the effort may
not be worth it unless your application is truly sending millions of vertices per second to
be transformed. The vertex array range mechanism provides a way to allocate memory
for high-bandwidth transfers to the GPU. This memory is usually Advanced Graphics
Port (AGP) memory but can also be local video on the graphics card. Once this memory
is allocated, the glVertexArrayRangeNV command configures a range of this memory
for highly efficient vertex transfers. When the GL_VERTEX_ARRAY_RANGE_NV
client-side enable is enabled, vertex array commands send the requested vertex indices
directly to the GPU and the GPU issues high-bandwidth read requests for the required
memory. This is in contrast to conventional vertex array calls where when vertex array
calls (glDrawArrays or glDrawElements) return, the vertex array memory can be
immediately modified meaning that the CPU must immediately copy the vertex data to
the GPU.

Note that the vertex array range functionality provides extremely fast vertex transfer
rates but only so long as you abide by its rules. The memory allocated for the vertex
array range is uncached memory meaning that CPU reads from this memory are
exceedingly slow relative to conventional cached CPU memory. Also note all vertex
array configurations can be efficiently pulled by the CPU. These various restrictions are
noted the NV_vertex_array_range OpenGL extension.

Another difficulty exposed to applications that choose to use the vertex array
functionality is how to update vertex data within the vertex array range dynamically and
efficiently. There is no locking mechanism for the vertex array range memory; it is
simply up to the application to be sure not to access memory corresponding to “in flight”
vertex array indices. This is facilitated by the NV_fence OpenGL extension that provides
a way to know when the hardware has completed all the commands prior to a
glSetFenceNV command. Vertex array range memory accessed by commands prior
to a finished fence (determined with glFinishFenceNV) can be modified, assuming of
course that these indices were not also issued subsequent to the fence.

The original NV_vertex_array_range extension specified that enabling and
disabling the vertex array range with the GL_VERTEX_ARRAY_RANGE_NV client-side
enable caused the hardware to stall. The later NV_vertex_array_range2 extension
introduced a second enable enumerant GL_VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV
that allows an application to enable and disable the vertex array range without an implicit
vertex array range flush that causes the hardware to stall. Use the later enable if your
application wishes to mix vertex array range and non-vertex array range vertex array
transfers.

Direct3D permits a similar level of performance through its use of vertex buffers and
streams though it lacks a synchronization mechanism as efficient as the fence
mechanism.

Vertex Programs
Vertex programs (known as vertex shaders in Direct3D) provide a means for a

graphics application to specify a linear sequence of floating-point instructions on a per-
vertex basis. This is in contrast to the conventional Transformation & Lighting (T&L)
operations provided by OpenGL. This is particularly useful in the context of geometric
computations where the required per-vertex computations for an algorithm to be
implemented may not readily map to the conventional per-vertex position transformation,
lighting, and texture coordinate generation operations supported by OpenGL.

Vertex programs can play an important role in off-loading vertex-level computations
from the CPU onto the GPU. As a rough rule of thumb, a GeForce4 Ti or Quadro4 XGL
can execute two vertex program instructions per clock (twice the rate of the GeForce3
that introduced the functionality) and these GPUs are typically clocked in the
neighborhood of 300 million clocks/second. These instructions are operate on four-
component floating-point vectors so a DP4 instruction is the equivalent of 4 floating-point
multiplies and then three floating-point additions to sum up the 4 vector multiply results.
Vertex programs require no overhead for looping over each vertex, data loading or
conversion, or data storage. This makes the effective floating-point hardware utilization
(the percentage of the time that the floating-point hardware is actually busy) substantially
higher than a CPU.

There are limitations to the vertex program approach. A vertex program executes on
each vertex in isolation so there is no knowledge of adjacent vertices. There is no
support for conditional branching or looping. The resulting transformed vertices are not
available to the CPU; the transformed vertices are immediately consumed by the
hardware rasterizer.

Comprehensive coverage of vertex programs is beyond the scope of this white paper.
See the SIGGRAPH 2001 paper “A User Programmable Vertex Engine” [1] and the
NV_vertex_program OpenGL extension for more details.

Rasterization
Current GPUs setup geometric primitives (triangles, quads, lines, and points) at

amazing rates. The GeForce4 Ti and Quadro4 XGL GPUs can setup a primitive every 5
clocks. Prior high-end multi-chip graphics hardware would provide a relatively large
FIFO between vertex processing and rasterization so that primitives could “pile up” if the
rasterizer ever fell behind. This allows the vertex processing and rasterization workloads
to balance each other out over a period of time. With the advent of single-chip GPU
implementations, there is no longer a FIFO required to transfer data from a vertex
processing chip to a rasterization chip; it all happens within the same chip. Rather than
waste transistors on a FIFO, these same transistors can be invested in simply making the
setup process of rasterization so fast that it can “keep up” with the rate that primitives can
be generated by the vertex processor and primitive assembly. While few applications can

drive the 60 million theoretical triangle setup rate of a GeForce4 Ti, this high rate is
available if needed.

Geometric algorithms often require back-face culling to draw all front-facing, then all
back-facing primitives, or simply as an optimization to avoid rendering non-visible
polygons of closed models. Back face culling is “free” in NVIDIA’s GPU line; this was
not always true of older graphics hardware.

Efficient early depth buffer culling (so-called Z Cull) functionality makes it
advantageous to render your scene in coarse front-to-back order when depth buffering.
The hardware can reject fragments at a much higher rate when depth occlusion can be
determined earlier in the graphics pipeline, in particular, prior to texturing. Discarding
such fragments early conserves precious memory bandwidth for visible pixels.
Geometric algorithms should definitely exploit this efficient early depth buffer culling.

Alpha testing and depth replace (see the subsequent Texture Shader section) can
interfere with efficient early depth buffer culling because texturing and alpha testing
occurs prior to depth buffering in the OpenGL fragment pipeline. Texturing can change
the alpha value and thereby change whether the alpha test fails or succeeds. Similarly if
the depth value is generated by a depth replace operation that depends on texture results,
the early depth buffer culling prior to texturing must be disabled. Keep this in mind
when using either alpha testing or depth replace. Stencil testing can create similar
ambiguities that undermine early depth buffer culling because the stencil test occurs
before the depth test in the OpenGL fragment pipeline.

Depth Clamping
Near and far clip planes are the bane of most 3D graphics programmers. The near

clip plane clips geometry that is close to the eye while the far clip plane clips away
geometry in the distance. These clip planes are conventionally required to ensure a
reasonable range of depth buffer precision and to make sure that all fragment depth
values are representable within the depth buffer.

The GeForce 3, GeForce4 Ti, and Quadro4 XGL GPUs support a capability known as
depth clamping exposed by the NV_depth_clamp extension. When
GL_DEPTH_CLAMP_NV is enabled, the near and far clip planes are effectively disabled
(fragments with a window-space w values less than or equal to zero, i.e., fragments
behind the viewer, are still discarded). Interpolated fragment depth values either larger or
smaller than range of depth values provided by the current depth range are clamped to
within the depth range.

Geometric computations that only require depth values within a given range but break
if primitives are clipped by the near or far clip plane can benefit from depth clamping.
An example of one such algorithm is the robust stenciled shadow volume algorithm
described by Cass Everitt and myself [4].

Conventional Texture Targets
Textures can be thought of as arbitrary multi-dimensional memory accesses that

benefit from texture filtering. Many clever and efficient graphics hardware algorithms

can be constructed by pre-computing complex functions in textures for subsequent
processing during a rendering pass. OpenGL 1.3 supports 1D, 2D, 3D, and cube map
texture accesses.

Cube maps are new with OpenGL 1.3. Cube maps in particular can be useful as a
means of constructing a function of an un-normalized vector. For example, an un-
normalized vector direction can be computed per-vertex (perhaps by a vertex program or
GL_OBJECT_LINEAR or GL_EYE_LINEAR texture coordinate generation).
Subsequently, these vectors can be interpolated and then used to access a so-called
“normalization cube map” [6] that supplies a normalized version of the vector that can be
used for per-fragment lighting or other operations during fragment coloring.

Texture Rectangles
Another useful texture type (target in OpenGL terminology) is the texture rectangle

introduced by NVIDIA’s NV_texture_rectangle extension. Conventional texture
mapping uses normalized texture coordinates normalized to the [0,1] range prior to
accessing the texture image and each texture image must have power-of-two dimensions.
The texture rectangle target (GL_TEXTURE_RECTANGLE_NV) is like a 2D texture target
except that the texture image is not restricted to power-of-two dimensions. For example,
a 23x59 texture image would work just fine. Additionally, the texture coordinate range is
the [0,width]x[0,height] range rather than a normalized range. Moreover, borders, the
GL_REPEAT wrap mode, and mipmapping are not supported for texture rectangles.

In practice, texture rectangles are very useful for image processing tasks or re-using
the results from a previous frame buffer rendering as a texture. The texture coordinates
for a texture rectangle are still projective. One application for this is configuring
window-space texture coordinate generation. This allows a texture rectangle with a one-
to-one correspondence of its texels to frame buffer pixels. By copying some intermediate
result of a rendering result into a texture rectangle and then using window-space texture
coordinate generation, these intermediates can be re-used in subsequent passes.

The NV_texture_rectangle extension is supported by all GeForce GPUs.

Shadow Mapping
The OpenGL Architectural Review Board (ARB) has just recently (February 2002)

standardized official ARB extensions for shadow mapping. These are the
ARB_depth_texture and ARB_shadow extensions. The former provides new texture
formats for textures containing depth components. The later provides a new texture
filtering mode for “percentage closer” filtering. This filtering scheme compares the
interpolated R texture coordinate to a depth texture’s sampled depth values at each
texture sample and then weights these comparisons to generate a final filtered texel.

This functionality is based on the prior proprietary SGIX_depth_texture and
SGIX_shadow extensions, first implemented by SGI on the RealityEngine and
InfiniteReality graphics hardware. NVIDIA also supports these extensions on GeForce3,
GeForce4 Ti, and Quadro4 XGL GPUs. NVIDIA has recently also implemented the

official ARB extensions (the two extensions are very similar; the ARB extension adds
only minor new functionality) [3].

Do not let the shadow name fool you. These extensions are useful in other contexts
besides shadows. Shadow mapping can be thought of as a read-only depth test with
better filtering. Geometric computations that require multiple depth buffers can use
shadow mapping to simulate multiple depth buffers. Cass Everitt’s Order Independent
Transparency algorithm [2] is a good example of this kind of innovative use of shadow
mapping.

Texture Shader
The GeForce3, GeForce4 Ti, and Quadro4 XGL GPUs from NVIDIA also support

functionality known as the texture shader for more general texture lookups. The texture
shader consists of a set of 4 texture shader stages. Among the functionality possible are
dependent texture accesses where the result of one texture access is used as the texture
coordinate set of a second texture access. The texture shader functionality is fully
described in the NV_texture_shader, NV_texture_shader2, and
NV_texture_shader3 OpenGL extension specifications. Conventional OpenGL
texture lookups are performed (using the hierarchy of texture enables) unless the
GL_TEXTURE_SHADER_NV enable is set, in which case, the texture shader
functionality is used. The details of the texture shader functionality are beyond the scope
of this article so see the texture shader OpenGL extensions for details [1].

One capability specific texture shader capability is of interest for those interested in
implementing geometric computations. The GL_DOT_PRODUCT_DEPTH_REPLACE_NV and
GL_DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV texture shader operations (used in
conjunction with prior texture shader operations to access a texture and, in the non-affine
case, to compute a second dot product) can replace a fragment’s interpolated depth value
with a new depth value computed through a combination of the texture access and one or
two dot products. In the case of the non-affine depth replace operation, the new depth
value is the result of a division of the two dot products so that depth values can be
generated with correct projective properties required for perspective views.

One application of this feature is so-called “Z correct” displacement mapping.
Unfortunately, displacement mapping in only the window-space Z direction is not
particularly useful except for better rendering interfaces between, say, terrain and water
(see NVIDIA’s “tide pool” demo).

Other applications in the fields of image-based rendering or geometric computations
promise to be much more interesting. Cass Everitt’s Order Independent Transparency
algorithm [2] is an example of a novel algorithm that uses the depth replace functionality.

Register Combiners
Conventional OpenGL fragment coloring uses zero or more texture environment

applications, one for each enabled texture, and then a color sum and fog application.
OpenGL 1.3 provides considerably more flexible texture environment functions than

previous versions of OpenGL. However, OpenGL 1.3 still requires a sequential model of
texture environment application.

In contrast, the NV_register_combiners extension (available on all GeForce
GPUs; and augmented by the NV_register_combiners2 extension on GeForce3,
GeForce4 Ti, and Quadro4 XGL GPUs) provides a considerably more configurable
system for fragment coloring compared to OpenGL 1.3. Basic register combiners
provide a register model that supports a variety of signed 3-component (RGB) and 1-
component (alpha) math operations including dot products. Input values are the
interpolated primary (diffuse) and secondary (specular) colors, each filtered texture unit
color result, the constant fog color and per-fragment fog factor, and a set of RGBA
constants. Additionally, there is a “free” final combiner to generate the final RGBA
fragment color.

The original GeForce functionality for register combiners had two global RGBA
constants and up to two general combiners stages. The GeForce3 (via the
NV_register_combiners2 extension) introduced two RGBA constants per stage and up
to eight general combiner stages.

Both the texture shader and register combiners functionality have cumbersome APIs
due to the plethora of available options and configurations. NVIDIA has made available
a library known as NVParse [12] that makes it substantially easier to program texture
shader and register combiners functionality because you can describe your desired
configuration with a succinct, human-readable textural description rather than dozens of
OpenGL API calls. I highly recommend NVParse.

Stencil Testing
Stencil testing has been widely used since its inception for various geometric

computations included Constructive Solid Geometry (CSG), capping, shadow volumes,
etc. DirectX 6 introduced two new stencil operations, modulo increment and modulo
decrement, that wrap rather than clamp when at the maximum and zero stencil values
respectively. These are exposed in OpenGL through the EXT_stencil_wrap extension.
Various situations are where stencil increment & decrement clamping caused overflow
situations can be alleviated by using the new wrapping increment & decrement
operations.

Future graphics hardware is likely to support two-sided stencil testing hardware
where front- and back-facing primitives can have distinct, independent stencil state.

Both two-sided stencil testing and the wrapping increment & decrement operations
are useful for stenciled shadow volume rendering [4].

Blending and Logic Ops
Conventional OpenGL 1.0 supports basic frame buffer blending and lacks logic op

support for color buffers (logic ops are supported for color index buffers in OpenGL 1.0).
OpenGL 1.1 added logic op support for color buffers. OpenGL 1.2 specified the
ARB_imaging subset that includes support for subtractive, minimum, and maximum
blending as well as a constant blend color. These additional blend modes are sometimes

exposed by various OpenGL extensions through the EXT_blend_substract,
EXT_blend_minmax, and EXT_blend_color extensions.

These additional blend modes can be useful in the context of geometric computations
(and image processing). For example, subtractive and additive blending can use the color
buffer as four distinct counters. Update of each “counter” can be independently
controlled by glColorMask. Additionally, the color logic op can be used to treat the
color buffer as a bit vector. A typical 32-bit RGBA frame buffer would allow parallel
OR, XOR, AND, etc. operations on frame buffer values being treated as bit vectors.

Occlusion Queries
Geometric computations often involve looping over a particular rendering operation

until no more pixels are drawn. Unfortunately, most existing hardware is not good at
reporting when pixels are rendered in a given rendering pass. This forces algorithms that
require such loops to make a worst-case assumption and likely loop rendering many more
times than is actually required.

The HP_occlusion_test and NV_occlusion_query extensions [9] provide a
means to determine if any pixels were rendered within a given interval of OpenGL
rendering commands. The HP extension gets the job done but only a single occlusion test
can be active at one time and the results are returned synchronously. The NV extension
allows a large number of occlusion queries to be active and the queries can be retired
asynchronously. This means that if you issue several dozen occlusion queries, by the
time you go to query the first of your occlusion queries, the result can be returned while
the other queries are still active. You only need to asynchronously block to wait on the
result of a query if the interval of commands for the query have not yet complete. If the
commands have completed, there is no wait.

Additionally, the NV extension returns a count of the number of rendered pixels
within the occlusion query interval rather than merely a Boolean value (the HP extension
returns only a Boolean).

Pixel Buffers, a.k.a. Pbuffers
Geometric computations with graphics hardware are often hindered by the fact that

the displayed frame buffer is a volatile surface. Rendering the results of geometric
computations into the frame buffer may be very fast, but other windows, menus, etc.
overlap your window, the frame buffer results may be corrupted.

Pixel buffers or pbuffers [14] provide a means in OpenGL to allocate off-screen,
potentially non-volatile frame buffer memory for rendering. Both WGL (the Microsoft
Windows interface for OpenGL) and GLX (the X Window System interface for OpenGL)
support a pbuffer extension. See the GLX_ARB_pbuffer and WGL_ARB_pbuffer
OpenGL extensions. Developers of algorithms for geometric computations involving
graphics hardware are encouraged to use pbuffers.

Render to Texture Support
While OpenGL 1.1 provides fast commands to copy frame buffer data to textures, this

still requires an extra copy of pixels. If a pbuffer could be used directly as a texture, that
would save this extra copy and improve rendering performance. Geometric computations
regularly involve the requirement to reuse frame buffer rendering results as textures so
this render to texture support is very helpful. The GLX_ARB_render_texture (for X)
and WGL_ARB_render_texture (for Windows) provide the programming interfaces
required for rendering into pbuffers and then using the results as a texture. These
extensions provide the capability to support both rendering into 2D and cube map
textures.

Note that it is not possible to use a pbuffer as a texture when you are actually
rendering into that pbuffer.

NVIDIA has provided further extensions [15] that permit pbuffers to be used as
texture rectangles and support depth-component textures (for shadow mapping). See
NVIDIA’s WGL_NV_render_depth_texture and
WGL_NV_render_texture_rectangle extension specifications.

Because this render to texture support is relatively new, whitepapers detailing how to
use the functionality are not yet available at the time of this writing. Please check the
NVIDIA Developer web site though.

Automatic Mipmap Generation
NVIDIA’s OpenGL driver supports the SGIS_generate_mipmap extension that

provides automatic generation of mipmap levels given a base texture level. The graphic
hardware’s fast bilinear down-sampling hardware is used to construct the additional
mipmap levels. No data must be read back to the CPU when building these GPU-
constructed mipmaps so the process is very efficient.

Mipmaps can be generated automatically for texture images specified explicitly (i.e.
via glTexImage2D, etc.; indeed, NVIDIA’s driver support automatically generating
mipmap levels is often faster than the conventional gluBuild2DMipmaps routine),
texture images copied from the frame buffer (i.e. via glCopyTexSubImage2D, etc.), or
pbuffers used with render-to-texture support. This extension is very easy to use; you
simply set the GL_GENERATE_MIPMAP_SGIS texture parameter for a texture object to
GL_TRUE. When true, whenever the base level of the mipmap is specified, the other
mipmap levels are automatically generated.

Conclusions
This whirlwind tour of contemporary graphics functionality for geometric

computations just scratches the surface of these various topics. Please consult the
references and the mentioned OpenGL extension specifications for more information.

Keep in mind that the functionality described reflects merely today’s functionality for
high-performance, reasonably-priced GPUs. Future GPUs promise more functionality,
particularly programmable functionality, at better still price/performance points.

I look forward to seeing the GPU-accelerated algorithms for geometric computations
that are developed using current and future GPU functionality.

References
[1] Sebastien Domine and John Spitzer. Texture Shaders.

http://developer.nvidia.com/view.asp?IO=texture_shaders
[2] Cass Everitt. Interactive Order Independent Transparency. Printed in these course

notes. http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparency
[3] Cass Everitt, Ashu Rege, and Cem Cebenoyan. Hardware Shadow Mapping.

http://developer.nvidia.com/view.asp?IO=hwshadowmap_paper
[4] Cass Everitt and Mark Kilgard. Practical and Robust Stenciled Shadow Volumes.

Printed in these course notes.
http://developer.nvidia.com/view.asp?IO=robust_shadow_volumes

[5] Erik Lindholm, Mark Kilgard, and Henry Moreton. A User-Programmable Vertex
Engine, SIGGRAPH 2001 Proceedings.
http://developer.nvidia.com/view.asp?IO=SIGGRAPH_2001

[6] Mark Kilgard. Practical and Robust Bump-mapping Technique for Today’s GPUs.
http://developer.nvidia.com/view.asp?IO=Practical_Bumpmapping_Tech

[7] NVIDIA OpenGL Extensions Specifications. Mark Kilgard, editor.
http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs. March 2001.

[8] OpenGL Extension Registry. http://oss.sgi.com/projects/ogl-sample/registry
[9] Ashu Rege, Occlusion (HP and NV Extensions).

http://developer.nvidia.com/view.asp?IO=gdc_occlusion
[10] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification

(Version 1.3). www.opengl.org
[11] John Spitzer. Texture Compositing with Register Combiners.

http://developer.nvidia.com/view.asp?IO=registercombiners
[12] John Spitzer. NVParse. http://developer.nvidia.com/view.asp?IO=nvparse
[13] John Spitzer and Cass Everitt, Using GL_NV_vertex_array_range and

GL_NV_fence on GeForce Products and Beyond,
http://developer.nvidia.com/view.asp?IO=Using_GL_NV_fence

[14] Chris Wynn, Using P-Buffers for Off-Screen Rendering in OpenGL.
http://developer.nvidia.com/view.asp?IO=PBuffers_for_OffScreen

[15] Chris Wynn, OpenGL Render-to-Texture.
http://developer.nvidia.com/view.asp?IO=gdc_oglrtt

http://developer.nvidia.com/view.asp?IO=texture_shaders
http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparency
http://developer.nvidia.com/view.asp?IO=hwshadowmap_paper
http://developer.nvidia.com/view.asp?IO=robust_shadow_volumes
http://developer.nvidia.com/view.asp?IO=SIGGRAPH_2001
http://developer.nvidia.com/view.asp?IO=Practical_Bumpmapping_Tech
http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs
http://oss.sgi.com/projects/ogl-sample/registry
http://developer.nvidia.com/view.asp?IO=gdc_occlusion
http://www.opengl.org/
http://developer.nvidia.com/view.asp?IO=registercombiners
http://developer.nvidia.com/view.asp?IO=nvparse
http://developer.nvidia.com/view.asp?IO=Using_GL_NV_fence
http://developer.nvidia.com/view.asp?IO=PBuffers_for_OffScreen
http://developer.nvidia.com/view.asp?IO=gdc_oglrtt

Published on-line at developer.nvidia.com, not a SIGGRAPH 2002 accepted paper

Practical and Robust Stenciled Shadow Volumes for
Hardware-Accelerated Rendering

Cass Everitt and Mark J. Kilgard
March 12, 2002

NVIDIA Corporation, Copyright 2002
Austin, Texas

ABSTRACT

Twenty-five years ago, Crow published the shadow volume
approach for determining shadowed regions in a scene. A decade
ago, Heidmann described a hardware-accelerated stencil buffer-
based shadow volume algorithm.
However, hardware-accelerated stenciled shadow volume
techniques have not been widely adopted by 3D games and
applications due in large part to the lack of robustness of
described techniques. This situation persists despite widely
available hardware support. Specifically what has been lacking is
a technique that robustly handles various "hard" situations created
by near or far plane clipping of shadow volumes.
We describe a robust, artifact-free technique for hardware-
accelerated rendering of stenciled shadow volumes. Assuming
existing hardware, we resolve the issues otherwise caused by
shadow volume near and far plane clipping through a combination
of (1) placing the conventional far clip plane “at infinity”, (2)
rasterization with infinite shadow volume polygons via
homogeneous coordinates, and (3) adopting a zfail stencil-testing
scheme. Depth clamping, a new rasterization feature provided by
NVIDIA's GeForce3 & GeForce4 Ti GPUs, preserves existing
depth precision by not requiring the far plane to be placed at
infinity. We also propose two-sided stencil testing to improve the
efficiency of rendering stenciled shadow volumes.
Keywords

Shadow volumes, stencil testing, hardware rendering.

1. INTRODUCTION
Crow’s shadow volume approach [10] to shadow determination is
twenty-five years old. A shadow volume defines a region of space
that is in the shadow of a particular occluder given a particular
ideal light source. The shadow test determines if a given point
being tested is inside the shadow volume of any occluder.
Hardware stencil testing provides fast hardware acceleration for
shadow determination using shadow volumes. Despite the
relative age of the shadow volume approach and the widespread
availability of stencil-capable graphics hardware, use of shadow
volumes in 3D games and applications is rare.
We believe this situation is due to the lack of a practical and
robust algorithm for rendering stenciled shadow volumes. We
propose here an algorithm to address this gap. Our algorithm is
practical because it requires only features available in OpenGL
1.0. The algorithm is robust because shadow volume scenarios
that vexed previous algorithms, such as a light within an open
container, are handled automatically and correctly.
We focus on robustly solving the problem of hardware-
accelerated stenciled shadow volume rendering for a number of
reasons, many noted by other authors [9][10][11][19]:
• Shadow volumes provide omni-directional shadows.

• Shadow volumes automatically handle self-shadowing of
objects if implemented correctly.

• Shadow volumes perform shadow determination in window
space, resolving shadow boundaries with pixel accuracy (or
sub-pixel accuracy when multisampling is available).

• Lastly, the fundamental stencil testing functionality required
for hardware-accelerated stenciled shadow volumes is now
ubiquitous due to the functionality’s standardization by
OpenGL 1.0 (1991) and DirectX 6 (1998) respectively. It is
near impossible to purchase a new PC in 2002 without
stencil testing hardware.

Stenciled shadow volumes have their limitations too. Shadow
volumes model ideal light sources so the resulting shadow
boundaries lack soft edges. Shadow volume techniques require
polygonal models. Unless specially handled, such polygonal
models must be closed (2-manifold) and be free of non-planar
polygons. Silhouette computations for dynamic scenes can prove
expensive. Stenciled shadow volume algorithms are inherently
multi-pass. Rendering shadow volumes can consume tremendous
amounts of pixel fill rate.

2. PREVIOUS WORK
2.1 Pre-Stencil Testing Work
Crow [10] first published the shadow volume approach in 1977.
Crow recognizes that the front- or back-facing orientations of
consistently rendered shadow volume polygons with respect to the
viewer indicate enters into and exits out of shadowed regions.
Crow also recognizes that some care must be taken to determine if
the viewer’s eye point is within a shadow volume.
Crow’s formulation fundamentally involves walking a pixel’s
view ray originating at the eye point and counting the number of
shadow volume enters and exits encountered prior to the first
visible rasterized fragment.
Brotman and Badler [8] in 1984 adapted Crow’s shadow volume
approach to a software-based, depth-buffered, tiled renderer with
deferred shading and support for soft shadows through numerous
light sources all casting shadow volumes.
Pixel-Planes [13] in 1985 provides hardware support for shadow
volume evaluation. In contrast to Crow’s original ray walking

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

approach, the Pixel-Planes algorithm relies on determining if a
pixel is within an infinite polyhedron defined by a single occluder
triangle plane and its three shadow volume planes. This
determination is made for every pixel and for every occluder
polygon in the scene. Each “point within a volume” test is
computed by evaluating the corresponding set of plane equations.
Pixel-Planes is a unique architecture because the area of a
rasterized triangle in pixels does not affect the triangle’s
rasterization time. Otherwise, the algorithm’s evaluation of every
per-triangle shadow volume plane equation at every pixel would
be terribly inefficient.
Bergeron [3] in 1986 generalizes Crow’s original shadow volume
approach. Bergeron explains how to handle open models and
models containing non-planar polygons properly. Bergeron
explicitly notes the need to close shadow volumes so that a correct
initial count of how many shadow volumes the eye is within can
be computed.
Fournier and Fussell [12] in 1988 discuss shadow volumes in the
context of frame buffer computations. In their computational
model, each pixel in a frame buffer maintains a depth value and
shadow depth count. Fournier and Fussell’s frame buffer
computation model lays the theoretical foundations for
subsequent hardware stencil buffer-based algorithms.

2.2 Stencil Testing-Based Work
2.2.1 The Original Approach
Heidmann [14] in 1991 describes an algorithm for using the then-
new stencil buffer support of SGI’s VGX graphics hardware [1].
Heidmann recognizes the problem of stencil buffer overflows and
demonstrates combining contributions from multiple light sources
with the accumulation buffer to simulate soft shadows.
Heidmann’s approach is a multi-pass rendering algorithm. First,
the color, depth, and stencil buffers are cleared. Second, the
scene is drawn with only ambient and emissive lighting
contributions and using depth testing for visibility determination.
Now the color and depth buffers contain the color and depth
values for the closest fragment rendered at each pixel. Then
shadow volume polygons are rendered into the scene but just
updating stencil.
Front-facing polygons update the frame buffer with the following
OpenGL per-fragment operations (for brevity, we drop the gl and
GL prefixes for OpenGL commands and tokens):

Enable(CULL_FACE); // Face culling enabled
CullFace(BACK); // to eliminate back faces

ColorMask(0,0,0,0); // Disable color buffer writes
DepthMask(0); // Disable depth buffer writes
StencilMask(~0); // Enable stencil writes

Enable(DEPTH_TEST); // Depth test enabled
DepthFunc(LEQUAL); // less than or equal

Enable(STENCIL_TEST); // Stencil test enabled
StencilFunc(ALWAYS,0,~0) // always pass
StencilOp(KEEP,KEEP,INCR); // increment on zpass

Similarly, back-facing polygons update the frame buffer with the
following OpenGL state modifications:

CullFace(FRONT); // Now eliminate front faces

StencilOp(KEEP,KEEP,DECR); // Now decrement on zpass

Heidmann’s described algorithm computes the front- or back-
facing orientation of shadow volume polygons on the CPU. We

note (as have other authors [5][15]) that the shadow volume
polygons can be rendered in two passes: first, culling back-facing
polygons to increment pixels rasterized by front-facing polygons;
second, culling front-facing polygons to decrement pixels
rasterized by back-facing polygons. This leverages the graphics
hardware’s ability to make the face culling determination
automatically and minimizes hardware state changes at the cost of
rendering the shadow volume polygons twice. Utilizing the
hardware’s face culling also avoids inconsistencies if the CPU and
graphics hardware determine a polygon’s orientation differently in
razor’s edge cases.
After the shadow volume polygons are rendered into the scene, a
pixel’s stencil value is equal to zero if the light illuminates the
pixel and greater than zero if the pixel is shadowed. The scene
can then be re-rendered with the appropriate light configured and
enabled, with stencil testing enabled to update only pixels with a
zero stencil value (meaning the pixel is not shadowed), and
“depth equal” depth testing (to update only visible fragments).
The light’s contribution can be accumulated with either the
accumulation buffer or additive blending.
This can be repeated for multiple light sources, clearing the stencil
buffer between rendering the shadow volumes and summing the
contribution of each light.

2.2.2 Near and Far Plane Clipping and Capping
Heidmann fails to mention in his article a problem that seriously
undermines the robustness of his approach. With arbitrary scenes,
the near and/or far clip planes may (and, in fact, often will) clip
the infinite shadow volumes. Each shadow volume is, by
construction, a half-space (dividing the entirety of space into the
region shadowed by a given occluder and everything else).
However, near and far plane clipping can “slice open” an
otherwise well-defined half space. Disturbing the shadow volume
in this way leads to incorrect shadow depth counting that, in turn,
results in glaringly incorrect shadowing.
Diefenbach [11] in 1996 recognized the problem created by near
plane clipping for shadow volume rendering. Diefenbach presents
a method that he claims works “for any shadow volume geometry
from any viewpoint,” but the method, in fact, does not work in
several cases. Figure 1 illustrates three cases where Diefenbach’s
method fails.
Another solution to the shadow volume near plane clipping
problem mentioned by Diefenbach is capping off the shadow
volume’s intersection with the near clip plane. Other authors
[2][4][9][16][17] have also suggested this approach. The
problem with near plane capping of shadow volumes is that it is,
as described by Carmack [9], a “fragile” procedure.
Capping involves projecting each occluder’s back-facing
polygons to the near clip plane. This can be complicated when
only one or two of a projected polygon’s vertices intersect the
near plane and careful plane-plane intersection computations are
required in such cases. The capping process is further
complicated when a back-facing occluder polygon straddles the
near clip plane.
Rendering capping polygons at the near clip plane is difficult
because of the razor’s edge nature of the near clip plane. If you
are not careful, the very near plane you are attempting to cap can
clip your capping polygons! Additionally if the capping polygons
are not “watertight” (2-manifold) with the shadow volume being

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

capped then rasterization cracks or double hitting of pixels can
create shadowing artifacts. These artifacts appear as exceedingly
narrow regions of the final scene where areas that clearly should
be illuminated are shadowed and vice versa. These artifacts are
painfully obvious in animated scenes.
Watertight capping is non-trivial, particularly if shadow volumes
are drawn using object-space geometry so that fast dedicated
vertex transformation hardware can be exploited. Kilgard [16]
proposes creating a “near plane ledge” whereby closed capping
polygons can be rendered in a way that avoids clipping by the
near clip plane even when rendering object-space shadow volume
geometry. This approach cedes a small amount of depth buffer
precision for the ledge. Additionally shadow volume capping
polygons must be rendered twice, incrementing front-faces and
decrementing back-facing geometry because the orientation
(front- or back-facing) of a polygon can occasionally flip when a
polygon of nearly zero area in window space is transformed from
object space to window space due to floating-point numerics.
Otherwise, shadow artifacts result.
Even when done carefully, shadow volume near plane capping is
treacherous because of the fragile nature of required ray-plane
intersections and the inability to guarantee identical and bit-exact
CPU and GPU floating-point computations. In any case, capping
computations burden the CPU with an expensive task that our
algorithm obviates.

2.2.3 Zpass vs. Zfail Stenciled Shadow Volumes
The conventional stenciled shadow volume formulation is to
increment and decrement the shadow depth count for front- and
back-facing polygons respectively when the depth test passes.
Bilodeau [5] in 1999 noted that reversing the depth comparison
works too. Another version of this alternative formulation is to
decrement and increment the shadow depth count for front- and
back-facing polygons respectively depth test fails (without
reversing the comparison).
Carmack [9] in 2000 realized the equivalence of the two
formulations because they both achieve the same result, if in the
“depth test fail” formulation, the shadow volume is “closed off” at
both ends (rather than being open at the ends). Compare the
following OpenGL rendering state modifications with the settings
for conventional shadow volume rendering in section 2.2.1.
Front-facing shadow volume rendering configuration:

StencilOp(KEEP,DECR,KEEP); // decrement on zfail

Back-facing configuration:

StencilOp(KEEP,INCR,KEEP); // increment on zfail

What Carmack describes is projecting back faces, with respect to
the light source, some large but finite distance (importantly, still
within the far clip plane) and also treating the front faces of the
occluder, again with respect to the light source, as a part of the
shadow volume boundary too. This still has a problem because
when a light source is arbitrarily close to a single occluder
polygon, any finite distance used to project out the back faces of
the occluder to close off the shadow volume may not extend far
enough to ensure that objects beyond the occluder are properly
shadowed.
Still Carmack’s insight is fundamental to our new algorithm. We
call Bilodeau and Carmack’s approach zfail stenciled shadow
volume rendering because the stencil increment and decrement
operations occur when the depth test fails rather than when it
passes. We call the conventional approach zpass rendering.
One way to think of the zfail formulation, in contrast to the zpass
formulation, is that the zfail version counts shadow volume
intersections from the opposite direction. The zpass formulation
counts shadow volume enters and exits along each pixel’s view
ray between the eye point and the first visible rasterized fragment.
Technically due to near plane clipping, the counting occurs only
between the ray’s intersection point with the near clip plane and
the first visible rasterized fragment. The objective of shadow
volume capping is to introduce sufficient shadow volume enters
so that the eye can always be considered “out of shadow” so the
stencil count can reflect the true absolute shadow depth of the first
visible rasterized fragment.
The zfail formulation instead counts shadow volume enters and
exits along each pixel’s view ray between infinity and the first
visible rasterized fragment. Technically due to far plane clipping,
the counting occurs only between the ray’s intersection with the
far plane and the first visible fragment. By capping the open end
of the shadow volume at or before the far clip plane, we can force
the idea that infinity is always outside of the shadow volume.

3. OUR ALGORITHM
3.1 Requirements
For our algorithm to operate robustly, we require the following:
• Models for occluding objects must be composed of triangles

only (avoiding non-planar polygons), be closed (2-manifold),
and have a consistent winding order for triangles within the
model. Homogeneous object coordinates are permitted,
assuming w≥0.

• Light sources must be ideal points. Homogeneous light
positions (w≥0) allow both positional and directional lights.

• Connectivity information for occluding models must be
available so that silhouette edges with respect to a light
position can be determined at shadow volume construction
time.

• The projection matrix must be perspective, not orthographic.
• Functionality available in OpenGL 1.0 [18] and DirectX 6:

transformation and clipping of homogeneous positions; front
and back face culling; masking color and depth buffer writes;
depth buffering; and stencil-testing support.

• The renderer must support N bits of stencil buffer precision,
where 2N is greater than the maximum shadow depth count
ever encountered during the processing of a given scene.

N ear
plane

Far
pla ne

N ear
plane

Far
plane

N ea r
plane

Far
plane

Figure 1: Three cases where Deifenbach’s capping algorithm
fails because some or all pixels requiring capping are covered
by neither a front-nor back-facing polygon so Diefenbach’s
approach cannot correct these pixels.

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

This requirement is scene dependent, but 8 bits of stencil
buffer precision (typical for most hardware today) is
reasonable for typical scenes.

• The renderer must guarantee “watertight” rasterization (no
double hitting of pixels or missed pixels along shared edges
of rasterized triangles).

Support for non-planar polygons and open models can be
achieved using special case handling along the lines described by
Bergeron [3].

3.2 Approach
We developed our algorithm by methodically addressing the
fundamental limitations of the conventional stenciled shadow
volume approach. We combine (1) placing the conventional far
clip plane “at infinity”; (2) rasterizing infinite (but fully closed)
shadow volume polygons via homogeneous coordinates; and (3)
adopting the zfail stencil-testing scheme.
This is sufficient to render shadow volumes robustly because it
avoids the problems created by the far clip plane “slicing open”
the shadow volume. The shadow volumes we construct project
“all the way to infinity” through the use of homogeneous
coordinates to represent the shadow volume’s infinite back
projection. Importantly, though our shadow volume geometry is
infinite, it is also fully closed. The far clip plane, in eye-space, is
infinitely far away so it is impossible for any of the shadow
volume geometry to be clipped by it.
By using the zfail stencil-testing scheme, we can always assume
that infinity is “beyond” all closed shadow volumes if we, in fact,
close off our shadow volumes at infinity. This means the shadow
depth count can always start from zero for every pixel. We need
not worry about the shadow volume being clipped by the near clip
plane since we are counting shadow volume enters and exits from
infinity, rather than from the eye, due to zfail stencil-testing. No
fragile capping is required so our algorithm is both robust and
automatic.

3.2.1 Far Plane at Infinity
The standard perspective formulation of the projection matrix
used to transform eye-space coordinates to clip space in OpenGL
(see glFrustum [18]) is



























−
−

××−
−
+−

−
+

−
×

−
+

−
×

=

0100

200

020

002

NearFar
NearFar

NearFar
NearFar

BottomTop
BottomTop

BottomTop
Near

LeftRight
LeftRight

LeftRight
Near

P

where Near and Far are the respective distances from the viewer
to the near and far clip planes in eye-space.
P is used to transform eye-space positions to clip-space positions:

[] []T
eeee

T
cccc wzyxwzyx P=

We are interested in avoiding far plane clipping so we only
concern ourselves with the third and fourth row of P used to
compute clip-space zc and wc. Regions of an assembled polygon
with interpolated clip coordinates outside –wc ≤ zc ≤ wc are clipped
by the near and far clip planes.

We consider the limit of P as the far clip plane distance is driven
to infinity (this is not novel; Blinn [7] mentions the idea):

























−
×−−

−
+

−
×

−
+

−
×

==
∞→

0100
2100

020

002

lim

Near
BottomTop
BottomTop

BottomTop
Near

LeftRight
LeftRight

LeftRight
Near

Far infPP

The first, second, and fourth rows of Pinf are the same as P; only
the third row changes. There is no longer a Far distance.
A vertex that is an infinite distance from the viewer is represented
in homogeneous coordinates with a zero we coordinate. If the
vertex is transformed into clip space using Pinf, assuming the
vertex is in front of the eye, meaning that ze is negative (the
OpenGL convention), then wc=zc so this transformed vertex is not
clipped by the far plane. Moreover, its non-homogeneous depth
zc/wc must be 1.0, generating the maximum possible depth value.
It may be surprising, but positioning the far clip plane at infinity
typically reduces the depth buffer precision only marginally.
Consider how much we would need to shrink our window
coordinates so we can represent within the depth buffer an infinite
eye-space distance in front of the viewer. The projection P
transforms (0,0,-1,0) in eye-space (effectively, an infinite distance
in front of the viewer) to the window-space depth Far/(Far-Near).
The largest window coordinate representable in the depth buffer is
1 so we must scale Far/(Far-Near) by its reciprocal to “fit”
infinity in the depth buffer. This scale factor is (Far-Near)/Far
and is very close to 1 if Far is many times larger than Near which
is typical.
Said another way, using Pinf instead of P only compresses the
depth buffer precision slightly in typical scenarios. For example,
if Near and Far are 1 and 100, then the depth buffer’s precision
must be squeezed by just 1% to represent an infinite distance in
front of the viewer.

3.2.2 Infinite Shadow Volume Polygons
We assume that given a light source position and a closed model
with its edge-connectivity, we can determine the subset of
possible silhouette edges for the model. A possible silhouette
edge is an edge shared by two triangles in a model where one of
the two triangles faces a given light while the other triangle faces
away from the light.
We call these edges “possible silhouette” edges rather than just
silhouette edges because these edges are not necessarily
boundaries between shadowed and illuminated regions as implied
by the conventional meaning of silhouette. It is possible that an
edge is an actual silhouette edge, but it is also possible that the
edge is itself in shadow.
Assume we have computed the plane equations in the form
Ax+By+Cz+Dw=0 for every triangle in a given model. The plane
equation coefficients must be computed using a vertex ordering
consistent with the winding order shared by all the triangles in the
model such that Ax+By+Cz+Dw is non-negative when a point
(x,y,z,w) is on the front-facing side of the triangle’s plane.
Assume we also know the light’s homogeneous position L in the
coordinate space matching the plane equations. For each triangle,
evaluate d=ALx+BLy+CLz+DLw for the triangle’s plane equation
coefficients and the light’s position. If d is negative, then the

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

triangle is back-facing with respect to L; otherwise the triangle is
front-facing with respect to L. Any edge shared by two triangles
with one triangle front-facing and the other back-facing is a
possible silhouette edge.
To close a shadow volume completely, we must combine three
sets of polygons: (1) all of the possible silhouette polygon edges
extruded to infinity away from the light; (2) all of the occluder’s
back-facing triangles, with respect to L, projected away from the
light to infinity; and (3) all of the occluder’s front-facing triangles
with respect to L.
Each possible silhouette edge has two vertices A and B,
represented as homogeneous coordinates and ordered based on
the front-facing triangle’s vertex order. The shadow volume
extrusion polygon for this possible silhouette is formed by the
edge and its projection to infinity away from the light. The
resulting quad consists of the following four vertices:

0,,,
0,,,

,,,
,,,

wzwzwywywxwx

wzwzwywywxwx

wzyx

wzyx

BLLBBLLBBLLB
ALLAALLAALLA

AAAA
BBBB

−−−
−−−

The last two vertices are the homogeneous vector differences of
A-L and B-L. These vertices represent directions heading away
from the light, explaining why they have w coordinate values of
zero. We do assume Aw≥0, Bw≥0, Lw≥0, etc.
When we use a perspective transform of the form Pinf, we can
render shadow volume polygons without the possibility that the
far plane will clip these polygons.
For each back-facing occluder triangle, its respective triangle
projected to infinity is the triangle formed by the following three
vertices:

0,,,
0,,,
0,,,

wzwzwywywxwx

wzwzwywywxwx

wzwzwywywxwx

CLLCCLLCCLLC
BLLBBLLBBLLB
ALLAALLAALLA

−−−
−−−
−−−

where A, B, and C are each back-facing occluder triangle’s three
vertices (in the triangle’s vertex order).
The front-facing polygons with respect to L are straightforward.
Given each triangle’s three vertices A, B, and C (in the triangle’s
vertex order), the triangle is formed by the vertices:

wzyx

wzyx

wzyx

CCCC
BBBB
AAAA

,,,
,,,
,,,

Together, these three sets of triangles form the closed geometry of
an occluder’s shadow volume with respect to the given light.

3.3 Rendering Procedure
Now we sketch the complete rendering procedure to render
shadows with our technique. Pseudo-code with OpenGL
commands is provided to make the procedure more concrete.

1. Clear the depth buffer to 1.0; clear the color buffer.

Clear(DEPTH_BUFFER_BIT | COLOR_BUFFER_BIT);

2. Load the projection with Pinf given the aspect ratio, field of
view, and near clip plane distance in eye-space.
float Pinf[4][4];
Pinf[1][0] = Pinf[2][0] = Pinf[3][0] = Pinf[0][1] =
Pinf[2][1] = Pinf[3][1] = Pinf[0][2] = Pinf[1][2] =
Pinf[0][3] = Pinf[1][3] = Pinf[3][3] = 0;

Pinf[0][0] = cotangent(fieldOfView)/aspectRatio;
Pinf[1][1] = cotangent(fieldOfView);
Pinf[3][2] = -2*near; Pinf[2][2] = Pinf[2][3] = -1;

MatrixMode(PROJECTION); LoadMatrixf(&Pinf[0][0]);

3. Load the modelview matrix with the scene’s viewing
transform.
MatrixMode(MODELVIEW); loadCurrentViewTransform();

4. Render the scene with depth testing, back-face culling, and
all light sources disabled (ambient & emissive illumination
only).
Enable(DEPTH_TEST); DepthFunc(LESS);

Enable(CULL_FACE); CullFace(BACK);

Enable(LIGHTING); Disable(LIGHT0);
LightModelfv(LIGHT_MODEL_AMBIENT, &globalAmbient);

drawScene();

5. Disable depth writes, enable additive blending, and set the
global ambient light contribution to zero (and zero any
emissive contribution if present).
DepthMask(0);

Enable(BLEND); BlendFunc(ONE,ONE);

LightModelfv(LIGHT_MODEL_AMBIENT, &zero);

6. For each light source:
A. Clear the stencil buffer to zero.

Clear(STENCIL_BUFFER_BIT);

B. Disable color buffer writes and enable stencil testing
with the always stencil function and writing stencil..
ColorMask(0,0,0,0);

Enable(STENCIL_TEST);
StencilFunc(ALWAYS,0,~0); StencilMask(~0);

C. For each occluder:
a. Determine whether each triangle in the occluder’s

model is front- or back-facing with respect to the
light’s position. Update triList[].backfacing.

b. Configure zfail stencil testing to increment stencil
for back-facing polygons that fail the depth test.
CullFace(FRONT); StencilOp(KEEP,INCR,KEEP);

c. Render all possible silhouette edges as quads that
project from the edge away from the light to
infinity.

Vert L = currentLightPosition;

Begin(QUADS);
 for (int i=0; i<numTris; i++) // for each triangle
 // if triangle is front-facing with respect to the light
 if (triList[i].backFacing==0)
 for (int j=0; j<3; j++) // for each triangle edge
 // if adjacent triangle is back-facing
 // with respect to the light
 if (triList[triList[i].adjacent[j]].backFacing) {
 // found possible silhouette edge
 Vert A = triList[i].v[j];
 Vert B = triList[i].v[(j+1) % 3]; // next vertex

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

 Vertex4f(B.x,B.y,B.z,B.w);
 Vertex4f(A.x,A.y,A.z,A.w);
 Vertex4f(A.x*L.w-L.x*A.w,
 A.y*L.w-L.y*A.w,
 A.z*L.w-L.z*A.w, 0); // infinite
 Vertex4f(B.x*L.w-L.x*B.w,
 B.y*L.w-L.y*B.w,
 B.z*L.w-L.z*B.w, 0); // infinite
 }
End(); // quads

d. Specially render all occluder triangles. Project and
render back facing triangles away from the light to
infinity. Render front-facing triangles directly.

#define V triList[i].v[j] // macro used in Vertex4f calls

Begin(TRIANGLES);
 for (int i=0; i<numTris; i++) // for each triangle
 // if triangle is back-facing with respect to the light
 if (triList[i].backFacing)
 for (int j=0; j<3; j++) // for each triangle vertex
 Vertex4f(V.x*L.w-L.x*V.w, V.y*L.w-L.y*V.w,
 V.z*L.w-L.z*V.w, 0); // infinite
 else
 for (int j=0; j<3; j++) // for each triangle vertex
 Vertex4f(V.x,V.y,V.z,V.w);
End(); // triangles

e. Configure zfail stencil testing to decrement stencil
for front-facing polygons that fail the depth test.
CullFace(BACK); StencilOp(KEEP,DECR,KEEP);

f. Repeat steps (c) and (d) above, this time rendering
front facing polygons rather than back facing ones.

D. Position and enable the current light (and otherwise
configure the light’s attenuation, color, etc.).
Enable(LIGHT0);
Lightfv(LIGHT0, POSITION, ¤tLightPosition.x);

E. Set stencil testing to render only pixels with a zero
stencil value, i.e., visible fragments illuminated by the
current light. Use equal depth testing to update only the
visible fragments, and then, increment stencil to avoid
double blending. Re-enable color buffer writes again.
StencilFunc(EQUAL, 0, ~0); StencilOp(KEEP,KEEP,INCR);

DepthFunc(EQUAL); ColorMask(1,1,1,1);

F. Re-draw the scene to add the contribution of the current
light to illuminated (non-shadowed) regions of the
scene.
drawScene();

G. Restore the depth test to less.
DepthFunc(LESS);

7. Disable blending and stencil testing; re-enable depth writes.
Disable(BLEND); Disable(STENCIL_TEST); DepthMask(1);

3.4 Optimizations
Possible silhouette edges form closed loops. If a loop of possible
silhouette edges is identified, then sending QUAD_STRIP primitives
(2 vertices/projected quad), rather than independent quads (4
vertices/projected quad) will reduce the per-vertex transformation
overhead per shadow volume quad. Similarly, the independent
triangle rendering used for capping the shadow volumes can be
optimized for rendering as triangle strips or indexed triangles.

The INCR zpass stencil operation in step 6.E avoids the double
blending of lighting contributions in the usually quite rare
circumstance when two fragments alias to the exact same pixel
location and depth value. Using the KEEP zpass stencil operation
instead can avoid usually unnecessary stencil buffer writes,
improving rendering performance in situations where double
blending is deemed unlikely.
In the case of a directional light, all the vertices of a possible
silhouette edge loop project to the same point at infinity. In this
case, a TRIANGLE_FAN primitive can render these polygons
extremely efficiently (1 vertex/projected triangle).
If the application determines that the shadow volume geometry for
a silhouette edge loop will never pierce or otherwise require
capping of the near clip plane’s visible region, zpass shadow
volume rendering can be used instead of zfail rendering. The
zpass formulation is advantageous in this context because it does
not require the rendering of any capping triangles. Mixing the
zpass and zfail shadow volume stencil testing formulations for
different silhouette edge loops does not affect the net shadow
depth count as long as each particular loop uses a single
formulation.
Shadow volume geometry can be re-used from frame to frame for
any light and occluder that have not changed their geometric
relationship to each other.

4. IMPROVED HARDWARE SUPPORT
4.1 Wrapping Stencil Arithmetic
DirectX 6 and the OpenGL EXT_stencil_wrap extension provide
two additional increment wrap and decrement wrap stencil
operations that use modulo, rather than saturation, arithmetic.
These operations reduce the likelihood of incorrect shadow results
due to an increment operation saturating a stencil value’s shadow
depth count. Using the wrapping operations with an N-bit stencil
buffer, there remains a remote possibility that a net 2N increments
(or a multiple of) may alias with the unshadowed zero stencil
value and lead to incorrect shadows, but in practice, particularly
with an 8-bit stencil buffer, this is quite unlikely.

4.2 Depth Clamping
NVIDIA’s GeForce3 and GeForce4 Ti GPUs support depth
clamping via the NV_depth_clamp OpenGL extension. When
enabled, depth clamping disables the near and far clip planes for
rasterizing geometric primitives. Instead, a fragment’s window-
space depth value is clamped to the range [min(zn,zf),max(zn,zf)]
where zn and zf are the near and far depth range values.
Additionally when depth clamping is enabled, no fragments with
non-positive wc are generated.
With depth clamping support, a conventional projection matrix
with a finite far clip plane distance can be used rather than the Pinf
form. The only required modification to our algorithm is enabling
DEPTH_CLAMP_NV during the rendering of the shadow volume
geometry.
Depth clamping recovers the depth precision (admittedly quite
marginal) lost due to the use of a Pinf projection matrix. More
significantly, depth clamping generalizes our algorithm so it
works with orthographic, not just perspective, projections.

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

4.3 Two-Sided Stencil Testing
We propose two-sided stencil testing, a new stencil functionality
that uses distinct front- and back-facing stencil state when
enabled. Front-facing primitives use the front-facing stencil state
for their stencil operation while back-facing primitives use the
back-facing state. With two-sided stencil testing, shadow volume
geometry need only be rendered once, rather than twice.
Two-sided stencil testing generates the same number of stencil
buffer updates as the two-pass approach so in fill-limited shadow
volume rendering situations, the advantage of a single pass is
marginal. However, pipeline bubbles due to repeated all front-
facing or all back-facing shadow volumes lead to inefficiencies
using two passes. Perhaps more importantly, two-sided stencil
testing reduces the CPU overhead in the driver by sending shadow
volume polygon geometry only once.
Because stencil increments and decrements are intermixed with
two-sided stencil testing, the wrapping versions of these
operations are mandatory.

5. EXAMPLES
Figures 2 through 5 show several examples of our algorithm.

6. FUTURE WORK
Because of the extremely scene-dependent nature of shadow
volume rendering performance and space constraints here, we
defer thorough performance evaluation of our technique. Still we
are happy to report that our rendering examples, including
examples that seek to mimic the animated behavior of a
sophisticated 3D game (see Figure 4), achieve real-time rates on
current PC graphics hardware.
Yet naïve rendering with stenciled shadow volumes consumes
tremendous amounts of stencil fill rate. We expect effective
shadow volume culling schemes will be required to achieve
consistent interactive rendering rates for complex shadowed
scenes. Portal, BSP, occlusion, and view frustum culling
techniques can all improve performance by avoiding the rendering
of unnecessary shadow volumes. Additional performance scaling
will be through faster and cleverer hardware designs that are
better tuned for rendering workloads including stenciled shadow
volumes.
Future graphics hardware will support more higher-order graphics
primitives beyond triangles. Combining higher-order hardware
primitives with shadow volumes requires automatic generation of
shadow volumes in hardware. Two-sided stencil testing will be
vital since it only requires one rendering of automatically
generated shadow volume geometry. Automatic generation of
shadow volumes will also relieve the CPU of this chore.

7. CONCLUSIONS
Our stenciled shadow volume algorithm is robust, straightforward,
and requires hardware functionality that is ubiquitous today. We
believe this will provide the opportunity for 3D games and
applications to integrate shadow volumes into their basic
rendering repertoire. The algorithm we developed is the result of
careful integration of known, but not previously integrated,
techniques to address methodically the shortcomings of existing
shadow volume techniques caused by near and/or far plane
clipping.

8. ACKNOWLEDGEMENTS
We are grateful to John Carmack, Matt Craighead, Eric Haines,
and Matt Papakipos for fruitful discussions, Steve Burke for
modeling the SIGGRAPH logo and Loop subdivision surface for
us; and James Green, Brian Collins, Rich B, and Stecki for
designing and animating the Quake2 models that we picture.

REFERENCES
[1] Kurt Akeley and James Foran, “Apparatus and method for

controlling storage of display information in a computer system,”
US Patent 5,394,170, filed Dec. 15, 1992, assigned Feb. 28, 1995.

[2] Harlen Costa Batagelo and Ilaim Costa Junior, “Real-Time Shadow
Generation Using BSP Trees and Stencil Buffers,” XII Brazilian
Symposium on Computer Graphics and Image Processing,
Campinas, Brazil, Oct. 1999, pp. 93-102.

[3] Philippe Bergeron, “A General Version of Crow’s Shadow
Volumes,” IEEE Computer Graphics and Applications, Sept. 1986,
pp. 17-28.

[4] Jason Bestimt and Bryant Freitag, “Real-Time Shadow Casting
Using Shadow Volumes,” Gamasutra.com web site, Nov. 15, 1999.

[5] Bill Bilodeau and Mike Songy, Creative Labs sponsored game
developer conference, unpublished slides, Los Angeles, May 1999.

[6] David Blythe, Tom McReynolds, et.al., “Shadow Volumes,”
Program with OpenGL: Advanced Rendering, SIGGRAPH course
notes, 1996.

[7] Jim Blinn, “A Trip Down the Graphics Pipeline: The Homogeneous
Perspective Transform,” IEEE Computer Graphics and
Applications,” May 1993, pp. 75-88.

[8] Lynne Brotman and Norman Badler, “Generating Soft Shadows with
a Depth Buffer Algorithm,” IEEE Computer Graphics and
Applications, Oct. 1984, pp. 5-12.

[9] John Carmack, unpublished correspondence, early 2000.

[10] Frank Crow, “Shadow Algorithms for Computer Graphics,”
Proceedings of SIGGRAPH, 1977, pp. 242-248.

[11] Paul Diefenbach, Multi-pass Pipeline Rendering: Interaction and
Realism through Hardware Provisions, Ph.D. thesis, University of
Pennsylvania, tech report MS-CIS-96-26, 1996.

[12] Alain Fournier and Donald Fussell, “On the Power of the Frame
Buffer,” ACM Transactions on Graphics, April 1988, 103-128.

[13] Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan, Spach, John
Austin, Frederick Brooks, John Eyles, and John Poulton, “Fast
Spheres, Shadows, Textures, Transparencies, and Image
Enhancements in Pixel-Planes,” Proceedings of SIGGRAPH, 1985,
pp. 111-120.

[14] Tim Heidmann, “Real Shadows Real Time”, IRIS Universe, Number
18, 1991, pp. 28-31.

[15] Mark Kilgard, “Improving Shadows and Reflections via the Stencil
Buffer,” Advanced OpenGL Game Development course notes, Game
Developer Conference, March 16, 1999, pp. 204-253.

[16] Mark Kilgard, “Robust Stencil Volumes,” CEDEC 2001
presentation, Tokyo, Sept. 4, 2001.

[17] Michael McCool, “Shadow Volume Reconstruction from Depth
Maps,” ACM Transactions on Graphics, Jan. 2001, pp. 1-25.

[18] Mark Segal and Kurt Akeley, The OpenGL Graphics System: A
Specification, version 1.3, 2001.

[19] Andrew Woo, Pierre Poulin, and Alain Fournier, “A Survey of
Shadow Algorithms,” IEEE Computer Graphics and Applications,
Nov. 1990, pp. 13-32.

Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

Scene from eye’s point of view (left) and visualizing shadow volumes (right).

Alternate view of scene showing eye frustum (left) and visualizing shadow volumes (right).

View of scene in eye’s clip space (left) and visualizing shadow volumes (right).

Figure 2: These images show a scene with a yellow light source surrounded by a
green complex object. This arrangement is a “hard” case for shadow volume
rendering. The infinite capping polygons can be seen behind the wall and floor in
the bottom right image. All the scenes use a Pinf projection matrix.

Shadowed scene with the light near the eye
and surrounded by a complex surface.

An alternate view of the scene including
shadow volumes and silhouette edges with
everything outside the eye's infinite frustum
clipped away.

Same as above, except the scene is shown in
eye's clip space.

Figure 3: These images illustrate the
capping at infinity that is required for
correct closed shadow computation.

Figure 5: Shadowed scene lit by a directional
light (left) and the corresponding clip-space
view with the shadow volume’s back projection
meeting at infinity on the far clip plane (right).

Figure 4: Game-like scenes with 3 independent colored light sources (left,
34 frames/second on a GeForce4 Ti 4600 at 640x480, 80+ fps for 1 light)
and 12 clustered lights to simulate soft shadows (right, 8 fps). Characters
have diffuse/specular per-pixel bump map shading, correctly shadowed.

Hardware Shadow Mapping
Cass Everitt

cass@nvidia.com

Ashu Rege
arege@nvidia.com

Cem Cebenoyan
cem@nvidia.com

With Shadows Without Shadows

Introduction
Shadows make 3D computer graphics look better. Without them, scenes often feel

unnatural and flat, and the relative depths of objects in the scene can be very unclear.
The trouble with rendering high quality shadows is that they require a visibility test for
each light source at each rasterized fragment. For ray tracers, adding an extra visibility
test is trivial, but for rasterizers, it is not. Fortunately, there are a number of common
cases where the light visibility test can be efficiently performed by a rasterizer. The two
most common techniques for hardware accelerated complex shadowing are stenciled
shadow volumes and shadow mapping. This document will focus on using shadow
mapping to implement shadowing for spotlights.

Shadow mapping is an image-based shadowing technique developed by Lance
Williams [8] in 1978. It is particularly amenable to hardware implementation because it
makes use of existing hardware functionality – texturing and depth buffering. The only
extra burden it places on hardware is the need to perform a high-precision scalar
comparison for each texel fetched from the shadow map texture. Shadow maps are also
attractive to application programmers because they are very easy to use, and unlike
stenciled shadow volumes, they require no additional geometry processing.

Hardware accelerated shadow mapping [5] is available today on GeForce3 GPUs. It
is exposed in OpenGL [4] through the SGIX_shadow and SGIX_depth_texture
extensions [6], and in Direct3D 8 through a special texture format.

mailto:cass@nvidia.com
mailto:arege@nvidia.com
mailto:cem@nvidia.com

Figure 1. These diagrams were taken from Mark Kilgard’s shadow mapping presentation at
GDC 2001. They illustrate the shadowing comparison that occurs in shadow mapping.

How It Works
The clever insight of shadow mapping is that the depth buffer generated by rendering

the scene from the light’s point of view is a pre-computed light visibility test over the
light’s view volume. The light’s depth buffer (a.k.a. the shadow map) partitions the view
volume of the light into two regions: the shadowed region and the unshadowed region.
The visibility test is of the form

()yxz ppmapshadowp ,_≤

where p is a point in the light’s image space. Shadow mapping really happens in the
texture unit, so the comparison actually looks like:

.,2_ 









≤

q

t

q

s

q

r

p
p

p
pDtexture

p
p

Note that this form of comparison is identical to the depth test used for visible surface
determination during standard rasterization. The primary difference is that the rasterizer
always generates fragments (primitive samples) on the regular grid of the eye’s
discretized image plane for depth test, while textures are sampled over a continuous space
at irregular intervals. If we made an effort to sample the shadow map texture in the same
way that we sample the depth buffer, there would be no difference at all. In fact, we can
use shadow maps in this way to perform more than one depth test per fragment [2].

Figure 1 illustrates the depth comparison that takes place in shadow mapping. The
eye position and image plane are shown, but they are not relevant to the visibility test
because shadowing is view-independent.

How To Do It
The basic steps for rendering with shadow maps are quite simple:

Figure 2. A shadow mapped scene rendered from the eye’s point of view (left), the scene as
rendered from the light’s point of view (center), and the corresponding depth/shadow map
(right).

•

•

•

•

Figure 2 s
light’s point o
samples that a

Since app
light’s point o
fragments bac

Why Is
If imp

is prone to
unshadow
surfaces th
in the sha
precision
adding a s

If the
depths wo
the magni
geometry
render the scene from the light’s point of view,

use the light’s depth buffer as a texture (shadow map),

projectively texture the shadow map onto the scene, and

use “texture color” (comparison result) in fragment shading.
hows an example scene with shadows, the same scene shown from the
f view, and the corresponding shadow map (or depth buffer). Note that
re closer to the light are darker than samples that are further away.

lications already have to be able to render the scene, rendering from the
f view is trivial. If it is available, polygon offset should be used to push
k slightly during this rendering pass.

Polygon Offset Needed?
lemented literally, the light visibility test described in the previous section
 self-shadowing error due to it’s razor’s edge nature in the case of
ed objects. In the hypothetical “infinite resolution, infinite precision” case,
at pass the visibility test would have depth equal to the depth value stored

dow map. In the real world of finite precision and finite resolution,
and sampling issues cause problems. These problems can be solved by
mall bias to the shadow map depths used in the comparison.

problem were only one of precision, a constant bias of all the shadow map
uld be sufficient, but there is also a less obvious sampling issue that affects
tude of bias necessary. Consider the case illustrated in Figure 3. When the
is rasterized from the eye’s point of view, it will be sampled in different

locations than when it was rasterized from the light’s point of view. The difference in
the depths of the samples is based on the slope of the polygon in light space, so in
order to account for this we must supply a positive “slope factor” (typically about 1.0)
to the polygon offset.

Direct3D does not expose polygon offset, so applications must provide this bias
through matrix tweaks. This approach is workable, but because it fails to account for
z slope, the uniform bias is generally much larger than it would otherwise need to be,
which may introduce incorrectly unshadowed samples, or “light leaking”.

The depth map as rendered from the light’s point of view is the shadow map. With
OpenGL, turning it into a real texture requires copying it into texture memory via
glCopyTex{Sub}Image2D(). Even though the copy is card-local, it is still somewhat
expensive. Direct3D’s render-to-texture capability makes this copy unnecessary. You
can render directly to the shadow map texture. This render-to-texture capability will also
be available soon in OpenGL through extensions.

Once the shadow map texture is generated, it is projectively textured onto the scene.
For shadow mapping, we compute 3D projective texture coordinates, where r is the
sample depth in light space, and s and t index the 2D texture. Figure 4 shows these
quantities, which are compared during rendering to determine light visibility.

without polygon offset with polygon offset

self-shadowing
samples

Figure 3. These figures illustrate the need for polygon offsetting to eliminate self-
shadowing artifacts. The variable sampling location necessitates the use of z slope-based
offset.

unshadowed
sample

shadow map
texel

Figure 4. A shadow mapped scene (left), the scene showing each sample’s distance from the
light source (center), and the scene with the shadow map shadow map projected onto it (right).

The final step in rendering shadows is to actually factor the shadow computation
result into the shading equation. The result of the comparison is either 1 or 0, and it is
returned as the texture color. If linear filtering is enabled, the comparison is performed at
the four neighboring shadow map samples, and the results are bilinearly filtered just as if
they had been colors.

Figure 5. A very low resolution shadow map is used to demonstrate the difference
between nearest (left) and linear (right) filtering for shadow maps. Credit: Mark
Kilgard.

 With GeForce3 hardware, it is easiest to use NV_register_combiners to implement
the desired per-fragment shading based on the shadow comparison. One simple approach
is to use the shadowing result directly to modulate the diffuse and specular intensity.
Kilgard points out [3] that leaving some fraction of diffuse intensity in helps keep
shadows areas from looking too “flat”.

OpenGL API Details
Support for shadow mapping in OpenGL is provided by the SGIX_shadow and

SGIX_depth_texture extensions. The SGIX_shadow extension exposes the per-texel
comparison as a texture parameter, and SGIX_depth_texture defines a texture internal
format of DEPTH_COMPONENT, complete with various bits-per-texel choices. It also
provides semantics for glCopyTex{Sub}Image*() calls to read from the depth buffer
when performing a copy.

Direct3D API Details
 Support for shadow mapping in Direct3D is provided by special depth texture
formats exposed in drivers version 21.81 and later. Support for both 24-bit
(D3DFMT_D24S8) and 16-bit (D3DFMT_D16) shadow maps is included.

Setup
The following code snippet checks for hardware shadow map support on the
default adapter in 32-bit color:

HRESULT hr = pD3D->CheckDeviceFormat(

D3DADAPTER_DEFAULT, //default adapter

D3DDEVTYPE_HAL, //HAL device

D3DFMT_X8R8G8B8, //display mode

D3DUSAGE_DEPTHSTENCIL, //shadow map is a depth/s surface

D3DRTYPE_TEXTURE, //shadow map is a texture

D3DFMT_D24S8 //format of shadow map

);

Note that since shadow mapping in Direct3D relies on “overloading” the meaning
of an existing texture format, the above check does not guarantee hardware
shadow map support, since it’s feasible that a particular hardware / driver combo
could one day exist that supports depth texture formats for another purpose. For
this reason, it’s a good idea to supplement the above check with a check that the
hardware is GeForce3 or greater.

Once shadow map support has been determined, you can create the shadow map
using the following call:

pD3DDev->CreateTexture(texWidth, texHeight, 1,
 D3DUSAGE_DEPTHSTENCIL, D3DFMT_D24S8, D3DPOOL_DEFAULT,
 &pTex);

Note that you must create a corresponding color surface to go along with your
depth surface since Direct3D requires you to set a color surface / z surface pair
when doing a SetRenderTarget(). If you’re not using the color buffer for
anything, it’s best to turn off color writes when rendering to it using the
D3DRS_COLORWRITEENABLE renderstate to save bandwidth.

Rendering
Rendering uses the same ideas as in OpenGL: you render from the point of view
of the light to the shadow map you created, then set the shadow map texture in a
texture stage and set the texture coordinates in that stage to index into the shadow
map at (s / q, t / q) and use the depth value (r / q) for the comparison. There are a
few Direct3D-specific idiosyncrasies to be aware of, however:

• The (z / w) value used to compare with the value in the shadow map is in
the range [0..2bitdepth-1], not [0..1], where ‘bitdepth’ is the bitdepth of the
shadowmap (24 or 16 bits). This means you have to put an additional
scale factor into your texture matrix.

• Direct3D addresses pixels and texels in different ways [1], where integral
screen coordinates address pixel centers and integral texture coordinates
address texel boundaries. You need to take this into account when
addressing the shadow map. There are two ways to do this: either offset
the viewport by half a texel when rendering the shadow map, or offset by
half a texel when addressing the shadow map.

• As stated earlier, there is no native polygon offset support in Direct3D.
The closest thing is D3DRS_ZBIAS, but this doesn’t help us when
shadow mapping since it can only be used to bias depth a constant amount
towards the camera, not away. Instead we can get similar functionality,
albeit without taking into account polygon slope, by adding a small bias
amount to our texture matrix.

Here is a sample texture matrix that takes into account these limitations:
float fOffsetX = 0.5f + (0.5f / fTexWidth);

float fOffsetY = 0.5f + (0.5f / fTexHeight);

D3DXMATRIX texScaleBiasMat(0.5f, 0.0f, 0.0f, 0.0f,

 0.0f, -0.5f, 0.0f, 0.0f,

 0.0f, 0.0f, fZScale, 0.0f,

 fOffsetX, fOffsetY, fBias, 1.0f);

Where fZScale is the (2bitdepth-1) and fBias is a small negative value. Note that
this matrix is applied post-projection, not in eye space.

Once the texture coordinates have been setup properly, the hardware will
automatically compare (r / q) > shadowMap[s / q, t / q] and return zero to indicate
in shadow or one to indicate in light (or potentially something in between if
you’re on the shadow edge and using D3DTEXF_LINEAR). The following pixel
shader shows a simple use of shadow mapping (but note that you don’t have to
use pixel shaders to use shadow maps, DirectX7-style texture stage states work as
well):
 tex t0 // normal map

tex t1 // decal texture

 tex t2 // shadow map

 dp3_sat r0, t0_bx2, v0_bx2 //light vector is in v0

 mul r0, r0, t2 //modulate lighting contribution by shadow result

 mul r0, r0, t1 //modulate lighting contribution by decal

Advantages and Limitations
As with any technique, shadow mapping has certain advantages and limitations to be

aware of. The fact that it is image-based turns out to be both an advantage and a
limitation. It’s advantageous, because it doesn’t require additional application geometry
processing, it works well with GPU-created and GPU-altered geometry and correctly
handles fragment culling like alpha test. The associated limitation is that because it’s
image based, it works well for spotlights, but not point light sources. One could imagine
a cube map –based shadow mapping system, but they would require six 90-degree frusta,
which would each need to be fairly high resolution, and five more passes over the

geometry to generate the shadow map.

Figure 6. The “dueling frusta” problem occurs when the spotlight points toward the eye.
The eye’s view (left) shows the variation in sampling frequency of the shadow map, blue
being the highest . The light’s view (right) shows the very small portion of the light’s
image plane needs high frequency sampling.

Along the same lines, the quality of shadow mapping depends on how well the
shadow map sampling frequency matches the eye’s sampling frequency. When the eye
and light have similar location and orientation, the sampling frequencies match pretty
well, but when the light and eye are looking toward each other, the sampling frequencies
rarely match well. Figure 6 illustrates this “dueling frusta” situation.

Another problem that comes up with any projective texture mapping is the phantom
“negative projection”. This is actually pretty simple to remove at the cost of an
additional texture unit, or per-vertex color. The goal is just to make sure that the shadow
test always returns “shadowed” for surfaces behind the light.

Finally, the polygon offset fudge factor, while quite adequate for virtually all uses of
shadow mapping, can be a bit dissatisfying. Andrew Woo [9] suggested an alternative
shadow map generation that is produced from averaging the nearest and second-nearest
depth layers from the light’s point of view. This technique can actually be implemented
as a two-pass technique on GeForce3 hardware using the depth peeling technique
described in [2] and with a slight twist. In the second pass, the shadow map is used to
peel away the nearest surfaces, but all depths are computed as the average of the

fragment’s original depth and the nearest depth at that fragment’s (x,y). The nearest
surface (that is not peeled away), is then the average of the first and second nearest
fragments!

Wang and Molnar introduce another technique to reduce the need for polygon offset [7].
Their technique works by rendering only back-faces into the shadow map, relying on the
observation that back-face z-values and front-face z-values are likely far enough apart in
z to not falsely self-shadow. This only helps front-faces, of course, but back-faces (with
respect to the light) are, by definition, not in light, which helps hide artifacts. Note that
this algorithm only works for closed polygonal objects.

Computing Transformations for Shadow Mapping
Computing the transformations required for shadow mapping can be somewhat

tricky. This section provides details on the various transformations that need to be applied
during the two render passes. While this section provides details for the OpenGL case,
the transformations required for Direct3D are very similar with the main exception being
that the texture coordinate generation is done directly via a matrix instead of the texgen
planes. Also, keep in mind that the scale-bias matrix in Direct3D requires an additional
offset to account for the discrepancy between pixel and texel coordinates as mentioned
earlier, and that eye linear texgen is called D3DTSS_TCI_CAMERASPACEPOSITION.

L

V-1M-1

M

Eye SpaceObject Space

Figure 7: Schematic view of the ba

Figure 7 shows the three primary tra
mapping. Note that we use the conventi
world coordinates. The standard ‘model
therefore be: V-1M. In addition to the ab
the projections involved in the two pass
frusta for the light and eye. The projecti
texture coordinate generation phase whi
L-1

V

Light Space

sic transformations involved in shadow mapping.

nsformations (and inverses) used in shadow
on of using the forward transforms as going to
view’ matrix using the above notation will
ove transformations, we also have to account for
es – these could be different depending on the
on transformation will also be applied during the
ch is depicted in Figure 8 for OpenGL. As shown

in the figure, two transformations are applied to the eye coordinates – the texgen planes,
and the texture matrix. For eye linear texgen planes, OpenGL will automatically multiply
the eye coordinates with the inverse of the modelview matrix in effect when the planes
are specified. (See Appendix A for a more detailed explanation of the texgen planes in
the eye linear case.)

The resulting texture coordinates are therefore computed as:

[xe,ye,ze,we]T = (modelview) [xo,yo,zo,wo]T

Ee = Epo(modelviewpo)-1

[s,t,r,q]T = T Ee [xe,ye,ze,we]T

Equation 1

Here the subscript ‘o’ denotes object space coordinates, and the subscript ‘e’ refers to eye
space coordinates, modelviewpo is the modelview matrix in effect when the eye linear
texgen plane equations are specified, Epo is the matrix composed of the eye linear plane
equations as specified to OpenGL (i.e. in their own object space), Ee is the matrix
composed of the transformed plane equations (these are the plane equations that are

actually stored by OpenGL), T is the texture matrix, and modelview is the modelview
matrix when rendering the scene geometry.

Setting Up the Transformations
We want to set the transformations in Equation 1 to compute texture coordinates

(s,t,r,q) such that (s/q,t/q) will be the fragment’s location within the depth texture, and
r/q will be the window-space z of the fragment relative to the light’s frustum. In other
words, we want to compute:

[s,t,r,q]T = S Plight L-1 M [xo,yo,zo,wo]T

Equation 2

Here, S is the scale-bias matrix, given by:

Plight is the projection matrix for the
applied to eye coordinates [xe,ye,ze,
space, since that is where the depth
[xe,ye,ze,we]T back into world space
compute [s,t,r,q]T as:

[s,t,r,q]T

Note that the right hand side of
precisely what we want. A straightf
modelviewpo to identity and set:

T

The first observation is that we
eye linear texgen planes specified t
½ 0 0 ½
0 ½ 0 ½
0 0 ½ ½
0 0 0 1
 light frustum. The “texgen matrix” (Ee), however, is
we]T but we want to generate the coordinates in light
 map computation takes place. So we need to take
 by applying the transform V. That is, we want to

 = S Plight L-1 V [xe,ye,ze,we]T

Equation 3

Equation 3 reduces to S Plight L-1 M [xo,yo,zo,wo],
orward way to compute Equation 3 is to set

 Epo = S Plight L-1 V

Equation 4

have two matrices T (the texture matrix) and Epo (the
o OpenGL) so we can compute Equation 4 in several

ways. Since we are going to have to set the eye linear planes in any case, the less
expensive thing to do is to not set the texture matrix at all, and use the texgen matrix G
for the entire computation†, i.e., set

Epo = S Plight L-1 V

Equation 5

This assumes that the modelview matrix, modelviewpo, was identity at the time the
texgen planes are set. Another improvement is to make use of the fact that OpenGL
automatically multiplies [xe,ye,ze,we]T with (modelviewpo)-1 for eye linear texgen. The
sole purpose of using V in Equation 5 is to eliminate V-1. If we set modelviewpo = V-1,
then OpenGL will do the elimination for us and we can avoid having to compute V, the
inverse of the view matrix. The steps can be summarized as follows:

First Pass (Depth Map Generation)

• Render from light’s point of view. Set projection matrix to Plight. Set the view
portion of the modelview matrix to L-1.

• Render scene (with appropriate modeling transform(s) M).

Second Pass (Depth Map Comparison)

• Render from eye’s point of view. Set projection matrix to be Peye. Set the view
portion of the modelview matrix to be V-1.

• Set texgen to be EYE_LINEAR. Specify texgen planes as Epo = S Plight L-1

• Render scene (with appropriate modeling transform(s) M)

Conclusions
Shadow mapping is an easy-to-use shadowing technique that makes 3D rendering just

look better. It enjoys hardware acceleration on GeForce3 GPUs. There is example
source code in the NVSDK (hw_shadowmaps_simple, hw_woo_shadowmaps) that
demonstrate the technique, and the corresponding OpenGL extensions. Please direct
questions or comments to cass@nvidia.com.

References
[1] Craig Duttweiler. Mapping Texels to Pixels in Direct3D.

http://developer.nvidia.com/view.asp?IO=Mapping_texels_Pixels.

† Note that this technique of collapsing the texture and texgen matrices works in our case because we are
setting all four planes, and using the same mode for all four planes. In general, each coordinate can have a
different mode (eye linear, object linear, sphere map…) and the technique may not be applicable.

http://developer.nvidia.com/view.asp?IO=Mapping_texels_Pixels

[2] Cass Everitt. Interactive Order-Independent Transparency. Whitepaper:
http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparency.

[3] Mark Kilgard. Shadow Mapping with Today’s Hardware. Technical presentation:
http://developer.nvidia.com/view.asp?IO=cedec_shadowmap.

[4] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 1.2.1). www.opengl.org

[5] Mark Segal, et al. Fast shadows and lighting effects using texture mapping. In
Proceedings of SIGGRAPH ’92, pages 249-252, 1992.

[6] OpenGL Extension Registry. http://oss.sgi.com/projects/ogl-sample/registry/.

[7] Yulan Wang and Steven Molnar. Second-Depth Shadow Mapping. UNC-CS
Technical Report TR94-019, 1994.

[8] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of
SIGGRAPH ’78, pages 270-274, 1978.

[9] Andrew Woo, P. Poulin, and A. Fournier. “A Survey of Shadow Algorithms,” IEEE
Computer Graphics and Applications: vol 10(6), pages 13-32, 1990.

Appendix A: Another Way to Think about EYE_LINEAR planes in
OpenGL

An unfortunate thing about EYE_LINEAR texgen in OpenGL is that the name
implies that the plane equations are specified in eye space, when they are, in fact,
specified in their own object space. There are two ways one can think about the planes
specified in EYE_LINEAR texgen. As mentioned earlier, OpenGL will automatically
multiply the planes specified with (modelviewpo)-1, i.e. the inverse of the modelview
matrix in effect when the planes are specified. From Equation 1 we see that the net effect
is to map the vertex position in eye coordinates [xe,ye,ze,we]T back to the ‘object space’
defined by (modelviewpo)-1. The transformed coordinates are then evaluated at each
plane in this object space to get the texture coordinates. An alternate way to think about
the texgen planes is to consider the matrix Ee = Epo(modelview)-1, which defines a map
whose domain is eye space, with the planes Epo being specified in object space. Ee
therefore defines the transformed planes in eye space. In either case, the planes are being
specified in the ‘object space’ defined by (modelviewpo)-1 and not in eye space.

In the shadow mapping case described earlier, the modelview matrix is set to V-1
when the texgen plane equations are specified. This is the same thing as saying that we
are specifying the plane equations in world space. If the modelview matrix were set to
identity, then we would be specifying the equations in eye space. The same is true if we
were specifying vertex positions.

http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparency
http://developer.nvidia.com/view.asp?IO=cedec_shadowmap
http://www.opengl.org/
http://oss.sgi.com/projects/ogl-sample/registry/

We could set the modelview matrix to V-1L, and specify the plane equations in light
space. This might be handy, because we would only need to update our plane equations
if the light’s projection (Plight) changed. We could even put the whole transformation into
the modelview matrix as V-1LPlight

-1S-1. In this case, the texgen planes are always just
specified as identity (Epo = I)!

Interactive Order-Independent Transparency
Cass Everitt

NVIDIA OpenGL Applications Engineering
cass@nvidia.com

(a) (b)

Figure 1. These images illustrate correct (a) and incorrect (b) rendering of transparent
surfaces.

Introduction
Correctly rendering non-refractive transparent surfaces with core OpenGL

functionality [9] has the vexing requirements of depth-sorted traversal and non-
intersecting polygons. This is frustrating for most application developers using OpenGL
because the natural order of scene traversal (usually one object at a time) rarely satisfies
these requirements. Objects can be complex, with their own transformation hierarchies.
Even more troublesome, with advanced graphics hardware, the vertices and fragments of
objects may be altered by user-defined per-vertex or per-fragment operations within the
GPU. When these features are employed, it becomes intractable to guarantee that
fragments will arrive in sorted order for each pixel. The technique presented here solves
the problem of order dependence by using a technique we call depth peeling. Depth
peeling is a fragment-level depth sorting technique described by Mammen using Virtual
Pixel Maps [7] and by Diefenbach using a dual depth buffer [3]. Though no dual depth
buffer hardware fitting Diefenbach’s description exists, Bastos observed that shadow
mapping hardware in conjunction with alpha test can be used to achieve the same effect
[2]. Using this variation of depth peeling, each unique depth in the scene is extracted into
layers, and the layers are composited in depth-sorted order to produce the correctly
blended final image. The peeling of a layer requires a single order-independent pass over
the scene. Figure 1 contrasts correct and incorrect rendering of transparent surfaces.

mailto:cass@nvidia.com

The goal of this document is to enable OpenGL developers to implement this
technique with NVIDIA OpenGL extensions and GeForce3 hardware. Since shadow
mapping is integral to the technique a very basic introduction is provided, but the
interested reader is encouraged to explore the referenced material for more detail.

Shadow Mapping
Shadow mapping is a multi-pass shadowing technique developed by Lance Williams

[11] in 1978. In the first pass, the scene is rendered from the light’s point of view. The
depth buffer generated in that pass is copied to a special “depth texture” or shadow map.
In the second pass, the shadow map is projected onto the scene using projective texture
mapping [10, 4]. Unlike regular 2D projective texture mapping where the r coordinate is
unused, we use the r coordinate to compute the distance of the rasterized fragment to the
light source. Then, the lookup of (s,t) is the distance to the nearest surface to the light
source (along that direction). If r ≤ lookup(s,t), then the current fragment is visible to
the light source, and therefore not in shadow. Essentially, we use depth-buffering in the
first pass to determine which surfaces are visible from the light’s point of view, and in the
second pass we show those surfaces as illuminated. Figure 2 helps illustrate this concept.

Figure 2. These diagrams were taken from Mark Kilgard’s shadow mapping presentation at
GDC 2001. They illustrate the shadowing comparison that occurs in shadow mapping.

We use the SGIX_shadow and SGIX_depth_texture extensions [8] to take advantage
of GeForce3 shadow mapping hardware in OpenGL.1 The SGIX_shadow extension
provides the ability to compute a comparison of the r texture coordinate with the results
of the 2D lookup. The SGIX_depth_texture extension exposes GL_DEPTH_COMPONENT
internal texture formats and defines semantics for glCopyTex{Sub}Image2D for fast
copies from the depth buffer to a depth texture. These features are fully accelerated on
GeForce3.

1 The OpenGL Architectural Review Board (the “ARB”) has since standardized the ARB_shadow and

ARB_depth_texture extensions in February 2002. These extensions are very similar to the SGIX
extensions. The technique described here could use either the ARB or SGIX extensions. NVIDIA drivers
after March 2002 support the ARB and SGIX extensions for shadow mapping.

 It has been shown by Heidrich [5] that multitexturing can be used to implement a
limited form of shadow mapping. It is limited in that it requires multiple texture units
and it only supports nearest filtering and 8-bit depth texels (16-bit depth on GeForce [6]).
For depth peeling, we need full depth buffer precision (24 bits) that necessitates the use
of the SGIX shadowing extensions.

Depth Peeling
Depth peeling is the underlying technique that makes this approach for order-

independent transparency possible. The standard depth test gives us the nearest fragment
at each pixel, but there is also a fragment that is second nearest, third nearest, and so on.
Standard depth testing gives us the nearest fragment without imposing any ordering
restrictions, however, it does not give us any straightforward way to render the second
nearest or nth nearest surface.

Depth peeling solves this problem. The essence of what happens with this technique
is that with n passes over a scene, we can get n layers deeper into the scene. For
example, with 2 passes over the scene, we can extract the nearest and second nearest
surfaces in a scene. We get both the depth and color (RGBA) information for each layer.

The images we get from peeling away depth are shown in Figure 3. It can be quite
confusing to make sense of the images of layer 1 and beyond, because the notion of a

Layer 0 Layer 1

Layer 2 Layer 3

Figure 3. These images illustrate simple depth peeling. Layer 0 shows the nearest depths,
layer 1 shows the second depths, and so on. Two-sided lighting with vivid coloring is used
to help distinguish the surfaces.

0 depth 1

Layer 0 Layer 1 Layer 2

0 depth 1 0 depth 1

Figure 4. Depth peeling strips away depth layers with each successive pass. The frames
above show the frontmost (leftmost) surfaces as bold black lines, hidden surfaces as thin
black lines, and “peeled away” surfaces as light grey lines.

“second nearest surface” is unintuitive. To help distinguish the various surfaces, the
teapot is rendered with two-sided lighting (outside is red and inside is green), and the
ground plane is drawn in blue. Note that the image labeled ‘Layer 2’ is in the shape of a
teapot, but most of the fragments in that layer are from the ground plane (they are blue).
Without the coloring, this would be difficult to interpret.

Figure 4 provides a more diagrammatic view of depth peeling. The diagrams there
are analogous to the images in Figure 3, except we are now looking at a cross section of
the view volume and highlighting each layer. It is evident from the view in Figure 4 that
the depths vary within each layer, and the number of samples is decreasing. The peeling
process clearly happens at the fragment level, so the pieces are generally not whole
polygons.

The process of depth peeling is actually a
straightforward multi-pass algorithm. In the first
pass we render as normal, and the depth test gives
us the nearest surface. In the second pass, we use
the depth buffer computed in the first pass to “peel
away” depths that are less than or equal to nearest
depths from the first pass. The second pass
generates a depth buffer for the second nearest
surface, which can be used to peel away the first
and second nearest surfaces in the third pass. The
pattern is simple, but there is a catch. We need to
perform two depth tests per fragment for it to work!

Multiple Depth Tests
The most natural way to describe this technique

is to imagine that OpenGL supported multiple
simultaneous depth units, each with its own depth
buffer and associated state. We diverge from
Diefenbach’s dual depth buffer API in that we
assume there are n depth units, all writeable, that are ex
first depth test to fail discards the fragment and termina
pseudocode in Listing 1 implements depth peeling usin
for (i=0; i<num_passes; i++)
{
 clear color buffer
 A = i % 2
 B = (i+1) % 2
 depth unit 0:
 if(i == 0)
 disable depth test
 else
 enable depth test
 bind buffer A
 disable depth writes
 set depth func to GREATER
 depth unit 1:
 bind buffer B
 clear depth buffer
 enable depth writes
 enable depth test
 set depth func to LESS
 render scene
 save color buffer RGBA as layer i
}
ecuted in sequential order. The
tes further processing. The
g two depth units.

In each pass except the first, depth unit 0 is used to peel away the previously nearest
fragments while the depth unit 1 performs “regular” depth-buffering. We decouple the
depth buffer from the depth unit because it simplifies the presentation of the algorithm
and more closely matches the semantics of ARB_multitexture. This decoupling is
convenient because we need to use the depth buffer produced by depth unit 1 in pass i as
the “peeling” depth buffer for depth unit 0 in pass i+1.

It is also worth mentioning that we only enable depth writes on depth unit 1. This
will be important later.

Shadow Mapping as Depth Test
Shadow mapping is a depth test. For the purposes of our discussion, there are only a

few major differences between shadow mapping and the depth-buffer algorithm:

• the shadow mapping comparison sets a fragment color attribute,

• the shadow mapping depth test is not tied to the camera position, and

• the shadow map (depth buffer) is not writeable during the shadow comparison
(depth test).

 It is not difficult to compensate for these differences. We write the results of the
shadow mapping comparison to fragment alpha and use alpha test to discard fragments
that fail the “depth test” we have chosen. We make the orientation and resolution of the
shadow map identical to that of the camera. We can then use shadow mapping as a read-
only depth test. This is good news, because this is all we needed to implement depth
peeling as described in the previous section using our imaginary multiple depth test
OpenGL. Except now, we can actually implement it using real OpenGL and with
hardware acceleration!

An Invariance Issue
As simple as depth peeling sounds, it is actually pretty intolerant to variance. Due to

the nature of the technique, many of the fragments generated in each pass will be on the
razor’s edge of the comparison. In our imaginary OpenGL that supports multiple depth
tests, we would not expect variance to be a problem because we are re-using the same
interpolator to compute depth the same way in each pass. Things are a little more
complicated when we use shadow mapping as a depth test, though. This is primarily
because

• zw (window space z) is interpolated linearly in window space at the precision
of the current depth buffer, and

• r and q are interpolated linearly in clip space (hyperbolically in window
space) at high precision

The possible differences in precision and/or interpolation implementation are the hazards
that cause variance. Consider the depth
interpolation in Equation 1, which is linear in
window space.

Listing 1. Pseudocode for depth
peeling using multiple simultaneous
depth buffers.

Where zw is window space z, zc is clip space z, wc is clip space w, and the numeric
specifiers 1 and 2 indicate two points that are being interpolated. When we perform
shadow mapping, we must interpolate quantities as texture coordinates which vary

respectively, and use the r/q quotient to produce a value that varies linearly in windo
space. For the particular case we have been considering, shadow mapping from the
camera’s point of view we get Equations 2 and 3.

When we compute the r/q quotient, we recognize t

21

2

2

1

1

1)1(1

)1(

cc

c

c

c

c

c

ww

w
z

w
z

zr
αα

αα

−+

−+
== (2)

linearly in clip space, so we interpolate zc and wc as the r and q texture coordinates

w

hat the denominators in Equations 2
f

same depth, hardware could evaluate the comparison shown in (4). The left side of the
expression interpolates three quantities and performs four divides while the right simply
interpolates one quantity.

21

2

2

1

1

1)1(1

)1(

cc

c

c

c

c

c

ww

w
w

w
w

wq
αα

αα

−+

−+
== (3)

and 3 cancel, and that for our special case of shadow mapping from the camera’s point o
view, the numerator of Equation 3 is 1. This leaves only the numerator of Equation 2,
which is identical to the expression in Equation 1. While this is algebraically true, the
hardware may not be able to make some of these cancellations. For fragments with the

c

c

w
z


















c

c

c

c

c

c

w
z

w

w
w

w
≤


























































1

1

(4)

2

2

1

1
21)1()1(

c

c

c

c
ww

c

c
w w

z
w
zzz

w
zz αααα −+=−+== (1)

Luckily GeForce3’s NV_texture_shader extension [8] supports a mode called
L_DOT_PRODUCT_DEPTH_REPLACE_NV that allows us to compute fragment depth using

texture coordinates. The depth computed in this texture shader replaces the fragment
dep

ng

cause
th

illust

e where H and L are
 a d

 is zc and R2
is wc. W
interpolating
shadow m

his

erspective divide.
Or,

G

th that was computed in the rasterizer. This means that for GeForce3, we can
compute the depth that we store in the depth buffer in exactly the same way that we
compute it when making the comparison. When we use this texture shader in generati

our shadow map, there are no variances in the least significant bits. This is nice be
it means we do not have to employ fudge factors to deal with LSB variance. The dep

There is one clarification we should make. When we consider the standard
transformation pipeline, we often place the perspective divide before the viewport and
depth range scale and bias. The depth replace texture shader and shadow mapping depth
computation perform the divide (zc/wc and s/q respectively) as the final operation. T
means that we must apply the depth range scale and bias before the p

replace texture shader is very general, and this is a very simple use of it. Figure 5
rates the general operation of the depth replace texture shader.

For our purposes, we really only want to interpolate zc and wc using a single texture
coordinate for each, so we use a 1x1 GL_UNSIGNED_HILO_NV textur
zero. By definition, the 3rd component of an unsigned HILO is 1, so we perform
product of (S, T, R) with (0, 0, 1). In this way, we can interpolate the R coordinates of
stages 1 and 2, and we use texture coordinate generation to make sure that R1

hen we perform the division zc/wc at each fragment, we are effectively
 window space depth in the same way that s/q does it in the subsequent

apping pass.

Figure 5. This diagram is a slightly modified slide taken from Dominé and
Spitzer’s GDC 2001 presentation on GeForce3 texture shaders. It
describes the depth replace texture shader.

ot

 said another way, for depth replace and shadow mapping, we must transform
coordinates into homogeneous window coordinates rather than homogeneous clip space.

glActiveTextureARB(GL_TEXTURE0_ARB);
simple_1x1_uhilo.bind();
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D);

matrix4f m;
glActiveTextureARB(GL_TEXTURE1_ARB);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_NV);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
glTe

reshaper.apply_perspective(); // apply the camera’s perspective projection matrix
glMatrixMode(GL_MODELVIEW);

glActiveTextureARB(GL_TEXTURE2_ARB);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_DEPTH_REPLACE_NV);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE);
glPushMatrix();
glLoadIdentity();
eye_linear_texgen(); // set EYE_LINEAR texgen with identity planes
texgen(true); // enable texgen on s,t,r, and q
glPopMatrix();
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
m(0,0) = 0; m(0,1) = 0; m(0,2) = 0; m(0,3) = 0;
m(1,0) = 0; m(1,1) = 0; m(1,2) = 0; m(1,3) = 0;
m(2,0) = 0; m(2,1) = 0; m(2,2) = 0; m(2,3) = 1; // move q to r
m(3,0) = 0; m(3,1) = 0; m(3,2) = 0; m(3,3) = 0;
glMultMatrix(m);
reshaper.apply_perspective(); // apply the camera’s perspective projection matrix
glMatrixMode(GL_MODELVIEW);

glActiveTextureARB(GL_TEXTURE3_ARB);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_RECTANGLE_NV);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE);

glActiveTextureARB(GL_TEXTURE0_ARB);

xEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
eye_linear_texgen(); // set EYE_LINEAR texgen with identity planes
texgen(true); // enable texgen on s,t,r, and q
glPopMatrix();
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glTranslatef(0, 0,.5);
glScalef(0, 0, .5);
The code in Listing 2 illustrates how to set up the GL_DOT_PRODUCT_DEPTH_-
REPLACE_NV texture shader to compute window z in a way that closely matches the
standard projective texture mapping computation of window z. For illustrative purposes,
we use eye linear texgen with an identity mapping for the r coordinate [0 0 1 0], and we
use the texture matrix to perform the transforms. The most efficient approach would be
to encode the transform in the texgen plane.

Another slightly odd aspect the depth replace texture shader is illustrated in the code
in Listing 2. It is that the homogeneous window coordinate must be moved from the
fourth row of the texture matrix into the r coordinate. This is because the dot product
texture shaders only perform a 3-component dot product, so all quantities must be in the
s, t, or r coordinates.

Listing 2. Example code for setting up depth replace texture shader for use in depth peeling.

Putting It All Together
he RGBA color for each unique depth at every

ll that remains
e the correct order-dependent color at each pixel by compositing the layers in

back-to-front
 used.

sults of compositing of the layers into a final image. Note
 two images in Figure 5 look virtually (but not completely) identical.

nt sample up to the
. The nature of the transparency

s further back have diminished effect, so truncation is a
t) form of approximation. For example, the scene in Figure 5 is

 images illustrate blending more layers for more correct
transparency.

4 layers

Now we have a way to compute t
pixel. These are stored as separate layers (or viewport-sized textures). A
is to comput
order. Rendering each layer as viewport-sized textured quad does this. For
compositing a (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) blending function is

Figure 5 illustrates the re
also that the bottom
For completely correct results we should extract every semitranspare
first opaque sample, but in practice that is not necessary
computation is that sample
reasonable (and efficien
“good enough” after three layers.

1 layer 2 layers

3 layers

Figure 5. The depth peeled layers of the scene are correctly sorted per-fragment. If we
simply save the color (RGBA) for each layer, we can composite them in depth-sorted order
as a final pass. These

Conclusion
The technique presented is a straightforward and convenient way to render scenes

with transparency because it does not require that the scene be rendered in sorted order,
and it makes good use of graphics hardware. In addition, there may be no practical
alternative to this approach of layer extraction and compositing for scenes that cannot be
rendered in sorted order in a single pass.

Some of the figures in this paper come from the layerz and order_independent_-
transparency demos that can be found in the NVIDIA OpenGL SDK, which can be
found at http://www.nvidia.com/developer. The demos only illustrate the technique
described here, but many variations like those described in Diefenbach [3] are possible.
The GDC 2001 presentations that were used in some figures are also available at th
above web site.

e

Acknowledgements
Rui Bastos came up with the very clever idea of depth peeling using shadow mapping

hardware support when he was considering hardware accelerat shadow maps for
GeForce3 (whitepaper on that topic to follow soon). I had help from Mark Kilgard on the
appropriate texture coordinate generation setup for the depth replace texture shader that
solves the invariance problem. He also provided invaluable feedback on early drafts of
this paper.

References
[1] James F. Blinn. Hyperbolic interpolation. IEEE Computer Graphics (SIGGRAPH)

and Applications, 12(4):89 94, July 1992.

[2] Rui Bastos. Personal communication. Feb 2001.

[3] Paul Diefenbach. Pipeline Rendering: Interaction and Realism Through Hardware-
Based Multi-PassRendering. University of Pennsylvania, Department of Computer
Science, Ph.D. dissertation, 1996.

[4] Cass Everitt. Projective texture mapping. http://developer.nvidia.com

ed Woo

. 2001

[5] Wolfgang Heidrich. High quality shading and lighting for hardware-accelerated
rendering. http://www.cs.ubc.ca/~heidrich/Papers/phd.pdf. 1999.

[6] Mark Kilgard. GDC 2001 – Shadow mapping with today’s OpenGL hardware.
http://developer.nvidia.com. March 2001.

[7] Abraham Mammen. Transparency and antialiasing algorithms Implemented with
the virtual pixel maps technique. IEEE Computer Graphics and Applications, 9(4):
43-55, July 1989.

[8] NVIDIA OpenGL Extensions Specifications.
http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs. March 2001.

[9] n Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specificatio
(Version 1.2.1). www.opengl.org

[10] Mark Segal, et al. Fast shadows and lighting effects using texture mapping. In
Proceedings of SIGGRAPH ’92, pages 249-252, 1992.

[11] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of
SIGGRAPH ’78, pages 270-274, 1978.

Fast and Approximation Computation of
Geometric Arrangements using GPUs I

Shankar Krishnan
AT & T Research Labs

Application of the Two-Sided Depth Test to CSG Rendering

Sudipto Guha
Univ. of Pennsylvania
sudipto@cis.upenn.edu

Shankar Krishnan
AT&T Labs–Research

krishnas@research.att.com

Kamesh Munagala∗

Stanford University
kamesh@cs.stanford.edu

Suresh Venkatasubramanian
AT&T Labs–Research

suresh@research.att.com

Abstract

Shadow mapping is a technique for doing real-time shadowing. Re-
cent work has shown that shadow mapping hardware can be used
as asecond depth testin addition to the z-test. In this paper, we
explore the computational power provided by this second depth test
by examining the problem of rendering objects described as CSG
(Constructive Solid Geometry) expressions. We provide an algo-
rithm that asymptotically improves the number of rendering passes
required to display a CSG object by a factor ofn by exploiting the
two-sided depth test. Interestingly, a matching lower bound can be
proved demonstrating that our algorithm is optimal.

Keywords: Constructive solid geometry, Graphics hardware, Z-
buffer, Shadow mapping

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration I.3.5 [Computer Graphics]: Computational Geometry and
Object Modelling F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems

1 Introduction

In recent years, the increased power of graphics rendering hard-
ware has led to the use of the graphics pipeline for general purpose
stream computations. One of the early examples of this was the use
of hierarchical z-buffering for visibility calculations [Greene et al.
1993], and subsequently in programmable vertex shaders [Peercy
et al. 2000; Lindholm et al. 2001; Proudfoot et al. 2001]. Other
uses of the graphics pipeline as a general purpose stream computing
engine have been demonstrated in computational geometry[Hoff III
et al. 1999; Mustafa et al. 2001; Krishnan et al. 2002], robotics[Hoff
et al. 2000], numerical analysis[Larsen and McAllister 2001], and
ray tracing[Purcell et al. 2002].

In a recent development, work by Everittet al. [2002] has
shown that the shadow mapping hardware (supported in the nVidia
GeForce3 and newer architectures) can be used to perform order-
independent transparency. They demonstrate this by using the
shadow mapping phase in the pipeline to filter out fragments that
have a z-value less than (or greater than) values stored in a depth
texture. This operation, combined with the standard z-test, pro-
vides a two-sided depth test on fragments. This feature is exploited
in a technique they calldepth peelingthat can “peel” off layers of

∗Supported by NSF grant CCR-0113217

a scene one by one. Interestingly enough, the idea of using two-
sided depth tests to implement depth peeling was proposed earlier
by Mammen [1989], who used the idea ofvirtual pixel maps. The
key observation by Everittet al. was that existing shadow mapping
hardware can be used to simulate this test.

Our Contributions In this paper, we study the computational
power of the two-sided depth test in the context of rendering objects
represented as CSG trees.

• We show that the two-sided depth test can be used to render
CSG trees with a factor ofn (number of primitives in the CSG
expression) fewer passes than the best known OpenGL-based
algorithms (see Section 2 for more details).

• Our algorithm can render arbitrary CSG objects, and does not
require the explicit precalculation of levels that prior results
did.

• We use no external storage or readbacks; all computations are
performed directly on the GPU.

• Our algorithm works by performing atopological sweepover
the arrangement of the objects; this technique may be of inde-
pendent interest.

Paper Outline The rest of the paper is organized as follows. We
discuss prior work in Section 2. We define the problem of render-
ing a CSG tree in Section 3, and present our solution for a single
product in Section 4. The solution is extended to arbitrary CSG
expressions in Section 5. We discuss implementation details and
present our algorithm performance in Section 6 and we conclude in
Section 7.

2 Prior Work

There has been extensive work on the problem of rendering solid
objects defined in terms of CSG trees. A general survey of CSG
methods is beyond the scope of this paper. We will focus solely on
methods that make use of the graphics hardware.

Goldfeatheret al. [1986] presented an algorithm for render-
ing a CSG tree ofconvexobjects (and subsequently [1989] for
non-convex objects) using an extension of the Pixel-Planes graph-
ics hardware [Fuchs and Poulton 1981]. This algorithm was re-
fined and implemented on modern graphics hardware by Wie-
gand [1996]. The running time of the algorithm, expressed as the
number of rendering passes required, is essentially quadratic in the
number of primitives (the running time also includes a quadratic
term that depends on theconvexityof the objects).

The Trickle algorithm, developed by Epsteinet al. [1989] and
later refined by Rossignac and Wu [1992], takes a different ap-
proach using “depth-interval buffers” (which essentially provide
the functionality of a two-sided test) to do the rendering. Their
approach requires three depth buffers, the two-sided depth test
and two color buffers, and thus is not readily adaptable to current
OpenGL-based architectures. Although they do not analyze their
algorithm in terms of rendering passes, we believe that their ap-
proach (for each product) requires number of passes proportional
to the depth complexity from the given viewpoint.

Stewartet al. [1998] presented an improvement to the Gold-
featheret al.algorithm that takes into account the fact that objects
may be disjoint and thus can be rendered in parallel. If the depth
complexity of a collection ofn primitives is k, then the modifi-
cation proposed by Stewartet al.requiresO(kn) rendering passes.
In the case when the primitives are sufficiently disjoint in screen
space (and thusk < n), this algorithm is superior. Erhart and
Tobler [2000] provide a modification to this algorithm that yields
more accurate results (in terms of depth tests). However, in the
worst case, their algorithm again requiresO(n2) passes.

More recently, Stewartet al.[2000; 2002] present improvements
that compute a CSG product in a constant number of passes when
all the primitives are convex. They use a universal sequence to
model the depth ordering of the primitives without having to com-
pute an explicit front-to-back ordering. The caveat with this ap-
proach is that a quadratic number of objects are rendered in each
pass (because primitives are duplicated).

All of the algorithms above compute a union of objects by merg-
ing the partial depth buffers obtained for each product. This merg-
ing step is performed via the use of readbacks, and is thus slow.

3 CSG Trees and Normalization

A three dimensional object can be described as the result of per-
forming set operations (∪,∩, \) on a ground set of shapes (called
primitives). A CSG treecan be used to define an object by defining
the sequence of operations that are performed.

The CSG tree is usually assumed to be in a canonical form to
aid in rendering. A CSG tree is said to be insum-of-productsform
if the expression it defines can be written as a union of intersec-
tions/subtractions (a sum of products). Such a tree is said to be
normalized. Goldfeatheret al. [1986] provide an algorithm for nor-
malizing a CSG tree; we use their technique, and the rest of the pa-
per assumes without loss of generality that the CSG tree has been
normalized.

Given a normalized CSG tree and a procedure to compute the
product of a set of primitives, unions can be computed easily by
merging the results of individual products in the depth buffer. The
above mentioned algorithms make use of this observation, and thus
focus on the problem of rendering a CSG tree denoted by a single
product. For clarity of presentation, we will explain the working of
our algorithm on a single product, and subsequently we will show
how the same ideas can be extended to render a sum of products.

3.1 Notation and Preliminaries

We denote a normalized CSG expression asP1 ∪ · · · ∪ Pm, where
eachPi is a product of primitives. A single product is a general ex-
pression involving intersections and complementations. Consider a
single productP = (((o1 ∩ o2) \ o3) ∩ o4). P can be rewritten
aso1 ∩ o2 ∩ o3 ∩ o4. Thus each product is the intersection of a
set of (possibly complemented) objects. For a productP , let U(P)
denote the set of uncomplemented objects andC(P) denote the set
of complemented objects. In this example,U(P) = {o1,o2,o4}
andC(P) = {o3}.

Every objecto is a collection of alternating front and back faces
(or layers [Goldfeather et al. 1989]) as seen from the viewpoint.
Thedepthd(P) of a productP is the maximum number of layers
in P (with respect to the viewpoint).

4 Rendering A Product

Consider a productP . Our algorithm works by traversing the layers
of the primitives inP in a front-to-back order. It is easy to see
that only the front faces of uncomplemented primitives and back

faces of complemented primitives contribute to the visible portions
of P . Hence, only these faces (termedappropriate primitives) are
considered by our algorithm in the front-to-back traversal. Once
a pixel in P is found, no further updates are made for this pixel.
Thus the algorithm maintains a FRONT of all pixels (with associated
depth values in the z-buffer) for which membership inP has not yet
been determined. In each step,

1. We test which pixels in the FRONT satisfy membership inP .

2. If the pixel fails the membership test then its depth is updated
to the depth of the next face in the front-to-back ordering –
this is calledadvancing the FRONT .

3. If the pixel passes the membership test, a mask is applied to
ensure its depth value is not updated in subsequent steps.

After the algorithm has traversed all layers the z-buffer holds the
depth field ofP . We then render all the objects with depth test set
to EQUALto obtainP . We illustrate the working of the algorithm
in Figure 1.

Testing Product membership Assume that a pointp is in
the product and its depth is stored in the z-buffer. Goldfeatheret
al. [1986] made the observation that (a) if a primitiveo occurs un-
complemented in a product, the number of layers of that primitive
(both front and back) that have depth greater thanp must beodd,
and similarly (b) the number of layers (with depth greater thanp)
must beevenif the object occurs complemented.

Letf(o, p) denote the number of front faces ofo of depth greater
than the depth ofp. Similarly letb(o, p) denote the number of back
faces ofo satisfying the same depth condition. Since all objects
are simple and thus have no self-intersections, each front face ofo
is followed immediately by a back face ofo, and thusf(o, p) ≤
b(o, p) ≤ f(o, p) + 1. For an uncomplemented object,b(o, p) −
f(o, p) = 1 and for a complemented object,b(o, p)−f(o, p) = 0.
For a general productP , we can summarize the|P | equations in a
single condition as follows:X
o∈C(P)

b(o, p)−
X

o∈C(P)

f(o, p)+
X

o∈U(P)

b(o, p)−
X

o∈U(P)

f(o, p) = |U(P)|

It is not difficult to show that only points in the final product will
satisfy the above equation. Moreover, this equation is crucial be-
cause it allows us to check membership for a pointp in two render-
ing passes (instead ofn). We use the stencil buffer to implement
this test. We group together the back (front) faces ofU(P) and
C(P) in a single pass to increment (decrement) the stencil buffer.
Pixels whose stencil value is|U(P)| have passed the membership
test, and are masked with a suitable value to prevent future depth
updates.

Advancing the Front The FRONT is maintained as depth val-
ues in the z-buffer. The initial front is obtained by rendering the
appropriate primitiveswith the depth-test set toLESS. To advance
the front, we copy the depth buffer to a shadow buffer, and invoke
the depth peelingsubroutine to pass only those fragments whose
depth is greater than the value in the shadow buffer using the alpha
test. We refer the reader to [Everitt 2002] for details of the depth
peeling algorithm. This test, coupled with the normal z-test (depth
test set toLESS), provides fragments whose depth value is imme-
diately behind the current front. In our case, we selectively advance
the FRONT using the stencil mask. Observe the crucial role of the
second depth test provided by the depth peeling routine. Without
this, we would be unable to implement the two-sided depth test,
a ≤ Zvalue < b, and would not be able to advance the front in a
single rendering pass.
The full algorithm is as follows. The sentinelN is used to mask
points which have been determined to be in the product: the front
is not updated for these pixels.

A

B

C

(a)

A

B

C

(b)

A

B

C

(c)

A

B

C

P

(d)

Figure 1: An illustration of the algorithm for a single product. (a) A productP = A ∩ B − C. The original primitives are dotted and the
appropriate primitives are drawn solid.P is shaded. (b) The initial contents of the front (dashed). (c) The front after a single step of the
algorithm. (d) Final step: pixels marked solid are inP

Algorithm 1 Algorithm for a single productP
Initialize z-buffer to first front.
Initialize stencil buffer with 0
while stencil buffer contains 0do

Test points on front for membership in P
Set stencil buffer toN (> n) for pixelspassingtest
Set stencil buffer to0 for pixelsnot passingtest
Advance front

end while

5 Computing Unions of Products

We now describe the computation of a sum of products. Let the
products beP1, P2, . . . Pm. The computation proceeds incremen-
tally. Assume that we have correctly computedP1∪ . . .∪Pi−1. At
the start of theith step, the z-buffer contains the depth values for
P1 ∪ . . . ∪ Pi−1 (denoted byDi−1) and the color buffer contains
the appropriate values (denoted byCi−1).

We first copy the content of the z-buffer into a second shadow
buffer buf. Then, we compute the depth field forPi using the algo-
rithm described in the previous section. This sets the color buffer
appropriately as well. We now need to merge the two depth fields,
retaining the minimum value at each pixel. Let the depth and color
field for Pi be denoted bydi and ci respectively. Thus the new
depth fieldDi = min(Di−1, di). The new color field is

Ci =

(
Ci−1 if Di−1 < di,

ci otherwise.

This is accomplished in two phases. In the first phase, we iden-
tify those pixels wheredi > Di−1 and tag them appropriately using
the stencil buffer to be updated in the next phase. This is accom-
plished by setting the shadow test to pass fragments whose depth is
greaterthanDi−1 and setting the depth test to EQUAL. The sten-
cil function is set to clear the stencil bits if the depth test passes (i.e
the fragment depth is equal to that indi). Intuitively, this encodes
the two-sided testDi−1 < d = di, whered is the fragment depth.
Now, rendering the faces ofPi has the effect of clearing the sten-
cil buffer in all pixels for which the minimum depth is achieved by
Di−1 i.e all pixels for whichDi = Di−1. Note that this is precisely
the set of pixels for which the current depth buffer contents are in-
correct. The contents of the color buffer can be updated to reflect
P1 ∪ . . .∪Pi in this phase by going through one extra rendering of
the faces ofPi at places where the stencil buffer is not cleared.

In the second phase, update the depth buffer to that inDi−1

wherever the stencil bits are cleared in the previous phase. We
set the shadow test to pass fragments whose depth isat most(≤)
Di−1. The depth test is set to GREATER. By rendering all objects
in P1 ∪ . . .∪Pi−1, this two-sided depth test passes only fragments
whose depth value isDi−1. This completes the z-buffer update,
and it now containsDi. The union algorithm can be summarized
as follows:

Algorithm 2 Algorithm for a union of productsP1, . . . , Pm

Initialize shadow bufferbuf to 1.
for i = 1 to m do

Compute productPi

Set shadow test togreater
Set depth test toequal
Set stencil buffer to0 on depth pass
RenderPi and update depth and color buffer

Set shadow test tolessor equal
Set depth test togreater
Set stencil test toequal to0
RenderP1, . . . , Pi−1 and update depth buffer
Copy depth buffer to shadow bufferbuf

end for

Running Time Analysis The total number of rendering passes
is the number of passes taken to compute each product, plusm
passes to compute the union. Therefore the total number of passes
is m + 2

P
i d(Pi) = O(

P
i d(Pi)). This running time is asymp-

totically superior to all prior techniques by a factor ofn, wheren
is (on average) the number of primitives appearing in each product.
Moreover, in our algorithm, we only render while there are pixels
whose correct depth is yet to be determined. Therefore, in practice,
our algorithm takes much fewer passes than predicted by the above
worst-case expression. In contrast, the running times of the pre-
vious algorithms is “worst-case”: the number of rendering passes
required in any run is always the (same) worst-case.

6 Implementation Details

All our code was implemented using C++/OpenGL on a
1.8Ghz/1GB PC running Red Hat 7.3. The graphics card is an

nVidia GeForce4 Ti4600. Our system performs no readbacks and
uses no intermediate software buffers, while being able to handle
arbitrary sums of products. For the purpose of this study, we con-
sidered four objects described by CSG trees: they are depicted in
the right-most lines of Figure 2. In order to evaluate the perfor-
mance of our scheme, we used two variants of our algorithm;BA-
SIC is the algorithm described above, andCONV is a modification
that processes convex objects more efficiently (however the over-
all algorithm structure remains the same). We compare both these
methods to the algorithm used by Stewartet al. [2002], which we
refer to asSCS. All running times are reported in frames per sec-
ond. Table 1 summarizes the nature of the inputs and the running
times obtained.

Object #Products/ CSG Rendering
#Primitives BASIC CONV SCS

GRID 1/26 26 57 32
HELIX 1/4 38 38 48∗∗

CUBE 2/4 7 21 1.23∗

HOLLOW 3/6 12 40 0.6∗∗

Table 1: Performance of our algorithms on some CSG models,
in comparison to earlier work. Running times are reported in
frames/second. An asterisk denotes artifacts in the solution and a
double asterisk denotes an incorrect answer.

The table indicates two things: firstly that our algorithms
(BASIC,CONV) obtain (overall) significantly better frame rates
thanSCS. Moreover, there are far fewer artifacts in our approach:
this is possible due to the fewer number of EQUAL tests we per-
form in the z-buffer.

Figure 2 demonstrates the working of our system on the above
models. For each object, the lefthand-most image displays all the
primitive objects involved in the CSG operations. As we go from
left to right, each image displays the portion of the final answer
rendered at that layer. In the case of HOLLOW, the original CSG
objects would not be visible in a direct superimposition, and so we
render the set of primitive as two distinct figures (the two left-most
ones) for ease of viewing. We also emphasize that we placenocon-
vexity restrictions on our primitives; HELIX contains nonconvex
objects.

7 Conclusions

In this paper, we demonstrate that the two-sided depth test, as real-
ized by using the shadow buffer, is a powerful operator in the graph-
ics pipeline. We studied the specific problem of rendering objects
represented as CSG trees and provided an algorithm that asymptot-
ically improves the number of rendering passes by a factor ofn.
It is likely that there are many other problems for which specific
aspects of the graphics hardware provides a tremendous advantage.
In general, with the increasing power of graphics hardware, theoret-
ical studies that attempt to ascertain the potential and the limits of
this pipeline as a general purpose stream engine will be invaluable.

Acknowledgements We thank Nigel Stewart for making his
implementation of the algorithm in [Stewart et al. 1998] available
on his web page. We also thank nVidia for providing a sample
implementation of depth peeling and helping us with the Linux im-
plementation of it.

References
EPSTEIN, D., JANSEN, F., AND ROSSIGNAC, J. 1989. Z-buffer rendering from CSG:

The Trickle algorithm. Research Report RC 15182, IBM.

ERHART, G., AND TOBLER, R. 2000. General purpose z-buffer CSG rendering
with consumer level hardware. Tech. Rep. VRVis 003, VRVis Zentrum für Virtual
Reality und Visualisierung Forschungs-GmbH.

EVERITT, C., REGE, A., AND CEBENOYAN, C. 2002. Hardware shadow mapping. In
ACM SIGGRAPH 2002 Tutorial Course #31: Interactive Geometric Computations
using graphics hardware, ACM, F38–F51.

EVERITT, C. 2002. Interactive order-independent transparency. Tech. rep., Nvidia
Corporation.http://developer.nvidia.com .

FUCHS, H., AND POULTON, J. 1981. Pixel-planes: a VLSI-oriented design for 3-D
raster graphics.Proc. of the 7th Canadian Man-Computer Communications Conf.,
343–347.

GOLDFEATHER, J., HULTQUIST, J. P. M.,AND FUCHS, H. 1986. Fast constructive-
solid geometry display in the pixel-powers graphics system. InProceedings of the
13th annual conference on Computer graphics and interactive techniques, ACM
Press, ACM, 107–116.

GOLDFEATHER, J., MOLNAR, S., TURK, G., AND FUCHS, H. 1989. Near realtime
CSG rendering using tree normalization and geometric pruning.IEEE Computer
Graphics and Applications 9, 3 (May), 20–28.

GREENE, N., KASS, M., AND M ILLER , G. 1993. Hierarchical Z-buffer visibility.
Computer Graphics 27, Annual Conference Series, 231–238.

HOFF, K., CULVER, T., KEYSER, J., LIN , M., AND MANOCHA, D. 2000. Interactive
motion planning using hardware-accelerated computation of generalized Voronoi
diagrams. InProc. IEEE International Conf. on Robotics and Automation.

HOFF III, K. E., K EYSER, J., LIN , M., MANOCHA, D., AND CULVER, T. 1999. Fast
computation of generalized Voronoi diagrams using graphics hardware.Computer
Graphics 33, Annual Conference Series, 277–286.

KRISHNAN, S., MUSTAFA, N., AND VENKATASUBRAMANIAN , S. 2002. Hardware-
assisted computation of depth contours. InProc. 13th ACM-SIAM Symp. on Dis-
crete Algorithms, 558–567.

LARSEN, E. S.,AND MCALLISTER, D. 2001. Fast matrix multiples using graphics
hardware. InSupercomputing.

L INDHOLM , E., KILGARD , M., AND MORETON, H. 2001. A user-programmable
vertex engine. InProc. ACM SIGGRAPH 2001.

MAMMEN , A. 1989. Transparency and antialiasing algorithms implemented with
the virtual pixel maps technique.IEEE Computer Graphics and Applications 9, 4
(July), 43–55.

MUSTAFA, N., KOUTSOFIOS, E., KRISHNAN, S., AND VENKATASUBRAMANIAN ,
S. 2001. Hardware assisted view dependent map simplification. In17th ACM
Symposium on Computational Geometry, 50–59.

PEERCY, M. S., OLANO , M., A IREY, J.,AND UNGAR, P. J.2000. Interactive multi-
pass programmable shading. InProc. ACM SIGGRAPH 2000, ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, K. Akeley, Ed., 425–432.

PROUDFOOT, K., MARK , W. R., TZVETKOV, S.,AND HANRAHAN , P. 2001. A real-
time procedural shading system for programmable graphics hardware. InProc.
ACM SIGGRAPH 2001.

PURCELL, T. J., BUCK, I., MARK , W. R., AND HANRAHAN , P. 2002. Ray tracing
on programmable graphics hardware. InProceedings of the 29th annual conference
on Computer graphics and interactive techniques, ACM Press, 703–712.

ROSSIGNAC, J.,AND WU, J. 1992. Correct shading of regularized CSG solids using
a depth-interval buffer. InAdvanced Computer Graphics Hardware V: Rendering,
Ray Tracing and Visualization Systems, R. L. Grimsdale and A. Kaufman, Eds.,
Eurographics Seminars. Springer-Verlag, 117–138.

STEWART, N., LEACH, G., AND JOHN, S. 1998. An improved z-buffer CSG render-
ing algorithm. InProc. Eurographics/Siggraph Workshop on Graphics Hardware,
25–30.

STEWART, N., LEACH, G., AND JOHN, S. 2000. A CSG rendering algorithm for
convex objects. In8th International Conference in Central Europe on Computer
Graphics, Visualization and Interactive Digital Media - WSCG 2000, vol. II, 369–
372.

STEWART, N., LEACH, G., AND JOHN, S. 2002. Linear-time CSG rendering of
intersected convex objects. In10th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision - WSCG 2002, vol. II,
437–444.

WIEGAND, T. F. 1996. Interactive rendering of CSG models.Computer Graphics
Forum 15, 4, 249–261.

Application of the Two-Sided Depth Test to CSG Rendering - Guhaet al.

(a) GRID: The desired output is the flat sheet with the 25 spheres subtracted from it.
Only two layers are necessary to compute the product.

(b) HELIX: Note that in this example two of the objects are non-convex (the two helices). The desired output is the subtraction of the
two helices and the inner pipe from the outer pipe.

(c) CUBE: In this example, the boolean combination desired is the union of one of the cylinders with the product consisting the yellow sphere
and the green cube minus the front-facing cylinder

(d) HOLLOW PIPE: In this example, for ease of viewing we show the original objects in the two left-most figures. The output should be a hollow
pipe formed by the subtraction of the inner tube (colored in pink) from the outer tube (in red)

Figure 2: Examples of CSG renderings produced by our algorithm. In each example, the left-most figure depicts all the primitives prior to
any boolean operations. Each subsequent figure depicts the rendered output after successive steps of the algorithm, and the right-most figure
shows the final answer.

Streaming Geometric Optimiz

Submitted to the European Symposium on Algorithms 2003

ation using Graphics Hardware
�

Pankaj K. Agarwal
�

Shankar Krishnan
�

Nabil H. Mustafa
�

Suresh Venkatasubramanian
�

Abstract

The need for analyzing and processing massive data in real time has led to a flurry of activity related
to performing computations on a data stream. In this paper we propose algorithms for solving a variety of
geometric optimization problems on a stream of points in ��� or �	� . In particular, we study the problems
of computing various extent measures (e.g. diameter, width, smallest enclosing disk), collision detection
(penetration depth and distance between polytopes), and shape fitting (minimum width annulus, circle/line
fitting).

The main contribution of this paper is a unified approach to solving all of the above problems efficiently
using modern graphics hardware All the above problems can be approximated using a constant number
of passes over the data stream. All of our algorithms are easily implemented, and our empirical study
demonstrates that the running times of our programs are comparable to the best implementations for the
above problems. Another significant property of our results is that although the best known implementations
for the above problems are quite different from each other, our algorithms all draw upon the same set of tools,
making their implementation significantly easier.

Our graphics-hardware based technique can also be used to solve a number of other geometric optimiza-
tion problems (problems in layered manufacturing, Hausdorff distance between planar point sets), which do
not necessarily arise in the streaming model.

P.A. and N.M. are supported by by NSF grants ITR–333–1050, EIA–9870724, EIA–997287, and CCR–02–04118, and by a grant

from the U.S.-Israeli Binational Science Foundation.�
Department of Computer Science, Duke University, Durham, NC 27708-0129, U.S.A. Email: pankaj@cs.duke.edu�
AT&T Research, 180 Park Ave, Florham Park, NJ 07932. Email: krishnas@research.att.com

Department of Computer Science, Duke University, Durham, NC 27708-0129, U.S.A Email: nabil@cs.duke.edu�
AT&T Research, 180 Park Ave, Florham Park, NJ 07932. Email: suresh@research.att.com

1 Introduction

Motivated by various applications (e.g., data warehousing, data mining, query optimization), the need for ana-
lyzing and processing massive data in real time has led to a flurry of activity related to performing computations
on a data stream, such as the computation of frequently occurring items in a stream. Several techniques have
been developed for computing statistical aggregates and histograms over data streams, which scan the input a
few times (e.g. a small constant number of times) and compute the desired information using very little space.
In general, these methods achieve efficiency by returning approximate answers to queries.

In this paper we propose algorithms for solving a variety of geometric optimization problems over a stream
of two or three dimensional geometric data (e.g. points, lines, polygons). In particular, we study three classes of
problems: (a) Extent Measures: computing various extent measures (e.g. diameter, width, smallest enclosing
circle) of a stream of points in ��� or ��� , (b) Collision Detection: computing the penetration depth of a pair of
convex polyhedra in three dimensions and ShapeFitting: approximating a set of points by simple shapes like
circles or annuli.

Many of the problems we study can be formulated as computing and/or overlaying lower and upper envelopes
of certain functions. We will be considering approximate solutions, and thus it suffices to compute the value
of these envelopes at a set of uniformly sampled points, i.e., on a grid. This allows us to exploit recent devel-
opments in graphics hardware accelerators. Almost all modern graphics cards (examples include the nVidia
GeForce and ATI Radeon series) provide hardware support for computing the envelope of a stream of bivariate
functions at a uniform sample of points in ������������� � and for performing various arithmetic and logical opera-
tions on each of these computed values, which makes them ideal for our applications. We therefore study the
above streaming problems in the context of graphics hardware.

Related Work. Data streams were first referred to in the early 1980s and were formalized in the late 1990s
through a series of papers [5, 21, 11]. In the standard streaming model, the input !#"%$#�'&'&'&(�)"+*-, is written in
sequence on an input tape. The algorithm has a read head, and works in passes. In each pass, the read head
makes one sequential scan over the input tape, and then returns to the beginning. It is not permitted to move
backwards in the course of a scan. The algorithm is allowed a work space of size .0/2143 on which it can perform
any arbitrary computation, and also has an output tape on which it writes the result of the computation. The
efficiency of an algorithm is measured in terms of the size of the working space, the number of passes, and the
time it spends on performing the computation. Typically, algorithms are deemed to be efficient if they work in
one or a few passes, and use 56/2147)3��98;:<� workspace memory. Efficient streaming algorithms for computing
the mean and median [31, 30, 15], histograms of time-series data [14], the = -center and = -median [8, 18], and a
number of other problems have been proposed. Most of these algorithms provide a tradeoff between efficiency
and accuracy. Lower bounds on various problems in the streaming model have also been proposed; see [33, 6]
and the references therein. Recently, Korn et al. [25] developed a streaming algorithm for the reverse nearest-
neighbor problem, in which given a fixed set of red points and a stream of blue points, the algorithm is required
to compute, for each red point > , the number of blue points for which > is their nearest neighbor.

Traditionally, the graphics hardware has been used for rendering three-dimensional scenes. But the growing
sophistication of graphics cards and their relatively low cost has led researchers to use their power for a variety
of other problems, including constructive solid geometry [17], robotics [22], GIS [35], and scientific comput-
ing [27, 34]. In the context of geometric computing, it has been successfully used for computing Voronoi
diagrams [23], map simplification [32], depth contours [26], and other problems. These algorithms use vari-
ous frame buffers (e.g. color, depth, stencil, and accumulation buffers), texture memory, and pixel processors
in clever ways, exploiting the streaming SIMD architecture of graphics cards. Fournier and Fussel [13] were
the first to study general stream computations on graphics cards; a recent paper [16] shows lower bounds on
the number of passes required by hardware-based =+?A@ -element selection operations, as well as showing the

necessity of certain hardware functions in reducing the number of passes in selection from B�/2143 to 56/ CEDGF�143 .
There has been extensive work in computational geometry and computing extent measures and shape fit-

ting [3]. The most relevant work in a recent result by Agarwal et al. [2] in which they present an algorithm for
computing a small size “core set” H of a given set I of points in �KJ whose extent approximates the extent of
I . As a corollary, their algorithm can compute the diameter of I in time 56/21L�M�(NPO ��QRJ'S $UTWV � 3 and the smallest
spherical shell containing I in time 56/21X�Y�(NPO��)J4CEDGFZ�(NPO�3 . Their algorithm can be adapted to the streaming
model, in the sense that H can be computed by performing one pass over I , after which one can compute an
O -approximation of the desired extent measure in �(NPO\[Q $UT time using �(NPOP[Q $UT memory. Recently, Feigenbaum et
al. [12] studied the computation of the diameter of a set of points in the streaming and sliding-window models.

Our Work. In this paper, we demonstrate a large class of geometric optimization problems that can be ap-
proximated efficiently using graphics hardware. A unifying theme of the problems that we solve is that they
can be expressed in terms of minimizations over envelopes of bivariate functions.

Extent Problems: Table 1 summarizes our results for computing the diameter and width (in two and three
dimensions) and the smallest enclosing ball (in two dimensions) of a set of points. All the algorithms are
approximate, and compute the desired answer in a constant number of passes. We note here that although
the number of passes is more than one, each pass does not use any information from prior passes and the
computation effectively runs in a single pass. For reasons that will be made clear in Section 4, the graphics
pipeline requires us to perform a series of passes that explore different regions of the search space.

In addition, the smallest bounding box of a planar point set can also be approximated in a constant number
of passes; computing the smallest bounding box in three dimensions can be done in �(N+] ^X�_� passes, where ^
is an approximation parameter.

Problem Approximation Number of passes
Diameter (2D/3D) ^�` OPT 6

1-center (2D) ^%` OPT 2
Width (2D/3D) ^X` OPT �ba 6

Bounding Box (2D) ^X` OPT �ba 4
Bounding Box (3D) ^X` OPT �ba �(N\] ^c�_�

Hausdorff Distance (2D) ^X` OPT �ba 2

Table 1: Results for Extent Problems. In all cases, the algorithm works for any choice of ^edf���)abdhg
Collision detection: We present a hardware-based algorithm for approximating the penetration depth be-

tween two convex polytopes. In general, our method can compute any inner product-based distance between
any two convex polyhedra (intersecting or not). Our approach can also be used to compute the Minkowski sum
of two convex polygons in two dimensions.

Shapefitting and other problems: We also present heuristics for a variety of shape fitting problems in the
plane: computing the minimum width annulus, best fit circle, and best-fit line for a set of points, and computing
the Hausdorff distance between two sets of points. Our methods are also applicable to many problems in
computer-aided design; most notably, we can address with a single approach the multi-criteria optimization
problems in layered manufacturing [28].

Experimental results: An important practical consequence of our unified approach to solving these prob-
lems is that all our implementations make use of the same underlying procedures, and thus a single imple-
mentation provides much of the code for all of the problems we consider. We present an empirical study that
compares our algorithms to existing implementations for representative problems from the above list; in all
cases we are comparable, and in many cases we are far superior to existing software-based implementations.

Paper Outline In Section 2 we introduce the graphics pipeline, the basic primitive operations that it can
perform, and some of the tools that we will use in our algorithms. Section 3 discusses Gauss maps, duality, and
how we use the two-dimensional grid to represent a Gauss map. Sections 4,5 and 6 present our results on extent
measures, collision detection and shape fitting. We present a detailed experimental study in Section 7. Finally,
Appendix A describes the pseudocode for our general bivariate envelope computation.

2 Preliminaries

The Graphics Pipeline. The graphics pipeline is primarily used as a rendering (or “drawing”) engine
to facilitate interactive display of complex three-dimensional geometry. The input to the pipeline is a set of
geometric primitives and images to be “drawn” on a two-dimensional grid of pixels known as the frame buffer.
The frame buffer is a collection of several individual dedicated buffers (color, stencil, depth buffers etc.). The
user interacts with the pipeline via a standardized software interface such as OpenGL or DirectX that is designed
to mimic the graphics subsystem.

Display
 List

Evaluator

Texture
Memory

Rasterization
Commands

Per−Vertex Per−
Fragment
Operations

Frame
Buffer

Operations
Pixel

Operations &
Primitive
Assembly

Figure 1: The Graphics Pipeline [36]

We describe some of the key elements of the pipeline here (see Figure 1). For more details, the reader may
refer to The OpenGL Programming Guide [36]. Inputs to the pipeline are usually in one of two forms —
geometry and images. Per-vertex operations take geometric primitives (described by points, line segments, and
polygons) as input. The results of this stage are transformed and clipped vertices (with respect to a viewing
volume) with related color, depth, and sometimes texture-coordinate values. In the next phase, rasterization,
geometric data is rendered to produce an array of fragments corresponding to a two-dimensional description of
the geometry.The pipeline also provides special pixel copy operations to copy data to/from the framebuffer and
texture memory.

Next, operations on individual fragments are performed before they finally alter the framebuffer. This is the
stage of the pipeline that we exploit for our computations: the operations performed include conditional updates
into the framebuffer based on incoming and previously stored depth or stencil values, blending of incoming
fragment colors with stored colors, as well as masking and other logical operations on fragment values. Table 2
lists a subset of the per-fragment operations. Consider a pixel i%jlk at position /2mn�poq3 in the framebuffer with color,
stencil and depth values denoted by H�r jsk , Itr jlk and uLr jlk respectively. Let us assume that an input fragment
arrives at position /2mn�pov3 with depth value w and color xzy{r , and a user-specified constant | . SB op and DB op
are any stencil buffer or depth buffer operations.

Finally, contents (or some computed statistics like histograms or min/max) of the framebuffer can be trans-
ferred to the system memory through a single OpenGL call. This is usually termed the readback stage. The cost

Color buffer operations: Stencilbuffer operations: Depth buffer operations:
H}r~jlk���!(���A�	�n���P��,q/�H}r~jlkG�nxzy{r�3 Itr~jlk���| , Itr~jlk���g u�r~jlk���w

H}r~jlkZ��H�r~jsk���xzy{r , �f��!P���#�}������������, Itr~jlk~��Itr~jlk%��!\���#�����ngv, u�r~jlkZ��!(�6�A�	�n���P�	,q/ u�r~jlkG�nwv3
H�r jsk ��xzy{r Itr jlk ����Itr jlk u�r jlk ��uLr jlk

Table 2: Framebuffer Operations

of a readback is directly proportional to the bandwidth requirement for this data transfer and can be significantly
larger (by orders of magnitude) than the cost of sending geometric objects to the hardware. Thus an efficient
algorithm attempts to minimize the number of readbacks (which is closely related to the number of passes).

Computing Envelopes. Let ��� !¢¡£$#�'&'&'&#�9¡P*+, be a set of ¤ -variate functions. The lower envelope of �
is defined as ¥ S¦ /2"	3§�¨���A� j ¡ j /2"©3 , and the upper envelope of � is defined as ¥�ª¦ /2"	3§�¨���P� j ¡ j /2"©3 . The
projection of ¥ S¦ (resp. ¥ ª¦) is called the minimization (resp. maximization) diagram of I . Set ¡ S¦ /2"	3 (resp.
¡©ª¦ /2"	3) to be the index of a function of � that appears on its lower (resp. upper) envelope. Finally, define« ¦ /2"	3¬�­¥ ª¦ /2"	3t�®¥ S¦ /2"	3 . We will omit the subscript � when it is obvious from the context.

If � is a family of piecewise-linear bivariate functions, we can compute ¥ S �n¥ ª �9¡ S �9¡ ª for each pixel
"°¯±���z�����;��� � , using the graphics hardware. We will assume that function ¡ j /2"©3 can be described accurately
as a collection of triangles. Pseudocode for the computations below is given in Appendix A.
Computing ¥ S (¥ ª): Each vertex ²Gjlk is assigned a color equal to its z-coordinate (depth) (or function value).
The graphics hardware generates color values across the face of a triangle by performing bilinear interpolation
of the colors at the vertices. Therefore, the color value at each pixel correctly encodes the function value.
We disable the stencil test, set the depth test to �6�A� (resp. ���P�). After rendering all the functions, the color
values in the framebuffer contains their lower (resp. upper) envelope. In the light of recent developments in the
programmability of the graphics hardware, nonlinear functions can be encoded as part of a shading language
(or fragment program) to compute their envelopes as well.
Computing ¡ S (¡ ª): Each vertex ²Gjlk of function ¡�j is assigned the color ³'j (in most cases, ³´j is determined by
the problem). By setting the graphics state similar to the previous case, we can compute ¡µS and ¡ ª .

In many of the problems we address, we will compute envelopes of distance functions. That is, given a
distance function ¶v/·`E�'`�3 and a set I±�¸!)¹ $ �'&'&'&#� ¹ * , of points in � � , we define �¸�º!¢¡ j /2"©3�»¼¶v/2"½� ¹ j 3�¾©�L¿
m{¿f1t, , and we wish to compute the lower and upper envelopes of � . For the Euclidean metric, the graph of
each ¡�j is a cone whose axis is parallel to the z-axis and whose sides are at an angle of À½N¢Á to the "-Â -plane.
For the square Euclidean metric, it is a paraboloid symmetric around a vertical line. Such surfaces can be
approximated to any desired degree of approximation by triangulations ([23]).

Approximations. For purposes of computation, the two-dimensional plane is divided into pixels. This
discretization of the plane makes our algorithms approximate by necessity. Thus, for a given problem, the cost
of a solution is a function both of the algorithm and the screen resolution. We define a /2a%�ÄÃ£3 -approximation
algorithm to be one that provides a solution of cost at most a times the optimal solution, with a grid cell size of
Ã��±Ã�/ « �)aÅ3 , where

«
is the instance of the problem. This definition implies that different instances of the same

problem may require different grid resolutions.

3 Gauss Maps And Duality

Let IÆ��!)¹½$#�'&'&'&#� ¹+*-, be a set of 1 points in � J . A direction in � J can be represented by a unit vector Çc¯ÉÈ J´S $.
For ÇX¯ÉÈ½J´S $, let ÊÇ be its central projection, i.e., the intersection point of the ray Ë.PÇ with the hyperplane " J �Y�
(resp. " J �Y���) if Ç lies in the positive (resp. negative) hemisphere.

ÌÍ
Î�ÏUÐPÑ

Ò Ï+ÓZÔ

Õ ÏUÐPÑ

Í

(a)

ÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖÄÖ
×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä××Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×Ä×

ØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØÄØ
ÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙÄÙ
ÚÄÚÄÚÄÚÄÚÄÚÄÚ

ÛÄÛÄÛÄÛÄÛÄÛÄÛ

ÜÄÜÄÜÄÜÄÜÄÜÄÜÄÜ

ÝÄÝÄÝÄÝÄÝÄÝÄÝÄÝ

ÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞÄÞ

ßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄßÄß

àÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄààÄàÄàÄàÄàÄàÄàÄàÄà
áÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄááÄáÄáÄáÄáÄáÄáÄáÄá

y=1

y=−1

x=−1 x=1

(b)

Figure 2: (a) An illustration of central projection (b) Two duals used to capture the Gauss Map

For a direction Ç , we define the extremal point in direction Ç to be â½/2Ç4��I�3��­��ã9F����P�£äGå�æ�ç(ÊÇ4� ¹	è , where çÄ`E�'`�è
is the inner product. We refer to éZ/2Ç½�9ê�3K�ë���P�qä�å�æzç(ÊÇ½� ¹	è��b���W�Gä�å�æ}ç(ÊÇ4� ¹	è as the directional width of I . The
Gaussian map of the convex hull of I is the decomposition of È�J´S $ into maximal connected regions so that the
the extremal point is the same for all directions within one region.

For a point ¹§�ì/�¹ $ �'&'&'&#� ¹ J 3 , we define its dual to be the hyperplane ¹½í~îG" J �b¹ $ " $ �°`'`'`´�ï¹ J´S $ " J'S $ �L¹ J .
Let ðñ��!)¹ í ¾9¹X¯XI�, be the set of hyperplanes dual to the points in I . The following is easy to prove.

Lemma 3.1. For Ç°¯®È J´S $, â½/2Ç4��I�3��ò¡©ªó /(ÊÇ $ �'&'&'&¢�vÊÇ J´S $ 3 if Ç lies in the positive hemisphere, and â4/2Ç½��I%3��
¡ Só /(ÊÇ�$#�'&'&'&(�£ÊÇ J´S $ 3 if Ç lies in the negative hemisphere; here ÊÇ§�ô/(ÊÇt$#�'&'&'&(�vÊÇ J 3 .

Hence, we can compute â4/2Ç½��I�3 using ¡ ªó and ¡ Só . Note that the central projection of the portion of the
Gaussian map of I in the upper (resp. lower) hemisphere is the maximization (resp. minimization) diagram
of ð . Thus, for ¤°�öõ we can compute portion of the Gaussian map of I whose central projection lies in
the square ���z�����;���÷� , using graphics hardware, as described in Section 2. In other words, we can compute the
extremal points of I for all Ç such that ÊÇc¯®�������#��� � �c!\���#���P, .

If we also take the central projection of a vector Çc¯ïÈ � onto the planes Â��Y� and "§�ì� , then at least one of
the central projections of Ç lies in the square ���������;���ø� of the corresponding plane. Let x�ù (resp. x{ú) be the
rotation transform that maps the unit vector /Ä���ng£�ng\3 (resp. / g£�#���ng\3) to / g£�ng£�#�(3 . Let ðïù (resp. ð�ú) be the set of
planes dual to the point set x�ùû/�I�3 (resp. x~úv/�I�3). If we compute ¡ ªó Ò �9¡ Só Ò �9¡ ªó4ü , and ¡ Só4ü for all "X¯®���z�����;���W� ,
then we can guarantee that we have compute extremal points in all directions (see Fig. 2(b) for an example in
two dimensions).

In general, vertices of the arrangement of dual hyperplanes may not lie in a ���������;���U� box. A generalization
of the above idea can be used to compute a family of three duals such that any vertex of the dual arrangement
is guaranteed to lie in the region ���������;��� �6�±���K1¬�)1	� in some dual. Such a family of duals can be used to
compute more general functions on arrangements using the graphics hardware; a special case of this result in
two dimensions was proved in [26]. In general, the idea of using a family of duals to maintain boundedness of
the arrangement can be extended to ¤ dimensions. We defer these more general results to a full version of the
paper.

4 Extent Measures

Let I_�ò!)¹ $ �'&'&'&(� ¹ * , be a set of points in � J . We describe streaming algorithms for computing the diameter
and width of I for ¤6¿hõ and the smallest enclosing box and ball of I for ¤��Mý .

Diameter. In this section we describe a six-pass algorithm for computing the diameter of a set I (the max-
imum distance between any two points of I) of 1 points in � � . It is well known that the diameter of I is
realized by a pair of antipodal points, i.e., there exists a direction Ç in the positive hemisphere of ÈK� such thatþ �A�G�É/�I%3ÿ����â½/2Ç4��I�3K�hâ4/Ä�KÇ½��I%3��6����¡©ªó /(ÊÇ�$#�vÊÇ � 3��_¡ Só /(ÊÇ½$#�vÊÇ � 3��#� where ð is the set of planes dual to the

points in I . In order to compute ��¡ ªó /2"©3��_¡ Só /2"©3�� , we assign the RGB values of the color of a plane ¹ íj to
be the coordinates of ¹	j . The first pass computes ¡½ªó , so after the pass, the pixel " in the color buffer contains
the coordinates of ¡ ªó /2"	3 . We copy this buffer to the texture memory and compute ¡ Só in the second pass. We
then compute ��¡½ªó /2"©3¬�e¡ Só /2"©3�� for each pixel. Since the hardware computes these values for "Æ¯����z�����;��� � ,
we repeat these steps for x ù /�I�3 and x ú /�I�3 as well. Detailed pseudo-code for the diameter computation is
presented in Appendix A. Since our algorithm operates in the dual plane, the discretization incurred is in terms
of the directions, yielding the following result.

Theorem 4.1. Given a point set I��ò� � �9^ôd � , there is a six-pass /ø^%�ÄÃ�/ø^Å3)3 -approximation algorithm for
computing the diameter of I .

Width. Let I be a set of 1 points in � � . The width of I is the minimum distance between two parallel
planes that enclose i between them, i.e., �Z� þ��	� /�I�3K�ë�6�A��
 å
��� éZ/2Ç4��I�3 . The proof of the following lemma is
relatively straightforward.

Lemma 4.1. Let x ù �nx ú be the rotation transforms as described earlier, and let ð (resp. ð ù �nð ú) be the set of
planes dual to the points in I (resp. x�ùû/�I�3 , x~úv/�I�3). Then

��� þ��	� /�I�3¬� ���A�äGå�� S $�� ª $����
�

�¢/�¹½�#�(3�� �6�A��! « ó /�¹	3�� « ó Ò /�¹	3�� « ó4ü /�¹	39,�&

This lemma implies that the algorithm for width can be implemented similar to the algorithm for diameter.
Consider a set of coplanar points in ��� . No discretized set of directions can yield a good approximation to the
width of this set (which is zero). Hence, we can only prove a slightly weaker approximation result, based on
knowing a lower bound on the optimal width. We omit the details from this version and conclude the following.

Theorem 4.2. Given a point set I��±� � , ^°dë� , and �� ¿ � í , there is a six-pass /ø^%�ÄÃ�/ø^%���� 3)3 -approximation
algorithm for computing the width of I .

1-center The � -center of a point set I in � � is a point ³�¯Y� � minimizing ���P�\ä�å���¤-/ ³P� ¹	3 . This is an
envelope computation, but in the primal plane. For each point ¹�¯YI , we render the colored distance cone
as described in Section 2. The � -center is then the point in the upper envelope of the distance cones with the
smallest distance value. The center of the smallest enclosing ball will always lie inside conv(I). The radius of
the smallest enclosing ball is at least half the diameter of I . Thus, if we compute the farthest point Voronoi
diagram on a grid of cell size ÃÉ�ì^���N�ý , the value we obtain is a /Ä�K�±^Å3 -approximation to the radius of the
smallest enclosing ball. An approximate diameter computation gives us ��º¿hý�� , and thus a grid size of ^ ��6N¢Á
will obtain the desired result.

Theorem 4.3. Given a point set I in � � and a parameter ^�d�� , there is a two-pass /ø^%�ÄÃ�/ø^t3)3 -approximation
algorithm for computing the smallest-area disk enclosing I .

Smallest Bounding Box. Let I be a set of points in � � . A rectangle enclosing I consists of two pairs of
parallel lines, each of which are orthogonal to the other. For a direction Çc¯XÈ $, let Ç � be the direction normal
to Ç . Then the side lengths of the smallest rectangle whose edges are in directions Ç and Ç!� that contains
I are "¼/2Ç	3§� éZ/2Ç½��I�3 and ðe/2Ç©3§�öéZ/2Ç ����I�3 . Hence, the area of the smallest rectangle containing I is
���A�
 å
� Ô "¼/2Ç	3¬`¢ð�/2Ç	3 . The algorithm to compute the minimum-area two-dimensional bounding box can now
be viewed as computing the minimum widths in two orthogonal directions and taking their product. Similarly,
we can compute a minimum-perimeter rectangle containing I . Since the algorithm is very similar to computing
the width, we omit all the details and conclude the following.

Theorem4.4. Given a point set I in ��� , ^®d � , and a lower bound �# on the area of the smallest bounding box,
there is a four-pass /ø^��ÄÃ�/ø^%� # 3)3 -approximation algorithm for computing the smallest enclosing bounding box.

It is not clear how to extend this algorithm to � � using a constant number of passes since the set of directions
normal to a given direction is È $. However, by sampling the possible choices of orthogonal directions, we can
get a /Ä���°^t3 -approximation in �(N\] ^c�_� passes. Omitting all the details, we obtain the following.

Theorem 4.5. Given point set I$�ë� � , ^Md¸� and lower bound �# on the area of the smallest bounding box,
there is an 5�/Ä�(N] ^X�h�(3 -pass /ø^��ÄÃ�/ø^%� # 3)3 -approximation algorithm for computing the smallest bounding box.

5 Collision Detection

Given two convex polytopes i and % in � � , their penetration depth, denoted i�u / iK�&%z3 is defined as the
translation vector ' such that i and %±�(' are disjoint. We can specify a placement of % by fixing a reference
point)§¯*% and specifying its coordinates. Assume that initially) is at the origin . . Since + �ìi-,f�.% is
the set of placements of % at which % intersects i , i�uc/ i��&%z3�� �6�A�0/ å�1
2 ¤�/ .v�nwq3 For a direction Ç ¯cÈÅ� , let3 2 /2Ç©3 be the tangent plane of + normal to direction Ç . As shown in [1], i�u / iK�&%ÿ3¬�­���A�
 å
��� ¤�/ .v� 3 2 /2Ç	3)3

Let 4 be a convex polytope in � � and let 5 be the set of vertices in 4 . For a direction Ç®¯cÈ � , let Ã�6�/2Ç	3µ�
���P�Gä�å87Zç�¹½�vÊÇ	è . It can be verified that the tangent plane of 4 in direction Ç is

3 6�/2Ç	3�î�ç(ÊÇ½�)"	è%��Ã86�/2Ç	3 . Therefore

i�u / iK�&%z3%�­���A�
 å�� �:9	; Q
 T<>=
 < . The following lemma shows how to compute
3 2 /2Ç	3 from

3 �K/2Ç©3 and
3
S0? /2Ç	3 .

Lemma 5.1. For any ÇX¯ÉÈÅ� ,
Ã�2 /2Ç©3���Ã��µ/2Ç©3��bÃ S0? /2Ç	3

This lemma follows from the fact that for convex i and % , the point of + extreme in direction Ç is the sum
of the points of i and % extreme in direction Ç . Therefore,

i�uc/ i��&%z3¬�ë���A�
 å��8�
Ã � /2Ç	3��bÃ S0? /2Ç	3

�nÇ@�
Hence, we discretize the set of directions in È¬� , compute Ã��K/2Ç	3��ÄÃ S0? /2Ç©3 , /÷Ã���/2Ç	3)��Ã S0? /2Ç	3)3)NA�£ÊÇB� and compute

their minimum. Since ÃC� and Ã S0? are upper envelopes of a set of linear functions, they can be computed at a set
of directions by the graphics hardware in six passes, as described in Section 4. Pseudocode for this computation
is described in Appendix A

We note here that the above approach can be generalized to compute any inner product-based distance be-
tween two non-intersecting convex polytopes in three dimensions. It can also be used to compute the Minkowski
sum of polygons in two dimensions.

6 Shape Fitting

We now present hardware-based heuristics for shape analysis problems. These problems are solved in the
primal, by computing envelopes of distance functions.

Circle fitting. The minimum width annulus of a point set iD�<�K� is a pair of concentric disks x;$#�nx � of
radii >�$Xdº> � such that i lies in the region x;$BE�x � and >G$��h> � is minimized. It is well-known [10] that
the center of the minimum-width annulus lies on a vertex of the overlay of the nearest and farthest-neighbor
Voronoi diagrams.

Note that the center of the minimum width annulus could be arbitrarily far away from the point set (for
example, the degenerate case of points on a line). Furthermore, when the minimum width annulus is thin, the
pixelization induces large errors which cannot be bounded. Therefore, we look at the special case when the
annulus is not thin, i.e. >q$.Fì/Ä���_OP3U> � . For this case, Chan [7] presents a /Ä�µ�°OP3 approximation algorithm as
follows: lay a uniform grid of resolution O�` � on the pointset, where � is some constant factor approximation to
the minimum width, snap each point to the nearest grid point and remove duplicates. Chan shows that the grid
dimensions are at most �(NPO � �®�(NPO � and the center realizing the approximation is one of the grid points. This
algorithm can be implemented efficiently in hardware as follows: set the buffer r to be of size �(NPO£�;�e�(NPO¢� ;
for each point ¹-j , draw its Euclidean distance cone HKj as described in Section 2. Let Hº�º!PH{$#��H � �'&'&'&#��H�*-,
be the collection of distance functions. Then the minimum width annulus can be computed as ���A� ù�å�G «>H /2"©3
with center ��ãnF����A�£ù�å8G « H /2"©3 . This approach yields a fast streaming /Ä���°O�3 -approximation algorithm for the
minimum-width annulus (and for the minimum-area annulus as well, by using paraboloids instead of cones).

The best-fit circle of a set of points i � !)¹t$#� ¹ � �'&'&'&(� ¹+*+,I�ô�¬� is a circle H�/ ³P�)>\3 of radius > centered at
³ such that the expression J ä�å8� ¤ � /�¹½��Hz3 is minimized. For a fixed center ³ , elementary calculus arguments
show that the optimal > is given by >qíK�Y�(N¢1KJ ä�å�� ¤-/�¹4�n³'3 . Let ¤ j �L�ø¹ j � ³�� . The cost of the best fit circle of
radius > í centered at ³ can be shown to be J jNMû* ¤q�j �h/Ä�(N¢143´/ J jNMû* ¤\jp3·� .

Once again, this function can be represented as an overlay of distance cones, and thus for each grid point,
the cost of the optimal circle centered at this grid point can be computed. Unfortunately, this fails to yield an
approximation guarantee for the same reasons as above.

Hausdorff distance. Given two point sets i��&%O�_� � , the Hausdorff distance ¤ ó from i to % is ���P��ä�å��
���A��P�å ? ¤�/�¹½�)�3 . Once again, we draw distance cones for each point in % , and compute the lower envelope of
this arrangement of surfaces restricted to points in i . Now each grid point corresponding to a point of i has a
value equal to the distance to the closest point in % . A maximization over this set yields the desired result. For
this problem, it is easy to see that as for the width, given any lower bound on the Hausdorff distance we can
compute a /2a��ÄÃ�/2at3 -approximation to the Hausdorff distance.

7 Experiments

In this section we describe some implementation specific details, and report empirical results of our algorithms,
and compare their performance with software-based approximation algorithms.

Cost bottleneck. The costs of operations can be divided into two types: geometric operations, and frag-
ment operations. Most current graphics cards have a number of geometry engines and raster managers to handle
multiple vertex and fragment operations in parallel. Therefore, we can typically assume that the geometry trans-
formation and each buffer operation takes constant time. This assumption breaks down when the input causes
certain parts of the graphics pipeline to act as bottlenecks. Most graphics cards describe their performance in
terms of the number of triangles processed per second (since there is a fixed cost associated with transforming
input objects) and in their processing rate of fragments (called the fill rate) in the imaging pipeline [4]. Typical
numbers for current cards range between 50-100 millions of triangles per second and a fill rate of 0.5-2 billion
fragments per second, and these numbers are constantly increasing. For the sort of geometric problems that we
address, the fill rate is the main bottleneck.

Figure 3(a) shows the running times of the different components of our algorithm for width for various grid
sizes. As the plot shows, the rendering stage bottleneck is roughly unchanged till we saturate the fill-rate, at
which point performance degrades severely. We now propose a hierarchical method that circumvents the fill
limitation by doing refined local searches for the solution.

 ��

(a) (b)

Figure 3: (a) Breakdown of the width algorithm under varying window sizes (b)Tree of height three produced
by the hierarchical computation

Hierarchical Refinement. One way to reduce the fill-rate bottleneck is to produce fewer fragments per
plane. Instead of sampling the search space with a uniform grid, we instead perform adaptive sampling by con-
structing a coarse grid, computing the solution value for each grid point and then recursively refining candidate
points. See Figure 3(b) for a tree of height three. The advantage of using adaptive refinement is that not all
the grid cells need to be refined to a high resolution. However, the local search performed by this selective re-
finement could fail to find an approximate solution with the guarantee implied by this higher resolution. In our
experiments, we will compare the results obtained from this approach with those obtained by software-based
methods.

Empirical Results. In this section we report on the performance of our algorithms. All our algorithms
were implemented in C++ and OpenGL, and run on a 2.4GHz Pentium IV Linux PC with an ATI Radeon 9700
graphics card and 512 MB Memory. Our experiments were run on three types of inputs: (i) randomly generated
convex shapes [19] (ii) large geometric models of various objects, available at http://www.cc.gatech.
edu/graphmodels/ and (iii) randomly generated input using rbox (a component of qhull). In all our
algorithms below, we use hierarchical refinement (with depth two) to achieve more accurate solutions.
Penetration Depth. We compare our implementation of penetration depth (called HwPD) with our own imple-
mentation of an exact algorithm (called SwPD) based on Minkowski sums which exhibits quadratic complexity
and with DEEP [24], which to the best of our knowledge is the only other implementation for penetration depth.
DEEP is an incremental approach based on local search, specially suited to maintain the penetration depth when
the objects are in motion. The software implementation generates the quadratic vertices from the original poly-
topes, computes its convex hull and then determines the closest distance from the origin. We used the convex
polytopes available at [19], as well as random polytopes found by computing the convex hull of points on ran-
dom ellipsoids as inputs to test our code. The performance of the algorithms on the input set is presented in
Table 3: column two and three gives the sizes of the two input polytopes. HwPD always outperforms SwPD
in running time, in some cases by over three orders of magnitude. With regard to DEEP, the situation is less
clear. DEEP performs significant preprocessing on its input, so a single number is not representative of the
running times for either program. Hence, we report both preprocessing times and query times (for our code,
preprocessing time is merely reading the input). We note that DEEP crashed on some of our inputs; we mark
those entries with an asterisk. it is instructive to see that the penetration depth values we get are close to the
right answer in all the cases we were able to compare.

Polygon HwPD DEEP SwPD
Size Size Preproc. Query Time Pen. Depth Preproc. Query Time Pen. Depth Time Pen. Depth

500 500 0 0.04 1.278747 0.15 0 1.29432 27.69 1.289027
750 750 0 0.08 1.053032 0.25 0 1.07359 117.13 1.071013
789 1001 0.01 0.067 1.349714 * * * 148.87 1.364840
789 5001 0.01 0.17 1.360394 * * * - -
5001 4000 0.02 0.30 1.362190 * * * - -
10000 5000 0.04 0.55 1.359534 3.28 0 1.4443 - -

Table 3: Comparison of running times for penetration depth. On the last three datasets, we stopped SwPD after
it ran for over 25 minutes. Asterisks mark inputs where DEEP crashed.

Error: Q ��RTSCU S
S
V
HAnnWidth SAnnWidth

Dataset size Time Width Time Width

R-Circle-0.1 (1,000) 0.36 0.099882 0.53 0.099789
R-Circle-0.2 (1,000) 0.35 0.199764 0.42 0.199442
R-Circle-0.1 (2,000) 0.66 0.099882 0.63 0.099816
R-Circle-0.1 (5,000) 1.58 0.099882 26.44 0.099999
R-Circle-0.1 (10,000) 3.12 0.099882 0.93 0.099999

Table 4: Comparison of running time and approximation quality for 2D-Min Width Annulus

As an example, consider the two polytope shown in Figure 4(a). After running our algorithm, the penetration
depth obtained was ��&A�G�>WPÁ�X8Y and the vector achieving this was /Ä��g£&lg�õ�WGýZX8[v�#��g£&\WGõGõ�YGõCWv�(��g£&\]�]GgZ]�ý�Yq3 . Fig-
ure 4(b) shows the results of translating the first polytope accordingly (the viewpoint is rotated slightly). 2D

(a) The original polytopes (b) After translation

Figure 4: An illustration of the working of our algorithm for penetration depth

Minimum Width Annulus. We compare our implementation of minimum width annulus (called HAnnWidth)
with the software implementation of the grid based method, called SAnnWidth: the software implementation
lays a grid of �(NPO � �b�(NPO � , snaps the points to the grid (removing redundant points), and finds the nearest and
furthest neighbour of each grid point. The input point sets to the programs were synthetically generated using
rbox: R-Circle-r refers to a set of points with minimum width annulus > and is generated by sampling points
from a circle and introducing small perturbations. See Table 4 for the timings results.
3D Width. We compare our implementation of width (called HWidth) with the code of Duncan et al. [9]

Error HWidth DGRWidth
Dataset size Q Time Width Time Width

Club (16,864) 0.250 0.45 0.300694 0.77 0.312883
Bunny (35,947) 0.060 0.95 1.276196 2.70 1.29231
Phone (83,034) 0.125 2.55 0.686938 6.17 0.697306
Human (254,721) 0.180 6.53 0.375069 18.91 0.374423
Hand (327,323) 0.090 8.66 0.479850 21.64 0.499391
Dragon (437,645) 0.075 10.88 0.813487 39.34 0.803875
Buddha (543,652) 0.075 13.77 0.794050 50.32 0.809624
Blade (882,954) 0.090 23.45 0.715578 66.71 0.726137

Table 5: Comparison of running time and approximation quality for 3D-width

Error: Q R^SZU SZ_a`
HDiam MBDiam PDiam

Dataset size Time Diam Time Diam Time Diam

Club (16,864) 0.023 2.326992 0.0 2.32462 0.00 2.32462
Bunny (35,947) 0.045 2.549351 0.75 2.54772 0.03 2.54772
Phone (83,034) 0.11 2.416497 0.01 2.4115 0.07 2.4115
Human (254,721) 0.32 2.020594 3.5 2.01984 0.04 2.01938
Hand (327,323) 0.41 2.120115 0.06 2.11791 0.09 2.11499
Dragon (437,645) 0.55 2.063075 17.27 2.05843 0.21 2.05715
Buddha (543,652) 0.68 2.113198 7.75 2.10768 0.14 2.09697
Blade (882,954) 1.10 2.246725 0.1 2.23939 0.22 2.22407

Table 6: Comparison of running time and approximation quality for 3D-diameter

(DGRWidth). Algorithm DGRWidth reduces the computation of the width to 56/Ä�(N�8�3 linear programs. It then
tries certain pruning heuristics to reduce the number of linear programs solved in practice. The performance of
both the algorithms on a set of real graphical models is presented in Table 5: column four gives the /Ä�Z��8�3 -
approximate value of the width computed by the two algorithms for the 8 given in the second column (this 8
value dictates the window size required by our algorithm, as explained previously, and the number of linear
programs solved by DGRWidth). HWidth always outperforms DGRWidth in running time, in some cases by
more than a factor of five.
3D Diameter. We compare our implementation (HDiam) with the approximation algorithm of Malandain and
Boissonnat [29] (MBDiam), and Har-Peled [20] (PDiam). PDiam maintains a hierarchical decomposition of
the point set, and iteratively throws away pairs that are not candidate for the diameter until an approximate
distance is achieved by a pair of points. MBDiam is a further improvement on PDiam. Table 6 reports the
timing and approximation comparisons for two error measures for graphical models. Although our running
times in this case are worse than the software implementations, they are comparable even for very large input,
illustrating the generality of our approach.

References

[1] AGARWAL, P. K., GUIBAS, L. J., HAR-PELED, S., RABINOVITCH, A., AND SHARIR, M. Computing the pene-
tration depth of two convex polytopes in 3d. In Scandinavian Workshop on Algorithm Theory (2000), pp. 328–338.

[2] AGARWAL, P. K., HAR-PELED, S., AND VARADARAJAN, K. Approximating extent measures of points. Unpub-
lished manuscript, 2002.

[3] AGARWAL, P. K., AND SHARIR, M. Efficient algorithms for geometric optimization. ACM Comput. Surv. 30
(1998), 412–458.

[4] AKELEY, K., AND JERMOLUK, T. High-performance polygon rendering. Computer Graphics (Siggraph ’88 Pro-
ceedings) 22, 4 (1988), 239–246.

[5] ALON, N., MATIAS, Y., AND SZEGEDY, M. The space complexity of approximating the frequency moments. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (1996), pp. 20–29.

[6] BAR-YOSSEF, Z., JAYRAM, T. S., KUMAR, R., AND SIVAKUMAR, D. Information theory methods in communi-
cation complexity. In Proc. IEEE Complexity (2002).

[7] CHAN, T. M. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. In
Proc. 16th Annu. ACM Sympos. Comput. Geom. (2000), pp. 300–309.

[8] CHARIKAR, M., CHEKURI, C., FEDER, T., AND MOTWANI, R. Incremental clustering and dynamic information
retrieval. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing (1997), ACM Press,
pp. 626–635.

[9] DUNCAN, C., GOODRICH, M., AND RAMOS, E. Efficient approximation and optimization algorithms for compu-
tational metrology. In ACM-SIAM Symposium on Discrete Algorithms (1997).

[10] EBARA, H., FUKUYAMA, N., NAKANO, H., AND NAKANISHI, Y. Roundness algorithms using the Voronoi
diagrams. In Proc. 1st Canad. Conf. Comput. Geom. (1989).

[11] FEIGENBAUM, J., KANNAN, S., STRAUSS, M., AND VISWANATHAN, M. An approximate l1-difference algorithm
for massive data streams. In Proc. 40th IEEE Symp. Foundations of Computer Science (1999).

[12] FEIGENBAUM, J., KANNAN, S., AND ZHANG, J. Computing diameter in the streaming and sliding-window models.
DIMACS Working Group on Streaming Data Analysis II, 2003.

[13] FOURNIER, A., AND FUSSELL, D. On the power of the frame buffer. ACM Transactions on Graphics (1988),
103–128.

[14] GILBERT, A. C., GUHA, S., INDYK, P., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. Fast,
small-space algorithms for approximate histogram maintenance. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing (2002), ACM Press, pp. 389–398.

[15] GREENWALD, M., AND KHANNA, S. Space-efficient online computation of quantile summaries. In Proceedings
of the 2001 ACM SIGMOD international conference on Management of data (2001), ACM Press, pp. 58–66.

[16] GUHA, S., KRISHNAN, S., MUNAGALA, K., AND VENKATASUBRAMANIAN, S. The power of a two-sided depth
test and its application to csg rendering and depth extraction. Tech. rep., AT&T, 2002.

[17] GUHA, S., KRISHNAN, S., MUNAGALA, K., AND VENKATASUBRAMANIAN, S. Application of the two-sided
depth test to csg rendering. In 2003 ACM SIGGRAPH Symposium on Interactive 3D Graphics (April 2003).

[18] GUHA, S., MISHRA, N., MOTWANI, R., AND O’CALLAGHAN, L. Clustering data streams. In Proc. 41st IEEE
Symp. Foundations of Computer Science (Nov. 2000).

[19] HAR-PELED, S. http://valis.cs.uiuc.edu/˜sariel/research/papers/99/nav/nav.html.

[20] HAR-PELED, S. A practical approach for computing the diameter of a point-set. In ACM Symposium on Computa-
tional Geometry (2001), pp. 177–186.

[21] HEZINGER, M., RAGHAVAN, P., AND RAJAGOPALAN, S. Computing on data streams. Tech. Rep. 11, DEC, 1998.

[22] HOFF, K., CULVER, T., KEYSER, J., LIN, M., AND MANOCHA, D. Interactive motion planning using hardware-
accelerated computation of generalized voronoi diagrams. In Proc. IEEE International Conf. on Robotics and Au-
tomation (2000).

[23] HOFF III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND CULVER, T. Fast computation of generalized Voronoi
diagrams using graphics hardware. Computer Graphics 33, Annual Conference Series (1999), 277–286.

[24] KIM, Y. J., LIN, M. C., AND MANOCHA, D. Fast penetration depth estimation between polyhedral models using
hierarchical refinement. In International Workshop on Algorithmic Foundations of Robotics (to appear) (2002).

[25] KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. Reverse nearest neighbour aggregates over data streams.
In Proc. 28th Conference on Very Large Databases (VLDB) (2002).

[26] KRISHNAN, S., MUSTAFA, N., AND VENKATASUBRAMANIAN, S. Hardware-assisted computation of depth con-
tours. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (January 2002), pp. 558–567.

[27] LARSEN, E. S., AND MCALLISTER, D. Fast matrix multiples using graphics hardware. In Supercomputing (2001).

[28] MAJHI, J., JANARDAN, R., SMID, M., AND SCHWERDT, J. Multi-criteria geometric optimization problems in
layered manufacturing. In Proceedings of the fourteenth annual symposium on Computational geometry (1998),
ACM Press, pp. 19–28.

[29] MALANDAIN, G., AND BOISSONNAT, J.-D. Computing the diameter of a point set. In Discrete Geometry for
Computer Imagery (DGCI 2002) (Bordeaux, France, 2002), A. Braquelaire, J.-O. Lachaud, and A. Vialard, Eds.,
vol. 2301 of LNCS, Springer. also INRIA research report RR-4233.

[30] MANKU, G. S., RAJAGOPALAN, S., AND LINDSAY, B. G. Random sampling techniques for space efficient online
computation of order statistics of large datasets. In SIGMOD 1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-3, 1999, Philadephia, Pennsylvania, USA (1999), A. Delis, C. Faloutsos,
and S. Ghandeharizadeh, Eds., ACM Press, pp. 251–262.

[31] MUNRO, J. I., AND PATERSON., M. S. Selection and sorting with limited storage. Theor. Comp. Sci. 12 (1980.),
315–323.

[32] MUSTAFA, N., KOUTSOFIOS, E., KRISHNAN, S., AND VENKATASUBRAMANIAN, S. Hardware assisted view
dependent map simplification. In 17th ACM Symposium on Computational Geometry (2001), pp. 50–59.

[33] SAKS, M., AND SUN, X. Space lower bounds for distance approximation in the data stream model. In Proc. 34th
ACM Symp. Theory of Computing (2002).

[34] STRZODKA, R., AND RUMPF., M. Using graphics cards for quantized fem computations. In Proc. IASTED Intnl.
Conf. Visualization, Imaging and Image processing (VIIP) (2001).

[35] SUN, C., AGRAWAL, D., AND ABBADI, A. E. Hardware acceleration for spatial selection and join. Tech. Rep. 17,
U. California, Santa Barbara, 2002.

[36] WOO, M., NEIDER, J., DAVIS, T., AND SHREINER, D. OpenGL(R) Programming Guide: The Official Guide to
Learning OpenGL, Version 1.2, 3 ed. Addison-Wesley, 1999.

A Pseudo-code

Algorithm A.1 Pseudocode for the lower (upper) envelope computation
for mt�ì� to 1 do ! /* For eachpiecewise-linearfunction ¡qj */ ,

for o;�Y� to bÉj do ! /* For eachvertex in function ¡�j */ ,
/* Let vertex ²Gjsk~�ì/2"+jlk��)ÂGjskG�nw#jlkP3 */
Set color value of ²Gjlk appropriately depending on problem

end for
end for
/* Compute lower (upper) envelopein color buffer */
Set depth test to ���A� (���P�)
Render all functions in �
Readback the color buffer
/* Color value at eachpixel determinesenvelope*/

Algorithm A.2 Pseudocode for penetration depth computation
/* Given two convex polytopes i and % */
for mt�ì� to õ do ! /* For eachdual */ ,

Compute dual planes c ä and c P for vertices of i and %
Set color of each vertex based on its w -coordinate
Compute lower envelope of c ä in color buffer
Copy color buffer to texture memory
Compute lower envelope of c P in color buffer
Enable blending and set blending function to ADD
Use texture mapping to access contents of texture
Compute component-wise sum with the color buffer
Readback the color buffer
/* Repeatthis for upper envelopes*/
for each pixel in color buffer do

Compute distance from origin based on color value
Track minimum

end for
end for
/* Minimum value and pixel location determinepenetration depth and dir ection*/

Short Note on Algorithm for Penetration Depth using Graphics
Hardware

Shankar Krishnan
�

Abstract

This note discussed the use of the graphics hardware to perform proximity queries and penetration depth
computations on convex polytopes. We use the idea of duality mapping to find this information without
explicitly constructing the Minkowski sum.

1 Introduction

The ability to track closest feature pairs and collisions in an environment with moving objects has been an
important and well studied problem in computer graphics and computational geometry. They find applications
games and simulation-based design. In order to resolve collisions, a useful way to quantify the contact is called
penetration depth. The penetration depth of a pair of intersecting objects is the shortest vector over which
one object needs to be translated in order that the pair become disjoint. Over the last two decades, a number
of algorithms and software systems have been developed to perform collision detection and computation of
penetration depth. A complete survey of all the previous work in this area is beyond the scope of this note. We
refer the reader to [3, 4, 2] for surveys and recent work on these topics.

In this draft, we will explain an algorithm that takes a different approach to compute the closest distance or
the penetration depth between convex polytopes. All the computation required is done purely on the graphics
hardware. Another feature of our algorithm is that, unlike other methods for penetration depth computation, we
do not explicitly compute the Minkowski sum of the polytopes which is the main computational bottleneck.

We will briefly review some definitions of point-hyperplane duality and Minkowski sums in the next section.
We then provide our algorithm for computing the penetration depth and justify its correctness.

2 Definitions

Duality The principle of duality has been known in computational geometry for a long time. The main idea
is that points in one space can be mapped into hypeplanes in another space keeping certain geometric atributes
invariant. Consider the case in two dimensions. A point ���������
	��
��� in the plane can be mapped to the line� ����� �������������
� in the dual plane. In what follows, we use the superscript � � to denote objects in the dual
plane. Similarly, a line in the plane is mapped to a point whose coordinates depend on the coefficients of the
line. Some of the main properties of duality are:

� it preserves incidences i.e., if a point � lies on (above) a line � , then the point � � lies on (below) the line� � in the dual plane.

� Given a set of point � �! "�$#%	���&�	('('(')	��
*
+ , the set of lines � � �, "� � # 	�� �& 	('('(')	�� �* + in the dual plane
forms an arrangement. The convex hull of � can be obtained from the upper and lower envelope of
the arrangement � � . Figure 1 shows a set of points in the primal plane and the corresponding dual
arrangement.

-
AT&T Research. Email: krishnas@research.att.com

l*

u*

convex hull

upper envelope

Dual planePrimal plane

lower envelope

c

l

u

lo hi

Figure 1: Illustration of point-line duality

� Consider a point � � ����./	 ��0 � in the lower envelope and the corresponding point 1 � ����.2	43/56� in the upper
envelope of the dual arrangement � � . In 798 , . is a ��:;�=<)� -dimensional point, and � and 1 are the heights
of the lower and upper envelope (think of the envelopes as terrains). Then the corresponding lines � and
1 in the original plane are parallel to each other and they are tangential to the convex hull of � (as shown
in the figure).

The above facts are true in any dimension.

+ =

Figure 2: Minkowski sum of two convex polyhedra

Minkowski Sum Given two objects � and > , the Minkowski sum ? � �A@B> of is given by

? �C)DE�GF � D�H � 	IF=H > + (2.1)

Figure 2 shows an example of two convex polygons and its Minkowski sum. If � and > are convex, then
so is ? . In fact, closure under Minkowski sums extends to the class of star-shaped objects. The algorithm
to compute the Minkowski sum of two convex polytopes is relatively straightforward but exhibits quadratic
complexity. Therefore, software approaches to compute the Minkowski sum can be fairly time consuming.

Given two convex polytopes � and > in 7KJ and let L�M and L
N be their respective set of vertices. L �M (L �N) is
the dual arrangements of the vertices of � (>).

Then the upper (lower) envelope in the dual arrangement of the vertices of ? � �O@A> can be obtained by
adding the height values of the upper (lower) envelopes of L �M and L �N . The main intuition in this observation

is that the extremal point of ? in any particular direction is obtained by the sum of extremal points of � and >
in the same direction. This observation is true only in the case of convex polytopes.

3 Penetration Depth

P

Q
PD(P,Q)

+M = P (−Q)

origin

Figure 3: Penetration depth of two convex polyhedra and its relation to Minkowski sum

Given two convex polytopes � and > , their penetration depth, denoted �QP � � 	 > � is defined as the smallest
translation vector R such that � and > � R are disjoint. It is known that penetration depth is the minimum
distance from the origin to the polytope ? � �O@ � > .

�QP � � 	 > �9�TSVUXWY[Z�\)] :^� 0 	I_��`	

where 0 is the origin and a^? denotes the boundary of ? . It was shown by [1] that it is equivalent to compute
the distance from the origin to the set of all tangent planes to the polytope ? .

We will now use this fact to compute the penetration depth without explicitly computing the Minkowski sum
of � and � > . We had observed in the section on Duality that the set of all tangent planes to a polytope b can
be obtained by looking at the lower and upper envelopes of the dual arrangement of L �c and that for the case
of Minkowski sums this arrangement can be obtained by adding the corresponding envelope “heights” of the
polytopes � and � > . Our algorithm for penetration depth is:

1. Compute vertices of � > .

2. For each vertex of � and � > , compute its dual hyperplane

3. Compute the upper and lower envelope of the dual arrangement L �M
4. Compute the upper and lower envelope of the dual arrangement L �d N
5. Add the heights of the individual upper and lower envelopes

6. Find tangent planes to the polytope ? and compute distance from the origin.

7. Take minimum

Use of graphics hardware Most of the operations detailed above can be solved remarkably well using
the graphics hardware. It is specially suited to compute lower and upper envelopes by a simple use of the
depth buffer. Moreover, the technique is very efficient because the primitives to be rendered are simple quads.
However, we do have a required readback to compute the minimum over all the distances. A simple pseudo-
code to compute envelopes and the penetration depth using the hardware is provided in Algorithms 3.1 and
3.2 respectively.

Algorithm 3.1 Pseudocode for the lower (upper) envelope computation
for 5���< to e do /* For each piecewise-linear function f�g */ +

for h �i< to j g do /* For each vertex in function f g */ +
/* Let vertex k gml ���n� gol 	 � gml 	I_ gol � */
Set color value of k gol appropriately depending on problem

end for
end for
/* Compute lower (upper) envelope in color buffer */
Set depth test to S�UXW (S�p�q)
Render all functions in r
Readback the color buffer
/* Color value at each pixel determines envelope */

Algorithm 3.2 Pseudocode for penetration depth computation
/* Given two convex polytopes � and > */
for 5���< to s do /* For each dual */ +

Compute dual planes t M and t N for vertices of � and >
Set color of each vertex based on its _ -coordinate
Compute lower envelope of t M in color buffer
Copy color buffer to texture memory
Compute lower envelope of t N in color buffer
Enable blending and set blending function to ADD
Use texture mapping to access contents of texture
Compute component-wise sum with the color buffer
Readback the color buffer
/* Repeat this for upper envelopes */
for each pixel in color buffer do

Compute distance from origin based on color value
Track minimum

end for
end for
/* Minimum value and pixel location determine penetration depth and direction */

This algorithm has been implemented on a standard graphics card using OpenGL. A naive implementation
of the above algorithm is competitive with some of the best known software solutions, and in most cases
outperforming them. For a detailed description of our experimental results, refer to the accompanying paper on
“Geometric Optimization”.

4 Conclusion

This note was meant to provide an easy-to-read description of the penetration depth algorithm that was described
in the paper accompanying the course notes. The algorithm presented here can easily be extended to maintain
closest feature pairs between convex polytopes.

References

[1] AGARWAL, P. K., GUIBAS, L. J., HAR-PELED, S., RABINOVITCH, A., AND SHARIR, M. Computing
the penetration depth of two convex polytopes in 3d. In Scandinavian Workshop on Algorithm Theory
(2000), pp. 328–338.

[2] KIM, Y. J., LIN, M. C., AND MANOCHA, D. Fast penetration depth estimation between polyhedral
models using hierarchical refinement. In International Workshop on Algorithmic Foundations of Robotics
(to appear) (2002).

[3] LIN, M. C., AND GOTTSCHALK, S. Collision detection between geometric models: A survey. Proc.
of IMA Conference on Mathematics of Surfaces (1998). Available at: http://www.cs.unc.edu/
˜geom/papers/subject.shtml.

[4] VAN DEN BERGEN, G. Proximity queries and penetration depth computation on 3d game objects. Proc.
of Game Developer’s Conference (2001). Available at: http://www.win.tue.nl/˜gino/solid/
index.html.

Fast and Approximation Computation of
Geometric Arrangements using GPUs II

Dinesh Manocha
University of North Carolina at Chapel Hill

Efficient Computation of A Simplified Medial Axis

Appeared in the Proceedings of the 8th ACM Symposium on Solid Modeling and
Applications, June 16-20, 2003

Mark Foskey
foskey@cs.unc.edu

Department of Radiology

Ming C. Lin
lin@cs.unc.edu

Department of Computer
Science

Dinesh Manocha
dm@cs.unc.edu

Department of Computer
Science

University of North Carolina at Chapel Hill
http://www.cs.unc.edu/ geom/smx/

ABSTRACT
Applications of of the medial axis have been limited because
of its instability and algebraic complexity. In this paper, we
use a simplification of the medial axis, the θ-SMA, that is pa-
rameterized by a separation angle (θ) formed by the vectors
connecting a point on the medial axis to the closest points
on the boundary. We present a formal characterization of
the degree of simplification of the θ-SMA as a function of θ,
and we quantify the degree to which the simplified medial
axis retains the features of the original polyhedron.

We present a fast algorithm to compute an approximation
of the θ-SMA. It is based on a spatial subdivision scheme,
and uses fast computation of the distance field and its gra-
dient using interpolation-based rasterization hardware. The
complexity of the overall algorithm varies based on the error
threshold used by the approximation scheme and is a linear
function of the input size. We have applied this algorithm
to approximate the SMA of complex models composed of
tens or hundreds of thousands of triangles. Its running time
varies from a few seconds, for a model consisting of hun-
dreds of triangles, to minutes for highly complex models on
a 2-GHz PC.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-

sentations; I.4 [Image Processing and Computer Vi-

sion]: Reconstruction, Image Representation

General Terms
Algorithms, Experimentation, Performance, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03 June 16-20, 2003 University of Washington, Seattle
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Distance field, Medial axis

1. INTRODUCTION
The medial axis [5] of a solid, defined as the set of centers

of maximal balls contained in the solid, has been proposed
as a tool for shape analysis, surface reconstruction, motion
planning, and many other applications. It is useful because
it provides a local lower-dimensional characterization of the
solid. In particular, for a solid in 3D the medial axis con-
sists of a union of surfaces that provide information about
the shape and topology of the solid. If the distance to the
boundary is also stored for each medial axis point, the result-
ing structure is known as the medial axis transform (MAT)
and the entire boundary representation can be reconstructed
from it.

The use of the medial axis has been limited mainly by two
significant drawbacks: It is unstable, in that small deforma-
tions in the boundary of the solid can lead to large changes
in the medial axis. It is also difficult to compute because
of the underlying algebraic complexity. For a polyhedron,
the surfaces constituting the medial axis are quadrics, and
the seam curves can have degree four. For solids with curved
boundaries, the medial axis sheets and seam curves can have
much higher degree. Geometric computation with primitives
of such high degree is is hard to make both reliable and fast.

There have been numerous approaches to these problems.
While exact algorithms have been proposed to compute the
MAT for relatively simple polyhedra, it is non-trivial to scale
them to very complex models composed of tens or hundreds
of thousands of faces. As a result, most of the practical algo-
rithms attempt to compute an approximation to the MAT.
Different approximation algorithms, based on using a uni-
form grid, a spatial subdivision, or a point sampling of the
surface, have been proposed in the literature. A number
of techniques have also been proposed to simplify these ap-
proximations, in terms of reducing the number of geometric
primitives or pruning away portions that can cause instabil-
ity. We will give a review of this literature in Section 2.

In this paper, we primarily deal with a subset of the medial
axis, which we call the θ-simplified medial axis, or θ-SMA.
The θ refers to the angle formed by the vectors connecting a
point on the medial axis to its corresponding closest points

on the object boundary. We call this angle the separation

angle, and the θ-SMA is simply the set of medial axis points
for which the separation angle exceeds θ. The relationship
between the stability of the medial axis and the separation
angle has been known in the literature and used in many
applications including surface reconstruction and skeleton-
based modeling [1, 13, 26].

Main Results: We present novel properties of the θ-
SMA and a fast algorithm to compute an approximation
of the θ-SMA of a complex polyhedron. The θ-SMA, as
indicated above, is parameterized by a minimum separation
angle θ. It has the property that Mθi

⊂ Mθj
whenever θi >

θj . Moreover, Mθ more closely approximates the medial
axis as θ → 0, and becomes more stable as θ → π. We
describe a formal characterization of the simplification of the
medial axis as a function of θ. Given the distance function at
each point on Mθ, an approximation to the boundary of the
original solid can be reconstructed, and we give a formula
relating the tightness of this approximation to θ.

We also present a novel and fast algorithm to compute an
approximation to Mθ at an adjustable resolution ε. The ε
determines the maximum error between the computed ap-
proximation and θ-SMA. It is based on efficient computation
of a distance field and its gradient using a spatial decompo-
sition. The complexity of the resulting algorithm is Θ(n/ε3)
where n is the number of primitives in the model and ε is the
resolution (voxel width). We describe an adaptive subdivi-
sion scheme for computing a bounded-error approximation.
Moreover, we present a number of techniques to improve the
quality of the approximation by smoothing operations and
accelerate the performance of the overall algorithm.

The algorithm has been implemented and applied to com-
plex polyhedra composed of tens or hundreds of thousands
of triangles. Its running time ranges from a few seconds
for a model composed of hundreds of triangles to minutes
for highly complex models on a 2 GHz PC with an nVidia
GeForce 4 graphics card.

As compared to other approximate schemes, our approach
offers the following advantages:

• Complex Models: It can handle very large and com-
plex models as the running time is a linear function of
the input size.

• Efficiency: We use fast algorithms for computing the
distance field and its gradient based on interpolation-
based rasterization hardware. As a result, our algo-
rithm can handle complex models composed of tens of
thousands of polygons in a few minutes.

• Approximation: The ε-approximation to the θ-SMA
is everywhere within

√
3/2 ε of the medial axis, and it

converges to the true θ-SMA as ε → 0.

• Stability: The criterion for simplification is scale-
invariant, so that small shallow bulges are ignored, but
thin, extended features in the medial axis are repre-
sented.

• Simplification: The simplification criterion is rather
intuitive, depending only on the separation angle.

The rest of the paper is organized as follows. In Section 2
we give an overview of related work. In Section 3 we de-
fine Mθ and present some of its properties. In Section 4 we

present our algorithm, and in Section 5 we analyze the time
complexity of our algorithms and various sources of error in
the approximation. We describe our implementation in Sec-
tion 6 and highlight its performance on a number of complex
models. In Section 7 we compare our approach to others in
the literature, and we conclude in Section 8.

2. RELATED WORK
There is an extensive literature on both the computation

and the simplification of the MAT and related construc-
tions. In this section, we give a brief overview of exact and
approximate algorithms for MAT computation as well as
simplification.

2.1 Medial Axis Computation
At a broad level, algorithms for medial-axis computa-

tion can be classified into four categories: thinning algo-
rithms, distance field based algorithms, algebraic methods,
and surface-sampling approaches. These categories differ in
terms of the underlying representations used for the medial-
axis as well as how they compute it.

2.1.1 Thinning Algorithms
Thinning algorithms use a voxel-based representation of

the initial figure, and perform erosion operations to arrive
at a set of voxels approximating the medial axis. Lam et
al. [19] give a survey of these approaches, and Zhang et
al. [32] compare various methods. These methods are sig-
nificant in the areas of image processing and pattern recog-
nition, since the input data is represented as a discrete grid.
We also use a voxel-based spatial decomposition to localize
regions containing the medial surfaces. This is followed by
an extraction step to represent the medial axis as a union of
polygonal surfaces.

2.1.2 Distance Field Computations
Many approaches compute an approximation of the me-

dial axis based on distance fields. Danielsson [12], uses a
scanning approach in 2D to create an image in which each
pixel contains the Euclidean distance to the nearest pixel
on the boundary of the figure being analyzed. Moreover,
the resulting distance map can be analyzed for local direc-
tional maxima to get an approximation of the medial axis.
This algorithm has also been extended to three and higher
dimensions [22].

Vleugels and Overmars [30] use a spatial subdivision to
represent the medial axis, relying on nearest-neighbor queries
to determine whether a cell must be further subdivided.
They subdivide if the cell has vertices in different Voronoi
regions and is larger than a certain threshold.

Hoff et al. [17] use graphics hardware to render a polygo-
nal approximation of the distance field. The interpolation-
based rasterization hardware is used to store the distance
field in the depth buffer. We have extended this algorithm
to compute the gradient of the distance field, also using ras-
terization hardware. We then use the gradient field for fast
computation of the medial axis.

Siddiqi et al. [25] have also presented an approximate al-
gorithm based on distance fields. Their analysis is based
on a differential equation simulating the inward progress of
a front starting at the boundary of the object. They com-
pute a vector field that, at every point p, is equal to the
vector from the nearest point on the surface, to p. Given

the fact that this vector field points towards the medial axis
from both sides, Siddiqi et al. consider a point to be on
the medial axis if the mean flux of the vector field, enter-
ing a neighborhood of the point, is positive. This algorithm
has been designed assuming that the input is represented in
terms of voxels.

2.1.3 Algebraic Methods
There is a family of methods that rely fundamentally on

the fact that the algebraic form is explicitly known for each
surface patch (i.e., each sheet) of the medial axis of a poly-
hedron.

Etzion and Rappoport [16] represent the curves and sur-
faces symbolically, but use a spatial subdivision to resolve
the connectivity of the curves. They use algebraic tests to
determine whether the surfaces pass into the cells of the
subdivision, and subdivide until either the proper connec-
tivity is determined, or a minimum cell size is reached. The
presence of a minimum cell size means that it is not always
possible to isolate all vertices and fully resolve the local con-
nectivity of seams (and hence the surfaces they bound).

Most algorithms that represent the medial axis symboli-
cally use a tracing approach [21, 23]. Starting from a junc-
tion point on the medial axis, a seam emanating from the
junction is followed. The seam terminates at another junc-
tion and the process is applied recursively. Chiang [8] de-
scribes an algorithm for computing the medial axis of a pla-
nar region bounded by piecewise C2 curves. The algorithm
involves tracing branches using systems of polynomial equa-
tions. Sherbrooke et al. [24] present a variation on the algo-
rithm. Their method explicitly traces along the seam, cre-
ating a piecewise-linear approximation to the seam curves.

Culver et al. [11] use exact computation to represent the
curves and surfaces of the 3D medial axis. Their method is
a tracing approach that computes an exact representation
of the medial axis of a polyhedron provided there are no
degeneracies (such as more than four or seams intersecting
at a point). They also use a spatial subdivision technique
to improve the running time of the overall algorithm. Dutta
and Hoffmann [15] and Hoffmann [18] present an approach
to compute the medial axes of constructive solid geometry
(CSG) models.

All of the methods in this family have been applied to
polyhedra composed of only a few hundred faces. It is not
clear whether they can be either applied to complex models
composed of tens or hundreds of thousands of faces. Either
their running time is more than O(n2), where n is the num-
ber of faces, or these algorithms are susceptible to accuracy
and robustness problems.

2.1.4 Surface Sampling Approaches
Surface sampling methods represent the initial figure as a

dense cloud of sample points presumed to be on or near the
boundary. The medial axis of the figure is approximated by
a subset of the Voronoi diagram of the point cloud. Different
algorithms based on this approach use different methods for
selecting the desired subset of the Voronoi diagram. Many
such variations have been proposed. Boissonnat [6] classified
certain triangles of the Delaunay tetrahedralization of the
point cloud as interior to the model; the Voronoi vertices
dual to those tetrahedra approximate the medial axis.

Using a similar approach, Amenta et al. [1] construct
an approximate, simplified medial axis which they use as

a stage in a surface reconstruction from the original point
cloud, a common application for this approach. Dey and
Zhao [13, 14] also create a simplified surface model of a me-
dial axis. Turkiyyah et al. [29] focus on improved accuracy
rather than simplification. They follow the initial approxi-
mation with a numerical optimization step to move the sam-
ple points so that the Voronoi vertices are closer to the true
medial axis. Both [1] and [13] have given good surveys of
the literature on surface sampling medial axis approaches.

These algorithms have been applied to models composed
of tens of thousands of points. One of the main issues when
applying these algorithms to polyhedral models is in gener-
ating appropriate point samples on the boundary to ensure
a tight approximation of the medial axis. In general, the
worst-case running time of these algorithms can be O(n2),
where n is the number of point samples. Recently, Attali
and Boissonnat [2] have shown that the running time is only
linear when the points are distributed on a fixed number of
well-sampled facets. However, the point sampling of the
surface has to satisfy certain criteria.

2.2 Medial Axis Simplification
A fundamental problem with the medial axis as a tool in

shape analysis and surface reconstruction is that it is un-

stable, in the sense that small perturbations in the surface
model lead to large changes in the structure of the medial
axis. For a polyhedral model, every pair of adjacent faces
produces a medial axis sheet extending to the edge connect-
ing the two faces, producing a cluttered and uninformative
medial axis. A number of methods for simplifying the me-
dial axis have been proposed.

One of the criteria to identify parts of a medial axis that
are stable is what we call the separation angle S(x). It
is the maximum angle formed by the vectors connecting the
medial axis point x to its closest points on the boundary, and
portions of the medial axis with a larger separation angle
tend to be more stable. This has been noted by several
researchers based on analyzing functions on the boundary
surface [4], investigating the effect of noise [3] or samples [7]
on the medial axis or in other skeleton-based applications
[26]. Amenta et al. [1] use a similar criterion to determine
whether a point on the medial axis is stable.

Dey and Zhao [13, 14] use a pair of criteria to retain
faces from the Voronoi diagram of a set of points. For one
criterion, they consider the angle between an approximate
inward-pointing surface normal and a Delaunay edge (dual
to a Voronoi face). If that angle is small, the Voronoi face
is retained. The other criterion retains Voronoi faces if they
are much farther from the surface sample points than the
sample points are from each other.

Styner et al. [27] iteratively merge and prune sheets ac-
cording to a pair of cost functions designed to minimize the
change to the reconstructed model. They achieve a sub-
stantial reduction in medial axis complexity while retaining
better than 98% volume overlap with the original model.

Choi and Seidel [10] study the stability of the medial axis
and derive a bound on one measure of the instability of the
medial axis for solids satisfying certain hypotheses.

3. θ-SIMPLIFIED MEDIAL AXIS
In this section we formally define the θ-SMA and give

some of its properties. While the relationship between the
separation angle and stability is well known, we are not

x S(x)

p1

p2

M

Figure 1: The separation angle S(x) for a point on the medial
axis. The thick border is the boundary of X.

aware of this particular subset of the medial axis being stud-
ied as an object in its own right. We show the degree to
which it is more stable than the medial axis. Moreover, we
define the θ-SMAT, which includes the distance information
just as the MAT does, and show that the original model
can be reconstructed from the θ-SMAT to an accuracy that
depends in a simple way on θ. The significance of this rela-
tionship is that it is a way of quantifying the importance of
the portion of the medial axis retained in the θ-SMA. If the
original model can be reconstructed with reasonable accu-
racy, then one can argue that the most significant portions
of the medial axis are being preserved.

Notation and Terminology: In this paper, vectors and
points will be in boldface. Sets and functions will generally
be denoted by capital letters. Unless otherwise specified, X
will denote a solid with a polyhedral boundary.

Given a set of geometric primitives S = {Pi}, the Voronoi

region of a primitive Pi is the set of points that are at least
as close to Pi as to any other primitive. The collection of
Voronoi regions is the generalized Voronoi diagram, or GVD.
The medial axis of a polyhedron is a subset of the GVD of
its faces, edges, and vertices.

We will say that an edge or vertex of X is reflex if its in-
cident faces are not coplanar and it intersects the boundary
of a ball whose interior lies in the interior of X.

Let X be a polyhedral solid with medial axis M . Re-
call that M can be characterized as the closure of the set
of points in the interior of X having at least two nearest
neighbors on the boundary of X. (Sometimes the require-
ment that the points be in the interior of X is relaxed.)
Consider a point x ∈ M , and let NS(x) denote the set of
its nearest neighboring points on the boundary of X. There
is a sphere centered at x that does not cross the boundary
of X, but that touches it at just the points of NS(x).

For each pair of points p1,p2 ∈ NS(x), we can consider
the angle

�
p1xp2. (We will treat all angles as values in

[0, π].) If x has more than two nearest neighbors, then we
consider the largest angle subtended by a pair of nearest
neighbors. We call this angle the separation angle S(x) for
the medial axis point x:

S(x) = max
p1,p2∈NSx

(
�
p1xp2)

(see Figure 1).

The intuitive motivation for this definition is as follows: If
the separation angle is exactly π, then x is directly between
its nearest neighbors, while if the angle is small, then both
neighboring points are on the same side of x, and there is
space on the other side of x that is, in a natural sense, deeper
in X.

Given an angle θ, define the θ-simplified medial axis Mθ of
X to be the set of points of M with separation angle greater
than θ. When we wish to emphasize the relationship of Mθ

to a particular solid X, we will write Mθ(X). The following
facts follow from the definitions of M and Mθ:

• The θ-SMAs are nested, with larger angles implying
smaller subsets. That is, if 0 < θ1 < θ2 < π, then
Mθ2

⊂ Mθ1
.

•
�

θ∈(0,π)

Mθ = M , where X denotes the closure of X.

In this sense we can say that Mθ → M as θ → 0. Note that,
even though we specified X as a polyhedral solid, all of the
above applies to any solid.

3.1 Quantifying the Significance of θ

In this section we derive a formula that quantifies the
degree to which the θ-SMA retains the significant portions
of the medial axis. It is well known that X can be recon-
structed from M along with the radius values for each point
on M . If we use Mθ instead of M in the reconstruction, then
we get a subset of X, which we can call Xθ . The accuracy
with which Xθ approximates X is a measure of the degree
to which Mθ captures the important geometric features of
X. Next, we formalize these notions, explaining what we
mean by the accuracy of the approximation, and show how
the accuracy is related to the separation angle θ, used as the
angle cutoff in simplifying the original medial axis.

Formally, the medial axis transform is the set of all maxi-
mal balls contained in X. The centers of the balls constitute
the medial axis, and retaining the balls is equivalent to re-
taining the radius information associated to each medial axis
point. We define the θ-simplified medial axis transform (θ-
SMAT) to be the subset of the MAT consisting of those balls
centered on points of the θ-SMA. X can be reconstructed
as the union of all the maximal balls in the MAT of X, and
Xθ ⊂ X is the union of the balls in the θ-SMAT of X. By
construction, Mθ is the medial axis of Xθ , but note that Xθ

may not correspond to a polyhedron.
We can measure how closely Xθ approximates X in two

ways. First, we can compare the volumes of the two spaces,
computing the ratio Vol(X)/Vol(Xθ), where Vol(X) denotes
the volume of X. Second, we can look at the distance be-
tween points on the boundary of Xθ and the nearest neigh-
boring points on X. For each point p on the boundary of
Xθ , there is a well-defined local radius R(p) given by the ra-
dius of the smallest maximal ball touching p (see Figure 1).
We can measure the local error as the distance from p to its
nearest neighbor p′ on the boundary of X, as compared to
the local radius of p. That is, the local error E(p) is defined
by

E(p) =
‖p − p′‖

R(p)
,

where p′ is the point on the boundary of X that is nearest
to p.

r
r
ext

p
1

p
2

p

Figure 2: Computing the error bound. The angle subtended
by p1 and p2 is equal to θ, so no circle tangent only to the
edges containing p1 and p2 is represented in Mθ. If the solid
circle is enlarged into the dashed circle, then the vertex p will
be included. The radius r is equal to the local radius R(p1) =
R(p2).

The following theorem shows how well Xθ approximates
X, as a function of θ.

Theorem 1. Let

g(θ) =
1�

1 − 4
3

sin2 θ
2

.

Then Vol(X)/Vol(Xθ) ≤ g(θ)3 and, for each point p on the

boundary of Xθ, E(p) ≤ g(θ) − 1.

Proof. We claim that, if all the balls of the θ-SMAT are
enlarged by a factor of g(θ), then their union will contain
X. The largest local feature that can be excluded from Xθ

is a corner such that the normals to the respective faces
differ by an angle no greater than θ. If all the balls are
enlarged by an appropriate ratio to include such corners,
then their union will include all of X. We will argue that
g(θ) as defined above is the required ratio by which all the
balls of the θ-SMAT must be enlarged to include all of X.

First consider the 2D analogue (Figure 2). If there are
two adjacent edges whose normals differ by an angle equal
to the threshold angle θ, then no disk tangent only to those
two edges will be added to the medial axis transform. Hence
a disk such as the one shown will be the medial axis disk
that is closest to the vertex p, and the external radius rext

is the radius to which that disk must be enlarged to contain
all of that corner. Thus, in two dimensions, g(θ) = rext/r =
sec(θ/2).

In three dimensions, the corresponding situation consists
of three faces coming together at p such that each pair of
normals differs by θ. Let x be the center of the maximal
ball closest to the extremal vertex p, and let p1, p2, and p3

be the points nearest to x on each of the three faces meeting
at p (see Figure 3).

Consider the planes passing through x, p, and pi for i = 1,
2, and 3. Since each pair of normals differs by the same
angle, these planes must have dihedral angles of 2π/3 to one
another, and the points p1, p2, and p3 form an equilateral
triangle in a plane orthogonal to xp. Let q be the point
where this plane crosses xp, and let q′ be the midpoint of

x p

q

q'

b

a

r=1

/2

p
1

Figure 3: Computing rext = ‖p−x‖. The vector (p1 −x) is
a normal vector from x to a face on the boundary of X. There
are two other such faces; the endpoints of the normal vectors
to those faces, p2 and p3, are not shown. The point q bisects
p1p2, which is one side of an equilateral triangle.

p1p2. Let rext = ‖p−x‖, and r = ‖p1 −x‖. Then our goal
is to compute the ratio rext/r. For convenience, assume
without loss of generality that r = 1, so that we only need
to compute rext.

If we denote
�
p1xp by α, then rext = 1/ cos α. We will

compute sin α. Let a = ‖p1 − q′‖, and b = ‖p1 − q‖. Then
b = sin α, and a = sin(θ/2). (This is because

�
p1xp2 = θ.)

Also, a = b
√

3/2 because p1q′ is perpendicular to qq′, and
m

�
p1qq′ = π/3. Bear in mind that q is the center of the

equilateral triangle 4p1p2p3. Thus,

sin α = b =
2√
3
a =

2√
3

sin θ/2.

Therefore,

rext =
1�

1 − sin2 α
=

1�
1 − 4

3
sin2 θ

2

3.2 Stability and Connectivity
In this section we discuss the stability of Mθ , that is, how

much it is altered by small changes in X. We also observe
that Mθ is not guaranteed to preserve the connectivity prop-
erties of X.

One of the benefits of the θ-SMA is that it is more stable
than the medial axis. The medial axis of a finely tessel-
lated polyhedron will have a sheet for every adjacent pair of
faces, and many other pairs as well. The θ-SMA will only
retain sheets for pairs of faces whose normals differ by an
angle greater than θ, and thus, whose respective dihedral
angles are less than π − θ. Thus, introducing new vertices
to generate a finer tessellation of the model will not create
new sheets of the θ-SMA unless the new faces that are in-
troduced to the polyhedron create sufficiently small angles
with each other or with other faces in the model.

However, by design the θ-SMA detects small, elongated
features, as in Figure 4. If such features are expected to
arise as noise, then the θ-SMA will be affected by the noise.
The relationship of θ to the stability of the simplified medial
axis is illustrated by Figure 5.

The θ-SMA does not in general preserve the homotopy
type of the model. It can be disconnected and have holes,
even if X is simply connected. In Figure 4, Mθ(X) is shown
for θ ≈ π/3. The point x is on the medial axis of the space

Head model θ = 5◦ θ = 15◦ θ = 60◦.

Triceratops model θ = 15◦ θ = 30◦ θ = 60◦.

Figure 5: Different Θ-SMA for the same model. As the separation angle increases, the number of high frequency or sharp
components decreases.

Figure 4: Disconnectedness. The point x is on the medial
axis but has a small separation angle.

X, but not on Mπ/3 because its separation angle is too low.
If x were to move towards the rectangular feature at the
top, the separation angle would increase until it exceeded
the threshold angle, at which point x would be on Mπ/3.

This lack of a connectivity guarantee can be problematic
for some applications. However, for others, what is desired
is a characterization of the geometric properties of an ob-
ject whose connectivity may already be understood. Also,
it is possible to use a larger value of θ to select significant
components of the object, and then compute again with a
smaller value of θ to achieve improved connectivity. The
more connected version can then be pruned, retaining just
enough information to connect the components correspond-
ing to the larger value of θ.

Finally, if it is desired to simplify X, one can remove small
detached components of Mθ, yielding a pruned version of the

θ-SMA. After that one can reconstruct an approximation to
X from the pruned θ-SMA.

4. ALGORITHM
In this section we present a fast algorithm to approximate

Mθ(X). The algorithm has two variations, one based on a
uniform voxel grid, and the other on an adaptive subdivi-
sion of space. We first give an overview of the algorithm.
We then describe in more detail the criterion we use to de-
termine whether to add a face to the representation of Mθ,
after which we describe the different spatial subdivision ap-
proaches. We conclude by describing two approaches to im-
proving the surface representation of the θ-SMA.

The algorithm is based on a vector field that we call the
neighbor direction field of X, denoted NX . If x is a point
having a unique nearest neighbor p on the boundary of X,
then

NX(x) =
1

‖p − x‖ (p − x).

This field consists of the negated gradients of the distance
field defined by the boundary of X, and it is well-defined
everywhere outside the boundary and medial axis of X.

Using NX , we define a separation criterion to determine
whether an arbitrary line segment in the interior of X crosses
a sheet of the medial axis. The essence of the criterion is
that two points x1 and x2 are taken to be on opposite sides
of a medial axis sheet if NX (x1) and NX (x2) diverge. We
use this criterion to test either the centers of the voxels of a
uniform grid, or the cell vertices of an adaptive subdivision.

When a pair of points passes the separation criterion, we
add a facet between them to our model of Mθ . Once the
polygonal model is generated, it can be filtered to improve
the fit of the represented sheets to those of the actual θ-

p
v
1

v
2

x
1 x

2

Figure 6: The direction vectors at neighboring voxels can
differ by a large angle even when the voxels are not on different
sides of the medial axis.

SMA.

4.1 The Separation Criterion
For a given pair of points we first determine the angle

between the respective direction vectors given by NX . If
the angle is not greater than the threshold θ then we reject
the pair. However, if it is greater than the threshold, we
need to be careful to avoid false positives. If, say, a reflex
vertex is the nearest neighbor to both points in a pair, then
both direction vectors will converge towards the vertex (see
Figure 6).

If the points are close enough to the vertex, then the angle
between the vectors can be greater than the threshold, even
though the segment between the points does not cross the
medial axis.

To avoid this error, we need to check whether the vectors
diverge. We check this condition by ensuring that the heads
of the vectors are at least as far apart as the tails, where
the lengths of the vectors are scaled to equal the separation
between the neighboring points.

Given the separation criterion, we present algorithms for
two spatial subdivision schemes, namely a uniform grid and
an adaptive grid.

4.2 Uniform Subdivision
The simplest spatial subdivision is a uniform grid. There

are efficient ways to compute a distance field and its gradient
that make use of the uniformity of the grid [17, 12]. We
extend the algorithm presented in [17] for fast computation
of the distance field.

Our goal is to create a uniform sampling of the direction
field of the model X. We divide the volume into an axis-
aligned voxel grid, referring to a set of voxels with a constant
z-value as a slice. The algorithm we use relies on the parallel
nature of interpolation-based graphics hardware to perform
the computation efficiently for one slice at a time. The al-
gorithm simultaneously computes a distance field and a di-
rection field over a uniform 2D grid for each slice. We will
describe the computation of the distance field first and then
explain how we use it for direction computation. For each
slice, the distance field is a scalar function DX : � × � → � .
If we decompose X into sub-objects Xi, then DX is deter-
mined by the lower envelope (or minima) of the set of all
the distance functions DXi

. We thus decompose X into its
faces, edges, and vertices and compute the lower envelope
of the distance fields of each of these primitives.

The distance functions of these primitives can be repre-
sented in a simple form. We highlight these functions for
points, lines and planes. For edges and triangular faces,
these definitions are combined in piecewise fashion to rep-
resent the full distance field for the primitive. We describe
formulas for the slice z = 0 and for primitives placed in par-

ticularly convenient configurations. The general forms can
be derived by simple coordinate transformations.

For a point p = (0, 0, c) and the slice z = 0, the distance
field is the hyperboloid

Dp(x, y) =
�

x2 + y2 + c2.

For a point with arbitrary coordinates we perform a trans-
lation on the distance field.

For the line L in the xz plane given parametrically by
(ta, 0, tc) with a2 + c2 = 1, the distance is given by the
elliptical cone

DL(x, y) =
�

x2c2 + y2.

For a general line, we perform a translation and a rotation.
Finally, let F be the plane defined by the equation ax +

by + cz + d = 0. If we assume that a, b, and c are chosen so
that a2 + b2 + c2 = 1, then the distance from a point to the
plane is simply found by evaluating the left-hand side of the
equation at that point. Thus, for the slice z = 0 we have

DF (x, y) = ax + by + d.

In 3-space, the Voronoi region of the interior of a triangu-
lar face is defined by the three planes perpendicular to the
face and passing through the edges. Points in this region
are closer to the interior of the triangle than any of its edges
or vertices. Similarly, the Voronoi region of the interior of
a segment is defined by the planes normal to the segment
and passing through the endpoints. For points outside the
Voronoi region of the interior of a face or segment, we define
the distance to be infinite by convention. Then, when the
lower envelope of the distance fields for all the faces, edges
and vertices is taken, the proper nearest neighbor will be
determined for each point.

As we generate the distance field for each primitive, we
also generate the direction field for that particular primitive.
The distance field allows the lower envelope to be defined,
and the lower envelope determines, for each point in the
volume, which primitive defines the direction field at that
point. With the point p, the line L, and the plane F defined
as above, unnormalized direction fields are given by

Np(x, y) = (−x,−y, c)

NL(x, y) = (−xc2,−y, xac)

NF (x, y) = −(ax + by + d)(a, b, c)

To extract Mθ, we construct NX for each slice by com-
bining the direction fields for the primitives of X. We then
evaluate each pair of voxels in the x, y, and z directions,
adding a face to the approximate θ-SMA for each pair that
passes the separation test. The computation of the distance
field and the direction field maps very well to the rasteriza-
tion hardware. More details are given in Section 6.

4.3 Adaptive Subdivision
Given the non-linear nature of the medial axis, in many

applications it is possible to compute a better approxima-
tion by using a non-uniform grid. We present an algorithm
based on octree subdivision of the space. This approach re-
quires two primitive operations. First, one needs to evaluate
the neighbor direction field NX(x) at an arbitrary point x

in the volume of interest. Second, one must be able to de-
termine whether an axis-aligned box contains, overlaps, or
is contained by the object X. Both of these tests can be

performed quickly using either a spatial subdivision to in-
dex the faces of the boundary of X, or by using a bounding
volume hierarchy of X. There are standard collision detec-
tion packages that also provide the capability for distance
queries, an example being PQP [20]. While these algorithms
have been designed for object-object distance computation,
it is straightforward to modify them to handle point-object
computation. For instance, given a bounding volume hierar-
chy of the object, one can compute the feature on X that is
closest to x by computing the distance from x to the bound-
ing volumes at different levels in the hierarchy. Given the
closest feature, the algorithm also computes the direction
vector from x.

Using these two primitive operations, the algorithm is as
follows:

1. Begin with a single cell containing X.

2. Until a chosen cell size is reached, iteratively subdivide
the cells that either

(a) contain at least part of X but are not contained
in X, or

(b) are contained in X and have a pair of neighboring
cell vertices that meet the separation criterion.

3. For each pair of vertices meeting the separation crite-
rion, add a face to the medial axis as in the uniform
grid approach.

This algorithm is more memory efficient, as well as more
time efficient (in terms of operation count), than the the
uniform grid algorithm. However, the uniform subdivision
scheme is simpler to implement and maps well to the ras-
terization hardware.

4.4 Refining the Medial-Axis Approximation
The polyhedral approximation generated by the spatial

subdivision schemes represents the θ-SMA up to a specified
resolution. However, the sheets of the medial axis (which
correspond to a portion of a quadric surface) are not well
approximated by the axis-aligned facets of the voxel grid.
In this section, we present two methods to refine the medial
axis approximation.

Smoothing. When we use uniform subdivision of space,
the algorithm we we use to compute the distance field pro-
duces distance values with a bounded error, with a bound
equal to half the diagonal width of a voxel. For this reason,
we cannot use the distance mesh to achieve subpixel accu-
racy in placing the faces of the medial axis mesh. However,
we use the smoothing algorithm proposed by Taubin [28],
a fast, non-shrinking smoothing filter. Because this filter
is non-shrinking, it retains the shape of the medial axis
sheets, while avoiding the stair-stepping appearance of the
axis-aligned faces.

Iterative Retraction. We have described an approach to
perform distance queries (to the boundary) and direction
computation at arbitrary points in the space. Based on this
information, we can quickly find points that are very close
to the medial axis. Let x be a point in the interior of X, but
not on the medial axis. Let p be the unique point on the
boundary of X nearest to x, and let p′ be any other point on
the boundary of X. Then p′ places an upper bound on how
far x can be from the medial axis. Let Sx,p be the sphere

Figure 7: The first step in an iterative refinement of the
approximate θ-SMA. x is the initial guess, and p is the nearest
neighbor of x on the boundary. Sx,p is the center centered
on x and passing through p. There is a maximal circle Smax

(not shown) that is contained in X and contains Sx,p. We
approach the medial axis by approaching Smax. Smax touches
the boundary in at least two places. p′ and p′′ are successive
approximations to to the second point where Smax touches the
boundary of X.

centered at x and passing through p, with radius ‖x − p‖.
Since x is not on the medial axis, Sx,p is not a maximal
sphere. Let Smax be the maximal sphere containing Sx,p.
Then Smax exhibits the following properties:

• It will be tangent to Sx,p, and hence centered on the
line px passing through p and x.

• It will be no larger than the unique sphere S′ centered
on px and passing through both p and p′, because S′

already touches two points on the boundary of X.

The center x′ of S′ is the most distant possible point from
x where px could cross the medial axis. See Figure 7.

In this way, points on the medial axis are computed us-
ing an iterative algorithm. The algorithm proceeds in the
following manner: Once S′ is found, we can define x′ to be
its center, and choose a new point p′′ on the boundary of
X as the boundary point nearest x′. Using p′′ in place of
p′, we construct S′′, and repeat the process. As we perform
more iterations, a sequence of circles is constructed that ap-
proaches Smax. This algorithm fits quite well with the adap-
tive subdivision approach as now we can compute vertices
that are very close to the medial axis. Our method is simi-
lar to a method used by Wilmarth, Amato, and Stiller [31]
to retract randomly generated sample points to the medial
axis.

5. ANALYSIS
In this section, we analyze the performance of our algo-

rithm. This includes the accuracy of our approximation as
well as the running time.

5.1 Accuracy
In this section we show that the discrete approximation

computed by our algorithm converges to the actual θ-SMA
as the resolution becomes arbitrarily fine. As before, let X
be a polyhedral subspace of � 3 , and let M be the medial
axis of X. Let Ẋ denote the interior of X. For a given ε >
0, let θ-simplified medial axis, Mε,θ , be the approximation
produced by our algorithm at the resolution ε.

The idea of our argument is that our algorithm estimates
the set of points over which the neighborhood direction field

NX is discontinuous. The following theorem says that, in-
side X, the direction field can only be discontinuous at the
medial axis. Since the direction field is not defined on the
medial axis, it follows that, in Ẋ, the medial axis is precisely
the set of discontinuities of the direction field. We prove it
based on the following theorem.

Theorem 2. The neighbor direction field NX is continu-

ous on the space Ẋ \ M .

Proof. Let x ∈ Ẋ be a point not on M . Either x is
in a Voronoi cell of one of the faces, edges, or vertices of
the boundary of X, or it is on the boundary between the
Voronoi cells of a reflex edge and a face, or between the cells
of a reflex vertex and a reflex edge. For each of these cases
the distance field can be computed explicitly and is shown
to be continuous in a neighborhood of x.

The result does hold for all curvilinear shapes of practi-
cal interest as well, but there are pathological cases where it
fails. Choi, Choi, and Moon [9] give examples of such patho-
logical cases in two dimensions, along with easily-satisfied
criteria to ensure that a region does not exhibit such behav-
ior.

Theorem 3. For a given ε > 0, the ε, θ-SMA is within

a Hausdorff distance of
√

3ε/2 from a subset of the medial

axis of X.

Proof. Let F be any face of Mε,θ. F is a square face
separating two voxels that satisfied the separation criterion.
Let x1 and x2 denote the centers of those two voxels. Note
that F is nowhere more than

√
3ε/2 from the most distant

point on the segment x1x2, because each cubical voxel has
side ε, and the distance from the center of a cube to the
farthest point on its face is

√
3/2 times the side of the cube.

We will show that the medial axis of X passes between x1

and x2. It follows that no point on F is farther than
√

3ε/2
from some point on the medial axis.

Let pi be the point on the boundary of X that is nearest
xi, for i = 1, 2. The separation criterion ensures that the pi

are farther apart than the xi, which implies that the pi are
on different features (faces, edges, or vertices) of the poly-
hedral boundary of X. This inference follows by considering
each type of feature in turn. Certainly the pi cannot be on
the same vertex. If the pi are on the same edge, then the
lines Li containing pi and xi for each i are perpendicular
to the edge. Thus the distance from p1 to p2 is the nearest
distance from L1 to L2, and so x1 can be no closer to x2.
The same reasoning applies to show that the pi cannot be
on the same face.

For each t with 0 ≤ t ≤ 1, define x(t) to be (1 − t)x1 +
tx2, so that x(t) traverses the segment x1x2. For each t,
let p(t) be the nearest neighbor to x(t), if the neighbor is
unique. There cannot be a path traversed by p(t) from
p1 to p2 that only crosses reflex vertices and edges, since
the direction vectors converge towards such edges, and the
vectors at the endpoints of the segment diverge. Hence,
there must be an intervening convex edge or vertex, resulting
in a discontinuity in the direction field. Therefore, x1x2

crosses the medial axis, and hence F is entirely within the
specified bound.

We have shown Mε,θ is within a bounded distance of the
medial axis of X. It remains to show that it actually con-
verges to Mθ .

Theorem 4. The ε, θ-SMA converges to the θ-SMA in

Hausdorff distance as ε → 0.

Proof. We need only consider the sheets, since the dis-
tance from the seams to the sheets is zero. Consider a point
x on a sheet of Mθ. Let v1 and v2 be the unit direction vec-
tors to its two nearest neighbors. Recall that S(x) denotes
the separation angle for x, that is, the angle between v1 and
v2. Since x is on Mθ, S(x) > θ. Let η = (S(x) − θ)/2. By
the continuity of NX , there is a neighborhood B containing
x such that the angle between NX(x′) and vi is less than η
for each x′ in B and on the same side of the medial axis as
vi.

Now for sufficiently small ε, there will be adjacent voxels
in the lattice of Mε,θ such that both voxels are contained in
B, and the voxel centers are on opposite sides of the medial
axis. Each such pair of voxels determines a face of Mε,θ that
is contained in B. Since this applies for any sufficiently small
neighborhood of x, this shows that the minimum distance
from x to Mε,θ can be made arbitrarily small. Combined
with Theorem 3, this completes the proof.

5.2 Time Complexity
In this section we discuss the time complexity of our algo-

rithm. For the uniform grid approach, the analysis depends
on the computational model that is used for the graphics
hardware. If we assume that the hardware takes a a con-
stant amount of time to render the distance field for each
primitive, then the algorithm we use to compute the direc-
tion field requires time Θ(p/ε) where ε is the resolution and p
is the number of primitives (faces, edges, and vertices) in the
model. Extracting the θ-SMA requires a single pass through
the volume, requiring time proportional to 1/ε3, so that the
running time for the entire algorithm is Θ(p/ε+1/ε3). If we
assume that rendering a slice of a distance field takes time
proportional to the number of voxels in the slice, then the
total time is Θ(p/ε3) or, equivalently, Θ(pv), where v is the
number of voxels.

For the approach using an adaptive subdivision, the run-
ning time is highly output sensitive. We note that each
distance query can require time logarithmic in the size of
the model, using current techniques, but the constant factor
is quite small.

6. IMPLEMENTATION AND RESULTS
In this section we describe the implementation of our algo-

rithm and highlight its performance on a number of complex
benchmarks.

6.1 Implementation
We implemented the system in C++ using Microsoft Vi-

sual Studio, with OpenGL as our graphics API. Our imple-
mentation for computing the distance field is based on the
techniques described in Hoff et al. [17]. In that approach, a
volume is processed one slice at a time. For each slice, and
each geometric primitive in the model, a surface, called a
distance mesh, is rendered such that the depth buffer con-
tains the shortest 3-space distance from each point in the
slice to the given geometric primitive (which may not be
in the given slice). If a pixel from a given primitive’s dis-
tance mesh passes the depth test, then the pixel is in that
primitive’s Voronoi region.

We extend this method to acquire direction information
as well, by encoding the directions to the nearest primitive

Model Tris Resolution T(���) T(SMA)
Bent Torus 2,000 127x128x42 5.42 0.321
Cassini PM 90,879 23x32x24 141 0.661
Cassini PM 90,879 94x128x96 1329 45.6
Buddha 1 15,536 55x128x55 35.7 5.5
Buddha 2 67,240 222x512x222 1634 48.8
Buddha 3 1,087,474 55x128x55 1588 1.17
Skel. Hand 654,666 79x106x127 602 0.07
Elbow Pipe 5,306 96x59x77 6.95 1.10
Elbow Pipe 5,306 128x79x103 10.8 3.87
Elbow Pipe 5,306 192x119x155 20.4 5.59
Elbow Pipe 5,306 256x159x207 33.1 8.24
Elbow Pipe 5,306 512x318x414 127 69.3
Bunny 69,451 64x63x50 77.4 0.12
Bunny 69,451 128x126x100 238 0.982
Bunny 69,451 256x253x200 794 2.51
Head 21,764 31x41x50 13.3 0.09
Head 21,764 79x106x127 57.8 0.22
Primer Anvil 4,340 128x73x112 8.99 0.61
Shell Charge 4,460 126x128x126 33.0 10.9

Table 1: Timings for some models at various resolutions.
The Buddha model is shown at three different levels of detail.
Model: Name of the model. Tris: Number of triangles in
the model. Resolution: Number of voxels along each dimen-
sion. T(NX): Time to compute the neighbor direction field.
T(SMA): Time to extract the θ-SMA. All timings are in sec-
onds on a 2Ghz Pentium 4 with an nVidia geForce 4 graphics
card.

in the red, green, and blue channels of the color buffer. Both
the directions and distances are linearly interpolated across
each triangle of the distance mesh, which is a source of error
that grows with the size of the triangles. The distance mesh
is designed to adjust the size of the triangles to keep the
error within acceptable bounds.

We encode the gradient vector at each vertex of the dis-
tance mesh. It is important to keep in mind that each trian-
gle is part of a distance mesh associated both to a geometric
primitive and a slice of the volume. The slice corresponds
to a z-value in the volume, but the z-coordinates of the
rendered triangles correspond to distances from the slice to
the primitive. The colors, likewise, correspond to directions
from points on the slice to the primitive. Henceforth, when
we refer to a given triangle of a distance mesh, we imply the
projection of the triangle onto the specified slice.

Each direction vector is of unit length, with the x, y, and
z components represented by the red, green, and blue color
components respectively. As the components are interpo-
lated across the triangle, the magnitude differs from unit
length, so that the vectors must be normalized after being
read back and before computing a dot product to test the
separation angle. The direction differs from the true direc-
tion. Consider a vertex which we can assume to be located
at the origin, and a particular slice located at some depth z.
Let p1, p2, and p3 be the vertices of a mesh triangle that
has been projected into the plane of the slice. Then a point
in the triangle can be expressed as a sum � tipi with ti cho-
sen so that � ti = 1 (that is, in barycentric coordinates).
The true unit vector pointing towards the vertex is

v = − � tipi

‖ � tipi‖
,

Figure 8: A torus and its θ-SMA. 2000 triangles. The grid
resolution is 127x128x42.

a. b.

Figure 9: The “primer anvil” for a shotgun shell. 4,340
triangles, SMA computed at 128x73x112 resolution. (a) The
model. (b) The θ-SMA. The seams and boundary curves of
the θ-SMA are shown.

while the estimated vector is

ṽ = − � tip̂i

‖ � tip̂i‖
,

where p̂ = p/‖p‖. Then the error in the direction is given
by the angle cos−1(v · ṽ). We do not have a good bound
on this expression other than to say that it is bounded by
the largest angle subtended by the triangle from the point
of view of the primitive. We also note that, for triangles,
which are treated as primitives separately from their edges
and vertices, there is no interpolation error because the di-
rection vector is constant. Thus, for a voxel inside a convex
polyhedron, the only source of error in direction is the fact
that each component of the vector can only be expressed
with 8 bits of precision in the color buffer.

An alternative approach is to encode the full vector from
each point on the slice to the given primitive, rather than
a unit-length direction vector. This approach raised con-
cerns with discretization error. However, with the advent
of floating-point color buffers, that objection may not be a
concern in the future.

6.2 Benchmark Models
We applied our algorithm to polygonal models of various

sizes, ranging from 2,000 triangles to more than 1 million.

a. b.

Figure 10: Shotgun shell “charge” with 4460 triangles. The
grid resolution is 126x128x126. (a) The model. (b) Cross
section, showing different sheets in different shades.

Some of the models were triangulations of scanned data, and
others were CAD models. In general, scanned models have
triangles with good aspect ratios and uniformly distributed
over its boundary. However, many of these models have
a high genus. On the other hand, the CAD models tend
to have many sharp edges and uneven or high-aspect-ratio
triangles.

In our analysis, X has been a solid with a polyhedral
boundary. Our models are polygonal, and some of them do
not bound solids. The definition of the medial axis extends
naturally to such cases, and to solids for which we wish to
analyze the exterior as well as the interior. For models that
do have a well-defined interior, our implementation has an
option to compute the medial axis for the interior only. As
an optimization, when only the interior medial axis is being
computed, distance meshes for convex vertices and edges are
not rendered during distance field computation.

6.3 Performance
In our tests (Table 6.1), the bulk of the computation time

is taken by the computation of distance fields. Comparing
running times for different resolutions shows an increase that
is more than linear but less than cubic in the number of
voxels along one dimension.

Except where otherwise specified, the separation angle
θ = 60◦, and the θ-SMAs have been smoothed. The res-
olution is specified in terms of the dimensions of the scene.
The relative dimensions of the volume were determined by
slightly enlarging a tight bounding box for the model. Then
the number of voxels along the longest dimension could be
chosen, which governed the number of voxels along the other
dimensions. All the voxels are cubical, as the dimensions of
the bounding box were adjusted to be an integral number
of voxels in each direction.

7. COMPARISON WITH OTHER
APPROACHES

There are by now a large array of approaches for com-
puting as well as simplifying the medial axis. Performance
comparisons between them are difficult, because they make
different assumptions about the input, and generate differ-
ent kinds of medial axis approximations as output.

The two main features of our approach are, first, that it
computes the θ-SMA and not the entire medial axis, and,

a. b.

Figure 11: Buddha model with 1,087,474 triangles. The grid
resolution is 55x128x55.

second, that we use a fast algorithm based on uniform spatial
subdivision to compute the distance field and its gradient.
As a result, we are able to compute good approximations of
the θ-SMA for complex models in a few minutes.

Tracing algorithms [11, 23, 24] are much more time con-
suming and have only been applied to models consisting of a
few hundred triangles. The adaptive subdivision algorithms
of [30] and [16] computed the generalized Voronoi diagram,
rather than the medial axis. Their methods were only ap-
plied to models with up to a few hundred polygons. Our
algorithm with adaptive subdivision is similar in approach
to that of [30], though we use much faster sub-algorithms
for distance computation.

The surface sampling approaches such as those of [6], [1],
and [13], take point samples on the surface as input, rather
than the boundary features of a polyhedron. The accuracy
and topology of the resulting medial axis varies considerably
based on the sampling criterion used to generate the point
samples. This makes it difficult to compare the approaches.
Amenta et al. [1] report times of roughly six minutes for
models of around 30, 000 points, and Dey et al. [13] process
around 122, 000 points in a little over five minutes.

8. CONCLUSION
We have presented a medial axis approximation, the θ-

SMA, based on the idea of the separation angle for a point
on the medial axis. The criterion characterizing the θ-SMA
is easy to understand and analyze, and it results in a more
stable structure than Blum’s medial axis. In practice, it is
able to detect and capture most of the sharp features of the
original model. We have presented a formal characterization
of the simplification of θ-SMA as a function of θ.

Figure 12: Skeleton hand with 654,666 triangles. The grid
resolution is 79x106x127. No smoothing was performed.

We have described two algorithms for fast approximating
the θ-SMA. One, using a uniform grid, is well-suited for im-
plementation using the parallel features of modern graphics
hardware. We have highlighted its performance on a num-
ber of complex benchmarks. The other algorithm uses an
octree decomposition, in order to reduce the memory ex-
pense and make the time efficiency more output-dependent.
Both algorithms fit into a consistent framework; both pro-
duce approximations that remain within a specified distance
of some part of the full medial axis. We have analyzed the
approximation errors produced by our algorithm.

There are a number of areas of future work. The key
to our use of graphics hardware is that the direction vec-
tor field, stored as RGB triples, is associated to the scalar
distance field, represented as depth values. This approach
could be applied more generally to other pairs of associated
vector and scalar fields. The use of graphics hardware for
general computing purposes is currently an active area of re-
search. We would like to compute the θ-SMA of solids with
curved boundaries as well as procedural models. Moreover,
we would like to use θ-SMA for different applications includ-
ing mesh generation and shape analysis.

9. ACKNOWLEDGMENTS
We would like to thank Nancy Amato, the Stanford Uni-

versity Computer Graphics Laboratory, the Georgia Tech
Large Models Archive, and NASA, for the use of polyhe-
dral models. We also thank Kenny Hoff for his HAVOC
software and for many helpful discussions, and we thank
the reviewers for a number of suggestions on the exposition.
Finally, this work has been supported in part by ARO Con-
tract DAAD19-99-1-0162, NSF awards ACI 9876914, IIS-
982167, ACI 0118743, ONR Contracts N00014-01-1-0067
and N00014-01-1-0496, by the National Library of Medicine,
and by Intel Corporation.

a. b.

c. d.

Figure 13: Elbow pipe, at varying resolutions. (a) The
model. Figures (b), (c) and (d), correspond to 128, 256, and
512, voxels along the longest side, respectively. The gap visi-
ble in (b) and (c) shows where the interior of the pipe model
is separated by a surface into two compartments. The gap is
not visible in (d) only because the angle of the scene is slightly
different. The θ-SMA is not smoothed.

Figure 14: Bunny. 69,451 triangles, 128x126x100. (a) The
bunny in wireframe, with the medial axis. (b) The θ-SMA.

10. REFERENCES
[1] N. Amenta, S. Choi, and R. Kolluri. The power crust. In

ACM Symposium on Solid Modeling and Applications,
pages 249–260, 2001.

[2] D. Attali and J. Boissonnat. A linear bound on the
complexity of the delaunay triangulation of points on
polyhedral surfaces. In Proc. of ACM Solid Modeling, pages
139–146, 2002.

[3] D. Attali and A. Montanvert. Computing and simplifying
2d and 3d continuous skeltons. Computer Vision and
Image Understanding, 67(3):261–273, 1997.

[4] J. August, A. Tannebaum, and S. Zucker. On the evolution
of the skelton. In Proc. of Int. Conf. on Computer Vision,
1999.

[5] H. Blum. A transformation for extracting new descriptors
of shape. In W. Wathen-Dunn, editor, Models for the
Perception of Speech and Visual Form, pages 362–380.
MIT Press, 1967.

[6] J.-D. Boissonnat. Geometric structures for
three-dimensional shape representation. ACM Trans.
Graph., 3(4):266–286, 1984.

[7] J.-D. Boissonnat and F. Cazls. Smooth surface
reconstruction via natural neighbour interpolation of
distance functions. pages 223–232, 2000.

Figure 15: Propulsion module of the Cassini spacecraft.
90,879 triangles, 94x128x96. (a) The model. (b) The model
in cross section, with the θ-SMA shaded based on the distance
to the boundary. In this example, the θ-SMA is not restricted
to the interior of the model.

[8] C.-S. Chiang. The Euclidean distance transform. Ph.D.
thesis, Dept. Comput. Sci., Purdue Univ., West Lafayette,
IN, Aug. 1992. Report CSD-TR 92-050.

[9] H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical
theory of medial axis transform. Pacific Journal of
Mathematics, 181(1):56–88, 1997.

[10] S. W. Choi and H.-P. Seidel. Linear onesided stability of
mat for weakly injective 3d domain. In 7th ACM Sympos.
Solid Modeling Applications, pages 344–355, 2002.

[11] T. Culver, J. Keyser, and D. Manocha. Accurate
computation of the medial axis of a polyhedron. In Proc.
Symposium on Solid Modeling and Applications, pages
179–190, 1999.

[12] P.-E. Danielsson. Euclidean distance mapping. Computer
Graphics and Image Processing, 14:227–248, 1980.

[13] T. K. Dey and W. Zhao. Approximate medial axis as a
Voronoi subcomplex. In 7th ACM Sympos. Solid Modeling
Applications, 2002.

[14] T. K. Dey and W. Zhao. Approximating the medial axis
from the Voronoi diagram with a convergence guarantee. In
European Symposium on Algorithms, 2002.

[15] D. Dutta and C. M. Hoffmann. A geometric investigation of
the skeleton of CSG objects. In Proc. ASME Conf. Design
Automation, 1990.

[16] M. Etzion and A. Rappoport. Computing the Voronoi
diagram of a 3-D polyhedron by separate computation of
its symbolic and geometric parts. In Proc. Symposium on
Solid Modeling and Applications, pages 167–178, 1999.

[17] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha.
Fast computation of generalized voronoi diagrams using
graphics hardware. Proceedings of ACM SIGGRAPH 1999,
pages 277–286, 1999.

[18] C. M. Hoffmann. How to construct the skeleton of CSG
objects. In Proc. 4th IMA Conf. on The Mathematics of
Surfaces, Bath, UK, 1990. Oxford University Press.

[19] L. Lam, S.-W. Lee, and C. Y. Chen. Thinning
methodologies—a comprehensive survey. IEEE
Trans. PAMI, 14(9):869–885, 1992.

[20] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast
proximity queries with swept sphere volumes. Technical
Report TR99-018, Department of Computer Science,
University of North Carolina, 1999.

[21] V. Milenkovic. Robust construction of the voronoi diagram
of a polyhedron. In Proc. 5th Canad. Conf. Comput.
Geom., pages 473–478, 1993.

[22] I. Ragnemalm. The euclidean distance transformation in
arbitrary dimensions. Pattern Recognition Letters,
14:883–888, 1993.

[23] J. Reddy and G. Turkiyyah. Computation of 3d skeltons
using a generalized delaunay triangulation technique.
Computer-Aided Design, 27:677–694, 1995.

[24] E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson.
Computation of the medial axis transform of 3-D
polyhedra. In Proc. Symposium on Solid Modeling and
Applications, pages 187–199. ACM, 1995.

[25] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker.
The hamilton-jacobi skeleton. In International Conference
on Computer Vision, pages 828–834, 1999.

[26] D. W. Storti, G. M. Turkiyyah, M. A. Ganter, C. T. Lim,
and D. M. Stal. Skeleton-based modeling operations on
solids. In Proc. Symposium on Solid Modeling and
Applications, pages 141–154, 1997.

[27] M. Styner, G. Gerig, S. Joshi, and S. Pizer. Automatic and
robust computatoin of 3D medial models incorporating
object variability. International Journal of Computer
Vision, To appear.

[28] G. Taubin. A signal processing approach to fair surface
design. In Proc. of ACM SIGGRAPH, pages 351–358, 1995.

[29] G. M. Turkiyyah, D. W. Storti, M. Ganter, H. Chen, and
M. Vimawala. An accelerated triangulation method for
computing the skeletons of free-form solid models. Comput.
Aided Design, 29(1):5–19, Jan. 1997.

[30] J. Vleugels and M. Overmars. Approximating generalized
Voronoi diagrams in any dimension. Technical Report
UU-CS-1995-14, Department of Computer Science, Utrecht
University, 1995.

[31] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Motion
planning for a rigid body using random networks on the
medial axis of the free space. Proc. of the 15th Annual
ACM Symposium on Computational Geometry (SoCG’99),
1999.

[32] Y. Y. Zhang and P. S. P. Wang. Analytical comparison of
thinning algorithms. Int. J. Pattern Recognit. Artif. Intell.,
7:1227–1246, 1993.

Appeared in the 2003 ACM Solid Modeling Conference Proceedings

Fast Swept Volume Approximation of Complex Polyhedral Models

Young J. Kim Gokul Varadhan Ming C. Lin Dinesh Manocha

Department of Computer Science, UNC-Chapel Hill
{youngkim,varadhan,lin,dm}@cs.unc.edu

Abstract

We present an efficient algorithm to approximate the swept
volume (SV) of a complex polyhedron along a given trajec-
tory. Given the boundary description of the polyhedron and
a path specified as a parametric curve, our algorithm enu-
merates a superset of the boundary surfaces of SV. It consists
of ruled and developable surface primitives, and the SV cor-
responds to the outer boundary of their arrangement. We ap-
proximate this boundary by using a five-stage pipeline. This
includes computing a bounded-error approximation of each
surface primitive, computing unsigned distance fields on a
uniform grid, classifying all grid points using fast marching
front propagation, iso-surface reconstruction, and topologi-
cal refinement. We also present a novel and fast algorithm
for computing the signed distance of surface primitives as
well as a number of techniques based on surface culling, fast
marching level-set methods and rasterization hardware to
improve the performance of the overall algorithm. We ana-
lyze different sources of error in our approximation algorithm
and highlight its performance on complex models composed
of thousands of polygons. In practice, it is able to com-
pute a bounded-error approximation in tens of seconds for
models composed of thousands of polygons sweeping along
a complex trajectory.

Keywords: Computational geometry, Virtual environ-
ments and prototypes, Blends, sweeps, offsets & deforma-
tions, Geometric and topological representations

1 Introduction

Swept volume (SV) is the volume generated by sweeping
a solid or a collection of surfaces in space along a smooth
trajectory. The problem of SV computation arises in differ-
ent applications, including NC machining verification [Black-
more et al. 1997; Boussac and Crosnier 1996], geometric
modeling [Conkey and Joy 2000; Madrigal and Joy 1999],
robot workspace analysis [Abrams and Allen 1995; Abdel-
Malek and Yeh 1997a], collision detection [Kieffer and Litvin
1990; Xavier 1997], maintainability study [Law et al. 1998],
ergonomic design [Abdel-Malek et al. 2002b], motion plan-
ning [Schwarzer et al. 2002], etc. A more extensive list of
potential applications of SV can be found at [Abdel-Malek
et al. 2002a].

The SV computation problem has been studied in differ-
ent disciplines for more than four decades. This includes el-
egant work based on envelope theory, singularity theory, Lie
groups, sweep differential equations on the characterization
of the problem. As a result, the mathematical formulation
of SV computation is relatively well-understood.

In many applications, the main goal of SV computation
is to identify and extract the boundary of the SV, in par-
ticularly its outermost boundary. Most of the algorithms
for computation of the boundary of SV are based, either
explicitly or implicitly, on the following framework:

1. Find all the boundary primitives that contribute to the
outermost boundary of SV.

2. Compute an arrangement of the boundary primitives by
performing intersection and trimming computations.

3. Traverse the arrangement and extract the outer bound-
ary. Here, the outer boundary of an arrangement is de-
fined as the boundary of a cell, which is reachable from
infinity following some continuous path, in the arrange-
ment.

Most of the mathematical work has mainly dealt with
characterizing the boundary primitives, given some assump-
tions on the sweeping path. There is a considerable amount
of research in computational geometry on the combinatorial
complexity of computing arrangements as well as on surface-
surface intersection computations in geometric and solid
modeling. However, the underlying combinatorial and alge-
braic complexity of exact SV computation is very high. Fur-
thermore, the implementations of any algorithms for com-
puting intersections and arrangements need to deal with ac-
curacy and robustness issues. As a result, no practical algo-
rithms are known for exact computation of the SV for any
arbitrary polyhedron sweeping along a given smooth path.

Given the underlying complexity of exact SV computa-
tion, most of the earlier work has focussed on approximate
techniques. Different algorithms can be characterized based
on whether they are limited to 2D objects, or they only
compute an image-space projection or visualization of the
SV from a given viewpoint, or compute a relatively coarse
discretization of the boundary primitives followed by union
computation of different configurations of the polyhedra
along the trajectory. These algorithms are either slow for
practical applications, or suffer from robustness problems,
or compute a rather coarse approximation of the SV.

Main Results We present an efficient algorithm to approxi-
mate the outermost boundary of SV’s of complex polyhedral
models along a given trajectory. The algorithm initially enu-
merates a superset of the boundary primitives of SV, which
consists of ruled and developable surfaces [Weld and Leu
1990]. The ruled surface is generated by considering each
edge in the original model as a ruling line and the trajectory
as a directrix curve. The developable surface is obtained by
applying the envelope theory to moving triangles. Given a
formulation of the boundary elements, our algorithm com-
putes an approximation to the resulting arrangement using
a five-stage pipeline. Firstly, it computes a bounded-error
polygonal approximation of each surface primitive. Sec-
ondly, it samples the surface primitives by computing un-
signed, directed distance fields along the vertices of a grid.
Next it classifies the grid points to be either inside or out-
side of the surfaces to obtain the signed distance field using a
novel algorithm based on marching front propagation. This
is followed by iso-surface reconstruction. Finally, the algo-
rithm performs topological refinement, taking into account

some of the characterizations of the SV computation. We
also present a number of acceleration techniques based on
culling of surface primitives, use of interpolation-based ras-
terization hardware for fast computation of distance field,
and a variation of fast marching level-set method for classi-
fication of grid points.

Our algorithm computes a bounded-error approximation
of the SV and we analyze all sources of error. We have
implemented this algorithm on a commodity-based PC with
nVidia GeForce 4 graphics card, and benchmarked its perfor-
mance on complex benchmarks. The underlying polyhedral
models consist of thousands of triangles and are sweeping
along a complex trajectory corresponding to a parametric
curve. The computation of SV takes a few tens of seconds
on a 2.4GHz Pentium IV processor.

As compared to earlier approaches, the main advantages
of our technique include:

• Generality: The algorithm can handle general 2-
manifold polyhedral models, and makes no assumptions
about the sweep path.

• Complex Models: The algorithm is directly applica-
ble to complex models composed of a high number of
features. Given a trajectory and a bound on the ap-
proximation error, the overall complexity increases as
a linear function of the input size.

• Efficiency: The use of culling techniques and algorithms
for signed distance field computation significantly im-
prove the running time of the algorithm.

• Simplicity: The algorithm is relatively simple to imple-
ment and does not suffer from robustness problems or
degeneracies.

• Good SV Approximation: Our preliminary application
of the algorithm to different benchmarks indicates that
it can compute a good, bounded-error approximation
of the boundary.

Organization The rest of our paper is organized as follows.
In Section 2, we briefly review the earlier work on SV com-
putation. Section 3 provides the overview of our approach
to SV computation. In Section 4, we present an algorithm
to compute the boundary surface primitives of SV. Section
5 describes our approximation algorithm to compute the ar-
rangement of the surface primitives using sampling and re-
construction. We analyze the performance of our algorithm
in Section 6 and describe its implementation and perfor-
mance in Section 7. In Section 8, we compare our algorithm
with other earlier approaches.

2 Previous Work

In this section, we give a brief survey of the work related to
SV computation, arrangements, and iso-surface reconstruc-
tion based on distance fields.

2.1 Swept Volume Computation

SV has been studied quite extensively over the years. We list
some of the crucial development in the history of SV research
here, but refer the readers to see [Abdel-Malek et al. 2002a]
for more thorough survey of SV-related work.

Methodology The mathematical formulation of the SV
problem has been investigated using singularity theory (or
Jacobian rank deficiency method) [Abdel-Malek and Yeh
1997c; Abdel-Malek and Yeh 1997b; Abdel-Malek and Oth-
man 1999], Sweep Differential Equation (SDE) [Blackmore
and Leu 1990; Blackmore et al. 1997], Minkowski sums [El-
ber and Kim 1999], envelope theory [Martin and Stephen-
son 1990; Weld and Leu 1990], implicit modeling [Schroeder
et al. 1994], and kinematics [Jüttler and Wagner 1996].
Moreover, most of this work deals with the SV of generic,
free form objects.

Polyhedral Approximation Given the complexity of com-
puting the exact SV, few algorithms have been developed to
provide a polyhedral approximation of SV. In 2D, [Lee et al.
2002; Ahn et al. 1993] study an approximation of the gen-
eral sweep for curved objects, and they have been applied
to font design. In 3D, [Weld and Leu 1990] describe a ge-
ometric representation of SV for compact n-manifolds with
application to polyhedral objects. [Schroeder et al. 1994] use
discretized representations and iso-surface reconstruction to
approximate SV, [Abrams and Allen 1995; Raab 1999] com-
pute the arrangement of swept polyhedral surfaces based on
their coarse approximation, [Baek et al. 2000] study a simple
rotational sweep of exact SV. However, these 3D algorithms
are either restricted to simple geometric primitives [Raab
1999] or simple sweep trajectory [Baek et al. 2000], or suffer
from accuracy [Schroeder et al. 1994] and robustness prob-
lems [Abrams and Allen 1995].

Visualization Many algorithms have been proposed to vi-
sualize the boundary of the SV using the rasterization hard-
ware. These algorithms use the Z-buffer hardware to com-
pute a 2D projection of the surface from a given viewpoint
and not the actual boundary of the 3D SV. [Van Hook 1986;
Huang and Oliver 1994; Hui 1994; Wang and Wang 1986]
utilizes rasterization hardware to simulate NC machining
display, [Conkey and Joy 2000] uses the Jacobian rank defi-
ciency method to visualize a SV of trivariate tensor-product
B-spline solids, and [Winter and Chen 2002] studies the SV
computation of a 2D image.

2.2 Arrangement Computation

Given a finite collection of geometric objects in Rd, their ar-
rangement is the decomposition of Rd into connected open
cells [Halperin 1997]. The arrangement computation prob-
lem is ubiquitous by nature and arises in a number of ap-
plications. A survey of different algorithms and complexity
bounds for arrangements computations is given in [Halperin
1997].

Complexity It is well known that the worst case combi-
natorial complexity of an arrangement of n surfaces in Rd

is O(nd) [Halperin 1997], and there are such arrangements
having θ(nd) complexity, thus this bound is tight. In this
analysis, each surface is assumed to have a bounded alge-
braic degree, and needs to be decomposed into monotonic
patches as well.

Algorithms There are quite a few known algorithms to
compute an arrangement using both deterministic algo-
rithms and randomized algorithms. This includes an output-
sensitive algorithm to compute an arrangement of surfaces

(a) Trajectory (b) Surfaces (c) ∂SV (Γ)

Figure 1: Complexity of SV Computation. (a) shows a sweeping trajectory of a cubic polynomial curve for a X-Wing model. In
(b), each surface primitive comprising in ∂SV (Γ) (total 3793 surface primitives) is color-coded differently. (c) shows ∂SV (Γ),
an outer boundary of the surface elements.

in 3-space and has O(nλq(n) log(n) + V log(n)) time com-
plexity, where V is the combinatorial complexity of the ver-
tical decomposition, q is a constant depending on the degree
of the surfaces, and λq(n) is the maximum length of (n, q)
Davenport-Schinzel sequences [de Berg et al. 1996].

Implementation Issues Some of the major issues in the im-
plementation of arrangement computation algorithms are ac-
curacy and robustness problems. It is quite hard to enu-
merate all degenerate configurations, especially when the
primitives are non-linear surfaces. [Raab 1999] enumerate
15 different possible degenerate cases for an arrangement of
polyhedral surfaces. Moreover, [Raab 1999] proposed a con-
trolled perturbation scheme, and applied it to polyhedral SV
approximation. However, it can take a considerable amount
of time for models composed of few hundred triangles. These
problems get more severe when we are dealing with curved
primitives.

2.3 Distance Field Computation and Iso-Surface
Reconstruction

Recently, distance fields have been increasingly used in vol-
umetric shape representation [Gibson 1998; Frisken et al.
2000], proximity computations based on rasterization hard-
ware [Hoff et al. 2001], path planning [Kimmel et al. 1998],
surface metamorphosis [Cohen-Or et al. 1998], and SV com-
putation [Schroeder et al. 1994].

Grid-based iso-surface reconstruction has been extensively
studied beginning from the seminal work of the Marching
Cubes algorithm [Lorensen and Cline 1987], and has been ex-
tended to its variants such as the Enhanced Marching Cubes
(EMC) [Kobbelt et al. 2001] or the dual contouring method
[Ju et al. 2002]. [Wood et al. 2000] have used surface wave-
front propagation techniques to extract semi-regular meshes
from volumes.

3 Overview

In this section, we characterize the mathematical formula-
tion of computing the SV of general polyhedral models and
also give an overview of our approximation scheme.

3.1 Notation

We use bold-faced letters to distinguish a vector (e.g. p(t))
from a scalar value (e.g. time t). f, v, e respectively denotes
a face, a vertex, and an edge of a polyhedron. We use fΓ

k to
denote the kth face of a polyhedron Γ.

3.2 Problem Formulation

Let Γ, also known as a generator, be a polyhedron in R3.
Let the sweep trajectory τ (t) be a tuple of (Ψ(t), R(t)),
where Ψ(t) is a time-varying, differentiable vector in R3 and
R(t) is a time-varying, orthonormal matrix in SO(3). Here,
both Ψ(t) and R(t) depend on a single variable, the time
t ∈ [0, 1]. Furthermore, Ψ(0) corresponds to the origin, and
R(0) to the identity matrix. Then, consider the following
sweep equation of Γ(t):

Γ(t) = Ψ(t) + R(t)Γ (1)

In our paper, the SV of the generator Γ along the trajectory
τ(t) is defined as:

SV (Γ) = { ∪ Γ(t) | t ∈ [0, 1] } (2)

Notice that our SV equation is allowed with only rigid mo-
tions (i.e., translation and rotation), even though, in general,
τ (t) can be any isotopy mapping [Weld and Leu 1990].

Our goal is to compute the boundary of SV (Γ), ∂SV (Γ),
without internal voids. More formally, consider an arrange-
ment A and a cell C in A, which is reachable from infinity
following some continuous path. Let us further define the
outer boundary of A as the boundary of C. Then, we want to
compute the outer boundary1 of A induced by the surface
elements in SV (Γ). We use the following theorems [Weld
and Leu 1990] to characterize the boundary of SV:

THEOREM 3.1 If during the sweep Γ(ti)∩Γ(tj) = φ for
ti 6= tj, then SV (Γ) = { ∪n

k=1 SV (fΓ
k) | n is the number of

faces in Γ }.

THEOREM 3.2 SV (fΓ
k) consists of:

1Throughout the paper, we interchangeably use the outer
boundary of A and the outer boundary of SV (Γ) to describe
∂SV (Γ).

Surface Generation
Generate ruled/

developable surfaces, and
triangulate them within ε

Distance Fields
Generation

Generate unsigned
distance field using
graphics hardware

Fast Marching Front
Propagation
Generate signed

distance field using fast
marching method

Iso-Surface
Reconstruction

Use the EMC to
reconstruct the outer-
most boundary of SV

Topological
Refinement

Check if the reconstructed
approximation has more

than one component

Refine Spatial Grid

Figure 2: Our Swept Volume Computation Pipeline

• Faces in f
Γ(0)
k and f

Γ(1)
k

• Ruled surfaces using the edges of f
Γ(t)
k as a ruling line

along the directrix τ

• Developable surfaces as an envelope of f
Γ(t)
k along τ .

Therefore, computing the boundary of ∂SV (Γ) boils down
to computing ruled and developable surface primitives, and
finally computing the outer boundary of their arrangement.

3.3 Approximation Algorithm

Our goal is to compute the outermost boundary, ∂SV (Γ)
where the complexity of Γ is relatively high, e.g. thou-
sands of triangles. The major difficulty of the computation
lies in the arrangement computation, as its computational
and combinatorial complexity can be super-quadratic and
its implementation is rather non-trivial due to the accuracy
and robustness problems. Given the complexity of surface-
surface intersection problem, it is very hard to robustly com-
pute all the intersections between thousands of ruled and de-
velopable surface primitives within a reasonable time. For
example, in Fig. 1, in order to exactly compute the SV of the
X-Wing model consisting of 2496 triangles, we need to com-
pute an arrangement of 3793 surfaces including calculating
their intersection curves of as high as degree nine. Thus, in-
stead of computing ∂SV (Γ) exactly, we approximate it using
an implicit modeling technique based on discretized repre-
sentations and iso-surface-based reconstruction methods.

The main idea of our approximation approach is to com-
pute the polyhedral approximation of ruled and developable
surface primitives, generate their signed distance field, and
reconstruct the outer boundary of the arrangement of the
discretized surfaces. To accelerate this pipeline, we prune
redundant surfaces in SV (fΓ

k), and perform fast distance
field computation. As a result, the basic steps of our algo-
rithm are as follows:

1. Given an error threshold of Hausdorff distance ε, we
formulate the ruled and developable surfaces for each
SV (fΓ

k), and compute a triangular approximation that
is within the surface deviation error threshold. A sub-
set of the primitives SV (fΓ

k) that do not contribute to
the final boundary, ∂SV (Γ) can be pruned away using
sufficient criteria described in Sec. 4.3.

2. We compute the directed unsigned distance fields for
each SV (fΓ

k) on a uniform 3D grid, using interpolation-
based rasterization hardware.

3. We use a variant of the fast marching level set method
to classify all the grid points whether they are inside or
outside with respect to ∂SV (Γ). This gives us a signed
distance field.

4. Perform the iso-surface extraction on the resulting
signed distance field to reconstruct the outermost
boundary, ∂SV (Γ)

5. Perform a topological check to see if the reconstructed
approximation has more than one component. If yes,
we refine the spatial grid and perform the steps 2-5
again.

The above pipeline is illustrated in Fig. 2.

4 Surface Generation

In this section, we present techniques to compute the can-
didate surface primitives that contribute to the boundary of
SV and compute a bounded error triangulation of each prim-
itive. We also present new techniques to cull away surface
primitives that do not compute the outer boundary of SV.

4.1 Boundary Surfaces

As shown in Thm. 3.1 in Sec. 3.2, the boundary of SV is
obtained by computing the SV’s of individual faces, SV (fΓ

k),
in Γ, and computing their union. Moreover, Thm. 3.2 states
that, besides the trivial surfaces of fΓ

k at initial and final
positions during sweep (i.e., Γ(0) and Γ(1) in Eq. 1), there
are only two types of surfaces that belong to fΓ

k : ruled and
developable surfaces (also see Fig. 3).

4.1.1 Ruled Surface Primitives

A ruled surface is generated by sweeping a ruling line along
a directrix curve. The surface x(u, v) has the following form:

x(u, v) = b(u) + vδ(u) (3)

Here, b(u) is a directrix and δ(u) is the direction of a ruling
line. When we sweep fΓ

k along the trajectory τ (t), each
edge e in fΓ

k generates a ruled surface x(u, v). We denote
the endpoints of an edge e by p0 and p1. By substituting
p0 and p1 for Γ in Eq. 1, we generate two curves, b0(u)
and b1(u). Then, in Eq. 3, b(u) becomes b0(u), and δ(u)
becomes b1(u)− b0(u).

4.1.2 Developable Surface Primitives

When a plane moves continuously along a trajectory τ (t),
its envelope generates a developable surface. Intuitively, a
developable surface is a surface which can be made of a piece
of paper [Pottmann and Wallner 2001]. Thus, a developable
surface is locally isometric to a plane, and its Gaussian cur-
vature at regular points is zero. Furthermore, a developable
surface is a subset of a ruled surface.

(a) Trajectory (b) Ruled 1 (c) Ruled 2 (d) Ruled 3 (e) Developable (f) SV

Figure 3: Boundary Surfaces of the SV of a Triangle. (a) shows a trajectory for the helical sweep of a yellow triangle. (b),
(c), and (d) show ruled surfaces generated by the sweep, and (e) shows a developable surfaces by the sweep. (f) shows the final
boundary surface of the sweep.

Let us parametrically represent a moving plane p(u, v, t)
as:

p(u, v, t) = q(t) + ur1(t) + vr2(t) (4)

where q(t) is the origin of p(u, v, t), and r1(t) and r2(t) are
two linearly independent vectors spanning p(u, v, t). Then,
using the envelope theory, by solving det(J(p(u, v, t))) = 0
for u and substituting the result for p(u, v, t) = 0, we get
the developable surface d(t, v) as [Weld and Leu 1990]:

d(t, v) = b(t) + vδ(t), where (5)

b(t) = q(t)− r1(t)
q′(t) · r1(t)× r2(t)

r′
1(t) · r1(t)× r2(t)

δ(t) = r2(t)− r1(t)
r′
2(t) · r1(t)× r2(t)

r′
1(t) · r1(t)× r2(t)

This derivation is valid only if r′
1(t) · r1(t) × r2(t) 6= 0.

Otherwise, we can derive a similar equation in terms of u
and t by getting rid of v in Eq. 4.

In the SV computation, sweeping fΓ
k also generates a de-

velopable surface. Let us assume that Γ is triangulated,
and denote any two edges of fΓ

k by e1 and e2. Then, the
direction vectors of e1 and e2 become r1(t) and r2(t) in
Eq. 5. However, since Eq. 5 is derived from a plane,
not from a triangle, the developable surface obtained from
Eq. 5 needs to be clipped against the parametric domain
of {u = 0, 0 ≤ v ≤ 1}, {0 ≤ u ≤ 1, v = 0}, and
{u ≥ 0, v ≥ 0, u + v = 1} for all t.

4.2 Bounded Error Triangulation

Once we have generated parametric representations for ruled
and developable surface primitives, the next step is to com-
pute a triangular approximation within a user-provided error
deviation ε. There are many known algorithms for trian-
gulating a rational parametric surface using either uniform
[Kumar and Manocha 1995] or adaptive tessellation [Velho
et al. 1999; Chung and Field 2000]. Since developable sur-
faces have zero Gaussian curvature, the uniform tessellation
serves the purpose well; however, depending on the sweep
trajectory τ (t), the ruled surface can have regions of high
curvature. In this case, the uniform tessellation tend to
oversample the surface, so that the adaptive tessellation is
more suitable. Notice that, depending on the chosen type of
the trajectory τ , the ruled and developable surfaces can be
well-known rational parametric surfaces or general paramet-
ric surfaces including trigonometric terms. However, since
we can always perform a flat-ness test for smooth surface

patches on the ruled and developable surfaces, we use a sim-
ple recursive algorithm like [Chung and Field 2000] to handle
the general parametric surfaces as long as they are smooth
surfaces.

On the other hand, taking advantage of the nature of
line geometry in ruled surfaces, one can also devise a vari-
ational interpolatory subdivision scheme for ruled surfaces
[Pottmann and Wallner 2001]. Here, one recursively subdi-
vides a ruled surface by minimizing an discrete energy func-
tional that is represented in terms of an discrete approxima-
tion of mean curvatures at points on the surface.

4.3 Culling Surface Primitive

In principle, assuming that the input model Γ is triangu-
lated, each SV (fΓ

k) generates three ruled surface primitives,
one developable surface, and fΓ

k ’s at the initial and final po-
sitions of τ (t). Therefore, the triangle counts of the ruled
and developable surfaces significantly affect the performance
of the pipeline presented in Fig. 2. Consequently, we want to
identify portions of surface primitives that do not contribute
to ∂SV (Γ), and prune them away accordingly. We use a
variation of a technique presented in [Abrams and Allen
2000] to cull away redundant ruled surface primitives, and
also provide a novel method for developable surface primi-
tives.

er
fl fm

τ

(a)

ec
fmfl τ

(b)

d(t+∆t,v)d(t,v)

nt d

(c)

Figure 4: Surface Culling. (a) A reflex edge er is not needed
to generate a ruled surface along the trajectory τ , because
the surface will be subsequently subsumed by the SV of its
adjacent faces, SV (fl) or SV (fm). (b) A convex edge ec

does not need to produce a ruled surface when it is swept
inside of its adjacent faces (fl and fm) along τ , because it
will be subsumed by SV (fl) or SV (fm). (c) A developable
surface d does not need to be created when it exists inside its
generator triangle. This is checked by the angle between the
normal nt and the difference vector d(t + ∆t, v)− d(t, v)
between successive time-steps.

In order to prune ruled surface primitives, we perform the
following operation. First of all, a reflex edge er in Γ is not

used to generate a ruled surface at all, since the surface will
be always subsumed by the SV of the adjacent faces of er

(also see Fig. 4-(a)). The same reasoning is applied to a
coplanar edge, whose adjacent faces are coplanar. Further-
more, if a convex edge ec instantaneously moves inward fΓ

l

and fΓ
m at time t, where fΓ

l and fΓ
m are the adjacent faces

of ec, then ec can stop generating a ruled surface at that
time, since that portion will be also subsumed by SV (fΓ

l) or
SV (fΓ

m) (also see Fig. 4-(b)). This test can be easily worked
out by checking the velocity vectors τ ′(t) at the endpoints
of ec against the face normals of fΓ

l and fΓ
m.

We also present a novel culling scheme for developable sur-
face primitives. The main idea is that we generate a devel-
opable surface dfΓ

k
(t, v) only if its boundary can be exposed

outside of its generating face fΓ
k . Since a developable surface

dfΓ
k

(t, v) is locally convex [de Carmo 1976] and fΓ
k is always

tangent to dfΓ
k

(t, v), dfΓ
k

(t, v) locally lies inside or outside

of fΓ
k depending on the face normal nt of fΓ

k . More specifi-
cally, since we perform uniform tessellation of a developable
surface using some fixed time step ∆t, we approximate the
locality with ∆t. Then, we compute two points dfΓ

k
(t, v) and

dfΓ
k

(t + ∆t, v) from Eq. 5, and check the angle between the

difference vector dfΓ
k

(t+∆t, v)−dfΓ
k

(t, v) and the plane nor-

mal nt of fΓ
k . If it is less than 90 degrees, fΓ

k is used during
time t, otherwise it is pruned away (also see Fig. 4-(c)).

5 Sampling and Reconstruction

Once we have computed all the surface primitives of SV,
we approximate the outer boundary of SV by sampling the
surfaces and reconstructing the outer boundary of their ar-
rangement. In this section, we describe the sampling and
reconstruction pipeline (see Fig. 2). We compute an un-
signed distance field with respect to the surface primitives
on a discrete spatial grid. A signed distance field is obtained
by propagating a front around the boundary of the swept
volume using a fast marching method. An iso-surface ex-
traction from this signed distance field provides us with an
initial approximation to the outer boundary. We perform a
topological connectedness test on this approximation. If the
test fails, we refine the spatial grid, recompute the distance
field, and repeat the pipeline.

5.1 Distance Field Representation

Given all the surface primitives of SV, we first discretize the
3D space occupied by the primitives. As a discrete repre-
sentation of the 3D space, we choose signed distance fields
with respect to the surface primitives, and attempt to com-
pute them efficiently using graphics hardware. This discrete
representation is used later in iso-surface extraction.

We sample the distance values at the discrete points of
a 3D spatial grid, and use an enhanced representation of
the discrete distance field. Here, the distance value at each
grid point means the closest distance to one of the surface
primitives. However, in our scheme, instead of simply us-
ing a scalar distance value for each grid point, we store di-
rected distances along six principal directions corresponding
to x−, x+, y−, y+, z− and z+ axes. Our goal is to eval-
uate the directed distance function at the grid points of a
3D uniform grid. We would like to use an approach that
maps well to SIMD-like capabilities of rasterization hard-
ware. Current graphics processors have the capability to
evaluate the distance function in parallel for each pixel on

the plane. Graphics hardware-based fast techniques have
been used for distance field evaluation [Hoff et al. 1999].

X

Y

Z = D

Figure 5: Directed distance field: This figure shows how a
slice of the directed distance field of a primitive (blue tri-
angle) is computed. The primitive is rendered under ortho-
graphic projection with the slice (black rectangle) set as the
image plane. The Z-buffer holds the directed distance values.
The grey triangle is the projection of the primitive onto the
slice.

We employ a modified approach, and also use graphics
hardware to generate the directed distance fields as follows:

1. Our algorithm computes the directed distance along a
given direction by sweeping a plane along that direc-
tion. This plane corresponds to a slice of the directed
distance field and is perpendicular to the direction of
sweep.

2. Our algorithm computes the directed distance field one
slice at a time. So the problem is reduced to defining
the directed distance function of a primitive over a pla-
nar 2D slice. The main idea of our approach is that
in order to obtain an approximation to the primitive’s
directed distance function, we simply render the primi-
tive under orthographic projection with the slice as the
image plane (see Fig. 5).

3. At each step, the slice is moved by a distance equal to
the size of the grid cell. The planes corresponding to
two consecutive slices are used to define a slab.

4. For each slab, we precompute the set of surface primi-
tives that it intersects with.

5. We use orthographic projection to sample and rasterize
the surfaces. The above slab is set as the near and
far clipping planes. We render the surface primitives
associated with the slab. Each pixel in the frame buffer
corresponds to a point in the current slice and the depth
buffer holds the value of the distance at that point.

6. We readback the depth buffer and store the directed
distance values. Distances with absolute values larger
than grid edge length are irrelevant since they are not
used during isosurface extraction.

Our algorithm computes only an unsigned directed distance
field. However, the isosurface extraction algorithm requires
a signed distance field; i.e., a distinction needs to be made
between inside and outside.

5.2 Fast Marching Front Propagation

We perform an inside/outside classification at each grid
point to obtain a signed distance field. Conventionally,

points that lie outside the boundary of the SV have a posi-
tive sign while those inside have a negative sign. Our surface
primitives are in general not closed. As a result, we cannot
define an inside/outside classification with respect to the in-
dividual surface primitives. We need to define a classification
with respect to the boundary of the SV. However, this clas-
sification problem is non-trivial because we do not know the
boundary of the SV.

In order to solve the inside and outside classification
problem, we present a variant of the fast marching level
set method [Sethian 1996] to propagate a front around the
boundary of the swept volume. Level-set methods are nu-
merical techniques for computing the position of propagating
fronts. Topological changes are naturally captured in this
setting. We perform the front propagation on the discrete
spatial grid (see Fig. 6). We use the unsigned directed dis-
tance field generated in Sec. 5.1 for front propagation. The
front consists of a set of grid points. We can initialize the
front to be a set of grid points corresponding to any surface
bounding the SV. One choice for the initial front is the set
of grid points that lie along the boundary of the spatial grid.
Our front propagation method ensures that the front visits
exactly those grid points that lie outside the swept volume.

We tag grid points as Known, Trial, or Far depending on
whether the grid point has already been visited, is currently
being visited, or is yet to be visited by the front, respec-
tively. Each grid point also has a flag whose value can be
Inside or Outside. Initially all grid points are assigned a flag,
Inside. All grid points except the initial front are tagged as
Far. Grid points on the initial front are tagged as Trial.
During one step of front propagation, we perform a number
of operations. These include:

1. We arbitrarily pick a Trial grid point belonging to the
front and remove it from the front. Let this point be
denoted as P . We set its tag to be Known.

2. Consider a neighboring grid point Q of P . If point Q
is tagged as Known, we do not update it. With respect
to P , point Q lies along one of the six principal direc-
tions. We check if the directed distance of P along that
direction is larger than the length of edge connecting
P and Q. If that is the case, we are guaranteed that
point Q lies outside the boundary of the SV. Therefore
we propagate the front to point Q by adding Q to the
front. In addition, the flag for point Q is set to Outside.

The pseudo-code is shown in Alg. 5.1. The front propaga-
tion continues in this manner until the front has visited all
grid points outside the SV. At this time, front propagation
terminates. In this manner, we obtain an inside/outside clas-
sification for each grid point. We combine this inside/outside
classification with the unsigned distance field computed in
Sec. 5.1 to obtain a signed distance field. All six directed
distances at a grid point always have the same sign.

5.3 Isosurface Extraction

We estimate the outer boundary of open surfaces by per-
forming an isosurface extraction from the signed distance
field generated using the approach described in Sec. 5.1 and
Sec. 5.2. We use the Extended Marching Cubes (EMC)
algorithm [Kobbelt et al. 2001] to perform the isosurface
extraction. This algorithm can detect sharp features and
sample them in order to reduce the aliasing artifacts. The
output of the isosurface extraction is a polygonal mesh. This
is our initial approximation to the outer boundary.

while front is nonempty
Extract a trial point P from the front
P .tag = KNOWN
for each neighbor Q of P ,

if Q.tag ! = Known then
d = Direction from P to Q
if Directed Distance(P ,d) > Edge Length(P ,Q) then

Q.flag = Outside
if Q.tag == Far then

Add Q to the Front
Q.tag = Trial

endif
endif

endif
endfor

endwhile

ALGORITHM 5.1: Fast Marching Method

In order to perform isosurface extraction, we need to know
which edges of a cube of the spatial grid are intersected by
the isosurface. An edge of a cube is intersecting if the two
endpoints of the edge have different inside/outside classifi-
cation. For each intersecting edge of a cube, the directed
distances of the endpoints of the edge give us the position of
the intersection point (see Fig. 7). The advantage of using
directed distance is that it provides us with exact surface
samples. The standard Marching Cubes algorithm can pro-
duce aliasing artifacts in the vicinity of sharp features. The
Extended Marching Cubes algorithm uses a tangent element
approximation to reduce aliasing artifacts and provide bet-
ter reconstruction in the presence of sharp features. Thus we
have a better approximation to the exact, outer boundary.

We only use the directed distance of the grid point which
is Outside. The directed distance of the grid point which is
Inside may result in incorrect intersection points (see Fig.
7).

5.4 Topological Refinement

The underlying topology induced by our SV approximation
algorithm can be different from the topology of the exact
SV. This mainly results from the sampling and reconstruc-
tion steps in our computational pipeline. However, our al-
gorithm attempts to maintain some of the topological prop-
erties of SV, i.e. closed and connected boundary. According
to our sweep equation in Eq. 1, the SV that we generate for
a polyhedron can be a non-manifold. However, its bound-
ary always provides a closed, water-tight surface, since the
generator is a closed set. Moreover, the structure always
generates one connected component.

To ensure a single connected component in our SV al-
gorithm, we perform a topological check by traversing the
generated polygonal mesh to detect the occurrence of such
a case (see Fig. 8) . We arbitrarily pick a vertex from the
mesh. We mark this vertex and recurse on each of the un-
marked neighboring vertices. At the end of this traversal, if
any unmarked vertices remain, it implies that the mesh has
more than one component. In that case, we refine the spatial
grid, recompute the distance field at a higher resolution, and
perform the reconstruction again. We use EMC algorithm
for the iso-surface reconstruction. This algorithm always
generates a closed polygonal mesh structure. Therefore, our
SV algorithm can guarantee closed, connected surface struc-
tures.

Initial Front

Final Front

OUTSIDE

INSIDE

PQ

Figure 6: Fast Marching Method. A fast marching level
set method is used to propagate a front (pink dotted curve)
around the surface primitives of SV (solid blue curves). All
the grid points visited by the front (grey circles) lie outside
the outer boundary while the remaining grid points (green
circles) lie inside the outer boundary. During front propa-
gation, a grid point P can update its neighboring grid point
Q if the directed distance from P to Q is greater than the
length of the edge connecting P and Q

6 Analysis of Swept Volume Algorithm

In this section, we analyze the performance of our SV algo-
rithm, and also discuss the sources of errors in the algorithm.

6.1 Performance Analysis

Our SV algorithm has the following computational complex-
ity:

Surface Generation The computational cost of the surface
generation is mainly determined by the surface tessellation
process, and its complexity is sensitive to the output; i.e.
O(M), where M is the number of triangles generated by
the tessellation. Let us denote Ne as the total number of

Reconstructed
surface

B Ci0

i1

A

Reconstructed
surface

B Ci2

i3

A

Figure 7: Iso-Surface Extraction: Figure on the left shows
the reconstructed surface (purple) for two surface primitives
(blue and red). We use the directed distance (show in brown)
to compute intersection points (i0 and i1). The grey and
green circles respectively indicate grid points that lie Outside
and Inside the outer boundary. Figure on the right shows
that the directed distance of a Inside grid point (Point B)
may result in incorrect intersection points (i2 and i3). We
only use the directed distance of Outside grid points for re-
construction.

Disconnected Topology Connected Topology

Topology
Check

Figure 8: Topological Refinement. We ensure that our SV
approximation is a single connected component by perform-
ing topological refinement. We perform a topological check
to see if our approximation has more than one component.
In that case, we refine the spatial grid and perform the re-
construction again.

convex edges of the input polyhedra Γ, and Nf as the total
number of faces of Γ. Assuming that Γ is triangulated, in
the worst case, 3Ne ruled surfaces and Nf developable sur-
faces are generated. Let us further denote M i

e(ε, τ) as the
number of triangles generated by a ruled surface i, which
depends on the given surface deviation error ε and the tra-
jectory τ , and denote M j

f (ε, τ) as the number of triangles by

a developable surface j. Let M+
e = max3Ne

i=1 (M i
e(ε, τ)) and

M+
f = max

Nf

j=1 (M j
f (ε, τ)). Then, M = 3NeM

+
e + NfM+

f .

Typically, in our experiments, M+
e and M+

f correspond to a
few hundred triangles.

Distance Field Generation Let D be the maximum dimen-
sion of the bounding box enclosing the surface primitives of
SV. Then, let K = D/ε, where ε is the given surface devi-
ation error. We use a K × K × K uniform spatial grid for
generating the distance field, front propagation and isosur-
face extraction to restrict the reconstruction error within ε
(see Sec. 6.2 for more detail). As stated earlier, we compute
the distance field using graphics hardware. We can measure
the time complexity of the distance field generation in terms
of number of primitives sent to the graphics hardware. A
primitive pi gets rendered npi times where N is the number
of primitives and npi is the number of slabs it occupies. Also
the size of the spatial grid contributes to the time complex-
ity. So the total time complexity is O(K3) + O(

∑N
i=1 npi).

Typically, npi is a small constant for most primitives. So the
time to generate directed distance fields is typically linear in
number of primitives.

Fast Marching Front Propagation Front propagation takes
time proportional to the size of the spatial grid; i.e., O(K3)

Isosurface Extraction Isosurface extraction takes time pro-
portional to the size of the spatial grid; i.e., O(K3)

Total Complexity The total computational complexity of
our SV algorithm is O(M + K3 +

∑N
i=1 npi).

6.2 Error Analysis

Our SV algorithm is an approximation scheme. There are
three main sources of the errors that govern the accuracy of
the result of our algorithm; tessellation errors by approxi-
mating surface primitives, sampling errors from generating
3D grids of distance fields, and iso-surface reconstruction
errors from the EMC.

Tessellation Errors We use adaptive tessellation to trian-
gulate ruled surfaces, and uniform tessellation to triangu-
late developable surfaces. These methods can triangulate
the surface primitives within an error threshold ε, which is
essentially the Hausdorff distance between the original sur-
faces and approximated ones.

Sampling Errors The accuracy of the distance field is de-
pendent on the implementation. We compute it using graph-
ics hardware and its accuracy is determined by the number
of bits of precision in the Z-buffer, typically 24 or 32 bits in
current hardware.

Reconstruction Errors If ε is the size of the grid cell, we
are guaranteed that each point on our reconstructed outer
boundary lies within a distance ε of some point on the ex-
act envelope. The approximation theory guarantees that a
piecewise linear interpolant to a smooth surface converges
with order O(ε2) where ε measures the sampling density. In
our case, ε is the size of the grid cell. In the presence of
sharp features, however, the convergence rate drops to O(ε).
However, the Extended Marching Cubes algorithm improves
the local convergence rate by performing a tangent element
approximation. This convergence rate is valid only in cells
that have at most one sharp feature.

7 Implementation and Performance

In this section, we describe the implementation of our SV
algorithm and highlight its performance on different bench-
marks.

7.1 Implementation

To implement our SV algorithm, we used C++ program-
ming language with the GNU g++ compiler under Linux
operating system. For the choice of GUI implementation,
GLUT, OpenGL, Inventor and Qt were used.

We used a public computational geometry library, CGAL,
to perform an efficient traversal on the two-manifold poly-
hedral surfaces. Moreover, CGAL offers quite flexible data
structures based on the usage of templates and STL pro-
gramming, and also provide accurate evaluation of geomet-
ric predicates such as orientation test, cross product, dot
product, etc [Fabri et al. 1996]. We took advantage of these
benefits to implement the generation of surface primitives
of SV. In particular, the Polyhedron 3 class of CGAL was
extensively used.

In order to compute the distances fields quickly and ef-
ficiently, we used nVidia’s GeForce 4 GPU, which has 24
bit precision of accuracy in Z-buffer. With the availability
of new GPU’s such as ATI’s Radeon9700, we can further
improve this accuracy by using their floating point compu-
tational capability in the graphics pipeline.

7.2 Performance

We benchmarked our SV algorithm by using different models
of varying complexities and with different sweeping trajec-
tories. The complexity of our benchmarking models varies
from 1,524 to 10,352 triangles. The model complexities are
summarized from the second to the fifth column in Table 1.
Furthermore, they consist of sharp edges and surface trian-
gles with high aspect ratio. The sweeping paths that we

chose are helical sweep (X-Wing and Swing-Clamps), trans-
lations using cubic rational functions (Input Clutch), and
sinusoidal translations and rotations (the rest of the mod-
els). Therefore, most of our benchmarks perform sweep
along very general trajectories. For the grid resolution in
our benchmarks, we use the grid resolution K = 128 for all
the models.

We performed timing analysis on a PC with Intel Xeon
2.4 GHz processor, 2GB of memory and nVidia GeForce 4
graphics card. The time spent during each stage in our SV
computational pipeline is shown in different columns of Ta-
ble 1. As the table shows, most of the time, typically more
than 80% of the total computational time, is spent in the
distance field generation stage of the pipeline. We observed
that the distance field computation time was mainly spent
on the readbacks between the framebuffer and main memory.
Thus, as we increase the grid size K, the total computational
time will increase linearly, since we perform the readbacks
O(K) times. We measured performance of our SV computa-
tion pipeline on the hammer benchmark at a grid resolution
of K = 256. The distance field computation, front propa-
gation and isosurface reconstruction took 41.4 s, 12.6 s and
8.9 s respectively.

In Fig. 9, we illustrate the results of the SV of the
benchmarking models computed by our SV algorithms. In
the figure, each row shows the generator polyhedral model
Γ, sweeping path τ , and the resulting SV approximation
∂SV (Γ), respectively. All the rendered images in Fig. 9 are
flat-shaded.

8 Comparison with Other Approaches

In this section, we compare the performance of our algo-
rithm with earlier approximation schemes to estimate the
boundary SV.

The algorithms presented in [Abrams and Allen 1995;
Raab 1999] use a similar surface primitive generation and
tessellation technique to enumerate the surface primitives of
SV. However, they do not exploit the fact that developable
surfaces can be precisely represented as a parametric sur-
face using the envelope theory as provided in Eq. 5. As a
result, we are able to derive better error bounds with our
approximation scheme. More importantly, these algorithms
perform exact computation of arrangements of polyhedral
surfaces. This computation is prone to accuracy and de-
generate cases [Abrams and Allen 1995] and the latter has
been addressed in [Raab 1999] based on perturbation meth-
ods. However, their applications to complex models with
long sweeping trajectories has been limited. Moreover, exact
arrangement computation based on perturbation methods
appears to take considerable amount of time. Compared to
these approaches, our algorithm is less susceptible to robust-
ness problems, provides a good error bound, and is readily
extendible to complex models. However, exact computa-
tion of arrangements can produce a better approximation of
sharp features on the boundary of the SV.

The algorithm described in [Schroeder et al. 1994] sam-
ples the sweeping trajectory and reduces the SV computa-
tion to computing the union of polyhedra corresponding to
the discrete instances along the trajectory. It computes the
union by generating distance-field based samples followed
by an iso-surface reconstruction algorithm. Their formula-
tion based on sampling the trajectory can at times lead to
a coarse approximation of the SV. In particular, they need
to use very high sampling rates along the sweeping path,
otherwise iso-surface reconstruction may generate spikes or

Combinatorial Complexity Computational Performance (seconds)Model
Γ # of Surf # of Surf Tri ∂SV (Γ) Surf Gen Dist Field Front Prop Isosurface Tot

X-wing 2496 3931 770K 307K 3.208 36.15 1.69 3.12 44.1
Air Cylinder 2280 1152 234K 249K 1.966 16.0 1.65 1.55 21.16

Swing Clamps 1524 1049 212K 126K 1.492 15.7 1.73 1.33 20.2
Hammer 1692 1390 281K 198K 1.822 16.1 1.59 1.97 21.4

Input Clutch 2116 1175 239K 129K 1.789 16.2 1.61 1.39 20.9
Pipe 10352 15554 803K 247K 4.038 59.2 1.61 2.48 67.2

Pivoting Arms 2158 1718 347K 162K 2.138 21.4 1.60 1.64 26.7

Table 1: Model Complexities of SV Benchmarks. The first column shows the model names of the benchmarks. From the second
to the fifth column, each column respectively shows the triangle count of the generator Γ, the number of ruled and developable
surfaces, the total number of triangles in the tessellated ruled and developable surfaces, and the triangle count of the boundary
of ∂SV (Γ) computed by our algorithm. From the sixth to the tenth column, each column respectively illustrates the timing
for the surface primitive generation, distance field generation, inside/outside classification using fast marching propagation,
iso-surface extraction using the EMC, and the total computation. We have chosen a grid resolution of K = 128 for all the
benchmarks.

τ

Γ(t0) Γ(t1) Γ(t2) Γ(t3) Γ(t4)

(a) SV approximation
computed by SLL94

(b) Our approximation

Figure 10: Comparison With Other Approach in 2D. In (a),
the SV algorithm approximates the blue line that is obtained
by the discrete instances of the generator Γ(t) along the tra-
jectory τ . Therefore, there can be many spiky features on
the approximated SV surface. In (b), our SV algorithm ap-
proximates the blue line that is an outer boundary of the red
lines, representing ruled and developable surfaces in 3D. The
result is a more smooth surface.

other high frequency features on the final approximation.
For example, as shown Fig. 10-(a), the algorithm presented
in [Schroeder et al. 1994] attempts to approximate an inher-
ently spiky surface (thick blue line) as a result of discrete
sampling on the trajectory, whereas our algorithm approxi-
mates a rather smooth surface which is an outer boundary
(thick blue line) of ruled and developable surfaces (red line)
as shown in Fig. 10-(b).

Overall, our approach generates a better error-bounded
approximation as compared to [Schroeder et al. 1994] and
results in a better convergence rate. Furthermore, the fast
computation of directed distance fields using rasterization
hardware considerable improves its running time.

9 Summary and Future Work

We present an efficient, fast algorithm to approximate SV
of complex polyhedral models using the distance fields, fast
marching propagation method, and iso-surface reconstruc-
tion. The algorithm has been benchmarked on a number of
complex models with different sweep paths.

There are several areas for future work. We would like
to look at adaptive subdivision schemes for better recon-
struction [Varadhan et al. 2003]. The performance of our
algorithm can be further improved by investigating more op-

timizations. These include more efficient surface generation
based on incremental computations on sweeping path, possi-
bility of using programmable graphics hardware to simulate
the fast marching method, etc. We would like to further
investigate the application of our SV algorithm to the areas
such as collision detection, robot workspace analysis, and
computer-aided geometric design. Finally, we will like to ex-
tend this algorithm to solids bounded by curved surfaces.

References

Abdel-Malek, K., and Othman, S. 1999. Multiple sweeping using

the Denavit-Hartenber representation method. Computer-Aided

Design 31 , 567–583.

Abdel-Malek, K., and Yeh, H. J. 1997. Analytical boundary of the

workspace for general 3-DOF mechanisms. International Journal

of Robotics Research 16 , 1–12.

Abdel-Malek, K., and Yeh, H. J. 1997. Geometric representation of

the swept volume using the Jacobian rank deficiency conditions.

Computer-Aided Design 29, 6, 457–468.

Abdel-Malek, K., and Yeh, H. J. 1997. On the determination of

starting points for parametric surface intersections. Computer-

Aided Design 29, 1, 21–35.

Abdel-Malek, K., Blackmore, D., and Joy, K. 2002. Swept vol-

umes: Foundations, perspectives, and applications. International

Journal of Shape Modeling. submitted.

Abdel-Malek, K., Yang, J., Brand, R., Vannier, M., and Tanbour,

E. 2002. Towards understanding the workspace of human limbs.

International Journal of Ergonomics. submitted.

Abrams, S., and Allen, P. 1995. Swept volumes and their use in

viewpoint computation in robot work-cells. In Proc. IEEE Inter-

national Symposium on Assembly and Task Planning, 188–193.

Abrams, S., and Allen, P. 2000. Computing swept volumes. Journal

of Visualization and Computer Animation 11 .

Ahn, J.-W., Kim, M.-S., and Lim, S.-B. 1993. Approximate general

sweep boundary of a 2D curved objects. Graphical Models and

Image Processing 55, 2, 98–128.

Baek, N., Shin, S., and Chwa, K. 2000. Three-dimensional topolog-

ical sweep for computing rotational swept volumes of polyhedral

objects. Int’l J. of Computational Geometry and Applications

10, 2.

Blackmore, D., and Leu, M. C. 1990. A differential equation approach

to swept volumes. In Proc. of Rensselaer’s 2nd International

Conference on Computer Integrated Manufacturing, 143–149.

Blackmore, D., Leu, M., and Wang, L. 1997. Sweep-envelope dif-

ferential equation algorithm and its application to NC machining

verification. Computer-Aided Design 29 , 629–637.

Boussac, S., and Crosnier, A. 1996. Swept volumes generated from

deformable objects application to NC verification. In Proceedings

of International Conference on Robotics and Automation, 1813–

1818.

Chung, A. J., and Field, A. J. 2000. A simple recursive tessellator

for adaptive surface triangulation. Journal of graphics tools 5, 3,

1–9.

Cohen-Or, D., Solomovic, A., and Levin, D. 1998. Three-dimensional

distance field metamorphosis. ACM Transactions on Graphics 17,

2, 116–141.

Conkey, J., and Joy, K. 2000. Using isosurface methods for visual-

izing the envelope of a swept trivariate solid. In Proc. of Pacific

Graphics.

de Berg, M., Guibas, L. J., and Halperin, D. 1996. Vertical decom-

positions for triangles in 3-space. Discrete and Computational

Geometry 15 , 36–61.

de Carmo, M. 1976. Differential Geometry of Curves and Surfaces.

Prentice Hall, Englewood Cliffs, NJ.

Elber, G., and Kim, M.-S. 1999. Offsets, sweeps, and Minkowski

sums. Computer-Aided Design 31, 3, 163.

Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., and Schönherr,

S. 1996. The CGAL kernel: A basis for geometric computation.

In Proc. 1st ACM Workshop on Appl. Comput. Geom., Springer-

Verlag, M. C. Lin and D. Manocha, Eds., vol. 1148, 191–202.

Frisken, S., Perry, R., Rockwood, A., and Jones, T. 2000. Adap-

tively sampled distance fields: A general representation of shapes

for computer graphics. Proc. of ACM SIGGRAPH , 249–254.

Gibson, S. F. F. 1998. Using distance maps for accurate surface rep-

resentation in sampled volumes. In IEEE Symposium on Volume

Visualization, 23–30.

Halperin, D. 1997. Arrangements. In Handbook of Discrete and

Computational Geometry, J. E. Goodman and J. O’Rourke, Eds.

CRC Press LLC, Boca Raton, FL, ch. 21, 389–412.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha, D. 1999.

Fast computation of generalized Voronoi diagrams using graphics

hardware. Proceedings of ACM SIGGRAPH , 277–286.

Hoff, K., Zaferakis, A., Lin, M., and Manocha, D. 2001. Fast and

simple geometric proximity queries using graphics hardware. Proc.

of ACM Symposium on Interactive 3D Graphics.

Huang, Y., and Oliver, J. H. 1994. NC milling error assessment

and tool path correction. In Proceedings of SIGGRAPH ’94 (Or-

lando, Florida, July 24–29, 1994), ACM Press, A. Glassner, Ed.,

Computer Graphics Proceedings, Annual Conference Series, ACM

SIGGRAPH, 287–294. ISBN 0-89791-667-0.

Hui, K. 1994. Solid sweeping in image space - application to NC

simulation. Visual Computer .

Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contour-

ing of Hermite data. In SIGGRAPH 2002, Computer Graphics

Proceedings.

Jüttler, B., and Wagner, M. 1996. Spatial rational B-spline motions.

ASME Journal of Mechanical Design 118 , 193–201.

Kieffer, J., and Litvin, F. 1990. Swept volume determination and

interference detection for moving 3-D solids. ASME Journal of

Mechanical Design 113 , 456–463.

Kimmel, R., Kiryati, N., and Bruckstein, A., 1998. Multivalued dis-

tance maps for motion planning on surfaces with moving obstacles.

Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001.

Feature-sensitive surface extraction from volume data. In SIG-

GRAPH 2001, Computer Graphics Proceedings, ACM Press /

ACM SIGGRAPH, E. Fiume, Ed., 57–66.

Kumar, S., and Manocha, D. 1995. Efficient rendering of trimmed

NURBS surfaces. Computer-Aided Design, 509–521.

Law, C., Avila, S., and Schroeder, W. 1998. Application of path plan-

ning and visualization for industrial design and maintainability-

analysis. In Proc. of the 1998 Reliability and Maintainability

Symposium, 126–131.

Lee, J., Hong, S., and Kim, M. 2002. Polygonal boundary approx-

imation for a 2D general sweep based on envelope and boolean

operations. Visual Computer 16 .

Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high res-

olution 3D surface construction algorithm. In Computer Graphics

(SIGGRAPH ’87 Proceedings), vol. 21, 163–169.

Madrigal, C., and Joy, K. 1999. Boundary determination for trivari-

ate solids. In Proc. of the IASTED Intl Conf on Computer Graph-

ics and Imaging.

Martin, R., and Stephenson, P. 1990. Sweeping of three-dimensional

objects. Computer-Aided Design 22, 4.

Pottmann, H., and Wallner, J. 2001. Computational Line Geome-

try. Springer.

Raab, S. 1999. Controlled perturbation for arrangements of poly-

hedral surfaces with application to swept volumes. In Proc. 15th

ACM Symposium on Computational Geometry, 163–172.

Schroeder, W., Lorensen, W., and Linthicum, S. 1994. Implicit

modeling of swept surfaces and volumes. In IEEE Visualization

Conference.

Schwarzer, F., Saha, M., and Latombe, J.-C. 2002. Exact collision

checking of robot paths. In International Workshop on Algorith-

mic Foundations of Robotics.

Sethian, J. 1996. A fast marching level set method for monotonically

advancing fronts. In Proc. Nat. Acad. Sci., vol. 93, 1591–1595.

Van Hook, T. 1986. Real-time shaded NC milling display. In Com-

puter Graphics (SIGGRAPH ’86 Proceedings), D. C. Evans and

R. J. Athay, Eds., vol. 20, 15–20.

Varadhan, G., Krishnan, S., Kim, Y., and Manocha, D. 2003. Adap-

tive subdivision and reconstruction using box-distance fields. Tech-

nical Report TR03-005, Department of Computer Science, Uni-

versity of North Carolina.

Velho, L., de Figueiredo, L. H., and Gomes, J. 1999. A unified

approach for hierarchical adaptive tessellation of surfaces. ACM

Transactions on Graphics 18, 4, 329–360.

Wang, W., and Wang, K. 1986. Real-time verification of multi-axis

NC programs with raster graphics. In Proceedings of International

Conference on Robotics and Automation, 166–171.

Weld, J., and Leu, M. 1990. Geometric representation of swept vol-

ume with application to polyhedral objects. International Journal

of Robotics Research 9, 5.

Winter, A., and Chen, M. 2002. Image-swept volumes. In Proc. of

Eurographics.

Wood, Z., Desbrun, M., Schroeder, P., and Breen, D. 2000. Semi-

regular mesh extraction from volumes. In IEEE Visualization 2000

Proceedings.

Xavier, P. 1997. Fast swept-volume distance for robust collision

detection. In Proceedings of International Conference on Robotics

and Automation.

Generator Trajectory View1 of SV View2 of SV

Figure 9: SV Benchmarks. In each column, from left to right, each figure shows a generator model, sweeping trajectory, and
two views of the resulting SV approximation reconstructed by our SV algorithm, respectively. In each row, each figure shows
different benchmarking model, from top to bottom, X-Wing, Air Cylinder, Swing Clamps, Hammer, Input Clutch, Pipe, and
Pivoting Arms, respectively.

Computer Vision using Graphics Hardware

Marc Pollefeys
University of North Carolina at Chapel Hill

1

Computer Vision on
Graphics Hardware
Computer Vision on
Graphics Hardware

Marc Pollefeys
University of North Carolina at

Chapel Hill

Computer VisionComputer Vision

Computer Graphics
Models → Images

Computer Vision
Images → Models

But both require lots of image manipulation

Computer VisionComputer Vision

• Shape from X
–Stereo, Motion, Shading, …

• Tracking
• Segmentation
• Recognition

Computer Vision
Hardware?
Computer Vision
Hardware?

• Many attempts, special purpose
• Never really successful:

– Small market (no games!)
– Outpaced when ready…

(Moore’s law is too fast)

• So, let’s take advantage of CG
–Expensive stuff in CV is image operations

2

Computer VisionComputer Vision

• Low-level vision
– Image filtering, edge detection, …

• Mid-level vision
–Stereo, …

• High-level vision
–Recognition, …

Some simple things…Some simple things…

• image warping
• image filtering
• Background segmentation
• Erosion dilation

Image warpingImage warping

• Plane rectification

rendering a single quad with texture mapping

also usefull for stereo rectification, plane-sweep, …

Image warpingImage warping

• Radial distortion correction

render textured triangle mesh

3

Image filteringImage filtering

• Box filter build in for texture anti-
aliasing

• Multi-texturing allows more complex
linear filters (in single pass)

• Separable filters

Background segmentationBackground segmentation

• Computer Sum-of-Square-Differences

Second pass, threshold using alpha test

(Yang and Welch JGT’03)

Erosion/dilationErosion/dilation














min














max

(Yang and Welch JGT’03)
resultresult

(Yang and Welch JGT’03)

4

StereoStereo

• Identify corresponding pixels
– compute depth, image warping, etc…

StereoStereo

• Sum-of-square differences
– identify similar pixels

• Aggregation
– take neighbors into account

• Multi-resolution
• Shiftable windows

–deal with occlusion boundaries

(Yang and Pollefeys CVPR2003)

Sum-of-Square-DifferenceSum-of-Square-Difference

• Use same pixel-shaders as for
background differencing

store in alpha channel

AggregateAggregate
• Smoothness assumption

–Neighboring pixels are probably at
similar depth

–Allows to disambiguate correspondences
• Aggregate SSD scores over window

–Multi-texturing… (slow)
–Use hardware mip-map generation

–Bi-linear texture filter (add 2x2)

5

Multi-resolutionMulti-resolution

• Combine precision of small windows
with robustness of large windows

Multi-resolutionMulti-resolution

• Use multiple mip-map levels
• Yields pyramid-shaped kernel

• Render in single pass using multiple
texture units

Shape of a kernel
for summing up 6 levels

(1x1)

(1x1+2x2)

(1x1+2x2
+4x4+8x8)

(1x1+2x2
+4x4+8x8
+16x16)

Results (Stereo Depth
Estimation)
Results (Stereo Depth
Estimation)

Live results (2 cameras), Nov 2002Live results (2 cameras), Nov 2002

6

Performance (Depth
estimation)
Performance (Depth
estimation)

1.5

6.0

ReadBa
ck
(ms)

63.2

60.0

53.1

68.3

65.6

58.9

Disp. Calc.
(M/sec)

10.1

20

50

2.73

5.50

14

(hz)(ms)

99.1100

49.950

366100

18250

1.6x2
(QVGA)

20202562

5.8x2
(VGA)

71.4205122

Img.
Update
(ms)

TimeSearch
range

Output
size

Two input images, GeForce 4

Multi-view stereoMulti-view stereo

• Plane-sweep
• Multi-baseline

Hardware AccelerationHardware Acceleration

Cv
I0 I1

I2

I0
I1
I2

Cv

Sample Re-ProjectionsSample Re-Projections

near far

7

Hardware AccelerationHardware Acceleration

• Minimum Requirements
–Two texture units + Pixel Shader

• Simple Implementation

For each depth plane {
Accumulate SD
Compare and select

}

For each depth plane {
Accumulate SD
Compare and select

} } N × K passes

of Depth
Planes

of Input
Images

Novel view synthesisNovel view synthesis

ConclusionConclusion

• Graphics hardware offers huge
potential for computer vision

• Few bottlenecks remaining

Scientific Computations using Graphics
Hardware

Peter Schröder
 California Institute of Technology

1Multi-Res Modeling Group

Sparse Matrix Solvers
on the GPU: Conjugate

Gradients and Multigrid
Ian Farmer

Peter Schröder

Jeffrey Bolz

Eitan Grinspun

Caltech

2Multi-Res Modeling Group

Why Use the GPU?
Semiconductor trends

■ cost
■ wires vs. compute
■ Stanford streaming supercomputer

Parallelism
■ many functional units
■ graphics is prime example

1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

Ch
ar

t c
ou

rt
es

y
B

ill
 D

al
ly

Possible

Actual

3Multi-Res Modeling Group

New Hardware Features
Latest generation graphics HW

■ floating point throughout
■ programmability
■ high resource limits

■ dependent texturing
■ many registers
■ many instructions

4Multi-Res Modeling Group

How to Exploit?
Harvesting this power

■ what application suitable?
■ what abstractions useful?

History
■ massively parallel SIMD machines
■ media processing

Imagine stream processor; Bill Dally, Stanford Connection Machine CM2; Thinking Machines

5Multi-Res Modeling Group

Streaming Model
What is the right
abstraction?
■ Purcell, et al. 2002
■ data structures >

streams > textures
■ algorithms >

kernels > fragment
programs

Kernel

Kernel

input
record
stream

output
record
stream

globals

globals

6Multi-Res Modeling Group

Mapping the Program
How does a program execute?

■ “render” a rectangle
■ memory as texture
■ fragment program

■ many pixels provide
parallelism

■ write to texture
■ close the loop

Rasterizer
(set up texture
indices and all

associated data)

Fragment
program

(for all pixels
in parallel)

Texture
as general
purpose
memory

Output
goes to
texture

The
dreaded
p-buffer switch

7Multi-Res Modeling Group

Our Program
Kernels for scientific computing

■ sparse matrix solvers
■ not high arithmetic intensity…
■ but… we need them everywhere

■ unstructured: conjugate gradients
■ structured: multigrid

Lessons to learn here…

8Multi-Res Modeling Group

Sparse Matrices
Ubiquitous in numerical computing

■ discretization of PDEs: animation
■ finite elements, difference, volumes

■ optimization, editing, etc., etc.

Example here:
■ processing of surfaces

■ 2-manifold triangle meshes

9Multi-Res Modeling Group

Geometric Flow
Canonical non-linear problem

■ mean curvature flow

■ implicit time discretization
■ solve sequence of SPD systems

∑ ∈
−=

+∆−=

)(
4

))cot()(cot(

iNj ijiii

ijijij

aAa

ta βαλ

)()()()(tntHttx iiiit
rλ−=∂

Velocity opposite mean
curvature normal

() ()ii xAx =+1

ix

jx
ijα

ijβ

10Multi-Res Modeling Group

Non-Linear Problems
Basic structure

■ solver for SPD systems
■ conjugate gradients
■ other variants if not SPD

■ recompute matrix entries on GPU
■ minimize CPU to GPU traffic

■ control structure on CPU

11Multi-Res Modeling Group

Conjugate Gradients
High level code

■ inner loop
■ matrix-vector

multiply
■ sum-reduction
■ scalar-vector

MAD

)(0
2δεδ <newwhile

drd

rr

qrr
dxx
qd

Adq

oldnew

T
new

newold

T
new

β
δδβ

δ
δδ
α
α

δα

+=
=

=
=
−=
+=

=
=

/

/

12Multi-Res Modeling Group

Vector Inner Products
Decompose

■ fragment-wise multiply
■ followed by sum-reduction

■ odd dimensions can be handled
■ useful for other operations as well

+ +

13Multi-Res Modeling Group

Ax=y







































=













































































y
y
y
y
y
y
y
y
y
y

x
x
x
x
x
x
x
x
x
x

* * * * * **
Aj – off-diagonal
matrix elements

R – pointers
to segments

14Multi-Res Modeling Group

Matrix Vector Product

X – vector elements

R – pointers to segments

Ai – diagonal matrix elements

J – pointers to xj

Aj – off-diagonal matrix elements

∑
∈

+
)(iNj

jijiii xaxa

Fragment program

15Multi-Res Modeling Group

Apply to All Pixels
Two extremes

■ one row at a time
■ setup overhead

■ all rows at once
■ limited by worst row

■ middle ground
■ organize “batches” of work
■ what size? how to organize?

16Multi-Res Modeling Group

What Size Batches?
We choose fixed size rectangles

■ fragment pipe is quantized

■ simple experiments reveal best size
■ performance model

■ area, diagonal, wasted frags

0 200 400 600 800 1000 1200

time

Area
(pixels)

17Multi-Res Modeling Group

Packing (Greedy)
9 9 8 8 8 8 8 7 715 13 13 12 12 11 10 9 9 7 7 7 7 7 7 7 7 6 5 5 4

15 13 13

12 12 11

10 9 9

9 9 8

8 8 8

8 7 7

7 7 7

7 7 7

7 7 6

…

non-zero entries
per row

each batch
bound to an
appropriate

fragment program

still some zero
padding required

All this setup done
once only at the

beginning of time.
Depends only on

mesh connectivity

18Multi-Res Modeling Group

Recomputing Matrix
Matrix entries depend on surface

■ must “render” into matrix
■ two additional indirection textures

■ previous and next

∑ ∈
−=

+∆−=

)(
4

))cot()(cot(

iNj ijiii

ijijij

aAa

ta βαλ
ix

jx
ijα

ijβ

19Multi-Res Modeling Group

Surface Smoothing

20Multi-Res Modeling Group

Results (NV30@500MHz)
37k elements

■ matrix multiply
■ 33 instructions
■ 1/100th of a second

■ reduction
■ 7 instructions/fragment/pass
■ 1/1900th of a second

■ CG solve in 1/20th of a second

21Multi-Res Modeling Group

Results
How efficient?

■ lots of indirection
■ 33 instructions for 13 (average) flops

■ bandwidth limited
■ fat texture fetches are slow

■ not the ideal example for GPU…
■ small op/fetch ratio

22Multi-Res Modeling Group

So Far…
Unstructured matrices

■ irregular triangle meshes
■ also tet meshes

■ main issue is layout of matrix

Structured matrices
■ much nicer layout
■ example: fluids, image processing

23Multi-Res Modeling Group

Regular Grids
PDEs again

■ this time variables on “pixel grid”
■ e.g.: Navier-Stokes

buuuu
u

ρνρ +∇+∇⋅−=
∂
∂

=⋅∇

2)(

0

t

u⋅∇=∇ p2
after discretization:
solve Poisson eq.
at each time step

24Multi-Res Modeling Group

Poisson Equation
Appears all over the place

■ easy to discretize on regular grid
■ matrix multiply is

stencil application
■ FD Laplace stencil: (i,j)

-4

1

1

1 1

0

0

0

0

jijiji

jijiji

XXX

XXX

,1,1,

,1,1,
2

4−++

+=∇

+−

+−

25Multi-Res Modeling Group

Solver
Use iterative matrix solver

■ just need application of stencil
■ easy: just like filtering
■ incorporate geometry (Jacobian)
■ variable coefficients

But…, very ill-conditioned
■ use multigrid to counteract

26Multi-Res Modeling Group

Multigrid (basic)
Principles

■ lower frequency error resolved on
coarser grid

■ implementation needs:
■ interpolation (coarse>fine)
■ projection (fine>coarse)
■ relaxation

■ Jacobi iterations

27Multi-Res Modeling Group

V-Cycle

Relax

Relax

Relax
Relax

Relax

Projection Projection Interpolation Interpolation

Fine to coarse to fine cycle
■ project residual, relax, interpolate

correction vector

28Multi-Res Modeling Group

Computations
Lots of stencil applications

■ matrix multiply: 3x3 stencil
■ projection: 3x3 stencil
■ interpolation: 2x2(!)

■ floor op in indexing…

1/16

1 1

1 1

2

2

2 24

face edge vertex

1/4

1/4

1/4

1/4

1/2 1/2 1

[]  []{ }∑ ∈
+= 21,0 2 2/)(41

d hh dii vv

29Multi-Res Modeling Group

Details
Boundaries

■ Dirichlet boundaries
■ boundary variables are fixed

■ Neumann boundaries
■ out of bounds access clamped to O

■ gradient and divergence operators
■ one sided differences at boundary

30Multi-Res Modeling Group

Texture Layout
Storage for matrices and DOFs

■ variables in one texture
■ matrices in 9(=3x3) textures
■ all textures packed

■ exploit 4 channels
■ domain decomp.
■ padded boundary

x
y

z
w

31Multi-Res Modeling Group

Coarser Matrices
Operator at coarser level

■ needed for relaxation at all levels
■ triple matrix product

Af
Ac

S
P:=1/4ST=

Effectively:
Stencil composition

32Multi-Res Modeling Group

Stencil Composition
Triple matrix product…

■ work out terms and map to stencils
■ exploit local support of stencils
■ straightforward but t-e-d-i-o-u-s

■ store S in texture S’ with a O boundary

∑

∑

−∈

−∈

−+

+−+=

+=

2

2

}1,0,1{,

}1,0,1{,

2
2

]2[]2[']['4/1

]2[4/1][

ge

g
h

ge

g
h

dgeed
h

eiAdgeSeS

eiASSiA

33Multi-Res Modeling Group

More Details
What is variable?

■ only matrix entries (stencils) vary
■ all other operators hard wired

■ still general solution!

■ debugging
■ oh, joy…

■ obstacles resolved at coarsest level

34Multi-Res Modeling Group

Flow Example
Putting it all together

■ here: fixed velocity in and out
■ tracer particles for visualization

■ simple advection in evolving flow

35Multi-Res Modeling Group

Results (NV30@500MHz)
257x257 grid

■ matrix multiply - 27 instructions
■ 1/800th of a second

■ interpolation 10 instr.
■ projection 19 instr.

Overall performance
■ 257x257 at 90 fps!

36Multi-Res Modeling Group

Problems
Bleeding edge…

■ PBuffer overhead is killing us
■ managing layout in a buffer by

hand… OUCH
■ scalar versus vector problems
■ give us rectangular texture border

37Multi-Res Modeling Group

Enhancements
Small/large changes?

■ global registers for reductions
■ texture fetch with offset
■ scatter (displacement mapping?!)

■ rasterization order undefined
■ scatter w/ undefined order still useful

■ scientific computing compiler

38Multi-Res Modeling Group

Conclusion
Where are we now?

■ performance not up to expectations
■ still a good streaming processor
■ most kernels run at 1-2GFlops/s

■ SSE on P4 still very competitive

■ should beat CPUs in about a year
■ better languages! Brook? C*?

Implementing a GPU-Efficient FFT

Matthias M Wloka
NVIDIA

Implementing a GPU-Efficient FFTImplementing a GPU-Efficient FFT

Matthias Wloka
NVIDIA Corporation

What is a FFT?

Fourier transform
Transform function
from time- to frequency-
domain

H(f) = -∞∫
∞
h(t) e2π i f t dt

Inverse Fourier transform

h(t) = -∞∫
∞
H(f) e-2π i f t df

-1

-0.5
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t

si
n(

t)

-1
-0.5
0

0.5
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

f/2

FT
si

n(
f)

Discrete Forms for Series of Samples

Discrete Fourier transform

Hn =
k=0
∑N-1 hk e2π i k n/N

Inverse discrete Fourier transform

hk = 1/N
n=0
∑N-1 Hn e-2π i k n/N

Solving Fourier Transforms

As matrix equation:

Hn =
k=0
∑N-1 Wnk hk

Ĥ = W·ĥ
O(N2) operations

Recursive (Fast Fourier Transform):

Fk =
j=0
∑N-1 e2π i j k/N fj

= Fk
e + Wk Fk

o

O(N log N) operations

Fast Fourier Transform Implementations

[Numerical Recipes in C]
Loop over elements for bit-reversal
Loop log N times to recombine
neighbors
Weights are computed iteratively

Fastest Fourier Transform in the West
http://fftw.org
Optimized for current CPU
architectures
Adapts itself to current CPU cache
sizes

GPU FFT Feasibility

4k FFT requires
~5 * 4k log 4k Flops = ~170 MFlops
4k * 8 bytes = 32k bytes data

Compute times for
3.0 GHz CPU: 170MFlops @ ~12GFlops/s = ~14.2 ms
0.5 GHz GPU: 170MFlops @ ~32GFlops/s = ~5.3 ms

Data transfer times:
Download: 32k @ 2.0 GB/s = 0.016 ms
Upload: 32k @ 0.18 GB/s = 0.176 ms

Scenarios

Only use 3.0 GHz CPU:
1 FFT every ~14.2 ms

Only use 0.5 GHz GPU:
CPU sends data, waits, gets data from GPU
1 FFT every ~5.5 ms

Use CPU and GPU simultaneously:
CPU sends 3 FFTs, computes 1 FFT, reads 3 FFTs
4 FFTs every ~16.5 ms
1 FFT every ~4.1 ms

Scenarios

Only use 3.0 GHz CPU:
Baseline

Only use 0.5 GHz GPU:

~2.5X~2.5X speed-up over baseline

Use CPU and GPU simultaneously:

~3.5X~3.5X speed-up over baseline

FFT Algorithm Overview

Pass 0: Bit Reversal

Pass 1: combine 1-neighbors

Pass 2: combine 2Pass 2: combine 2--neighborsneighbors

Pass log N: combine N/2Pass log N: combine N/2--neighborsneighbors

Mapping Data-Structures to GPU

1D texture (from AGP)

1D float texture (render target)

1D float texture (render target)

1D float texture (render target)

1D float texture (render target
and to be read back via AGP)

GPU Algorithm Overview

Download FFT data to GPU as a 1D texture
4k by 1 texels big

Render quad into float texture render-target
Quad is 4k pixels wide and 1 pixel high
Somewhat niggly to get texture coordinates right

Bit-Reversal done as:
Pass address of pixel as texture coordinate
Fragment(addr) = tex(bitreversal(addr))
Bitreversal() is simply texture look-up

GPU Algorithm Overview (cont.)

Log N combination passes
Fragment(addr) = w0(addr) * tex(addr)

+ w1(addr) * tex(neighbor(addr))
w0(), w1(), and neighbor() are textures

Different for every pass
Pre-computed

Read final render-target back into CPU

Red Flags for GPU Performance

1 + log N passes
Even though all data stays on GPU (good)
Even though per-vertex computations trivial (good)
Lots of API calls for CPU to instruct GPU what to do
GPU has to finish each pass before next one starts

Only 1D textures
GPUs highly optimized for 2D textures

Only scalar computations
Not quite true, because data is complex
But only 2D, not 4D

Collapsing to Single Pass

Combine all fragment shaders into one
Make w0(), w1(), and neighbor() 2D textures:

F(pass, addr)
Let shader-compiler deal with the rest

Converting to 2D Textures

After pass-collapse: w0(), w1(), and neighbor()
already 2D

Fold FFT-data/render-targets:
Use 64x64 instead of 4096x1
Complicates address computations for 2D w0(), w1(),
and neighbor()
Make w0(), w1(), and neighbor() 3D textures
(64x64x12)

Compute multiple FFTs simultaneously
4096 4096x1 FFTs in one 4096x4096 texture

Use Vector Operations

Store 2 complex numbers per texture
(t0.r, t0.g) is first number
(t0.b, t0.a) is second number

Store 4 complex numbers in 2 textures
(t0.r, t0.g, t0.b, t0.a) are real parts
(t1.r, t1.g, t1.b, t1.a) are imaginary parts
Code is more symmetric
But more temporaries are used

Other Optimization Possibilities

Range and precision of intermediate results?
Can we demote them to half or fixed precision?

Range and precision of final result?
Conversion to lower precision has double benefit:

Faster to compute
Faster to transfer back to CPU

If range and precision of input is limited
Don’t compute results, but rather…
Replace m passes w/ table look-up

Demo

Naive implementation

With main optimizations

With all optimizations

Future Work

6 GFlops of vertex processing is mostly idle…

Integrate more of the Pulse Search problem
Straightforward power computations and
thresholding after FFT
Thresholding translates to rejecting a fragment

Potentially saves memory bandwidth
Use occlusion queries to determine if AGP read-back
is unnecessary

Questions, Comments, Feedback?

Matthias Wloka, mwloka@nvidia.com

http://developer.nvidia.com

Physically-Based Modeling and Interactive
Navigation using Graphics Hardware

Ming Lin
University of North Carolina at Chapel Hill

Technical Report TR02-004, Department of Computer Science, UNC Chapel Hill

Fast 3D Geometric Proximity Queries between Rigid and
Deformable Models Using Graphics Hardware Acceleration

Kenneth E.Hoff III, Andrew Zaferakis, Ming Lin, Dinesh Manocha

The University of North Carolina at Chapel Hill
Department of Computer Science

{hoff,andrewz,lin,dm}@cs.unc.edu

Abstract
We present an approach for computing generalized proximity information between arbitrary polygonal models
using graphics hardware acceleration. Our algorithm combines object-space localization, multi-pass rendering
techniques, and accelerated distance field computation to perform complex proximity queries at interactive rates. It
is applicable to any closed, possibly non-convex, polygonal object and requires no precomputation, making it
suitable for both rigid and dynamically deformable geometry of relatively high complexity. The proximity queries
include, not only collision detection, but also the computation of intersections, minimum separation distance,
closest points, penetration depth and direction, and contact points and normals. The load is balanced between CPU
and graphics subsystems through a hybrid geometry and image-based approach. Geometric object-space
techniques coarsely localize potential interactions between two objects, and image-space techniques accelerated
with graphics hardware provide the low-level proximity information. We have implemented our system using the
OpenGL graphics library and have tested it on various hardware configurations with a wide range of object
complexities and contact scenarios. In all cases, interactive frame rates are achieved. In addition, our algorithm’s
performance is heavily based on the graphics hardware computational power growth curve which has exceeded the
expectations of Moore’s Law for general CPU power growth.

1. Introduction
Many applications of computer graphics or computer
simulated environments require spatial or proximity
relationships between objects. In particular, dynamic
simulation, haptic rendering, surgical simulation, robot
motion planning, virtual prototyping, and computer games
often need to perform different proximity queries at
interactive rates. The set of queries include collision
detection, intersection, closest point computation, minimum
separation distance, penetration depth, and contact points
and normals. Algorithms to perform different queries have
been well studied in computer graphics, virtual
environments, robotics and computational geometry. Most of
the current approaches involve considerable pre-processing
and therefore are not fast enough for deformable models.
Furthermore, no good algorithms are known for penetration
depth computation between general, non-convex models.

We present a novel approach to perform all the proximity
queries between rigid and deformable models using graphics
hardware acceleration. Our algorithm localizes potential

interactions using object-space techniques, point-samples the
region, and then uses polygon rasterization hardware to
compute object intersections, closest points, and the distance
field and its gradients.

The main features of our approach include a unified
framework for all proximity queries, applicability to non-
convex polygonal models, computational efficiency allowing
interactive queries on current PCs, robustness in terms of not
dealing with any special-cases or degeneracies, and
portability across various CPU/graphics combinations. A
user-specified error threshold for pixel point sampling
density and distance approximation governs the accuracy of
the overall approach. Some of the novel features of our
approach include:

• Improved and efficient construction of distance meshes
used to compute 3D Voronoi diagrams accelerated with
graphics hardware.

• Site culling algorithms and distance mesh culling for
increased performance of Voronoi computation.

• Improved graphics hardware acceleration of computing
the intersection between two, possibly non-convex,
polygonal objects, over an entire volume.

• Improved algorithm for computing 3D image-space
intersections that handles both inter-object and self-
collisions.

• Computation of the gradients of the distance field using
graphics hardware.

We have implemented our algorithm on various hardware
configurations, and demonstrate its performance to compute
different queries between rigid and dynamically deforming
polygonal objects. Our approach is well suited for computing
proximity query information needed for collision responses
between dynamic deformable models. The use of graphics
hardware allows us to perform different queries at interactive
rates on complex deformable models. Moreover, it is
relatively simple to implement all these queries in a robust
manner. Over the last decade, the graphics processors
(GPUs) processing power has been progressing at a rate
faster than the CPUs and this will result in handling even
more complex scenarios at interactive rates.

2. Related Work
Algorithms for computing collisions, intersections, and
minimum separation distances have been extensively
researched. Many are restricted to convex objects [Cameron
97, Ehmann01, Gilbert88, Lin91, Mirtich98] or are based on
hierarchical bounding-volume or spatial data structures that
require considerable precomputation and are best suited for
rigid geometry [Hubbard93, Quinlan94, Gottschalk96,
Johnson98, Klosowski98]. Some algorithms handle
dynamically deforming geometry by assuming that motion is
expressed as a closed form function of time [Snyder93] or by
using very specialized algorithms [Baraff92]. In our
approach, we emphasize the handling of non-convex,
dynamically deformable objects with no precomputation or
knowledge of object motions. In addition, we obtain
computational complexity that grows linearly with geometric
complexity for a fixed error tolerance and contact scenario.

As compared to collision detection and separation distance
computation, there is relatively little work on penetration
depth computation. Penetration depth is typically defined as
the minimum translational distance needed to separate two
objects. We define it with respect to a point as the minimum
translational distance and direction needed to separate a
penetrating point from an object’s interior. Dobkin et al.
have presented an algorithm to compute the intersection
depth of convex polytopes, though no practical
implementation is known [Dobkin93]. Cameron has
presented a practical algorithm that computes an
approximate depth for convex polytopes [Cameron97]. No
practical algorithms are known for general, non-convex
polyhedra.

Our algorithm relies on the computation of discretized
distance fields and graphics hardware-accelerated geometric
computation. Distance fields - scalar fields that specify

minimum distance to a shape for all points in the field - have
been used for many applications in graphics, robotics and
manufacturing [Frisken00, Fisher01]. Common algorithms
for distance field computation are based on level sets
[Sethian96] or adaptive techniques [Frisken00]. However,
they either require static geometry, extensive preprocessing,
or lack tight error bounds. Graphics hardware has been used
to accelerate a number of geometric computations, such as
visualization of constructive solid geometry models
[Goldfeather89], cross-sections and interferences
[Rossignac92], and computation of the Minkowki sum
[Kaul92]. However, these only compute intersections, not
distance-related queries. Algorithms also exist for motion
planning using graphics hardware acceleration and distance
fields [Kimmel98, Lengyel90, Pisula00]. More recently, an
algorithm has been proposed to compute generalized
Voronoi diagrams and distance fields using graphics
hardware [Hoff99]. Its application to motion planning was
presented in [Pisula00]. Also, proximity queries accelerated
using graphics hardware was presented in [Hoff01], but it
was restricted to 2D and its extension to 3D was not obvious.

2.1 Voronoi and Distance field Computation
In [Hoff99], they present an algorithm for computing
approximate 2D and 3D generalized Voronoi diagrams for
polygonal objects with a variety of distance metrics. The
representation is in the form of a discretized regular grid of
sample points (images) across a 2D slice. A 3D Voronoi
diagram is composed of a sequence of these slices across the
volume to form a regular 3D grid. At each grid point, the ID
of the nearest site and its associated distance is stored. They
accelerate a brute-force algorithm using graphics hardware.

Instead of relying on a distance evaluation between a point
and a Voronoi site, a polygonal distance mesh is constructed
so that when rendered it computes the correct distance value
as the Z-coordinate. If these distance meshes are rendered
for each site with Z-buffer visibility enabled, the correct
comparisons and updates will also be performed. This
reduces the problem to finding a polygonal mesh
approximation of a 2D slice of the distance function. In 3D,
the distance mesh must approximate a 2D slice of the 3D
domain.

Their 3D implementation simply used a coarse regular grid
with direct distance evaluations at each grid point. This often
required over-meshing, inefficient direct distance
evaluations at grid points, and did not take advantage of the
inherent symmetry in the functions being approximated. In
addition, this approximation did not provide a tight bound on
the approximation and the computation times were on the
order of minutes to hours for high resolution Voronoi
diagrams of complex models.

We extend the 3D distance mesh ideas and formulate a very
fast and efficient bounded error approximation without
requiring any lookup tables or complex data structures. In
addition, we present methods for greatly accelerating the
distance evaluations through culling techniques.

2.2 2D Proximity Queries using Graphics HW
In [Hoff01], they presented an approach using the graphics
hardware based Voronoi computation for performing more
general proximity queries, such as those needed in
computing collision responses in a dynamics simulation.
This paper focused on the interactions between 2D, possibly
non-convex, polygonal objects only, but illustrated the
potential for having a unified framework for a wide range of
proximity queries. Many of the queries supported are
particularly difficult for object-space algorithms, such as
computing intersections, penetrating points, and penetration
depths and directions. They used image-space techniques for
performing these queries that were accelerated using
graphics hardware. The core operations were based on
queries into the Voronoi diagram. They presented a pipeline
that allowed load balancing between CPU and graphics
subsystems by first incorporating an object-space geometric
localization phase to restrict the area over which the image-
space phase must be performed.

Through improvements in the Voronoi diagram computation,
we have extended this work into 3D. Many additional
optimizations were necessary to make this run well in
practice, including: faster and efficient distance meshing
with bounded error, conservative Voronoi site culling, and
making the queries symmetric (query A w.r.t. B is the same
as B w.r.t. A). In addition, we constructed a specialized
algorithm for computing 3D intersections efficiently.
Previously in [Hoff01] for 2D, they relied on pixel overwrite
to find intersection points. For 3D, we used a parity based
strategy similar to operations used in graphics hardware-
accelerated visualization of CSG operations and shadow
volumes.

3. Overview of Our Approach
Given a collection of closed 3D polygonal objects, we
perform coarse geometric localization to find rectangular
regions of space (axis-aligned bounding boxes) that contain
either potential intersections or closest feature pairs between
objects. We uniformly point-sample these regions and use
polygon rasterization hardware to compute object
intersections, closest points, and the distance field. The
distance field and its gradient vector field provide the
distance and direction to the nearest feature for each point in
the localized region, which gives the contact normals,
minimum separation distances, or penetration depths. Our
core algorithm computes the proximity information between
two 3D, possibly non-convex, polygonal objects. Higher-
order curved surfaces are tessellated into polygons with
bounded distance deviation error. In our hybrid approach,
there are two top-level operations:

(1) Geometric object-space operations to coarsely localize
potential intersection regions or closest features

(2) Image-space operations using graphics hardware to
compute the proximity information in the localized
regions

Most of our improvements center around Voronoi and
distance field computation since it is by far the most costly
operation and is the most demanding of the graphics
hardware. Load balancing between CPU and graphics
subsystems is achieved by varying the coarseness of the
object-space localization and by using object-space culling
strategies. Tighter localized regions result in fewer pixels
and a smaller bound on the maximum distance needed for
Voronoi computation, thus reducing the fill and geometry
loads on the graphics pipeline. We can also balance the load
between these two main stages of the graphics pipeline by
shifting the distance error tolerance in the Voronoi
computation between fill and geometry: increasing the pixel
resolution decreases the distance mesh resolution and vice
versa. The main parts of the proximity query pipeline are
shown in the following figure:

object-space
localization: on-the-
fly bounding-volume
hierarchies or spatial
partitioning; trivial

j ti

CPU
image-space
queries: interior
and intersection
pts, Voronoi
diagram, distance
fi ld

Graphics HW

localized region
AABB

2 closed, possibly
non-convex

polygonal objects

proximity info

Main Proximity Query Pipeline

Figure 1: The proximity query pipeline is composed of two main stages:
geometric localization and image-space queries. The most complex queries
are performed by graphics hardware. Each stage can be varied to balance the
load between CPU and graphics subsystems.

4. Object-space Geometric Localization
The image-based queries operate on a uniform 3D grid of
sample points in regions of space containing potential
interactions. The graphics hardware pixel framebuffer is
used as a 2D slice of the grid and the proximity queries
become pixel operations, therefore the performance varies
dramatically with the pixel resolution. To avoid excessive
load, a geometric localization step is used to localize regions
of potential interaction or as a trivial rejection stage. This
hybrid geometry/image-based approach helps balance the
load between the CPU and graphics subsystems, giving us
portability between different workstations with varying
performance characteristics. More sophisticated geometric
techniques, to tightly localize potential intersections or
closest feature pairs, dramatically reduce the graphics
pipeline overhead, but increases the CPU usage and the
complexity of the algorithm. We use coarse fixed-height
bounding-volume hierarchies to achieve this balance
between speed and complexity, and between CPU and
graphics usage.

There are many general and efficient algorithms available
for localizing geometry based on bounding-volume
hierarchies [Gottschalk96, Hubbard93, Johnson98,
Quinlan94]. However, for exact collision detection these
algorithms typically perform well only on static geometry
where the hierarchy can be precomputed. In order to handle
dynamic deformable geometry with no precomputation, we
use coarse levels for efficient trivial rejection and obtain
reasonable geometric localization. In addition, we perform
lazy evaluation of relevant portions of the hierarchies while
performing the collision or distance query. A subtree rooted
at a particular node is only computed if its children need to
be visited during the query traversal. The trees are destroyed

after every proximity query, and no actual tree data
structures are required since the child nodes are recursively
passed to the query routine. A maximum height of each
object tree is used to balance the CPU and graphics load.
Similar algorithms can be constructed using spatial
partitioning rather than bounding-volume hierarchies. Since
the resulting localized region needs to be rectangular (an
axis-aligned cube) to allow simple use of the graphics
hardware, we use a dynamically constructed AABB-tree.
With a fixed number (depth of the tree) of linear passes over
the geometry we obtain reasonable localization.

The typical proximity query is between two objects at a time.
However, it is possible to perform many simultaneous
queries for all objects in an N-body simulation. We could
perform the proximity queries for all objects with one image-
space query by using a localized region that encloses the
entire scene. This may be more efficient in cases when the
objects are densely packed with many complex contacts
throughout the space containing the objects. For example, in
a dense rigid body simulation where many objects are
interacting simultaneously (e.g. an asteroid field), a single
image-space query over the entire space may be more
appropriate (localized region is the world bounding box). In
addition, as the computational power of graphics systems
continues to overtake the general CPU power, coarser and
simpler localization will be favored.

The geometric localization step may often result in multiple
disconnected regions on each object. In these cases, the
proximity query must be repeated for each localized region.
Geometric localization for intersecting and nearest features
can be found by using existing bounding-volume or spatial
partitioning approaches that act on object boundaries, but
finding localized regions around volume intersections
requires a specialized algorithm. At each step of refinement,
the parent bounding box must fully contain the volume
intersection. This can be accomplished by first starting with
the intersection of the top-level object bounding boxes. This
intersection box will surely contain the intersection volume.
Now we can refine this localization by computing the
bounding box of the portion of each object that lies in the
current box. We then repeat the process on the intersection
of these two boxes which is also guaranteed to contain the
intersection volume.

5. Image-space Proximity Queries
The proximity queries are simplified using uniform point
sampling inside an axis-aligned bounding box (localized
region) and accelerated with graphics hardware. This image-
space approach helps decouple the objects’ geometric
complexity from the computational complexity for a
specified error tolerance. We point-sample the space
containing the geometry within the localized regions with a
uniform rectangular 3D grid and perform the queries on this
volumetric representation using graphics hardware
acceleration. The image-based queries include computing
intersections between objects, computing the distance field
of an object boundary, and computing the gradient of the

distance field. Variations of these basic operations are used
to perform the remaining queries. The basic pipeline is
shown in Figure 2.

The 3D image-space queries avoid excessive data handling
when processing the entire volume of the localized region.
Each query must be performed over the uniform 3D grid,
one 2D slice at a time. The application query information is
sent to the application as it is processed slice-by-slice to
avoid processing and storing the entire 3D image. In
addition, many of the queries have been made symmetric to
avoid a second pass as needed in the previous work.

Find interior points of
both objects using
parity-based stencil
test, compute
intersection pts

Graphics HW
Voronoi diagram
computation:
associate isect pts
with closest obj
boundaries,
compute distances
to boundary

Graphics HW

CPU: readback
stencil to get
intersection pts,
find tighter fitting
box around
intersection pts

localized
region: axis-
aligned
bounding box
containing
potential
interactions

CPU: readback
color/depth to get
core proximity
info

Compute gradients
at isect pts using
finite differencing

CPU

Final
proximity
info

Image-Space Proximity Query Pipeline

 Figure 2: The most computationally intensive tasks are performed by the
graphics hardware. These stages are also the most difficult for geometric
object-space approaches. We accelerate simple brute-force image-space
solutions using graphics hardware to obtain interactive performance on
complex models with no precomputation

5.1 Intersections
We compute intersection points on a 2D slice by performing
a parity test, as is often used in shadow volumes and CSG
rendering, using graphics hardware stencil operations
[Crow77, Rossignac92]. In order to find intersections, we
must first be able to identify sample points that are inside the
object. The set of sample points that are inside both objects
form the intersection points between the objects. We then
describe another generalized strategy that can handle
intersections between multiple objects simultaneously along
with the more complex self-intersections.

For any closed object, we can determine if a point is inside
the object by shooting a ray from the point in any direction
and counting the number of times the object’s surface is
crossed. If the count is even, the point is outside of the
object; if odd, the point is inside. We can simultaneously
determine which sample points on a 2D planar slice are
interior points by projecting all of the geometry on one side
of the plane onto the plane and counting the number of times
pixels are overwritten. This computation is performed using
the graphics hardware through an odd-even parity test for
rendered geometry clipped by the plane and projected onto
the plane. Each time a pixel is overwritten the parity bit is
flipped. Pixels whose stencil bit is set to 1 represent points
on the slice that are inside the object. Initially the stencil
buffer is initialized to 0.

5.1.1 Incremental Update and Bucket Sorting

For a single slice, this computation requires rendering all of
the geometry on one side of the plane (clipped by the plane).
However, this is inefficient for evaluating interior points on
many slices swept through our 3D localization box. We
improve efficiency by performing a plane sweep and
updating the stencil buffer incrementally. For each slice, we

only render the geometry between the current slice and the
previous slice.

This incremental update improves the running time
dramatically since on average the entire model is only drawn
once! As opposed to the single slice approach where the
entire model to one side of the slice had to be drawn for each
successive slice. We can obtain even greater performance by
first sorting the geometric primitives along the Z-axis by
their minimum Z-values. A general sort would require O(n
log n) time complexity. We obtain expected O(n) complexity
by performing a bucket sort by using the slab positions as
the buckets. With one pass through the geometry, we can
assign each primitive to a bucket by its minimum Z-value.
We maintain a list of currently active geometry for each slab.
For each subsequent slab we add geometry to the list from
the associated bucket. Geometry is removed from the list by
checking if the old primitives’ max Z-value is less than the
current slab NearZ (swept past the primitives). This also
dramatically improves performance with very little extra
complexity or data. We avoid having to search for geometry
that intersects the current slab. In addition, there is no need
to add geometry to the buckets that lies outside of the XY
min/max box. In practice, very little geometry has to be
processed for the interior computation.

In order to find the intersection between two objects, we
compute the interior of both objects inside of the localized
region one slice at a time. The interior of both objects is
encoded in a different bit of the stencil buffer. The set of
points with both bits set are intersection points since they are
interior to both objects. To actually extract these points, we
must read the stencil image and search for the pixels with the
appropriate value (a value of 3 from the 1st and 2nd least
significant bits being set). These points must then be
transformed from pixel-space into object-space.

5.1.2 Complexity and Error Analysis

Our new algorithm for intersection computation for 3D non-
convex objects is simpler as compared to the 2D intersection
computation algorithm presented in [Hoff01]. The major
weakness of finding overwritten pixels between two non-
convex polygons, was that they had to be triangulated in
order to be rendered. This was the dominant part of the
intersection computation since it was worst case O(n log n)
rather than O(n). However, the expected running time of
most triangulation algorithms is usually close to linear. In
3D, we only require the O(n) complexity where n is the
number of primitives. The actual running time varies most
dramatically with the ratio of the size of the localized region
over the error tolerance, and is largely independent of the
geometric complexity. More complex forms of contact do
not result in increased running times unless the size of the
localized region is increased dramatically or the error
tolerance is reduced. These cases are difficult to analyze
since they vary dramatically with the object configurations.
More sophisticated geometric localization will reduce
performance variations.

The complexity of rendering objects grows linearly with
respect to the number of primitives for a fixed pixel
resolution. Computing intersections geometrically between
two polygon boundaries is worst case O(n2) since all
primitives could intersect each other. The complexity of our
algorithm is O(n) where n is the number of primitives. The
hierarchical geometric localization step is also O(n) since the
maximum depth of the tree is held constant. This tree depth
balances the load between the CPU and graphics subsystems.

Similarly to the 2D case, the error in the interior and
intersection computation is related to the pixel error in scan-
conversion. The actual interior regions will never be off by
more than half of the length of the diagonal of a pixel’s
rectangular cell (the error tolerance). The error tolerance has
a dramatic effect on the number of pixels that have to be
processed. When reduced error tolerances are required,
better geometric object-space localization must be employed
to reduce the load on the graphics subsystem. Furthermore,
we can also balance the loads between geometry and fill
stages of the graphics pipeline by trading off error in the
pixel resolution and the distance mesh granularity.

Incorrect intersection parity resulting from pixel sample
points lying exactly on tangent points to the object surface
are avoided through correct minimum-based triangle
rasterization as described in [Rossignac92]: either the
crossing will be counted twice or not at all.

5.1.3 Multiple Objects and Self-Collisions

We can modify the intersection routine to handle self-
collisions and multiple objects with very little modification
to the previous algorithm. The modification adds the
complexity of having to distinguish front and back faces for
polygons in each slab for a parallel projection and has the
slight restriction of only handling the intersection of at most
255 simultaneous volumes (limit of 8-bit stencil buffer).

Instead of finding the interior of both objects separately and
then finding their common intersection, we can simply
finding the intersection directly using the geometry from
both objects simultaneously using the classic parity test used
in the shadow volume algorithm. Since we want to know if a
point is inside two volumes simultaneously, a ray emanating
from a query point must have exited at least two more
volumes than it has entered.

Instead of simply flipping a bit each time a boundary is
crossed (front or back facing), starting with a stencil counter
initialized to zero, we increment the counter each time a
volume is exited (a back face is rendered) and decrement the
counter whenever a volume is entered (front face is
rendered). The counter will indicate the number of objects
containing the point. We are interested in the intersection
points, so the counter must at least be 2. We simply modify
our existing approach of rendering slabs to perform this
count instead. We must classify all object faces for each slab
as front or back facing with respect to a parallel projection.
Since all object triangles are handled together, we can handle
more than 2 objects and we can also find self-intersections of

a single object. Stencil counts of 2 or greater indicates a
point that is in the intersection of at least one pair of objects
or an object with itself.

5.2 Distance Field Computation
We use the algorithm presented in [Hoff99] for constructing
generalized Voronoi diagrams using graphics hardware for
3D polygonal objects. This approach computes an image-
based representation of the Voronoi diagram in both the
color and the depth buffers for one 2D slice of the 3D
volume at a time. A pixel’s color identifies the polygon
feature (vertex or edge) that is closest to the slice pixel’s
sample points; its depth value corresponds to the distance to
the nearest feature. The depth buffer is an image-based
representation of the distance field of the object boundaries.
The distance field is computed by rendering 3D bounded-
error polygonal mesh approximations of a 2D planar slice of
the distance function where the depth of the rendered mesh
at a particular pixel location corresponds to the distance to
the nearest geometric feature.

The goal in constructing a distance mesh is to find a
piecewise linear approximation across a 2D planar domain
of a Voronoi site’s 3D scalar distance function. The distance
to a site from a point (x,y,z) is defined as D(x,y,z). The
function we are interested in approximating is for a 2D
planar slice z=Zslice. So we wish approximate the 2D scalar
function D(x,y, Zslice), where Zslice is a constant for any
particular slice, such that the approximation D’ and actual
distance function D never differ by more than the user-
specified distance error. In addition, the domain across the
slice is restricted to a 2D window and the range of the
function is restricted to z∈[0,MaxDist]. The shape of the
distance mesh for a 3D point is one sheet of a hyperboloid of
two sheets; for a line, an elliptical cone; and for a plane,
another plane.

In [Hoff99], distance meshes were constructed using lookup
tables. We construct error-bounded polygonal mesh
approximations of a 2D planar slice of a primitives distance
function at run-time with no precomputation at faster rates
than the algorithm based on lookup tables. We solve for the
mesh stepsizes needed to maintain the desired error
threshold while taking advantage of symmetry. We attempt
to actual obtain the desired error to make the meshes as
coarse as possible for rendering efficiency. In addition, we
only construct geometry that lies within the slice window.

For computing distance fields for proximity queries, we
obtain higher performance than the generalized Voronoi
diagram computation because of the localized regions. In the
case of computing distance fields for proximity queries, the
localized regions always contain the geometry that is in
potential contact or that contains the closest features. The
farthest away points on two objects can be is in opposite
corners of the localized region box. So the maximum
distance we need to construct distance meshes for is half of
the diagonal length of the box. Reducing the maximum
distance results in the greatest speedups in Voronoi

computation since it reduces geometry and fill by reducing
the overall extent of the distance meshes, and the smaller
bound allows the objects to be easily culled if they are too
far from the localized region thus avoiding distance mesh
construction completely. In addition, the distance mesh
generation routines attempt to minimize the number of
primitives drawn by constructing a mesh that is as coarse as
possible while staying within the specified error bound (the
error bound is tight, this deviation can actually be measured
for various places in the mesh approximation) and by only
generating primitives that are inside the localized region
bounding box. In addition, in many proximity queries we can
further reduce the maximum distance needed when we only
want intersection or closest points near the boundaries of the
object.

5.3 Gradient of the Distance Field
We compute the gradient of the distance field at pixel
locations by using central differences in all three principal
axis directions. In practice, this simple approach gives
reasonable results even with the distance error and lack of C1
or higher continuity in the polygonal distance mesh
approximations used to compute the distance field. Gradients
are computed in software for selected points after reading
back the distance values. If the entire gradient field is
desired, we could accelerate the computation using multi-
pass rendering or pixel shading operations.

The most difficult problem in computing the gradient is in
handling discontinuities and boundaries in the distance field.
There are three types of discontinuities that occur: across
Voronoi boundaries, across Voronoi sites, and at the
boundaries of the grid. In each case, the support of the finite
differencing “kernel” has to cross a discontinuity and gives
an incorrect gradient. A more robust method is shown in the
fast marching methods in [Sethian96]. He solves for a
distance value at an unknown point using an implicit method
based on the fact that at least one adjacent distance value
must be known and does not cross a discontinuity, and that
for the nearest Euclidean distance metric the magnitude of
the gradient must be 1 everywhere (except at the
discontinuities). We use the same method by just using the
one-sided difference in each direction that will result in a
gradient whose magnitude is 1 (choose the adjacent value in
each direction that has the maximum difference). Adjacent
distance values that cross a discontinuity will not be chosen.
An alternative, but slightly more complex, strategy is to
compute the gradients of the continuous distance meshes
directly.

By directly encoding gradients at distance mesh vertices, we
can use the linear interpolation of polygon rasterization to
compute gradients at all pixels. Since we would be linearly
interpolating a gradient, this gives us a higher order
interpolation than central differencing of adjacent distance
values. This is comparable to the difference between
Gouraud and Phong interpolation (the first linearly
interpolates color values across a polygon, the second
linearly interpolates the surface normal for per-pixel lighting

calculations). In addition, the gradient is much simpler if
computed only for a single site at a time during distance
mesh construction. We need only provide the direction to the
nearest point on the site at each distance mesh vertex. The
main difficulty with this approach is in the encoding of the
gradient for rapid computation by graphics hardware.

This approach as some difficulties due to limitations of
graphics hardware framebuffer precision. There are a
number of ways we can interpolate the gradient information.
The simplest is to encode the signed normalized components
into the 8-bit RGB color values at each vertex (using
hardware scale and bias operations for sign). The linear
interpolation would give the correct results to 8-bits of
precision. This approach introduces quantization error when
encoding and additional error during interpolation. Using 3D
texture coordinates, high precision encoding and
interpolation is obtained. However, the resulting per-pixel
texture coordinates are still quantized to low precision RGB
values in the framebuffer. The texture-mapping function
would simply be the identity mapping. We are interpolating
(s,t,r) gradient values and we want those values directly at
each pixel. The graphics hardware does not allow higher
precision intermediate results for multi-pass operations.
However, the texture-mapping method has the advantage of
only introducing significant error at the final stage; encoding
and interpolation are done at floating point precision. Also,
the signs will be correctly handled without any additional
scaling or biasing. However, we also have no simple way of
performing the identity map. We must use a 1D texture that
maps [-1,1] to [0,255], but this can only be applied to one
texture component at a time. This would require three passes
in order to transform (s,t,r) into RGB values. A less efficient
approach would involve the use of a 3D texture map. Current
pixel-level programmable graphics hardware may provide a
simpler and more efficient way to handle this mapping.

5.4 Other Proximity Queries
We use the basic operations of computing interior points,
intersections, the distance field, and the gradient of the
distance field to perform the other proximity queries
mentioned in section 1.

Penetration Depth and Direction: For a point on object A
that is penetrating object B, we define the penetration depth
and direction for the point as the distance and direction to the
nearest feature on B. This information is provided directly
from the distance field and its gradient computed at the
penetrating point. Penetrating points are found using the
intersection operation. Intersection points are associated with
each object based on the Voronoi diagram’s color buffer that
indicates the closest object to each point. Contact points and
Normals are computed in the same way. Approximate
contact points result from the objects slightly penetrating
each other.

Closest Point: We find the point on object A that is closest
to object B by first geometrically localizing potential closest
feature regions (one bounding box on each object) using

some hierarchical approach. We then compute the distance
field of object B and the interior points of A in A’s localized
region (gives us minimum distance to B for all points in A in
A’s localized region). We then search these points to find the
one with the smallest distance value. This point will be the
point on A that is closest to B. This process has to be
repeated for B with respect to A. This requires two passes,
but the interior points and the distance field needs to only be
computed once for each object.

Separation Distance and Direction: We find the minimum
separation distance and direction between two objects A and
B by first computing the closest point on A to B and vice
versa. Ideally, we find the closest point on B to A from the
distance value and gradient at the closest point on A to B,
but the amplification of errors over the greater distance may
cause problems. The distance between these two closest
points is the separation distance and the line segment
between them gives the separation direction.

6 Performance
We tested the system performance in both rigid and
deformable body dynamic simulations on a several different
hardware configurations. In the rigid body cases, we
measured the performance of the system in computing
proximity query information needed for computing a
penalty-based collision response. In these cases, only
shallow penetration is allowed since the objects bounce off
of each other. For the deformable cases, we perform only the
proximity queries without collision response to show the
worst case of computing proximity information for many
deep simultaneous contact scenarios with dynamically
deforming geometry. We tried to choose three hardware
configurations that would reflect variations in balance
between CPU and graphics computational power:

(1) Pentium-4 1.8Ghz with GeForce3 Ti500 graphics: fast
CPU and fast graphics

(2) 1 graphics pipe and 1 300Mhz MIPS R12000 processor
of an SGI Reality Monster with InfiniteReality2
graphics: slower CPU and fast graphics

(3) PentiumIII-750Mhz laptop with ATI Rage Pro LT: fast
CPU and slow graphics.

Because of the ability to balance the load between the CPU
and graphics subsystems and between stages of the graphics
pipeline, we are able to achieve interactive performance on
all configurations. In most cases, we only needed very
simple one-level geometric localization (intersection of top-
level axis-aligned bounding boxes). Most of the balancing
was between stages of the graphics pipeline (much of the
geometry stage on older graphics systems was performed on
the CPU: before hardware T&L). We also show the effects
of the varying the distance threshold on system performance.

For performance evaluation, we implemented a rigid body
simulator with collision response and a variety of
deformable simulations without collision responses to allow

more complex contact scenarios. The test scenarios vary
from simple convex objects composed of around 2 thousand
triangles with simple contact regions to non-convex objects
with nearly 10,000 triangles with multiple complex
overlapping and interlocking contact regions. The average
query times are shown in Table 1. It is important to note that
the query time is not growing because of the increase in
geometric complexity, but rather because our more complex
models are in more complex contact configurations.

The performance of our image-space query system depends
more on the contact configuration than on the complexity of
the objects. The distance error tolerance determines the point
sample density across the contact volume. The density and
the volume of the localized regions and the contact regions
determine the number of pixels that have to be processed. If
an insufficient level of geometric localization is used, the
number of pixels to process may increase dramatically. The
user must decide the appropriate amount of localization to
properly balance the CPU/graphics load. In addition, the
performance can be varied dramatically by the user-specified
distance error tolerance. In Table 2, we show the effects on
performance with a varying error tolerance.

Average Total Per-frame Proximity Query Times
Demo #Tris Isect Pts GeForce3 IR2 Rage Pro

Cylinders 2000 513 12ms 61ms 45ms
Tori 5000 1412 71 262 257

Heart 8000 317 149 329 434
Rigid 15000 2537 313 1001 966

Table 1: Performance timings for dynamics simulations. The number of
triangles, average number of intersection points, and average time to run
proximity queries per frame is reported for error tolerance d (see Table2).
Timing data was gather from three machines, a Pentium4 1.8GHz desktop
with a 64Mb GeForce3, a SGI 300MHz R12000 with InfiniteReality2 graphics,
and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics.

Effects of Error Tolerance on Performance
Error Isect Pts/Frame GeForce3 IR2 Rage Pro LT
d/4 89605 548ms 1701ms 2846ms
d/2 11238 169 578 689
d 1413 71 262 257
2d 177 32 189 103
4d 22 15 56 40

Table 2: The effect on performance when changing the distance error
tolerance d. The average number of intersection points per frame is also
reported. We used proximity queries on the deformable tori demo. The error
determines the number of pixels used in the image-based operations.
Systems with low graphics performance are more directly affected by the
choice of d; however, as the error is increased there is less dependence on
graphics performance and the faster laptop CPU overtakes the InfiniteReality2
system.

Although we focused most of our efforts on handling
deformable body proximity queries, our system is also
applicable to rigid body queries. We use a penalty-based
collision response that acts on individual point samples that
approximate our object. These point samples arise from our
image-space proximity queries. Particles are allowed to
penetrate objects in penalty-based collision response
computation. When a penetration is detected, a spring based
restoring force, whose magnitude is proportional to

penetration depth, is then applied to the particle until it has
separated from the object. The measure of penetration is
notoriously expensive to compute and limits the use of
penalty-based techniques to mostly models decomposable
into convex primitives. The generality and computational
efficiency provided by our proximity query algorithms
alleviates this problem.

7 Conclusion and Future Work
We have presented a hybrid geometry- and image-based
algorithm for computing geometric proximity queries
between two non-convex closed 3D polygonal objects using
graphics hardware. This approach has a number of
advantages over previous approaches. The unified
framework allows us to compute all the queries, including
penetration depth and direction and contact normals.
Furthermore, it involves no precomputation and handles
non-convex objects; as a result, it is also applicable to
dynamic or deformable geometric primitives. In practice, we
have found the algorithm to be simple to implement (as
compared to similarly robust geometric algorithms), quite
robust, fast (considering the complexity of the queries), and
very flexible. We have developed an interactive system that
shows proximity queries computed between 3D dynamic
deformable objects to illustrate the effectiveness of our
approach.

8 Acknowledgements
This research has been supported in part by
ARO Contract DAAG55-98-1-0322, DOE ASCII Grant,
NSF Grants NSG-9876914, NSF DMI-9900157 and NSF
IIS-982167, ONR Contracts N00014-01-1-0067 and
N00014-01-1-0496 and Intel

References

[Baraff92] D. Baraff, Dynamic Simulation of Non-Penetrating Rigid
Bodies. Ph.D. Thesis, Dep of Comp. Sci., Cornell University, March 1992
[Cameron97] S. Cameron, Enhancing GJK: Computing Minimum and
Penetration Distance between Convex Polyhedra. International
Conference on Robotics and Automation, 3112-3117, 1997
[Crow77] F. Crow, Shadow Algorithms for Computer Graphics.
SIGGRAPH 77.
[Dobkin93] D. Dobkin, J. Hershberger, D. Kirkpatrick, S. Suri,
Computing the Intersection Depth of Polyhedra. Algorithmica, 9(6), 518-
533, 1993
[Ehmann01] S. Ehmann and M. Lin. Accurate and Fast Proximity
Queries between Polyhedra Using Surface Decomposition. Eurographics
2001
[Fisher01] S. Fisher and M. Lin. Fast Penetration Depth Estimation for
Elastic Bodies Using Deformed Distance Fields. Proc. Intl. Conf. on
Intelligent Robots and Systems, 2001
[Frisken00] S. Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones,
Adaptively Sampled Distance Fields: A General Representation of Shapes
for Computer Graphics. SIGGRAPH00, 249-254, July 2000
[Gilbert88] E. G. Gilbert, D. W. Johnson, S.S. Keerthi. A Fast Procedure
for Computing the Distance Between Objects in Three-Dimensional
Space. IEEE J. Robotics and Automation, RA(4): 193-203, 1988
[Goldfeather89] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near
Real-time CSG Rendering Using Tree Normalization and Geometric

Pruning. IEEE Computer Graphics and Applications, 9(3):20-28, May
1989
[Gottschalk96] S. Gottschalk, M. C. Lin, D. Manocha, OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection. SIGGRAPH 96,
171-180, 1996
[Hoff99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast
Computation of Generalized Voronoi Diagrams Using Graphics
Hardware. SIGGRAPH 99, 277-285, 1999
[Hoff01] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and
Simple 2D Geometry Proximity Queries Using Graphics Hardware. ACM
Symposium on Interactive 3D Graphics, 2001
[Hubbard93] P. M. Hubbard, Interactive Collision Detection. IEEE
Symposium on Research Frontiers in Virtual Reality. 24-31, 1993
[Kaul92] A. Kaul and J. Rossignac, Solid-interpolating Deformations:
Construction and Animation of PIPs, Computer and Graphics, vol 16,
107-116, 1992
[Kimmel98] R. Kimmel, N. Kiryati, A. Bruckstein, Multi-Valued
Distance Maps for Motion Planning on Surfaces with Moving Obstacles.
IEEE Transactions on Robotics and Automation, vol 14: 427-438, 1998
[Klosowski98] J. Klosowski, M. Held, J. Mitchell, K. Zikan, H. Sowizral.
Efficient Collision Detection Using Bounding Volume Hierarchies of k-
DOPs. IEEE Trans. Vis. Comp. Graph, 4(1):21-36, 1998
[Johnson98] D. Johnson, E. Cohen, A Framework for Efficient Minimum
Distance Computation, IEEE Conf. On Robotics and Animation, 3678-
3683, 1998
[Lengyel90] J. Lengyel, M. Reichert, B.R. Donald, and D.P. Greenberg.
Real-time Robot Motion Planning Using Rasterizing Computer Graphics
Hardware. Computer Graphics (SIGGRAPH 90 Proc.), vol. 24, pgs 327-
335, Aug 1990
[Lin91] M. Lin, J. Canny. Efficient Algorithms for Incremental Distance
Computation. IEEE Transactions on Robotics and Automation, 1991
[Mirtich96] B. Mirtich, Impulse-Based Dynamic Simulation of Rigid Body
Systems. Ph.D. Thesis, University of California, Berkeley, Dec 1996
[Mirtich98] B. Mirtich, V-Clip: Fast and Robust Polyhedral Collision
Detection. ACM Trans. on Graph, 17(3):177-208, 1998
[Pisula00] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized Path
Planning for a Rigid Body Based on Hardware Accelerated Voronoi
Sampling. Proc. of Workshop on Algorithmic Foundations of Robotics,
2000
[Quinlan94] S. Quinlan, Efficient Distance Computation between Non-
Convex Objects. International Conf. on Robotics and Automation, 3324-
3329, 1994
[Rossignac92] J. Rossignac, A. Megahed, and B. Schneider. Interactive
Inspection of Solids: Cross-sections and Interferences. SIGGRAPH 92,
26, 353-360, July 1992
[Sethian96] J. Sethian, Level Set Methods, Cambridge University Press,
1996
[Snyder93] J. Snyder, A. Woodbury, K. Fleischer, B. Currin, A. Barr,
Interval Methods for Multi-Point Collisions Between Time Dependent
Curved Surfaces. ACM Computer Graphics, 321-334, 1993

Plate 1 hybrid proximity query pipeline : Given two closed polygonal objects, a coarse object-space geometric localization step is performed to find an
axis-aligned bounding box that contains a potential interaction (2). Inside the localized region, the lower-level image-space queries are performed. First
the interior of each object is indentified using an incremental stencil parity test for a series of 2D slices across the volume (2). The set of point that are
determined to lie in the interior of both objects form the intersection points between the objects (3). Then, the Voronoi diagram is computed inside a
tighter region around the intersection points at the same resolution as the intersection resolution. The Voronoi diagram serves two purposes: associates
intersection points with their closest object boundaries, and provides the distance field. The distance value at an intersection point gives the penetration
depth, and the gradient gives the penetration direction.

Plate 2 real-time dynamic deformable proximity queries: The same proximity query pipeline can be applied to dynamic deformable models where
every vertex is assumed to change for every frame. The complex contacts between non-convex objects can result in disconnected intersection regions.
Each cylinder model is composed of 2000 triangles and the average query time is 12ms for an average of 513 intersection points per query. The tori are
composed of 5000 triangles and the query time is 71ms for 1412 intersection points. Each simulation performed at interactive rates on a Pentium4
1.8GHz desktop with a 64Mb GeForce3.

Plate 3 proximity queries on body heartbeat simulation: The proximity queries are used for
path verification of the organs during a precomputed breathing simulation. Here we can see
that the two ventricles are actually intersecting. The heart is composed of 8000 triangles and
the average query time is 149ms for an average of 317 intersection points. This simulation
performed at interactive rates on a Pentium4 1.8GHz desktop with a 64Mb GeForce3.

Plate 4 multiple complex contact scenario in an
interactive rigid body simulation: Collision
responses are computed using a penalty-based
method that requires penetration depth computation.
Each ring is composed of 2500 triangles, average
query time is 313ms for 2537 intersection points.

Constraint-Based Motion Planning for Vir tual Prototyping

Maxim Garber
Department of Computer Science

University of North Carolina at Chapel Hill
http://www.cs.unc.edu/ � garber

garber@cs.unc.edu

Ming C. Lin
Department of Computer Science

University of North Carolina at Chapel Hill
http://www.cs.unc.edu/ � lin

lin@cs.unc.edu

ABSTRACT
We presenta novel framework for motionplanningof rigid andar-
ticulatedrobotsin complex, dynamic,3D environmentsanddemon-
strateits applicationto virtual prototyping. Our approachtrans-
forms the motion planningprobleminto the simulationof a dy-
namicalsystemin which themotionof eachrigid robot is subject
to theinfluenceof virtual forcesinducedby geometricconstraints.
Theseconstraintsmay enforcejoint connectivity andanglelimits
for articulatedrobots,spatialrelationshipsbetweenmultiplecollab-
orative robots,or have a robotfollow anestimatedpathto perform
certaintasksin a sequence.Our algorithmworkswell in dynamic
environmentswith moving obstaclesandis applicableto challeng-
ing planningscenarioswheremultiple robotsmustmove simulta-
neouslyto achieve a collision freepath. We demonstrateits effec-
tivenessfor partsremoval, automatedcar painting,andassembly
line planningscenarios.

Categoriesand SubjectDescriptors
I.3.5 [Computer Graphics]: ComputationalGeometryandObject
Modeling;I.6 [Computing Methodologies]: SimulationandMod-
eling

GeneralTerms
Algorithms,Performance,Design,Reliability, Verification

Keywords
Virtual EnvironmentsandPrototypes,ManufacturingandAssem-
bly Planning,ComputationalSupportfor New ManufacturingTech-
nologies

1. INTRODUCTION
The problemof achieving designflexibility andmanufacturing

automationusingvirtual environmentsprovidesa new setof chal-
lengesfor computeraideddesignandmanufacturing. Automati-
cally planningthemotionof partsor objects,i.e. motionplanning,
can be a significantaid in a rapid prototypingenvironment. Ex-
amplesof thetasksthatcanbeassistedby motionplanninginclude

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
SM’02,June17-21,2002,Saarbrucken,Germany.
Copyright 2002ACM 1-58113-506-8/02/0006...$5.00.

virtual assemblyfor designverification,partsremoval for maintain-
ability studies,pathgenerationfor automatedpainting,etc. Some
of thecommonlyusedcomputer-aidedmanufacturingandsimula-
tion packageslikeIGRIPfromDelmiaInc.,CimStationfrom Adept
Technologies,PDMSfrom CADCENTRE,ProductVisionfrom GE
CorporateR & D, andTHOR Arc Weld from AMROSEinclude
computationalsupportfor motionplanning.Thesepackagesareal-
readyusedfor piperoutingin plantdesign,arcweldingof complex
assemblies,spot welding of car bodies,andother usesof robots
to automatethe manufacturingprocesses.The planningtasksare
typically characterizedby geometricgoalregions,a varietyof me-
chanicalconstraints,andoftena partiallyknown environmentwith
uncertaintiesandmoving obstacles.

Main Results: In this paper, we presenta new motion planning
algorithm for virtual prototyping. Our algorithmic framework is
inspiredby constraineddynamics[26] in physically-basedmodel-
ing. We transformthemotionplanningprobleminto a dynamical
systemsimulationby treatingeachrobotasarigid bodyor acollec-
tion of rigid bodiesmoving undertheinfluenceof all typesof con-
straint forcesin the virtual prototypingenvironment. Thesemay
include constraintsto enforcejoint connectivity and anglelimits
for articulatedrobots,constraintsto enforcea spatialrelationship
betweenmultiple collaborative robots,constraintsto avoid obsta-
clesandself-collision,or constraintsto have the robot follow an
estimatedpathto performcertaintasksin asequence.

Ourconstraint-basedplanningframeworkhasthefollowingchar-
acteristics:� It can handleboth static environmentswith completegeo-

metricinformationor dynamicsceneswith moving obstacles
whosemotionis not known a priori.� It is applicableto bothrigid andarticulatedrobotsof arbitrar-
ily highdegreesof freedom,aswell asmultiplecollaborative
agents.� It allows specificationof various types of geometriccon-
straints.� It runsin realtime for modestlycomplex environments.

Wedemonstratetheeffectivenessof our framework for theprob-
lem of virtual assemblyandelectronicprototypingwith applica-
tionsin assemblyline planning,automatedcarpainting,andmain-
tainability studies.

Organization: The restof the paperis organizedas follows. In
section2, we briefly discussthe problemof motion planningand
survey relatedwork. Section3 presentsan overview of our plan-
ning framework. Wedescribetheconstraintsin our framework and
how they canbeusedto representplanningscenariosin section4.
Section5 presentsa detaileddiscussionof themethodwehave im-
plementedto solve thegeometricconstraints.We demonstrateour

framework by applying it to several virtual prototypingproblems
in section� 6.

2. RELATED WORK
We first introducethe terminologyusedin this paper, provide

somebackgroundinformationon motionplanning,andsurvey re-
latedliterature.

2.1 Background and Terminology
We assumethe robot(s) and obstaclesare setsof closedand

boundedgeometryandwhoselocationsatany timeduringthesim-
ulationareknown andupdateddynamically. Theobstaclesarefree
to moveduringtherobotplanningandmotionexecutionstage,their
motion acquiredby sensoryinput is then fed back to the motion
plannerin real time. The robot

�
anda setof obstacles� move

in a Euclideanspace� , calledtheworkspace. Therobotmaybe
a free-flyingrigid objector anarticulatedobject.A free-flyingob-
jecthasnokinematicconstraintsthatlimit its motion.Ontheother
hand,anarticulatedobject

�
consistsof severalmoving rigid parts���	�
���
�����	�������

, called links, connectedby joints. Each joint
constrainstherelative movementsof thetwo links it connects.

Theclassicmotionplanningproblem,alsoreferredto asthePi-
anoMover’sproblem,canbestatedasthefollowing: Givenarobot�

anda workspace� , find a pathfrom aninitial configuration�
to a goalconfiguration� , suchthat

�
never collideswith any ob-

stacle ������� in � alongthepath � , if sucha pathexists. The
path � is acontinuoussequenceof positionsandorientationsof

�
.

Configuration spaceor C-space[20] is a powerful conceptfor
the planningproblem. This formulationrepresentsthe robot asa
point in anappropriatespace,i.e. the robot’s configurationspace,
andmapstheobstaclesin this space.This mappingtransformsthe
motion planningproblemfor an object into the problemof plan-
ning the motion of a point in a higherdimensionalspace. For a
rigid body, theconfigurationis specifiedby six coordinates,three
determiningthepositionwith respectto somefixedreferencepoint
(the origin) on

�
, and threedeterminingthe robot’s orientation.

An articulatedobjectcanbeinterpretedasa setof � moving rigid
objectsconnectedby joints. By convention,eachjoint affordsasin-
gle degreeof freedom,anda physicaljoint that allows morethan
onedegreeof freedomis representedby multiple joints at a single
location,sothattherecanbemorejoints thanlinks. With this con-
vention,a configuration��� for an articulatedbody is specifiedby
six coordinatesdeterminingthepositionandorientationof a given
link, the baselink, along with an additionalcoordinatefor each
joint.

2.2 Global vs. Local Planning Methods
Therehavebeentwo majorapproachestomotionplanning:global

and local methods[19]. Global planningmethods,including the
first RoadmapAlgorithm [4], PRM [15] and other geometricor
“criticality-based”methods[10, 19], areguaranteedto find a com-
pletepath,if oneexists,althoughthey may take a long time com-
puting it. Many of theglobalmethods,with theexceptionto vari-
antsof PRM, have beenappliedwith limited successfor mostly
lower-dimensionalplanningqueriesin staticenvironments,dueto
high computationalcosts.

Ontheotherhand,localmethodssuchasartificial potentialfield
methods[16], areusuallyfast,but arenotguaranteedto find apath,
even if one exists. Algorithms basedon artificial potentialfield
methodsarewidely usedin many industrialapplications[5, 23]. In
adynamicenvironment,wherethemotionof obstaclesin thescene
is not know a priori, it is difficult for global methodsto compute
the completesolutionpathin real time to avoid collision with the

moving obstacles.For dynamicscenes,local,or reactive,planning
techniquesareoftenused.However, localmethodshavelimitations
aswell. For example,potentialfield methodsareknown for their
entrapmentproblemsat localminimaof thepotentialfunction.

Our methodis anincrementalconstructionof a roadmap,whose
thecurveslocally satisfyall constraintsimposedontherobotwhile
stayingmaximally clear of nearbyobstacles.At the sametime,
theframework canalsotake globalgeometricanalysisinto consid-
erationwhile performinglocal planning,thusalleviating the local
minimaproblem(Sec.4.3.3).

2.3 Planning for Industrial Applications
Thebasicmotionplanningproblemcanbeenhancedby adding

amodelof positionuncertaintyto extendit to motionplanningin a
partially known environment,often encounteredamongindustrial
applications.But, it remainsbasicallyunchangedif compliantmo-
tion is notallowed.

Many specializedmotionplanningalgorithmshave beendevel-
opedfor differentapplications,including part orientationandpo-
sitioning [9, 11], assemblysequencing[8, 21, 13], sensor-based
planning[22, 6, 7] andmaintainabilitystudies[1, 5].

2.4 Constraint Solving
Geometricconstraintsolvinghasbeenextensively studiedin many

differentfields,suchasCAD/CAM, molecularmodeling,andthe-
oremproving [2, 3, 17]. Therearetwo basicstrategies: instance
solvers andgenericsolvers. Someof thecommonapproachesin-
cludenumericalalgebraictechniques,graph-basedalgorithms,log-
ical interferenceand term rewriting, symbolic algebraicsolvers,
andpropagationmethods[2]. Our approachborrows a combina-
tion of ideasfrom someof thesetechniques,andspecializesthem
for motionplanning.

Theconstraintsolvingproblemfor motionplanningcanbeNP-
hardfor arbitrarilyhighdegree-of-freedommanipulators.Sincewe
are interestedin real-timeperformancefor dynamicsceneswith
moving obstaclesand multiple robots,we considerthe intended
solution by inferring certainmetric and topologicalpropertiesof
the planningproblemas a dynamicalsystem,and deducea few
heuristicsthatsucceedwith highprobabilityundertheassumptions
of compatibleconstraintsandtemporalcoherence.The detailsof
ourconstraintsolvingapproachwill begivenin Sec.5.

3. FRAMEW ORK OVERVIEW

3.1 Framework Goals
Our planningframework is targetedto enablerapidprototyping

in a3D CAD/CAM environment.Thisgoalimposesseveraldesign
requirements.Theframework mustbe:� Portable: It shouldbeableto planpathsfor both rigid and

articulatedrobotsof any topologyor arbitrarilyhigh degrees
of freedom,withoutany changeto theunderlyingsystem.� Dynamic: It shouldbe able to plan collision free motion
for anobjectin thepresenceof moving obstacles,andother
collaboratingrobots,whosemotionis not known a priori.� General: Thesystemmustallow theuserto easilyspecifya
widerangeof relationshipsandbehaviorsbetweentherobots
andotherobjectsin thescene.� Interacti ve: Thesystemmustrun at interactive ratesandal-
low theuserto tradeexecutionspeedfor accuracy, to enable
rapiddesignandpathverification.

Thesedesigngoalssuggesta fusion of global and local plan-
ning techniquesto capitalizeon thebenefitsof both.We proposea

constraint-basedplanningapproachthatprovidesa local planning
frame� work powerful enoughto handledynamicscenes,efficient
enoughto run at interactive rates,and generalenoughto incor-
poratemany typesof geometricconstraintsto govern an object’s
motion. Theseconstraintscanrepresentcomplex relationshipsbe-
tweencollaboratingentitiesandalso link collectionsof rigid ob-
jects to behave asarticulatedrobots. This framework alsoallows
naturalextensionto planningof flexible robotsandincorporationof
dynamics,aswell asnon-holonomicandothertypesof constraints.

3.2 Simulation Framework
Thebasicessenceof our framework is to describeeachrigid ob-

ject in the planningsceneasa dynamicalsystem,which is char-
acterizedby its statevariables(i.e. position, orientation, linear
andangularvelocity). In this framework, a robot can be a rigid
body, or acollectionof rigid bodies,subjectto theinfluenceof var-
iousforcesin theworkspace,andrestrictedby variousmotioncon-
straints.Thistransformsamotionplanningprobleminto aproblem
of definingsuitableconstraints,andthensimulatingtherigid body
dynamicsof thescenewith eachconstraintactingasavirtual force
ontheobjects.Wewill returnto theproblemof definingconstraints
to solve a planningproblemin Sec.4.

Next we’ll explain thesimulationframework with thefollowing
notation:� Let

� �"!#���	�	���$�������&%
bea setof � rigid objects.� For each

� � at time ' , let a statevector (#)� �*,+.- ()� �0/ - ')� ��13254)� ��67498)�0: representthe objectsposition,rota-
tion, linearandangularvelocity.� Let ;<) bethesystemstatevector, obtainedby concatenating
thestatevectors()� for all

2
.� Let = �>! = � � = � �$�	����� =@? % bea setof

4
constraints.� For eachconstraint=�A , let BCA * ;D) : be the force inducedby

constraintE giventheobjectsystemstate;<) .
Thesimulationstepsfrom time ' to time 'GFIH andupdatesthestate
of eachobjectsubjectto theforcesinducedby theconstraints.

BEGIN LOOP

ComputeConstraint Forces: Summingupall contribut-
ing forces,B * ;) : �KJ ?A$L � B.A * ;) : .

UpdateSystemState: Compute ;<)NMPO from ;<) sub-
ject to theforce B * ;) : [26].

UpdateObject States: Foreachobject
� � , update()QMRO�

from ;<)NMPO .
Incr ementTime: ' � 'RFSH

END LOOP

In this framework thesolutionto themotionplanningproblem,
for a particularobject T � emergesasthesequenceof states,! ()� � ()NMPO� �������$� ()QMRU	V0O� %

, suchthattheobjectis in its initial configu-
rationattime ' , andachievesthegoalconfigurationattime '�FXWZY7H .
Thesimulationmustrunfor asmany timestepsasnecessaryfor all
objects,for which a plannedpath is desired,to reachtheir goal
configurations.

4. PLANNING SCENEFORMULA TION
In thissectionwewill describehow to renderaplanningscenario

in theform of constraintsfor theconstraint-basedplanningframe-
work. Assumethatthegeometryrepresentingtherobotsandobsta-
clesis given, aswell asprescribedmotion, simulatedor scripted,
for theobstaclesovertime. Oursystemthendefinesconstraintsthat
will restrictthemotion of the robotsto meetthedesignspecifica-
tions,andalsoguidetherobotsto completetheplanningtasks.

4.1 Constraint Classification
To achieve thedesiredresultswithout robustnessproblems,we

classify the constraintsinto two categories: soft and hard con-
straints.

Hard Constraints are thosethat absolutelymustbe satisfiedat
every time stepof thesimulation.Examplesof thehigh level hard
constraintsincludeobject non-penetration,articulatedrobot joint
connectivity, andarticulatedrobotjoint anglelimits.

SoftConstraints serve asguidesto encourage or influencethe
objectsin thesceneto behave in certainways. Somecommonex-
amplesof soft constraintsincludehaving an objectmove towards
a goal configuration,avoid the nearestobstacles,andmove along
somepredefinedpath. Soft constraintsarethe moredifficult type
to handlebecausetherecanbemany competingonesactingon an
object.Weprovideseveralmethodsto resolvesuchconflicts.First,
thesoftconstraintpenaltyforcescaleswith thedegreeto whichthe
soft constraintis violated. Second,eachsoft constraintis given a
priority, from [\ �]$^ , whichscalestheconstraintforce.

4.2 Hard Constraints
To ensurethat the simulationenforcesthe high level hardcon-

straintsweusethreeatomichardconstraints:� Non-PenetrationConstraints� PointDistanceConstraints� PointPlanarAngleConstraints

4.2.1 Non-PenetrationConstraints
Assumingthatall rigid objectsin thescenerepresentclosedvol-

umes,we considera non-penetrationconstraintbetweentwo ob-
jectsto be satisfiedaslong astheir volumesaredisjoint. In most
cases,this constraintcanbeweakenedto only requirethat theob-
jects’ boundariesdo not penetrateeachother. In most planning
scenarios,non-penetrationconstraintsshouldbe appliedbetween
all objectsin thescene,ensuringthat theobjectsbehave asif they
aresolid,althoughit is possibleto have objectsthatareselectively
solid,or completelypermeable,if desired.

Unlike thenon-penetrationconstraints,thesecondandthird cat-
egoriesof hardconstraintsareindependentof theobjectgeometry;
they insteadenforcerelationshipsbetweenpointsandvectorsde-
fined in thescene.Thesepointsandvectorscanbefixed in world
coordinatesor expressedrelativeto thecoordinateframesof objects
in thescene.

4.2.2 Point DistanceConstraints
Theseconstraintsenforcea fixed separationbetweenpairs of

points.Thusata time ' , given:� + � � ��_ , andits world transformatioǹ)�� + � � ��_ , andits world transformatioǹ)��ba � � , theconstraintdistance.

theconstraintis satisfiedwhen a 2 ($' * `)� *,+ � : � `)� *,+ � :�: � a , wherea 2 ($' * : is theEuclideandistance.

4.2.3 Point Planar AngleConstraints
Theseconstraintsenforcetheanglebetweentwo points,abouta

specifiedaxisof rotation.To definetheseconstraintswerequire,at
time ' :� + � � ��_ , andits world transformatioǹ)�� + � � � _ , andits world transformatioǹc)�� - � � _ theorigin of the joint, andits world transformation`)d

�fe�e$g67h.2 (i� ��j , theaxis of rotationfor the joint, andits world
transformatioǹ)k�ml � �n? � l � k	o � � _ , theanglelimits.

Wedefinetheanglel astheplanaranglebetweenthevectors̀)� *,+ � : e`c)d *N- : and `c)� *,+ � : e `c)d *N- : in theplanenormalto `c)k * e$e�g67h.2 (: . The
constraintis satisfiedaslong as l is in the interval [l � �n? � l � k�o ^ ,
seeFig. 1.

Figure1: An angular constraint betweentwo points.

4.2.4 CombiningPoint Constraints
In this sectionwe will illustrate how point constraintscan be

combinedto link rigid objectsto form articulatedobjects. Our
methodusesa rigid structure,suchasa tetrahedron,which we de-
fine using point distanceconstraints,to representthe coordinate
frame of eachrigid object. We chosefour linearly independent
pointsin theobject’scoordinatesystem,andsetdistanceconstraints
distancesbetweenthemto enforcetheir initial separations.When
theobjectis transformedtherigid structureis alsotransformedand
its distanceconstraintsremaintrivially satisfied.At thesametime,
as long as the constraintsthat definethe rigid structurearesatis-
fied we can uniquely determinethe object’s transformationfrom
the world locationsof the four points of the rigid structure. To
constraintherelative motionof objectsin thescenewe definecon-
straintsbetweenthepointsof their rigid structures.At eachframe
of thesimulationtheconstraintsbetweenall of thesepointsareen-
forced, possiblychangingtheir locations. From thesenew point
locationsweupdatetheworld stateof theassociatedrigid objectto
a statethatrespectstheconstraints.

Example: A Ball Joint Supposethatwe have two rigid objects,���
and
���

, andwish to constrainthemto only two relative rota-
tional degreesof freedom,i.e. a ball joint, aboutsomeworld point-

betweenthem. We would thendefine
+ �p� -

in thecoordinate
frameof

� �
, and
+ � � -

in thecoordinateframeof
� �

. Thenwe
would link

+ �
and
+ �

to therigid structuresof
���

and
���

respec-
tively, using threelinearly independentdistanceconstraintseach.
Theseconstraintsensurethat

+ �
is rigidly attachedto thestructure

representing
���

and
+ �

is rigidly attachedto the structurerepre-
senting

� �
. We thendefinea distanceconstraint,with constraint

distanceof 0, between
+ �

and
+ �

, so that their world positionsare
constrainedto coincide.This ensuresthatwhenall constraintsare
satisfiedthetwo objects,

���
and
���

, arerigidly attachedto acom-
mon rotation point at

-
, whoseposition is now expressedin the

coordinateframesof thetwo objects,seeFig. 2.

Figure 2: A ball joint, built fr om distanceconstraints linking
the rigid structur esof the two objects.

Example: A Revolute Joint We canextendtheformulationfor a
ball joint to obtaina revolute joint betweentwo rigid objectsfrom

the specificationof the joint location,axis of rotation,andangle
limits. To definearevolutejoint betweentwo rigid objects,

� �
and���

, we usetwo ball joints. As long as the two ball joints have
distinctcentersof rotationthatlie ontheintendedrotationaxis,the
constraintswill limit therigid objectsto only onerelativerotational
degreeof freedomabouttheaxis.For additionalstabilitywedefine
a redundantdistanceconstraintbetweenthetwo rotationcentersto
maintaintheir separationalongtherotationaxis.

To limit the angleof the revolute joint, we usea point planar
angleconstraint,definedto limit theangleaboutthe rotationaxis
betweenonepoint attachedto the rigid structureof T � , andone
pointattachedto therigid structureof

���
.

Therehasbeenprevious work, in the field of robot control, on
specifyingjoints usingconstraints[25]. Theadvantageof our ap-
proachis that,usingtherigid structureformulation,we reducethe
problemof solvingconstraintsbetweenrigid objectstoamuchsim-
pler problemof solving constraintsbetweenpoints. As we will
show in Sec.5.1.2, thisallows for avery fastandstableconstraint
solvingmethodto beused.

Figure3: A revolute joint, built fr om distanceconstraints link-
ing the rigid structur esof the two objects.

4.3 Soft Constraints
Soft constraintsin our framework areuserspecifiedconstraints

thatgeneratepenaltyforcesto guidethemotionof objectswithout
imposingstrictmotionrestrictions.Thetypesof soft constraintsin
ourcurrentsystemare:� GoalAttraction� Surfacerepulsion� Pathfollowing

4.3.1 Goal Attraction
If therobothasnot reachedits goalconfiguration,thisconstraint

generatesa penaltyforce that attractsthe robot towardsits goal.
Thisconstraintcouldbeappliedto onecomponentof anarticulated
robot, suchas the endeffector, or to multiple componentsof the
robot.

4.3.2 SurfaceRepulsion
Theseconstraintsareusedto have therobotberepelledfrom the

surfacesof nearbyobstacles.To definea surfacerepulsioncon-
straintfor a rigid body,

�
, relative to a secondrigid object q , we

specifya distancethreshold,r , anda force coefficient Ws�"[\ �]t^ .
The distancethresholdis the minimum distanceallowed between
the objectsbeforethe

�
actsto move away from q . If

�
is fol-

lowing an estimatedpath, often the path will have an associated
minimumdistancetolerancefor staticobstacles,whichcanbeused

to initialize r . Thepriority specifiestherelative importanceof re-
pulsionu constraints,sothatif

�
is trappedbetweentwo obstacles,it

will givemorepriority to evadingonethantheother. Softconstraint
prioritiesareall by default equalto 1, unlesstheuserspecifiesan-
othervalue.

4.3.3 EstimatedPaths
Onewell-known problemwith usingthepenaltyforcestoachieve

planninggoalsis thattherobotcanbecaughtin a localminimaand
fail to reachthe goal. To addressthis issuewe integrateglobal
geometricanalysis,generatedaheadof time by a high-level task
planner[21], into our planningframework. Therearemany well
known techniquesfor obtaininganestimatedpathfor arobotbased
on the static obstaclesin the scene,suchas a medial axis based
planner[10, 14], a ProbabilisticRoadmapPlanner[15], a binary
spacepartitioningof theworkspace[23], or simplyby takinginput
from auser[5]. A pathfrom any of thesecanbeintegratedinto the
simulationusinga pathfollowing constraint.

To specify a path constraintfor somerigid body,
�

, we re-
quire an orderedlist of points

+ � � + � � + _ �$�n�v�v�v� + ? , which represent
the milestonesalongthe path,a distancethresholdr , anda force
coefficient Ww� [\ �]$^ . In our system,it is assumedthat the last
point on the path is the goal location that we wish the object

�
to reach,andall otherpointsareonly landmarksguiding the ob-
ject asto how this goal may be achieved. This assumptioncould
berelaxedif we addweightsto every pathlocationindicatinghow
importantit is for

�
to reachthatlocation.Thedistancethreshold,r , is usedto determineif
�

is closeenoughto a milestoneto con-
siderthatmilestonereached.Thedefault valuefor r is the radius
of the smallestsphereenclosing

�
. As in the caseof surfacere-

pulsionconstraints,Sec.4.3.2, thedefault valueof W is 1, which
canbechangedif someparticularpriority rankingbetweenforces
is desired.In our currentsystem,theobject’s orientationalongthe
pathis left arbitrary, sothatit canbedeterminedby othersoft con-
straints,suchassurfacerepulsion.For a scenewith anarticulated
robot,we canassignapartof therobot,suchastheendeffector, to
follow thehigh-level pathsequence.

5. CONSTRAINT IMPLEMENT ATION

5.1 Solving The Constraints
We usetwo main constraintsolving techniquesin our current

framework: penalty-basedmethods,usedto representsoft con-
straints,anditerative relaxation,usedto enforcehardconstraints.
Thealgorithmfor updatingthestatesof objectsin oursimulationis
quitesimple.Wefirst applythepenaltyforcesdueto theactivesoft
constraintsandupdatethesimulationstate.Next weapplyanitera-
tive relaxationtechniquewhichmodifiestheobjectstatesto ensure
thatall hardconstraintsaresatisfiedat theendof thetime step.

5.1.1 ApplyingPenaltyForces
We requirethat eachtype of soft constraint,= � , hasa methodxzy ' � y 496{1 '
| B - /
} y (=@� , � A , ;) , ') which returnsthe force and

torquegeneratedby theconstraint= � , on object
� A , at time ' , with

thescenein thestate;) . Thetotal forceon anobjectis thesumof
all penaltyforcesactingon thatobject. To updatetheobjectstate,
for eachobject, we integratethis total force using the Midpoint
Method [26]. We usethis methodbecausesomeof the penalty
forcesarecomputationallyintensive to evaluate,andthemidpoint
methodprovidesstableintegrationwith only two forceevaluations
pertime step.

5.1.2 IterativeRelaxation
Onceobjectsin thesceneareupdatedasa resultof thepenalty

forcesdue to the soft constraints,their statemay violate one or
moreof thehardconstraints.To efficiently ensurethat thesecon-
straintsaresatisfied,weusethewell known NonlinearGause-Siedel
iterative relaxationmethod[24]. For eachhardconstraint,= O , we
definethe residual, T y (* = O � ;D) : , to be a real numberwhich rep-
resentsthe degreeto which = O is violatedwhenthe systemis in
state ;) . For eachtype of hard constraint= O , we requirean in-
stancesolver T y 1~6{h * = O � ;<) : , whichreturnsanew state; in whichT y (*�� O � ; : � \ . Thespecificmethodsusedto relaxeachtypeof
hardconstraint,will beexplainedin Sec.5.2.

Theiterative relaxationmethod,describedin Algorithm. 5.1,re-
laxeseachconstraintin sequencerepeatedly, until theobjectscon-
verge to a statefor which the sumof the residuals,over all con-
straints,is zero. Particularcaremustbetaken to ensurethatpoint
distanceconstraintsdescribedin Sec.4.2.2andpointplanarangle
constraintsdescribedin Sec.4.2.3aresatisfiedfirst, becauseonly
when theseconstraintsaresatisfiedcan we readback the result-
ing transformationsontherigid objectsto beusedin theremainder
of the constraintsolving iteration. We call the procedurewhich
updatesthe statesof the rigid objectsin the systemfrom the lo-
cationsof thepointsthatmake up their associatedrigid structures� + a 6 ' y qz��E y } ' ;�' 6 ' y (B / - � � - 254 '0((;) in Algorithm. 5.1.

5.1.3 Convergenceof theRelaxationMethod
Thereasonthatweusetheiterativerelaxationmethod,Sec.5.1.2,

insteadof othertechniques(e.g.Lagrangianformalism)for satisfy-
ing all thehardconstraints,is becauseof its simplicity andbecause
it allows our implementationto achieve interactive performancein
mostpracticalscenarios,even with a large numberof active con-
straints. This rapid convergencecanbe attributedto two factors:
temporalcoherenceandcompatibleconstraints.

Our systemis ableto take advantageof temporalcoherencebe-
cause,as a physical simulation, it usessmall time stepsduring
which the objectsin the scenemove very little. Moreover, if we
assumethatall hardconstraintsaresatisfiedat thebeginning of a
time step, the fact that the object motion due to soft constraints
is small ensuresthatwhenthe iterative methodbegins theobjects
arenot far from a configurationthat satisfiesthehardconstraints.
Thisall but ensuresthattheiterativemethodconvergesto thesolu-
tion. It alsoallows convergenceto take placein a relatively small
numberof iterations,providing stableinteractive performancein
many practicalscenarios.Of course,it is possiblefor themethodto
neverconvergewhen,for example,therearetwo incompatiblecon-
straints,suchthatsatisfyingonenecessarilyviolatestheother. This
situationdoesnotoccurin practicebecausethehardconstraintsare
typically definedsothat they arecompatiblewith eachother. Fur-
thermore,in practicalsituationsthe hard constraintsare satisfied
beforetheplanningsimulationstarts,allowing thesystemto bene-
fit from temporalcoherencefrom thebeginning.

Oneof thegoalsof ourplanningframework wasto allow theuser
to tradeperformancefor accuracy to enablebothvery rapidproto-
typing andexact pathcomputation.We canachieve this goal by
allowing anupperboundto beimposedonthenumberof iterations
usedin relaxation,to guaranteethat thesimulationrunsat therate
desired.If thesystemfails to convergewithin thespecifiednumber
of iterations,thesimulationcontinuesasif it hadconverged. The
result is error that manifestsassmall violations in the hard con-
straints. Despiteof this problem,we have found that in practice
the computedsolution is a good approximationof the error free
pathobtainedwhenno limit is placedon thenumberof constraint
solving iterations. This canbe consideredasa useful featurefor

rapidprototypingof CAD designs,whena quick estimationof the
planned� motion is requiredto provide real-timeuserfeedbackin
thedesignprocess.

Relax Constraints

Input Thestate;D) , attime ' , of all rigid objects,pointsandvectors
in thesimulation,theset =�� of pointhardconstraints,andthe
set =�� of rigid objecthardconstraints.

Output New statevector ; whichsatisfiesall hardconstraints.

Let ;���;D) .
While

J�� �{�7�� L9��� T y (*�� � � ; : � F J � ���
�A$L9� � T y (*�� A � ; : �{� \ :!
While

J � �{�7�� L9��� T y (*�� � � ; : ��� \ :!
for eachpointhardconstraint=�� :;���T y 1367h *�� � � ; : .%

;�� � + a 6 ' y qz��E y } ' ;Z' 6 ' y (B / - � � - 254 '�(* ; :
for eachhardrigid objectconstraint=@� :;���T y 1367h *�� � � ; : .%

return Thestate; .
ALGORITHM 5.1: RelaxHardConstraints

5.2 Solving Hard Constraints
To satisfy eachof the hard constrainttypesof Sec.4.2: point

distance,point planarangleandnon-penetration,we have a cor-
respondingT y 1367h solver that is usedin the iterative algorithmof
Sec.5.1.2. For theconstraintsthatacton rigid objectsthesolver
updatesthestate,positionandorientation,of theobjects,while for
point constraintsthesolver modifiesthepositionsof thepoints.

5.2.1 Point DistanceConstraints
Giventheformulationof apointdistanceconstraint(Sec.4.2.2)

betweentwo points,
+ �

and
+ �

, with correspondingworld trans-
formation, `)� and `)� , anda distancethreshold a , we definethe
residualof thedistanceconstraint:T y (*���� �n�) � ; : �K� � � a 2 ($' * `)� *,+ � : � `)� *,+ � :�: e a �
where

� �
representsthe linear distancethat the two pointsmust

travel to reachthe requiredseparation.To solve thedistancecon-
straintwe simplymove eachpointa straightline distanceof

� �
�
�
towardseachother.

5.2.2 Point PlanarAngleConstraints
Giventheformulationof apointplanarangleconstraintbetween

points
+ �

and
+ �

, with anglelimits l � �~? and l � k	o , wecomputethe
angle l asdefinedSec.4.2.3. Theresidualof theangleconstraint
is thendefinedas:

T y (*�� k ?�� � ; : � �� l e l � k	o if l � l � k	ol e l � �~? if lX¡�l � �n?\ otherwise

To satisfy the angelconstrain,if
�£¢m� T y (*�� k ?�� � ' :b¤� \ , the

point `)� *,+ � : is rotatedanangle
� ¢ ���

, and `)� *,+ � : rotatesananglee �£¢ ��� abouttherotationaxis, `c)k * e�etg67h.2 (: .
5.2.3 Non-PenetrationConstraints

In our currentimplementation,thesearetheonly constraintsfor
which the T y 1367h methoddirectly modifiesthe transformationsof
rigid objectsin thescene.Weuseanin-houseproximity (collision)
querypackage,PQP[18, 12], to detectwhentwo objectspenetrate.
The residualfor a non-penetrationconstraintis then just 0 if the
objectaredisjointand1 if theobjectsarenot. Theproblemof sep-
aratingobjectsthatpenetrate,in a physicalsimulation,is onethat
hasbeenaddressedin many ways[26]. Theapproachthatwe use
to implementthe T y 1367h solver for non-penetrationconstraintsis
theimpulse-basedrigid bodydynamicsimulation[26]. Theadvan-
tagesof this methodis thatobjectsareguaranteedto bedisjoint at
theendof every timestep,andthatobjectsreboundfrom collisions
in themostnaturalpossibleway.

5.3 Solving Soft Constraints
Foreachsoftconstraintwerequireamethod,

xzy ' � y 4P6{1 '¥| B - /�} y ,
whichproducesa forcealongthegradientvectorof theconstraint.

Figure 4: A portion of the distancefield of T � which generates
forcesthat act on T � pushing it away fr om T � .
5.3.1 SurfaceRepulsion

To apply a surfacerepulsionconstraintbetweenobject
���

and
a secondobject

� �
, asdescribedin Sec.4.3.2, we first perform

somecomputationsusingaxis-alignedboundingboxesasapprox-
imationsfor theobjectsinvolved. For object

� �
we take theaxis-

alignedboundingbox andexpandit by the distancethreshold,r
(Fig. 4). We intersectthis expandedboundingbox with thebound-
ing box of

���
to performa quick rejectiontestto determineif the

two objectsarefurther thanthedistancethresholdr apart. If this
is thecase,thenwe canterminatethecomputationwith no penalty
forceapplied.If thetestfails thenwecomputetheintersection,call
it ¦ , of the two boundingboxes. We thenusea hardwareacceler-
ateddistancefield computation[14], to generatethedistancefield
for thesurfacefeaturesof object

� �
in theregion ¦ . Thefact that

thiscomputationis performedusinggraphicshardwareenablesthe
distancefield of theobjectto begeneratedin realtimewithoutany
precomputationor assumptionsaboutthe geometry. As a prepro-
cess,asamplingof thesurfaceof object

���
, atsomeuserspecified

resolution,is computed. The default resolutionis the pixel res-
olution. For eachsamplepoint on

���
that lies in ¦ , we checkthe

distancefrom thatpoint to thenearestpointonthesurfaceof
� �

by
referencingthedistancefield. For eachsamplepointwegeneratea
force in thedirectionof the gradientof thedistancefield, propor-
tional to thedistancebetweenthatsamplepointand

���
, asseenin

Fig. 4. This forceshouldbezerofor samplepointsbeyondthedis-
tancethreshold,andincreaseto infinity asthedistancebetweenthe
surfacesdecreases.In our systemtheforce for eachsamplepoint,+ � , is:§ - /
} y *,+ � ����� : �©¨ �� �~�)«ª ��¬�­ ®°¯t±~² e �³ ² if a 2 ($' *,+ � �
��� : ¡ r\ otherwise

And, the force inducedby this constrainton
� �

is the sumof all

forceson all
1
samplepointson

���
. This is a forcethatmoves

���
away´ from

� �
, enforcingthesurfacerepulsionconstraint.

5.3.2 Goal Attraction
As describedin Sec.4.3.1, if therobothasnot reachedits goal

configuration,this constraintgeneratesa penaltyforcethatattracts
the robot towardsits goal. The strengthof this force is directly
proportionalto thedistancebetweentherobotandthegoal,andits
directionis simply thedirectionbetweenthecenterof massof the
robotandthelocationof thegoal.

5.3.3 PathFollowing
Currentlyweimplementapathfollowing constraint,Sec.4.3.3,

by first finding the closestpoint on the path,
+ � , to the centerof

massof the robot
�

. If this point is not within the pathdistance
threshold,r , from thecenterof mass,thenwe considerthat

�
has

not reached
+ � andwe applya forceat thecenterof massof

�
to

pushit towards
+ � . If

�
is within thedistancethresholdof

+ � , we
applyaforceat thecenterof massof R in thedirectionof

+ � M � e + �
to push

�
alongthepath.

6. APPLICATIONS TO PROTOTYING

6.1 Implementation
Our systemwas implementedin an object-orientedframework

using C++. We usethe Proximity Query Package [12, 18] for
collision detection,to enforcenon-penetrationconstraints,andour
in-houselibrary HAVOC3D [14] to generatedistancefields for
surfacerepulsionconstraints.

6.2 SystemDemonstration
Wehave testedourmotionplanningsystemin thefollowing vir-

tual prototypingapplications:

Scene1: Maintainability Study
In assemblymaintainabilitystudies,motionplanningis usedto

find whetherit is possibleto remove a particularpart from an as-
sembly, and if so, to find one possibleremoval path [5]. In our
example,shown in Fig. 5(a),a bolt anda washermustavoid each
other in the confinesof tight compartmentinsidea pumpassem-
bly. Thegoal,to remove thebolt from theassembly, requiresboth
objectsto maneuver aroundeachotherwithout colliding.

Scene2: Automated Car Painting
In this exampleseenin Fig. 5(b), anarticulatedrobotarm,with

6 degreesof freedom,is usedto traceapathalongthebodyof acar
for painting. The robot is composedof rigid componentsthat are
heldtogetherby constraints.For all of thecomponentsof therobot,
theplannermustcomputepathsthatsatisfythejoint constraints,do
not collide with theobstaclesor thecar, andleadtheendeffector
alongtheprescribedpath.

Scene3: AssemblyLine Planning
In this example,shown in Fig. 5(c), therobotarmfrom scene2

mustaccessa partmoving pastit on a conveyer belt. The factory
floor containsa piping structurethat is moving over the conveyer
belt in theoppositedirectionto thepart’s movement.Themoving
obstructioncausesthe robot to reactively modify its pathto avoid
collision.

The timings for thesescenariosarepresentedin Table1. The
timingsweretakenona PCwith a933MHzPentiumIII processor,
256MB RAM andannVidia GeForce3graphicscard.Themotion
sequencescapturedin MPEGareavailableat:

http://gamma.cs.unc.edu/cplan.

Scene Poly Cons Per Step Total
(1) Maintainability 20470 4 0.093sec 67sec
(2) Auto Painting 25738 43 0.038sec 18sec
(3) AssemblyLine 16962 43 0.0085sec 16sec

Table 1: Benchmark timings in secondson thr ee example
scenes.Poly: The number of polygonsin eachscene.Cons: The
total number of active constraints in eachscene.Per Step: The
average time for the planner to compute one time step of the
simulation. Total: The total time taken to complete the plan-
ning task.

6.3 Discussion
The planningtasksin the examplescenesexecute,on average,

between10 and120 time stepsper second. The primary bottle-
neckin our currentimplementationis the distancefield computa-
tion usedto determinethepenaltyforcesfor thesurfacerepulsion
constraints.We usea one-level boundingbox culling to limit the
applicationof thiscomputationto areasnearpotentialsurfacecolli-
sions.We alsousesimplifiedgeometryfor computingthedistance
field wherever appropriateto speedup theproximity queries.This
approachworks well, unlessthe scene,asin the caseof Scene1,
hashighly non-convex complex geometrythat is poorly approxi-
matedby theboundingboxes.In suchcases,hierarchicalbounding
boxculling couldbeusedto furtherlimit theapplicationof thedis-
tancefield computationto increaseruntimeperformance.We are
currentlyworking on this optimization,aswell asacceleratingthe
3D distancefield computation.

Theconstraintsolver we have developedfor thecurrentsystem
usesaniterativerelaxationmethodthatis specializedto provide in-
teractive performancewhenplanningthemotionof rigid andartic-
ulatedrobotsin dynamicscenes.It workswell for overconstrained
andconsistentsystems,suchasthoseproducedby our methodof
modelingrobotjointsusingconstraints,andin ourplanningframe-
work wherethe dynamicsimulationtypically advancesin small
time stepsallowing it to take advantageof temporalcoherenceto
achieve performanceandstability. However, it is possiblefor our
framework to incorporateother, very efficient, constraintsolvers
basedon theextensionof [2, 3, 17], aswe extendthiswork to plan
the motion of flexible bodiesand also include different typesof
constraintsin our system.

7. CONCLUSION AND FUTURE WORK
We have presenteda novel framework for motion planningin

virtual prototypingapplications.We reformulatethemotionplan-
ning probleminto a physicalsimulationwhereconstraintson the
robot’s motion guideit from its startingconfigurationto its goal.
Theseconstraintscan enforcenon-penetrationconstraintsamong
objects,theanglelimits andconnectivity of articulatedrobotjoints,
the avoidanceof collision, the following of estimatedpaths,and
many otherpossiblerelationshipsbetweenthe robotsandobjects
in thescene.Theflexibility of our framework offersthepossibility
of naturalextensionin thefollowing areas:� Inclusion of Additional Constraints: suchasnon-holonomic

constraintson objectmotion,aswell asconstraintsthaten-
force more complex interactions(e.g. maintainingline of
sight)betweencollaboratingrobots.� Extensionto Flexible Geometry: sinceourplanningframe-
workassumesnofixedor rigid geometrythroughouttheplan-
ningsimulation.� Incorporating Dir ectHuman Interaction: to allow theuser
to directly control themotionof partsof therobotor obsta-

Figure 5: From left to right, Maintainability Study Scene: the planner must extract the bolt fr om the pump assembly. Both the bolt
and the washermust be moved simultaneouslyaround eachother to avoid collision; Automated Car Painting Scene: the robot arm
follows a path over the car body while avoiding obstacles;Assembly Line Planning Scene: the robot arm avoids the moving pipesto
reacha moving part passingon the conveyer belt.

clesin thescene,thusbetterenablinginteractiveprototyping
of CAD designsandfasterverificationof thedesign.

Acknowledgements
This researchis supportedin partby NSFDMI-9900157,NSFIIS-
9821067,ONR N00014-01-1-0067andIntel.

8. REFERENCES
[1] J.BarraquandandJ.-C.Latombe.Robotmotionplanning:A

distributedrepresentationapproach.Int. J. RoboticResearch,
1991.

[2] W. Bouma,X. Chen,I. Fudos,C. Hoffmann,andP. Ver-
meer. AnElectronicPrimeronGeometricConstraint Solving.
http://www.cs.purdue.edu/homes/cmh/electrobook/intro.html,
1990.

[3] B. BruderlinandD. Roller (eds).GeometricConstraint
SolvingandApplications. SpringVerlag,1998.

[4] J.F. Canny. TheComplexity of RobotMotionPlanning. ACM
DoctoralDissertationAward.MIT Press,1988.

[5] H. ChangandT. Li. Assemblymaintainabilitystudywith
motionplanning.In Proceedingsof InternationalConference
on RoboticsandAutomation, 1995.

[6] H. ChosetandJ.Burdick.Sensorbasedplanning,partii:
Incrementalconstructionof thegeneralizedvoronoigraph.
IEEE ConferenceonRoboticsandAutomation, 1995.

[7] H. ChosetandJ.Burdick.Sensorbasedplanning:The
hierarchicalgeneralizedvoronoigraph.Workshopon
AlgorithmicFoundationsof Robotics, 1996.

[8] L. S.HomemdeMello andA. C. Sanderson.A correctand
completealgorithmfor thegenerationof mechanical
assemblysequences.IEEE Trans.on Roboticsand
Automation, 7(2):228–240,1991.

[9] M. ErdmannandM. Mason.An explorationof sensorless
manipulation.IEEETr. onRoboticsandAutomation,
4:369–379,1988.

[10] M. Foskey, M. Garber, M. Lin, andD. Manocha.A
voronoi-basedhybridplanner. Proc.of IEEE/RSJInt. Conf.
on IntelligentRobotsandSystems, 2001.

[11] K. Goldberg. Orientingpolygonalpartswithout sensors.
Algorithmica, 10:201–225,1993.

[12] S.Gottschalk,M. Lin, andD. Manocha.Obb-tree:A
hierarchicalstructurefor rapidinterferencedetection.In

Proc.of ACM Siggraph’96, pages171–180,1996.
[13] D. Halperin,J.Latombe,andR. Wilson.A general

framework for assemblyplanning:Themotionspace
approach.Algorithmica, 1999.

[14] K. Hoff, T. Culver, J.Keyser, M. Lin, andD. Manocha.Fast
computationof generalizedvoronoidiagramsusinggraphics
hardware.Proceedingsof ACM SIGGRAPH1999, pages
277–286,1999.

[15] L. Kavraki andJ.C. Latombe.Randomizedpreprocessingof
configurationspacefor fastpathplanning.IEEEConference
onRoboticsandAutomation, pages2138–2145,1994.

[16] O. Khatib. Real-timeobstableavoidancefor manipulators
andmobilerobots.IJRR, 5(1):90–98,1986.

[17] G. Kramer. SolvingGeometricConstraint Systems:A case
studyin kinematics. MIT Press,1992.

[18] E. Larsen,S.Gottschalk,M. Lin, andD. Manocha.Distance
querieswith rectangularsweptspherevolumes.Proc.of
IEEEInt. Conferenceon RoboticsandAutomation, 2000.

[19] J.C.Latombe.RobotMotion Planning. Kluwer Academic
Publishers,1991.

[20] T. Lozano-ṔerezandM. Wesley. An algorithmfor planning
collision-freepathsamongpolyhedralobstacles.Comm.
ACM, 22(10):560–570,1979.

[21] T. Lozano-PerezandR. Wilson.Assemblysequencingfor
arbitrarymotions.Proc.IEEE InternationalConferenceon
RoboticsandAutomation, 1993.

[22] V. Lumelsky andA. Stepanov. Pathplanningstrategiesfor
pointmobileautomatonmoving amidstunknown obstacles
of arbitraryshape.Algorithmica, 2:403–430,1987.

[23] K. AhrentsenN. Jacobsen,R. Larsen,andL. Overgaard.
Automaticrobotweldingin complex shipstructures.J.
AppliedArtificial Intelligence, 1997.

[24] J.M.OrtegaandW.C.Rheinboldt.IterativeSolutionof
NonlinearEquationsin Several Variables. AcademicPress,
1970.

[25] L Overgaard,H. Petersen,andJ.Perram.A general
algorithmfor dynamiccontrolof multilink robots.Int. J.
RoboticsResearch, 14(3),1995.

[26] A. Witkin andD. Baraff. PhysicallyBasedModeling:
PrinciplesandPractice. ACM Press,1997.CourseNotesof
ACM SIGGRAPH.

Appeared as Technical Report TR03-014, Department of Computer Science, UNC Chapel Hill

CULLIDE: Interactive Collision Detection Between Complex Models in Large
Environments using Graphics Hardware

Naga K. Govindaraju Stephane Redon Ming C. Lin Dinesh Manocha
University of North Carolina at Chapel Hill

{naga,redon,lin,dm}@cs.unc.edu

Abstract:

We present a novel approach for collision detection be-
tween multiple deformable and breakable objects in a large
environment. Our algorithm takes into account low band-
width to and from the graphics cards and computes a po-
tentially colliding set (PCS) using visibility queries. It in-
volves no precomputation and proceeds in multiple stages:
PCS computation at an object level and PCS computation
at sub-object level, followed by exact collision detection. We
use a linear time two-pass rendering algorithm to compute
each PCS efficiently. The overall approach makes no as-
sumption about the input primitives or the object’s motion
and is directly applicable to all triangulated models. It has
been implemented on a PC with NVIDIA GeForce FX Ultra
graphics card and applied to different environments composed
of a high number of moving objects with tens of thousands of
triangles. It is able to compute all the overlapping primitives
up to image-space resolution in a few milliseconds.

1 Introduction
High-performance 3D graphics systems are becoming as
ubiquitous as floating-point hardware. They are now a part
of almost every personal computer or game console. In ad-
dition, graphics hardware is becoming more programmable
and is increasingly used as a co-processor for many diverse
applications. These include ray tracing, intersection com-
putations, simulation of dynamic phenomena, atmospheric
effects, and scientific computations.

In this paper, we mainly address the problem of collision
detection among moving objects, either rigid or deformable,
using graphics hardware. Collision detection is an impor-
tant problem in computer graphics, game development, vir-
tual environments, robotics and engineering simulations. It
is often one of the major computational bottlenecks in dy-
namic simulation of complex systems. Collision detection
has been well studied over the last few decades. However,
most of the efficient algorithms are limited to rigid bodies
and require preprocessing. Although some algorithms have
been proposed for deformable models, either they are lim-
ited to simple objects or closed sets, or they are designed for
specialized models (e.g. cloth).

Many algorithms exploiting graphics hardware capabil-
ities have been proposed for collision queries and proxim-
ity computations [Baciu and Wong 2002; Baciu et al. 1998;
Hoff et al. 2001; Kim et al. 2002b; Myszkowski et al. 1995;
Rossignac et al. 1992; Shinya and Forgue 1991; Vassilev et al.
2001]. At a broad level, these algorithms can be classified
into two categories: use of depth and stencil buffer tech-
niques for computing interference and fast computation of
distance fields for proximity queries. These algorithms per-
form image-space computations, and are applicable to rigid
and deformable models. However, they have three main lim-
itations:

• Bandwidth Issues: Although graphics hardware is
progressing at a rate faster than Moore’s Law, the
bandwidth to and from the graphics cards is not in-
creasing as fast as computational power. Furthermore,
many algorithms readback the frame-buffer or depth-
buffer during each frame. These readbacks can be ex-
pensive on commodity graphics hardware, e.g. it takes
50 milli-seconds to read back the 1K×1K depth-buffer
on a Dell 530 Workstation with NVIDIA GeForce 4
card.

• Closed Objects: Many of these algorithms are mainly
restricted to closed objects, as they use graphics hard-
ware stencil operations to perform virtual ray casting
operations and determine whether a point is inside or
outside.

• Multiple Object-Pair Culling: Most of the current
algorithms are designed for a pair of objects and not
intended for large environments composed of multiple
moving objects.

Main Contribution: We present a novel algorithm for
collision or interference detection among multiple moving
objects in a large environment. Given an environment com-
posed of triangulated objects, our algorithm computes a po-
tentially colliding set (PCS). The PCS consists of objects
that are either overlapping or are in close proximity. We
use visibility computations to prune the number of objects
in the PCS. This is based on a linear time two-pass render-
ing algorithm that traverses the list of objects in forward
and reverse order. The visibility relationships are computed
using image-space occlusion queries, which are available on
current graphics hardware.

The pruning algorithm proceeds in multiple stages. Ini-
tially it compute a PCS of objects. Next it considers all
sub-objects (i.e. bounding boxes, groups of triangles, or in-
dividual triangles) in these objects and computes a PCS of
sub-objects. Finally, it uses an exact collision detection algo-
rithm to compute the overlapping triangles. The complexity
of the algorithm is a linear function of the input and output
size, as well as the size of PCS after each stage. Its ac-
curacy is governed by the image-precision and depth-buffer
resolution. Since there are no depth-buffer readbacks, it is
possible to perform the image-space occlusion queries at a
higher resolution without significant degradation in perfor-
mance. The additional overhead is in terms of fill-rate and
not the bandwidth.

We have implemented the algorithm on a Dell 530 Work-
station with NVIDIA GeForce FX 5800 Ultra graphics card
and a Pentium IV processor, and have applied to three
complex environments: 100 moving deformable objects in a
cube, 6 deforming tori (each composed of 20, 000 polygons),
and two complex breakable objects composed of 35, 000 and

250, 000 triangles. In each case, the algorithm can compute
all the overlapping triangles in just a few milliseconds.

Advantages: As compared to earlier approaches, our algo-
rithm offers the following benefits. It is relatively simple and
makes no assumption about the input model. It can even
handle “polygon soups”. It involves no precomputation or
additional data structures (e.g. hierarchies). As a result, its
memory overhead is low. It can easily handle deformable
models and breakable objects with changing geometry and
topology. Our algorithm doesn’t make any assumptions on
object motion and temporal coherence between successive
frames. It can efficiently compute all the contacts among
multiple objects or a pair of highly tessellated models at
interactive rates.

Organization: The rest of the paper is organized as fol-
lows. We give a brief survey of prior work on collision de-
tection and hardware accelerated computations in Section
2. We give an overview of PCS computation using visibility
queries in Section 3. We present our two-stage algorithm in
Section 4. In Section 5, we describe its implementation and
highlight its performance on different environments. We also
analyze its accuracy and performance.

2 Previous Work
In this section, we give a brief survey of prior work on
collision detection and graphics-hardware-accelerated ap-
proaches.

2.1 Collision Detection

Typically for a simulated environment consisting of multiple
moving objects, collision queries consist of two phases: the
“broad phase” where collision culling is performed to reduce
the number of pairwise tests, and the “narrow phase” where
the pairs of object in proximity are checked for collision [Co-
hen et al. 1995; Hubbard 1993].

Algorithms for narrow phase can be further subdivided
into efficient algorithms for convex objects and general-
purpose algorithms based on spatial partitioning and bound-
ing volume hierarchies for polygonal or spline models (please
see survey in [Klosowski et al. 1998; Lin and Gottschalk
1998; Redon et al. 2002]). However, these algorithms often
involve precomputation and are mainly designed for rigid
models.

2.2 Acceleration Using Graphics Hardware

Graphics hardware has been increasingly utilized to accel-
erate a number of geometric computations, including vi-
sualization of constructive solid geometry models [Gold-
feather et al. 1989; Rossignac and Wu 1990], interferences
and cross-sections [Baciu and Wong 2002; Baciu et al. 1998;
Myszkowski et al. 1995; Rossignac et al. 1992; Shinya and
Forgue 1991], distance fields and proximity queries [Hoff
et al. 1999; Hoff et al. 2001], Minkowski sums [Kaul and
Rossignac 1992; Kim et al. 2002a], and specialized algo-
rithms including collision detection for cloth animation [Vas-
silev et al. 2001] and virtual surgery [Lombardo et al. 1999].
All of these algorithms perform image-space computations
and involve no preprocessing. As a result, they are directly
applicable to rigid as well as deformable models. However,
the interference detection algorithms based on depth and
stencil buffers [Baciu et al. 1998; Myszkowski et al. 1995;
Rossignac et al. 1992] are limited to closed objects. The ap-
proaches based on distance field computations [Hoff et al.
1999; Hoff et al. 2001] can also perform distance and pene-
tration computation between two objects. But, they require
depth-buffer readbacks, which can be expensive on commod-
ity graphics hardware.

3 Collision Detection Using Visibility Queries
In this section, we give an overview of our collision detection
algorithm. We show how PCS can be computed using image-
space visibility queries, followed by exact collision detection
between the primitives.

Given an environment composed of n objects,
O1, O2, . . . , On. We assume that each object is repre-
sented as a collection of triangles. Our goal is to check
which objects overlap and also compute the overlapping
triangles in each intersecting pair. Our algorithm makes no
assumption about the motion of objects or any coherence
between successive frames. In fact, the number of objects
as well as the number of triangles in each object can change
between successive frames.

3.1 Potentially Colliding Set (PCS)

We compute a PCS of objects that are either overlapping
or are in close proximity. If an object, Oi, does not belong
to the PCS, it implies that Oi does not collide with any
object in the PCS. Based on this property, we can prune
the number of object pairs that need to be checked for exact
collision. This is similar to the concept of computing the
potentially visible set (PVS) of primitives from a viewpoint
for occlusion culling [Cohen-Or et al. 2001].

We perform visibility computations between the objects
in image space to check whether they are potentially collid-
ing or not. Given a set S of objects, we test the relative
visibility of an object O with respect to S using an image-
space visibility query. The query checks whether any part
of O is occluded by S. It rasterizes all the objects belonging
to S. O is considered fully-visible if the fragments gener-
ated by rasterization of O have a depth value less than the
corresponding pixels in frame buffer. We do not consider
self-occlusion of an object (O) in determining its visibility
status. We use the following lemma to check whether O is
overlapping with any object in S.
Lemma 1: An object O does not collide with a set of objects
S if O is fully-visible with respect to S.
Proof: The proof of this lemma is quite obvious. If O is
overlapping with any object in S, then some part of O is oc-
cluded by S. We also note that this property is independent
of the projection plane.

The accuracy of the algorithm is governed by the under-
lying precision of the visibility query. Moreover, this lemma
only provides a sufficient condition for not colliding and not
a necessary condition.

3.2 Visibility Based Pruning

We use Lemma 1 for PCS computation. Given n objects
O1, ..., On, we check if Oi potentially intersects with at least
one of O1, .., Oi−1, Oi+1, ..., On, 1 ≤ i ≤ n. Instead of check-
ing all possible pairs (which can be O(n2)), we use the fol-
lowing lemma to design a linear-time algorithm to perform
a conservative check.
Lemma 2: Given n objects O1, O2, ..., On, an object
Oi does not belong to PCS if it does not intersect with
O1, .., Oi−1, Oi+1, ..., On, 1 ≤ i ≤ n. This test can be eas-
ily decomposed as: an object Oi does not belong to PCS if
it does not intersect with O1, .., Oi−1 and with Oi+1, ..., On,
1 ≤ i ≤ n.
Proof: Follows trivially from the definition of PCS.

We use Lemma 2 to determine if an object belongs to
PCS. Our algorithm uses a two pass rendering approach to
compute the PCS. In the first pass, we check if Oi potentially
intersects with at least one of the objects O1, .., Oi−1. In the
second pass, we check if it potentially intersects with one of
Oi+1, ..., On. If an object does not intersect in either of the

Figure 1: System Architecture: The overall pipeline of the collision

detection algorithm for large environments

two passes, then it does not belong to the PCS.
Each pass requires the object representation for an object

to be rendered twice. We can either render all the triangles
used to represent an object or a bounding box of the object.
Initially, the PCS consists of all the objects in the scene.
We perform these two passes to prune objects from the PCS.
Furthermore, we repeat the process by using each coordinate
axis as the axis of projection to further prune the PCS. We
use Lemma 1 to determine if an object potentially intersects
with a set of objects or not.

It should be noted that our GPU based pruning algo-
rithm is quite different from algorithms which prune PCS
using 2D overlap tests and is not an extension to avoid
frame-buffer readbacks using occlusion queries. Our algo-
rithm does not involve frame-buffer readbacks and computes
a PCS which is less conservative than 2D overlap algorithms.

3.3 Localizing the Overlapping Features

Many applications need to compute the exact overlapping
features (e.g. triangles) for collision response. We initially
compute the PCS of objects based on the algorithm high-
lighted above. Instead of testing each object pair in the PCS
for exact overlap, we again use the visibility formulation to
identify the potentially intersecting regions among the ob-
jects in the PCS. Specifically we use a fast global pruning
algorithm to localize these regions of interest.

We decompose each object into sub-objects. A sub-
object can be a bounding box, a group of triangles (say a
constant k) or a single triangle. We extend the approach dis-
cussed in section 3.1 to sub-object level and compute the po-
tentially intersecting regions based on the following lemma.
Lemma 3: Given n objects O1, O2, ..., On and each object
Oi is composed of mi sub-objects T i

1 , T i
2 , ..., T i

mi
, a sub-object

T i
k of Oi does not belong to the object’s potentially inter-

secting region if it does not intersect with the sub-objects of
O1, .., Oi−1, Oi+1, ..., On, 1 ≤ i ≤ n. Moreover, a sub-object
T i

k of Oi does not belong to the potentially intersecting region
of the object if it does not intersect with the sub-objects of
O1, .., Oi−1 and Oi+1, ..., On, 1 ≤ i ≤ n.
Proof: Follows trivially from Lemma 2.

In this case we again use visibility queries to resolve the
intersections among sub-objects of different objects. How-
ever, we do not check an object for self-intersections or self-
occlusion and therefore, do not perform visibility queries
among the sub-objects of the same parent object.

3.4 Collision Detection

Our overall algorithm performs pruning at two stages, ob-
ject level and sub-object level, and eventually checks the
primitives for exact collision.

• Object Pruning: We perform object level pruning by
computing the PCS of objects. We first use AABBs
of the objects to prune this set. Next we use the ex-
act triangulated representation of the objects to fur-
ther prune the PCS. If the PCS is large, we use the
sweep-and-prune algorithm [Cohen et al. 1995] to com-
pute potentially colliding pairs and decompose the PCS
into smaller subsets. The sweep-and-prune algorithm

projects the bounding boxes on each axis, sorts them
and check them for possible overlap.

• Sub-Object Pruning: We perform sub-object prun-
ing to identify potential regions of each object in PCS
that may be involved in collision detection.

• Exact Collision Detection: We perform exact
triangle-triangle intersection tests on the CPU to check
if two objects collide or not.

The architecture of the overall system is shown in Fig. 1,
where the first two stages are performed using image-space
visibility queries (on the GPU) and the last stage is per-
formed on the CPU.

4 Interactive Collision Detection
In this section, we present our overall collision detection
algorithm for computing all the contacts between multiple
moving objects in a large environment. It uses the visibility
pruning algorithm described in Section 3.2. The overall al-
gorithm is general and applicable to all environments. We
also highlight many optimizations and the visibility queries
used to accelerate the performance of our algorithm.

4.1 Pruning Algorithm

We use a two-pass rendering algorithm based on the visibil-
ity formulation defined in section 3.2 to perform linear time
PCS pruning. In particular, we use Lemma 2 to compute
the PCS. In the first pass, we clear the depth buffer and
render the objects in the order O1, .., On along with image
space occlusion queries. In other words, for each object in
O1, .., On, we render the object and test if it is fully visible
with respect to the objects rendered prior to it. In the sec-
ond pass, we clear the depth buffer and render the objects
in the reverse order On, On−1, ...O1 along with image space
occlusion queries. We perform the same operations as in the
first pass while rendering each object. At the end of each
pass, we test if an object is fully visible or not. An object
classified as fully-visible in both the passes does not belong
to PCS. It should also be noted that our pruning algorithm
is less conservative as compared to an algorithm that only
uses 2D screen-space overlap tests.

4.2 Visibility Queries

Our visibility based PCS computation algorithm needs
a hardware visibility query which determines if a primi-
tive is fully-visible or not. Current commodity graphics
hardware supports an image-space occlusion query that
checks whether a primitive is visible or not. These queries
scan-convert the specified primitives and determine if
the depth of any pixel changes. Various implementa-
tions are provided by different hardware vendors and
each implementation varies in its performance as well
as functionality. Some of the well-known occlusion
queries based on the OpenGL extensions include the
GL HP occlusion test (http://oss.sgi.com/projects/
ogl-sample/registry/HP/occlusion_test.txt) and
the NVIDIA OpenGL extension GL NV occlusion query
(http://oss.sgi.com/projects/ogl-sample/registry/
NV/occlusion_query.txt). The GL HP occlusion test
returns a boolean determining if any incoming fragment
passed the depth test, whereas the GL NV occlusion query
returns the number of incoming fragments which passed the
depth test.

We need a query that tests if all the incoming fragments
of a primitive have a depth value less than the depth of
the corresponding fragments in the frame buffer. In order
to support such a query, we change the depth test to pass

only if the depth of the incoming fragment is greater than
or equal to the depth of the corresponding fragment in the
frame buffer. With this depth comparison function, we use
an image space occlusion query to test if a primitive is not
visible when rendered against the depth buffer. If the prim-
itive is classified as not visible, then each incoming fragment
has a depth value less than the corresponding depth value
in the frame buffer, thus providing a visibility query to test
if a primitive is fully visible. Note that we need to disable
the depth writes so that the change of depth function does
not affect the depth buffer. We refer to these queries as
fully-visibility queries in the rest of the paper.

These queries can sometimes stall the graphics pipeline
while waiting for results. We describe techniques to avoid
these stalls (discussed in section 4.5).

Occlusion queries perform at the rate of rasterization
hardware and involve very low bandwidth requirements in
comparison to frame buffer readbacks. If we perform n oc-
clusion queries, we readback n integers for a total of 4n bytes,
sent to the host CPU using PCI interface. Also, the band-
width requirement for n occlusion queries is independent of
the resolution of the frame buffer.

4.3 Multiple Level Pruning

We extend the visibility pruning algorithm to sub-objects,
to identify the potentially intersecting regions among the
objects in PCS. We use Lemma 3 to perform sub-object level
pruning. We render each sub-object for every object in the
PCS with a full visibility query. The sub-object could be a
bounding box, a group of triangles, or even a single triangle.

The following is the pseudocode of the algorithm.

• First pass:

1. Clear the depth buffer (use orthographic projection)

2. For each object Oi, i = 1, .., n

– Disable depth mask and set the depth function to

GL GEQUAL.

– For each sub-object T i
k in Oi

Render T i
k using an occlusion query

– Enable the depth mask and set the depth function

to GL LEQUAL.

– For each sub-object T i
k in Oi

Render T i
k using an occlusion query

3. For each object Oi, i = 1, .., n

– For each sub-object T i
k in Oi

Test if T i
k is not visible with respect to the

depth buffer. If it is not visible, set a tag

to note it as fully visible.

• Second pass:

Same as First pass, except that the two “For each

object” loops are run with i = n, .., 1.

4.4 Collision Detection

The overall collision detection algorithm performs object
level pruning, sub-object level pruning and triangle inter-
section tests among the objects in PCS.

4.4.1 Object level pruning

We perform object level pruning to compute the PCS of
objects. Initially, all the objects belong to the PCS. We
first perform pruning against each coordinate axis using the
axis-aligned bounding boxes as the object’s representation
for collision detection. The pruning is performed till the
PCS does not change between successive iterations. We also
use the object’s triangulated representation for further prun-
ing the PCS. The size of the resulting set is usually small
and a simple all-pair bounding box overlap tests are used to

compute the potentially intersecting pairs. If the size of this
set is large, then we use sweep-and-prune technique [Cohen
et al. 1995] to prune this set instead of all-pair tests. The
sweep-and-prune algorithm projects the bounding boxes on
each axis, sorts them and check them for possible overlap.

4.4.2 Sub-Object level pruning

We perform multiple level pruning to identify the poten-
tially intersecting triangles among the objects in the PCS.
We group adjacent local triangles (say k triangles) to form
a sub-object used in multi-level pruning and prune the po-
tential regions considerably. This improves the performance
of our algorithm as performing a fully-visibility query for
each single triangle in the PCS of objects can be expensive.
At the next level, we consider the PCS of sub-objects and
perform pruning using each triangle as a sub-object. The
multiple-level sub-object pruning is performed across each
axis by using a visibility query for sub-object.

4.4.3 Intersection Tests

We perform exact collision detection between the objects
involved in the potentially colliding pairs by testing their
potentially intersecting triangles.

4.5 Optimizations

In this section, we highlight a number of optimizations used
to improve the performance of the algorithm.

• AABBs and Orthographic Projections: We use
orthographic projection of axis-aligned bounding boxes.
These could potentially provide an improvement factor
of six in the rendering performance. Orthographic pro-
jection is used for its speed and simplicity. Also, it
reduces the resolution errors due to perspective trans-
formation. In addition, we use axis-aligned bounding
boxes to prune the objects for intersection tests.

• Visibility Query returning Z-fail: A hardware vis-
ibility query providing z-fail (in particular, a query to
test if z-fail is non-zero) would reduce the amount of
rendering by a factor of two for AABBs under ortho-
graphic projections. This query allows us to update
depth buffer along with the occlusion query, thus pro-
viding an improvement of two times. We take addi-
tional care in terms of ordering the view-axis perpen-
dicular faces of the bounding boxes, and ensure that
the results are not affected by possible self-occlusion.
thus not affecting the query result by self-occlusion.

• Avoid Stalls: We utilize GL NV occlusion query to
avoid stalls in the graphics pipeline. We query the
results of the occlusion tests at the end of each pass,
improving the performance by a factor of four when
compared to a system using GL HP occlusion test.

• Rendering Acceleration: We use vertex arrays in
video memory to improve the rendering performance by
copying the object representation to the video memory.
The performance can be further improved by represent-
ing the objects in terms of triangle strips and using
them along with vertex arrays.

5 Implementation and Performance
We have implemented our system on a Dell Precision Work-
station consisting of a 2.4 GHz Pentium 4 CPU and a
GeForce FX Ultra 5, 800 GPU. We are able to perform
around 400K image-space occlusion queries per second on
this card. We have tested our system on four complex sim-
ulated environments.

Figure 4: Number of objects v/s Average collision pruning time:

This graph highlights the relationship between number of objects in

the scene and the average collision pruning time (object pruning

and sub-object/triangle pruning). Each object is composed of 200

triangles. The graph indicates that the collision pruning time is

linear to the number of objects.

Figure 5: Polygons per object vs/ Average collision query time :

Graph shows the linear relationship between the number of polygons

per object and the average collision pruning time. This scene is

composed of 100 deforming cylinders and has a density of 1 − 2%.

The collision pruning time is averaged over 500 frames and at an

image-space resolution of 800× 800

• Environment 1: It consists of 100 deformable moving
objects in a unit cube with a density of 5 − 6%. Each
object consists of 200 triangles. The average collision
pruning time is around 4ms at an image-space resolu-
tion of 800× 800. A snapshot from this environment is
shown in Fig. 2(a).

• Environment 2: It consists of six deformable cylin-
ders, each composed of 20, 000 triangles. The scene has
an estimated density of 6 − 8%. The average collision
pruning query time is around 8ms. A snapshot from
this environment is shown in Fig. 2(b).

• Environment 3: It consists of two highly tessellated
models: a bunny (35K triangles) and a dragon (250K
triangles). In Fig. 2(c), we show a relative configu-
ration of the two models and different colors are used
to highlight the triangles that belong to the PCS. A
zoomed-up view of the intersection region is shown in
Fig. 2(d). It takes about 40 ms to perform the collision
queries.

• Breaking Objects: We used our collision detection
algorithm to generate a real-time simulation of break-
ing objects. Fig. 3 highlights a sequence from our dy-
namic simulation with the bunny and the dragon col-
liding and decomposing the dragon into multiple ob-

Figure 6: Image-space resolution v/s Average collision query time

: Graph indicating the linear relationship between screen resolu-

tion and average collision query time. The scene consists of 100

deformable cylinders and each object is composed of 200 triangles.

jects due to the impact. The total number of objects
and the number of triangles in each object are chang-
ing over the course of the simulation. Earlier collision
detection algorithms are unable to handle such scenar-
ios in real-time. Our collision detection algorithm takes
about 35ms (on average) to compute all the overlapping
triangles during each frame.

5.1 Performance Analysis

We have tested the performance of our algorithm and system
on different benchmarks. Its overall performance depends on
a few key parameters: The following are the key parameters
determining the performance of the system.

• Number of objects : Our object level pruning al-
gorithm exhibits linear time performance in our bench-
marks. We have performed timing analysis with vary-
ing number of deformable objects and Fig. 4 summa-
rizes the results. In our simulations, we have observed
that the pruning algorithm requires only a few itera-
tions to converge (typically, it is two). Also, each iter-
ation reduces the size of PCS. Therefore, the visibility
based pruning algorithm traverses a smaller list of ob-
jects during subsequent iterations.

• Triangle count per object : The performance of
our system depends upon the triangle count of the po-
tentially interfering objects. We have tested our system
with simulations on 100 deformable objects consisting
of varying triangle count. Fig. 5 summarizes the re-
sults. The graph indicates a linear relationship between
the polygon count and the average collision query time.
Moreover, the number of polygons per object is much
higher than the number of objects in the scene.

• Accuracy and Image-Space Resolution : The ac-
curacy of the overall algorithm is governed by image-
space resolution. Typically a higher resolution leads to
higher fill-rate requirements, in terms of rendering the
primitives, bounding boxes and performing occlusion
queries. A lower image-space resolution can improve
the query time, but can miss intersections between two
objects, whose boundaries are barely touching. Figure
6 highlights the relationship between collision pruning
time and the screen resolution.

• Output Size: The performance of any collision detec-
tion algorithm varies as a function of the output size,
i.e. the number of overlapping triangle pairs. In our
case, the performance varies as a linear function of the

size of PCS after object level pruning and sub-object
level pruning as well as the number of triangle pairs
that need to be tested for exact collision. In case two
objects have a deep penetration, the output size can be
high and therefore the size of each PCS can be high as
well.

• Rasterization optimizations: The performance of
the system is accelerated using the rasterization op-
timizations discussed in section 4.5. We have used
AABBs with orthographic projections for our prun-
ing algorithms. We have used immediate mode for
rendering the models and breakable objects and used
GL NV occlusion query to maximize the performance.

5.2 Comparison with Other Approaches

Collision detection is well-studied in the literature and a
number of algorithms and public-domain systems are known.
However, none of the earlier algorithms provide the same ca-
pabilities or features as our algorithm based on PCS compu-
tation. As a result, we have not performed any direct timing
comparisons with the earlier systems. We just compare some
of the features of our approach with the earlier algorithms.
Object-Space Algorithms: Algorithms based on sweep-
and-prune are known for N-body collision detection [Co-
hen et al. 1995]. They have been used in I-COLLIDE, V-
COLLIDE, SWIFT, SOLID and other systems. However,
these algorithms were designed for rigid bodies and compute
a tight fitting AABB for each object using incremental meth-
ods, followed by sorting their projections of AABBs along
each axis. It is not clear whether they can perform real-
time collision detection on large environments composed of
deformable models. On the other hand, our algorithm per-
forms two passes on the object list to perform the PCS. We
expect that our PCS based algorithm is more conservative as
compared to sweep-and-prune. Furthermore, the accuracy of
our approach is governed by the image-space resolution.

A number of hierarchical methods have been proposed
to check two highly tessellated models for overlap and some
optimized systems (e.g. RAPID, QuickCD) are available.
They involve considerable preprocessing and memory over-
head in generating the hierarchy and won’t work well on
deformable models.
Image-Space Algorithms : These include algorithms
based on stencil buffer techniques as well as distance field
computations. Some systems such as PIVOT are able to
perform other proximity queries including distance and lo-
cal penetration computation, whereas our PCS based algo-
rithm is limited to only check for interference. However, our
algorithm only needs to readback the output of a visibility
query and not the entire depth-buffer or stencil buffer. This
significantly improves its performance, especially when we
use higher image-space precision. Unlike earlier algorithms,
our PCS-based algorithm is applicable to all triangulated
3D models (and not just closed objects) and can handle ar-
bitrary number of objects in the environment and not just
two objects.

5.3 Conclusions and Future Work

We have presented a novel algorithm for collision detec-
tion between multiple deformable objects in a large envi-
ronment. Our algorithm is applicable to all triangulated
models, makes no assumption about object motion and can
compute all the contacts up to image-space resolution. It
is based on a novel, linear-time PCS computation algorithm
that is applied iteratively to the objects and sub-objects.
The PCS is computed using image-space visibility queries
that are widely available on commodity graphics hardware.

It only needs to readback the results of a query and not the
entire frame-buffer or depth-buffer.
Limitations: Our current approach has many limitations.
Firstly it only check overlapping objects, and not the dis-
tance or penetration information that is needed for many ap-
plications. Secondly, its accuracy is governed by the image-
space resolution. Finally, it cannot handle self-collisions
within an object.

There are many avenues for future work. In addition
to overcoming these limitations, we will to investigate some
hybrid object and image-space combinations that can utilize
the efficiency of the image-space methods with the accuracy
of object-space approaches. We will use our PCS based colli-
sion detection for more applications and also like to evaluate
its impact on the accuracy of the overall simulation. Finally,
we will like to investigate use of the programmability fea-
tures of graphics hardware to design improved algorithms
for collision and proximity queries.

References
Baciu, G., and Wong, S. 2002. Image-based techniques in a hybrid

collision detector. IEEE Trans. on Visualization and Computer
Graphics.

Baciu, G., Wong, S., and Sun, H. 1998. Recode: An image-based
collision detection algorithm. Proc. of Pacific Graphics, 497–512.

Cohen, J., Lin, M., Manocha, D., and Ponamgi, M. 1995. I-collide:
An interactive and exact collision detection system for large-scale
environments. In Proc. of ACM Interactive 3D Graphics Confer-
ence, 189–196.

Cohen-Or, D., Chrysanthou, Y., and Silva, C. 2001. A survey of
visibility for walkthrough applications. SIGGRAPH Course Notes
30 .

Goldfeather, J., Molnar, S., Turk, G., and Fuchs, H. 1989. Near
real-time csg rendering using tree normalization and geometric
pruning. IEEE Computer Graphics and Applications 9, 3, 20–
28.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha, D. 1999.
Fast computation of generalized voronoi diagrams using graphics
hardw are. Proceedings of ACM SIGGRAPH , 277–286.

Hoff, K., Zaferakis, A., Lin, M., and Manocha, D. 2001. Fast and
simple geometric proximity queries using graphics hardware. Proc.
of ACM Symposium on Interactive 3D Graphics.

Hubbard, P. M. 1993. Interactive collision detection. In Proceedings
of IEEE Symposium on Research Frontiers in Virtual Reality.

Kaul, A., and Rossignac, J. 1992. Solid-interpolating deformations:
construction and animation of pips. Computer and Graphics 16 ,
107–116.

Kim, Y., Lin, M., and Manocha, D. 2002. Deep: An incremental al-
gorithm for penetration depth computation between convex poly-
topes. Proc. of IEEE Conference on Robotics and Automation.

Kim, Y., Otaduy, M., Lin, M., and Manocha, D. 2002. Fast penetra-
tion depth computation using rasterization hardware and hierar-
chical refinement. Proc. of Workshop on Algorithmic Foundations
of Robotics.

Klosowski, J., Held, M., Mitchell, J., Sowizral, H., and Zikan, K.
1998. Efficient collision detection using bounding volume hierar-
chies of k-dops. IEEE Trans. on Visualization and Computer
Graphics 4, 1, 21–37.

Lin, M., and Gottschalk, S. 1998. Collision detection between ge-
ometric models: A survey. Proc. of IMA Conference on Mathe-
matics of Surfaces.

Lombardo, J. C., Cani, M.-P., and Neyret, F. 1999. Real-time colli-
sion detection for virtual surgery. Proc. of Computer Animation.

Myszkowski, K., Okunev, O. G., and Kunii, T. L. 1995. Fast col-
lision detection between complex solids using rasterizing graphics
hardware. The Visual Computer 11, 9, 497–512.

Redon, S., Kheddar, A., and Coquillart, S. 2002. Fast continuous
collision detection between rigid bodies. Proc. of Eurographics
(Computer Graphics Forum).

Rossignac, J., and Wu, J. 1990. Correct shading of regularized csg
solids using a depth-interval buffer. In Eurographics Workshop on
Graphics Hardware.

Rossignac, J., Megahed, A., and Schneider, B. 1992. Interactive in-
spection of solids: cross-sections and interferences. In Proceedings
of ACM Siggraph, 353–60.

Shinya, M., and Forgue, M. C. 1991. Interference detection through
rasterization. The Journal of Visualization and Computer Ani-
mation 2, 4, 131–134.

Vassilev, T., Spanlang, B., and Chrysanthou, Y. 2001. Fast cloth
animation on walking avatars. Computer Graphics Forum (Proc.
of Eurographics’01) 20, 3, 260–267.

(a) Environment 1: This scene consists of 100

dynamically deforming open cylinders moving

randomly in a room. Each cylinder is com-

posed of 200 triangles.

(b) Environment 2: This scene consists of 10 dynam-

ically deforming torii moving randomly in a room.

Each torus is composed of 20000 triangles

(c) Environment 3: Wired frame of dragon

and bunny rendered in the following colors -

{cyan,blue} highlight triangles in the PCS, {red,
white} illustrate portions not in the PCS. The

dragon consists of 250K triangles and the bunny

consists of 35K faces

(d) Environment 3: Zoomed view highlighting

the exact intersections between the triangles in

the PCS. The configuration of the two objects is

the same as Figure 2(c). The cyan and blue

triangles are the overlapping triangles of the

dragon and bunny, respectively.

Figure 2: Snapshots of our interactive collision algorithm on three complex environments. The algorithm takes 4,8, 40ms
respectively on each of the environments to perform collision queries on a GeForce FX 5800 Ultra with an image-space
resolution of 800× 800.

Figure 3: Environment with breakable objects: As the bunny (with 35K triangles), falls through the dragon (with 250K), the number of

objects in the scene (shown with a blue outline) and the triangle count within each object changes. Our algorithm computes all the overlapping

triangles during each frame. The average collision query time is 35 milli-seconds per frame.

Ray Tracing and Global Illumination using
Graphics Hardware

Timothy J. Purcell
Stanford University

Ray Tracing on Programmable Graphics Hardware

Timothy J. Purcell Ian Buck William R. Mark ∗ Pat Hanrahan

Stanford University †

Abstract

Recently a breakthrough has occurred in graphics hardware: fixed
function pipelines have been replaced with programmable vertex
and fragment processors. In the near future, the graphics pipeline
is likely to evolve into a general programmable stream processor
capable of more than simply feed-forward triangle rendering.

In this paper, we evaluate these trends in programmability of
the graphics pipeline and explain how ray tracing can be mapped
to graphics hardware. Using our simulator, we analyze the per-
formance of a ray casting implementation on next generation pro-
grammable graphics hardware. In addition, we compare the perfor-
mance difference between non-branching programmable hardware
using a multipass implementation and an architecture that supports
branching. We also show how this approach is applicable to other
ray tracing algorithms such as Whitted ray tracing, path tracing, and
hybrid rendering algorithms. Finally, we demonstrate that ray trac-
ing on graphics hardware could prove to be faster than CPU based
implementations as well as competitive with traditional hardware
accelerated feed-forward triangle rendering.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing

Keywords: Programmable Graphics Hardware, Ray Tracing

1 Introduction

Real-time ray tracing has been a goal of the computer-graphics
community for many years. Recently VLSI technology has reached
the point where the raw computational capability of a single chip
is sufficient for real-time ray tracing. Real-time ray tracing has
been demonstrated on small scenes on a single general-purpose
CPU with SIMD floating point extensions [Wald et al. 2001b], and
for larger scenes on a shared memory multiprocessor [Parker et al.
1998; Parker et al. 1999] and a cluster [Wald et al. 2001b; Wald
et al. 2001a]. Various efforts are under way to develop chips spe-
cialized for ray tracing, and ray tracing chips that accelerate off-line
rendering are commercially available [Hall 2001]. Given that real-
time ray tracing is possible in the near future, it is worthwhile to
study implementations on different architectures with the goal of
providing maximum performance at the lowest cost.

∗Currently at NVIDIA Corporation
†{tpurcell, ianbuck, billmark, hanrahan}@graphics.stanford.edu

In this paper, we describe an alternative approach to real-time ray
tracing that has the potential to out perform CPU-based algorithms
without requiring fundamentally new hardware: using commodity
programmable graphics hardware to implement ray tracing. Graph-
ics hardware has recently evolved from a fixed-function graph-
ics pipeline optimized for rendering texture-mapped triangles to a
graphics pipeline with programmable vertex and fragment stages.
In the near-term (next year or two) the graphics processor (GPU)
fragment program stage will likely be generalized to include float-
ing point computation and a complete, orthogonal instruction set.
These capabilities are being demanded by programmers using the
current hardware. As we will show, these capabilities are also suf-
ficient for us to write a complete ray tracer for this hardware. As
the programmable stages become more general, the hardware can
be considered to be a general-purpose stream processor. The stream
processing model supports a variety of highly-parallelizable algo-
rithms, including ray tracing.

In recent years, the performance of graphics hardware has in-
creased more rapidly than that of CPUs. CPU designs are opti-
mized for high performance on sequential code, and it is becoming
increasingly difficult to use additional transistors to improve per-
formance on this code. In contrast, programmable graphics hard-
ware is optimized for highly-parallel vertex and fragment shading
code [Lindholm et al. 2001]. As a result, GPUs can use additional
transistors much more effectively than CPUs, and thus sustain a
greater rate of performance improvement as semiconductor fabri-
cation technology advances.

The convergence of these three separate trends – sufficient raw
performance for single-chip real-time ray tracing; increasing GPU
programmability; and faster performance improvements on GPUs
than CPUs – make GPUs an attractive platform for real-time ray
tracing. GPU-based ray tracing also allows for hybrid rendering
algorithms; e.g. an algorithm that starts with a Z-buffered rendering
pass for visibility, and then uses ray tracing for secondary shadow
rays. Blurring the line between traditional triangle rendering and
ray tracing allows for a natural evolution toward increased realism.

In this paper, we show how to efficiently implement ray tracing
on GPUs. The paper contains three main contributions:

• We show how ray tracing can be mapped to a stream pro-
cessing model of parallel computation. As part of this map-
ping, we describe an efficient algorithm for mapping the in-
nermost ray-triangle intersection loop to multiple rendering
passes. We then show how the basic ray caster can be ex-
tended to include shadows, reflections, and path tracing.

• We analyze the streaming GPU-based ray caster’s perfor-
mance and show that it is competitive with current CPU-based
ray casting. We also show initial results for a system including
secondary rays. We believe that in the near future, GPU-based
ray tracing will be much faster than CPU-based ray tracing.

• To guide future GPU implementations, we analyze the com-
pute and memory bandwidth requirements of ray casting on
GPUs. We study two basic architectures: one architecture
without branching that requires multiple passes, and another
with branching that requires only a single pass. We show that

the single pass version requires significantly less bandwidth,
and is compute-limited. We also analyze the performance of
the texture cache when used for ray casting and show that it is
very effective at reducing bandwidth.

2 Programmable Graphics Hardware

2.1 The Current Programmable Graphics Pipeline

Application

Vertex Program

Rasterization

Fragment Program

Display

Figure 1: The programmable graphics pipeline.

A diagram of a modern graphics pipeline is shown in figure 1.
Today’s graphics chips, such as the NVIDIA GeForce3 [NVIDIA
2001] and the ATI Radeon 8500 [ATI 2001] replace the fixed-
function vertex and fragment (including texture) stages with pro-
grammable stages. These programmable vertex and fragment en-
gines execute user-defined programs and allow fine control over
shading and texturing calculations. An NVIDIA vertex program
consists of up to 128 4-way SIMD floating point instructions [Lind-
holm et al. 2001]. This vertex program is run on each incoming ver-
tex and the computed results are passed on to the rasterization stage.
The fragment stage is also programmable, either through NVIDIA
register combiners [Spitzer 2001] or DirectX 8 pixel shaders [Mi-
crosoft 2001]. Pixel shaders, like vertex programs, provide a 4-way
SIMD instruction set augmented with instructions for texturing, but
unlike vertex programs operate on fixed-point values. In this pa-
per, we will be primarily interested in the programmable fragment
pipeline; it is designed to operate at the system fill rate (approxi-
mately 1 billion fragments per second).

Programmable shading is a recent innovation and the current
hardware has many limitations:

• Vertex and fragment programs have simple, incomplete in-
struction sets. The fragment program instruction set is much
simpler than the vertex instruction set.

• Fragment program data types are mostly fixed-point. The in-
put textures and output framebuffer colors are typically 8-bits
per color component. Intermediate values in registers have
only slightly more precision.

• There are many resource limitations. Programs have a limited
number of instructions and a small number of registers. Each
stage has a limited number of inputs and outputs (e.g. the
number of outputs from the vertex stage is constrained by the
number of vertex interpolants).

• The number of active textures and the number of dependent
textures is limited. Current hardware permits certain instruc-
tions for computing texture addresses only at certain points
within the program. For example, a DirectX 8 PS 1.4 pixel

shader has two stages: a first texture addressing stage consist-
ing of four texture fetch instructions followed by eight color
blending instructions, and then a color computation stage con-
sisting of additional texture fetches followed by color com-
bining arithmetic. This programming model permits a single
level of dependent texturing.

• Only a single color value may be written to the framebuffer in
each pass.

• Programs cannot loop and there are no conditional branching
instructions.

2.2 Proposed Near-term Programmable Graphics

Pipeline

The limitations of current hardware make it difficult to implement
ray tracing in a fragment program. Fortunately, due to the inter-
est in programmable shading for mainstream game applications,
programmable pipelines are rapidly evolving and many hardware
and software vendors are circulating proposals for future hardware.
In fact, many of the current limitations are merely a result of the
fact that they represent the very first generation of programmable
hardware. In this paper, we show how to implement a ray tracer
on an extended hardware model that we think approximates hard-
ware available in the next year or two. Our model is based loosely
on proposals by Microsoft for DirectX 9.0 [Marshall 2001] and by
3DLabs for OpenGL 2.0 [3DLabs 2001].

Our target baseline architecture has the following features:

• A programmable fragment stage with floating point instruc-
tions and registers. We also assume floating point texture and
framebuffer formats.

• Enhanced fragment program assembly instructions. We in-
clude instructions which are now only available at the vertex
level. Furthermore, we allow longer programs; long enough
so that our basic ray tracing components may be downloaded
as a single program (our longest program is on the order of 50
instructions).

• Texture lookups are allowed anywhere within a fragment pro-
gram. There are no limits on the number of texture fetches or
levels of texture dependencies within a program.

• Multiple outputs. We allow 1 or 2 floating point RGBA (4-
vectors) to be written to the framebuffer by a fragment pro-
gram. We also assume the fragment program can render di-
rectly to a texture or the stencil buffer.

We consider these enhancements a natural evolution of current
graphics hardware. As already mentioned, all these features are
actively under consideration by various vendors.

At the heart of any efficient ray tracing implementation is the
ability to traverse an acceleration structure and test for an intersec-
tion of a ray against a list of triangles. Both these abilities require
a looping construct. Note that the above architecture does not in-
clude data-dependent conditional branching in its instruction set.
Despite this limitation, programs with loops and conditionals can
be mapped to this baseline architecture using the multipass render-
ing technique presented by Peercy et al. [2000]. To implement a
conditional using their technique, the conditional predicate is first
evaluated using a sequence of rendering passes, and then a sten-
cil bit is set to true or false depending on the result. The body of
the conditional is then evaluated using additional rendering passes,
but values are only written to the framebuffer if the corresponding
fragment’s stencil bit is true.

Although their algorithm was developed for a fixed-function
graphics pipeline, it can be extended and used with a programmable
pipeline. We assume the addition of two hardware features to make
the Peercy et al. algorithm more efficient: direct setting of stencil
bits and an early fragment kill similar to Z occlusion culling [Kirk
2001]. In the standard OpenGL pipeline, stencil bits may be set by
testing the alpha value. The alpha value is computed by the frag-
ment program and then written to the framebuffer. Setting the sten-
cil bit from the computed alpha value requires an additional pass.
Since fragment programs in our baseline architecture can modify
the stencil values directly, we can eliminate this extra pass. Another
important rendering optimization is an early fragment kill. With an
early fragment kill, the depth or stencil test is executed before the
fragment program stage and the fragment program is executed only
if the fragment passes the stencil test. If the stencil bit is false, no in-
structions are executed and no texture or framebuffer bandwidth is
used (except to read the 8-bit stencil value). Using the combination
of these two techniques, multipass rendering using large fragment
programs under the control of the stencil buffer is quite efficient.

As we will see, ray tracing involves significant looping. Al-
though each rendering pass is efficient, extra passes still have a cost;
each pass consumes extra bandwidth by reading and writing inter-
mediate values to texture (each pass also requires bandwidth to read
stencil values). Thus, fewer resources would be used if these inner
loops over voxels and triangles were coalesced into a single pass.
The obvious way to do this would be to add branching to the frag-
ment processing hardware. However, adding support for branch-
ing increases the complexity of the GPU hardware. Non-branching
GPUs may use a single instruction stream to feed several fragment
pipelines simultaneously (SIMD computation). GPUs that support
branching require a separate instruction stream for each processing
unit (MIMD computation). Therefore, graphics architects would
like to avoid branching if possible. As a concrete example of this
trade off, we evaluate the efficiency of ray casting on two architec-
tures, one with and one without branching:

• Multipass Architecture. Supports arbitrary texture reads,
floating-point texture and framebuffer formats, general float-
ing point instructions, and two floating point 4-vector outputs.
Branching is implemented via multipass rendering.

• Branching Architecture. Multipass architecture enhanced
to include support for conditional branching instructions for
loops and control flow.

2.3 The Streaming Graphics Processor Abstraction

As the graphics processor evolves to include a complete instruc-
tion set and larger data types, it appears more and more like a
general-purpose processor. However, the challenge is to intro-
duce programmability without compromising performance, for oth-
erwise the GPU would become more like the CPU and lose its cost-
performance advantages. In order to guide the mapping of new ap-
plications to graphics architectures, we propose that we view next-
generation graphics hardware as a streaming processor. Stream
processing is not a new idea. Media processors transform streams
of digital information as in MPEG video decode. The IMAGINE
processor is an example of a general-purpose streaming processor
[Khailany et al. 2000].

Streaming computing differs from traditional computing in that
the system reads the data required for a computation as a sequential
stream of elements. Each element of a stream is a record of data
requiring a similar computation. The system executes a program
or kernel on each element of the input stream placing the result on
an output stream. In this sense, a programmable graphics processor
executes a vertex program on a stream of vertices, and a fragment
program on a stream of fragments. Since, for the most part we

are ignoring vertex programs and rasterization, we are treating the
graphics chip as basically a streaming fragment processor.

The streaming model of computation leads to efficient imple-
mentations for three reasons. First, since each stream element’s
computation is independent from any other, designers can add ad-
ditional pipelines that process elements of the stream in parallel.
Second, kernels achieve high arithmetic intensity. That is, they per-
form a lot of computation per small fixed-size record. As a result
the computation to memory bandwidth ratio is high. Third, stream-
ing hardware can hide the memory latency of texture fetches by
using prefetching [Torborg and Kajiya 1996; Anderson et al. 1997;
Igehy et al. 1998]. When the hardware fetches a texture for a frag-
ment, the fragment registers are placed in a FIFO and the fragment
processor starts processing another fragment. Only after the texture
is fetched does the processor return to that fragment. This method
of hiding latency is similar to multithreading [Alverson et al. 1990]
and works because of the abundant parallelism in streams. In sum-
mary, the streaming model allows graphics hardware to exploit par-
allelism, to utilize bandwidth efficiently, and to hide memory la-
tency. As a result, graphics hardware makes efficient use of VLSI
resources.

The challenge is then to map ray tracing onto a streaming model
of computation. This is done by breaking the ray tracer into kernels.
These kernels are chained together by streams of data, originating
from data stored in textures and the framebuffer.

3 Streaming Ray Tracing

In this section, we show how to reformulate ray tracing as a stream-
ing computation. A flow diagram for a streaming ray tracer is found
in figure 2.

Generate
Eye Rays

Traverse
Acceleration
Structure

Intersect
Triangles

Grid of
Triangle List
Offsets

Camera

Triangles
Triangle List

Shade Hit
and Generate
Shading RaysMaterials

Normals

Figure 2: A streaming ray tracer.

In this paper, we assume that all scene geometry is represented
as triangles stored in an acceleration data structure before rendering
begins. In a typical scenario, an application would specify the scene
geometry using a display list, and the graphics library would place
the display list geometry into the acceleration data structure. We
will not consider the cost of building this data structure. Since this
may be an expensive operation, this assumption implies that the
algorithm described in this paper may not be efficient for dynamic
scenes.

The second design decision was to use a uniform grid to accel-
erate ray tracing. There are many possible acceleration data struc-
tures to choose from: bounding volume hierarchies, bsp trees, k-
d trees, octrees, uniform grids, adaptive grids, hierarchical grids,
etc. We chose uniform grids for two reasons. First, many experi-
ments have been performed using different acceleration data struc-

tures on different scenes (for an excellent recent study see Havran
et al. [2000]). From these studies no single acceleration data struc-
ture appears to be most efficient; all appear to be within a factor
of two of each other. Second, uniform grids are particularly sim-
ple for hardware implementations. Accesses to grid data structures
require constant time; hierarchical data structures, in contrast, re-
quire variable time per access and involve pointer chasing. Code
for grid traversal is also very simple and can be highly optimized in
hardware. In our system, a grid is represented as a 3D texture map,
a memory organization currently supported by graphics hardware.
We will discuss further the pros and cons of the grid in section 5.

We have split the streaming ray tracer into four kernels: eye
ray generation, grid traversal, ray-triangle intersection, and shad-
ing. The eye ray generator kernel produces a stream of viewing
rays. Each viewing ray is a single ray corresponding to a pixel in
the image. The traversal kernel reads the stream of rays produced
by the eye ray generator. The traversal kernel steps rays through the
grid until the ray encounters a voxel containing triangles. The ray
and voxel address are output and passed to the intersection kernel.
The intersection kernel is responsible for testing ray intersections
with all the triangles contained in the voxel. The intersector has
two types of output. If ray-triangle intersection (hit) occurs in that
voxel, the ray and the triangle that is hit is output for shading. If
no hit occurs, the ray is passed back to the traversal kernel and the
search for voxels containing triangles continues. The shading ker-
nel computes a color. If a ray terminates at this hit, then the color
is written to the accumulated image. Additionally, the shading ker-
nel may generate shadow or secondary rays; in this case, these new
rays are passed back to the traversal stage.

We implement ray tracing kernels as fragment programs. We ex-
ecute these programs by rendering a screen-sized rectangle. Con-
stant inputs are placed within the kernel code. Stream inputs are
fetched from screen-aligned textures. The results of a kernel are
then written back into textures. The stencil buffer controls which
fragments in the screen-sized rectangle and screen-aligned textures
are active. The 8-bit stencil value associated with each ray contains
the ray’s state. A ray’s state can be traversing, intersecting, shad-
ing, or done. Specifying the correct stencil test with a rendering
pass, we can allow the kernel to be run on only those rays which
are in a particular state.

The following sections detail the implementation of each ray
tracing kernel and the memory layout for the scene. We then de-
scribe several variations including ray casting, Whitted ray tracing
[Whitted 1980], path tracing, and shadow casting.

3.1 Ray Tracing Kernels

3.1.1 Eye Ray Generator

The eye ray generator is the simplest kernel of the ray tracer. Given
camera parameters, including viewpoint and a view direction, it
computes an eye ray for each screen pixel. The fragment program is
invoked for each pixel on the screen, generating an eye ray for each.
The eye ray generator also tests the ray against the scene bounding
box. Rays that intersect the scene bounding box are processed fur-
ther, while those that miss are terminated.

3.1.2 Traverser

The traversal stage searches for voxels containing triangles. The
first part of the traversal stage sets up the traversal calculation. The
second part steps along the ray enumerating those voxels pierced by
the ray. Traversal is equivalent to 3D line drawing and has a per-ray
setup cost and a per-voxel rasterization cost.

We use a 3D-DDA algorithm [Fujimoto et al. 1986] for this
traversal. After each step, the kernel queries the grid data struc-
ture which is stored as a 3D texture. If the grid contains a null

pointer, then that voxel is empty. If the pointer is not null, the voxel
contains triangles. In this case, a ray-voxel pair is output and the
ray is marked so that it is tested for intersection with the triangles
in that voxel.

Implementing the traverser loop on the multipass architecture re-
quires multiple passes. The once per ray setup is done as two passes
and each step through a voxel requires an additional pass. At the
end of each pass, the fragment program must store all the stepping
parameters used within the loop to textures, which then must be
read for the next pass. We will discuss the multipass implementa-
tion further after we discuss the intersection stage.

Triangle

Textures
Vertex

Triangle List
Texture

Texture
Grid

vox0 vox1

0 3 1 3 4521 . . .

vox0 vox1 vox2 vox3 vox4 vox5

170 78627 694

voxm
. . .

y zx y zx

y zx y zx

y zx y zx y zx y zx y zx

v0

v1

v2 y zxy zx

y zx y zx

y zx

y zx
tri0 tri1 tri2 tri3 trin

. . .

. . .

. . .

Figure 4: The grid and triangle data structures stored in texture
memory. Each grid cell contains a pointer to a list of triangles. If
this pointer is null, then no triangles are stored in that voxel. Grids
are stored as 3D textures. Triangle lists are stored in another tex-
ture. Voxels containing triangles point to the beginning of a triangle
list in the triangle list texture. The triangle list consists of a set of
pointers to vertex data. The end of the triangle list is indicated by a
null pointer. Finally, vertex positions are stored in textures.

3.1.3 Intersector

The triangle intersection stage takes a stream of ray-voxel pairs and
outputs ray-triangle hits. It does this by performing ray-triangle in-
tersection tests with all the triangles within a voxel. If a hit occurs,
a ray-triangle pair is passed to the shading stage. The code for com-
puting a single ray-triangle intersection is shown in figure 5. The
code is similar to that used by Carr et al. [2002] for their DirectX
8 PS 1.4 ray-triangle intersector. We discuss their system further in
section 5.

Because triangles can overlap multiple grid cells, it is possible
for an intersection point to lie outside the current voxel. The in-
tersection kernel checks for this case and treats it as a miss. Note
that rejecting intersections in this way may cause a ray to be tested
against the same triangle multiple times (in different voxels). It is
possible to use a mailbox algorithm to prevent these extra intersec-
tion calculations [Amanatides and Woo 1987], but mailboxing is
difficult to implement when multiple rays are traced in parallel.

The layout of the grid and triangles in texture memory is shown
in figure 4. As mentioned above, each voxel contains an offset into
a triangle-list texture. The triangle-list texture contains a delimited
list of offsets into triangle-vertex textures. Note that the triangle-
list texture and the triangle-vertex textures are 1D textures. In fact,
these textures are being used as a random-access read-only memory.
We represent integer offsets as 1-component floating point textures
and vertex positions in three floating point RGB textures. Thus,
theoretically, four billion triangles could be addressed in texture
memory with 32-bit integer addressing. However, much less texture
memory is actually available on current graphics cards. Limitations
on the size of 1D textures can be overcome by using 2D textures

Generate

Find
Intersection

Shade Hit

Shadow Rays
Generate

Shade Hit

Find Nearest
Intersection

Eye Rays
Generate

Shade Hit

Find Nearest
Intersection

Eye Rays

L+2

Generate

Shade Hit

Find Nearest
Intersection

Eye Rays

1

Shadow Caster Ray Caster Whitted Ray Tracer Path Tracer
(a) (b) (c) (d)

Figure 3: Data flow diagrams for the ray tracing algorithms we implement. The algorithms depicted are (a) shadow casting, (b) ray casting,
(c) Whitted ray tracing, and (d) path tracing. For ray tracing, each ray-surface intersection generates L + 2 rays, where L is the number of
lights in a scene, corresponding to the number of shadow rays to be tested, and the other two are reflection and refraction rays. Path tracing
randomly chooses one ray bounce to follow and the feedback path is only one ray wide.

float4 IntersectTriangle(float3 ro, float3 rd, int list pos, float4 h){

float tri id = texture(list pos, trilist);

float3 v0 = texture(tri id, v0);

float3 v1 = texture(tri id, v1);

float3 v2 = texture(tri id, v2);

float3 edge1 = v1 - v0;

float3 edge2 = v2 - v0;

float3 pvec = Cross(rd, edge2);

float det = Dot(edge1, pvec);

float inv det = 1/det;

float3 tvec = ro - v0;

float u = Dot(tvec, pvec) * inv det;

float3 qvec = Cross(tvec, edge1);

float v = Dot(rd, qvec) * inv det;

float t = Dot(edge2, qvec) * inv det;

bool validhit = select(u >= 0.0f, true, false);

validhit = select(v >= 0, validhit, false);

validhit = select(u+v <= 1, validhit, false);

validhit = select(t < h[0], validhit, false);

validhit = select(t >= 0, validhit, false);

t = select(validhit, t, h[0]);

u = select(validhit, u, h[1]);

v = select(validhit, v, h[2]);

float id = select(validhit, tri id, h[3]);

return float4({t, u, v, id});

}

Figure 5: Code for ray-triangle intersection.

with the proper address translation, as well as segmenting the data
across multiple textures.

As with the traversal stage, the inner loop over all the triangles
in a voxel involves multiple passes. Each ray requires a single pass
per ray-triangle intersection.

3.1.4 Shader

The shading kernel evaluates the color contribution of a given ray
at the hit point. The shading calculations are exactly like those in
the standard graphics pipeline. Shading data is stored in memory
much like triangle data. A set of three RGB textures, with 32-bits
per channel, contains the vertex normals and vertex colors for each
triangle. The hit information that is passed to the shader includes
the triangle number. We access the shading information by a simple

dependent texture lookup for the particular triangle specified.
By choosing different shading rays, we can implement several

flavors of ray tracing using our streaming algorithm. We will look
at ray casting, Whitted-style ray tracing, path tracing, and shadow
casting. Figure 3 shows a simplified flow diagram for each of the
methods discussed, along with an example image produced by our
system.

The shading kernel optionally generates shadow, reflection, re-
fraction, or randomly generated rays. These secondary rays are
placed in texture locations for future rendering passes. Each ray
is also assigned a weight, so that when it is finally terminated, its
contribution to the final image may be simply added into the im-
age [Kajiya 1986]. This technique of assigning a weight to a ray
eliminates recursion and simplifies the control flow.

Ray Caster. A ray caster generates images that are identical to
those generated by the standard graphics pipeline. For each pixel on
the screen, an eye ray is generated. This ray is fired into the scene
and returns the color of the nearest triangle it hits. No secondary
rays are generated, including no shadow rays. Most previous efforts
to implement interactive ray tracing have focused on this type of
computation, and it will serve as our basic implementation.

Whitted Ray Tracer. The classic Whitted-style ray tracer
[Whitted 1980] generates eye rays and sends them out into the
scene. Upon finding a hit, the reflection model for that surface is
evaluated, and then a pair of reflection and refraction rays, and a set
of shadow rays – one per light source – are generated and sent out
into the scene.

Path Tracer. In path tracing, rays are randomly scattered from
surfaces until they hit a light source. Our path tracer emulates the
Arnold renderer [Fajardo 2001]. One path is generated per sample
and each path contains 2 bounces.

Shadow Caster. We simulate a hybrid system that uses the stan-
dard graphics pipeline to perform hidden surface calculation in the
first pass, and then uses ray tracing algorithm to evaluate shadows.
Shadow casting is useful as a replacement for shadow maps and
shadow volumes. Shadow volumes can be extremely expensive to
compute, while for shadow maps, it tends to be difficult to set the
proper resolution. A shadow caster can be viewed as a deferred
shading pass [Molnar et al. 1992]. The shadow caster pass gener-
ates shadow rays for each light source and adds that light’s contri-
bution to the final image only if no blockers are found.

Multipass Branching
Kernel Instr. Memory Words Stencil Instr. Memory Words

Count R W M RS WS Count R W M
Generate Eye Ray 28 0 5 0 0 1 26 0 4 0
Traverse

Setup 38 11 12 0 1 0 22 7 0 0
Step 20 14 9 1 1 1 12 0 0 1

Intersect 41 14 5 10 1 1 36 0 0 10
Shade

Color 36 10 3 21 1 0 25 0 3 21
Shadow 16 11 8 0 1 1 10 0 0 0
Reflected 26 11 9 9 1 1 12 0 0 0
Path 17 14 9 9 1 1 11 3 0 0

Table 1: Ray tracing kernel summary. We show the number of instructions required to implement each of our kernels, along with the number
of 32-bit words of memory that must be read and written between rendering passes (R, W) and the number of memory words read from
random-access textures (M). Two sets of statistics are shown, one for the multipass architecture and another for the branching architecture.
For the multipass architecture, we also show the number of 8-bit stencil reads (RS) and writes (WS) for each kernel. Stencil read overhead is
charged for all rays, whether the kernel is executed or not.

3.2 Implementation

To evaluate the computation and bandwidth requirements of our
streaming ray tracer, we implemented each kernel as an assembly
language fragment program. The NVIDIA vertex program instruc-
tion set is used for fragment programs, with the addition of a few
instructions as described previously. The assembly language im-
plementation provides estimates for the number of instructions re-
quired for each kernel invocation. We also calculate the bandwidth
required by each kernel; we break down the bandwidth as stream
input bandwidth, stream output bandwidth, and memory (random-
access read) bandwidth.

Table 1 summarizes the computation and bandwidth required for
each kernel in the ray tracer, for both the multipass and the branch-
ing architectures. For the traversal and intersection kernels that in-
volve looping, the counts for the setup and the loop body are shown
separately. The branching architecture allows us to combine indi-
vidual kernels together; as a result the branching kernels are slightly
smaller since some initialization and termination instructions are
removed. The branching architecture permits all kernels to be run
together within a single rendering pass.

Using table 1, we can compute the total compute and bandwidth
costs for the scene.

C = R∗ (Cr + vCv + tCt + sCs)+R∗P∗Cstencil

Here R is the total number of rays traced. Cr is the cost to generate
a ray; Cv is the cost to walk a ray through a voxel; Ct is the cost of
performing a ray-triangle intersection; and Cs is the cost of shading.
P is the total number of rendering passes, and Cstencil is the cost of
reading the stencil buffer. The total cost associated with each stage
is determined by the number of times that kernel is invoked. This
number depends on scene statistics: v is the average number of vox-
els pierced by a ray; t is the average number of triangles intersected
by a ray; and s is the average number of shading calculations per
ray. The branching architecture has no stencil buffer checks, so
Cstencil is zero. The multipass architecture must pay the stencil read
cost for all rays over all rendering passes. The cost of our ray tracer
on various scenes will be presented in the results section.

Finally, we present an optimization to minimize the total num-
ber of passes motivated in part by Delany’s implementation of a
ray tracer for the Connection Machine [Delany 1988]. The traver-
sal and intersection kernels both involve loops. There are various
strategies for nesting these loops. The simplest algorithm would be
to step through voxels until any ray encounters a voxel containing
triangles, and then intersect that ray with those triangles. How-
ever, this strategy would be very inefficient, since during intersec-
tion only a few rays will have encountered voxels with triangles.

On a SIMD machine like the Connection Machine, this results in
very low processor utilization. For graphics hardware, this yields
an excessive number of passes resulting in large number of stencil
read operations dominating the performance. The following is a
more efficient algorithm:

generate eye ray
while (any(active(ray))) {

if (oracle(ray))
traverse(ray)

else
intersect(ray)

}
shade(ray)

After eye ray generation, the ray tracer enters a while loop which
tests whether any rays are active. Active rays require either further
traversals or intersections; inactive rays have either hit triangles or
traversed the entire grid. Before each pass, an oracle is called. The
oracle chooses whether to run a traverse or an intersect pass. Vari-
ous oracles are possible. The simple algorithm above runs an inter-
sect pass if any rays require intersection tests. A better oracle, first
proposed by Delany, is to choose the pass which will perform the
most work. This can be done by calculating the percentage of rays
requiring intersection vs. traversal. In our experiments, we found
that performing intersections once 20% of the rays require intersec-
tion tests produced the minimal number of passes, and is within a
factor of two to three of optimal for a SIMD algorithm performing
a single computation per rendering pass.

To implement this oracle, we assume graphics hardware main-
tains a small set of counters over the stencil buffer, which contains
the state of each ray. A total of eight counters (one per stencil bit)
would be more than sufficient for our needs since we only have
four states. Alternatively, we could use the OpenGL histogram op-
eration for the oracle if this operation were to be implemented with
high performance for the stencil buffer.

4 Results

4.1 Methodology

We have implemented functional simulators of our streaming ray
tracer for both the multipass and branching architectures. These
simulators are high level simulations of the architectures, written in
the C++ programming language. These simulators compute images
and gather scene statistics. Example statistics include the average
number of traversal steps taken per ray, or the average number of

Soda Hall Outside Soda Hall Inside Forest Top Down Forest Inside Bunny Ray Cast
v t s v t s v t s v t s v t s

14.41 2.52 0.44 26.11 40.46 1.00 81.29 34.07 0.96 130.7 47.90 0.97 93.93 13.88 0.82

Figure 6: Fundamental scene statistics for our test scenes. The statistics shown match the cost model formula presented in section 3.2. Recall
that v is the average number of voxels pierced by a ray; t is the average number of triangles intersected by a ray; and s is the average number
of shading calculations per ray. Soda hall has 1.5M triangles, the forest has 1.0M triangles, and the Stanford bunny has 70K triangles. All
scenes are rendered at 1024x1024 pixels.

ray-triangle intersection tests performed per ray. The multipass ar-
chitecture simulator also tracks the number and type of rendering
passes performed, as well as stencil buffer activity. These statistics
allow us to compute the cost for rendering a scene by using the cost
model described in section 3.

Both the multipass and the branching architecture simulators
generate a trace file of the memory reference stream for process-
ing by our texture cache simulator. In our cache simulations we
used a 64KB direct-mapped texture cache with a 48-byte line size.
This line size holds four floating point RGB texels, or three floating
point RGBA texels with no wasted space. The execution order of
fragment programs effects the caching behavior. We execute ker-
nels as though there were a single pixel wide graphics pipeline. It
is likely that a GPU implementation will include multiple parallel
fragment pipelines executing concurrently, and thus their accesses
will be interleaved. Our architectures are not specified at that level
of detail, and we are therefore not able to take such effects into
account in our cache simulator.

We analyze the performance of our ray tracer on five viewpoints
from three different scenes, shown in figure 6.

• Soda Hall is a relatively complex model that has been used
to evaluate other real-time ray tracing systems [Wald et al.
2001b]. It has walls made of large polygons and furnishings
made from very small polygons. This scene has high depth
complexity.

• The forest scene includes trees with millions of tiny triangles.
This scene has moderate depth complexity, and it is difficult
to perform occlusion culling. We analyze the cache behavior
of shadow and reflection rays using this scene.

• The bunny was chosen to demonstrate the extension of our ray
tracer to support shadows, reflections, and path tracing.

Figure 7 shows the computation and bandwidth requirements of
our test scenes. The computation and bandwidth utilized is broken
down by kernel. These graphs clearly show that the computation
and bandwidth for both architectures is dominated by grid traversal
and triangle intersection.

Choosing an optimal grid resolution for scenes is difficult. A
finer grid yields fewer ray-triangle intersection tests, but leads to
more traversal steps. A coarser grid reduces the number of traver-
sal steps, but increases the number of ray-triangle intersection tests.
We attempt to keep voxels near cubical shape, and specify grid res-
olution by the minimal grid dimension acceptable along any dimen-
sion of the scene bounding box. For the bunny, our minimal grid
dimension is 64, yielding a final resolution of 98 × 64 × 163. For
the larger Soda Hall and forest models, this minimal dimension is
128, yielding grid resolutions of 250 × 198 × 128 and 581 × 128 ×

581 respectively. These resolutions allow our algorithms to spend
equal amounts of time in the traversal and intersection kernels.

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

2

4

6

G
In

st
ru

ct
io

ns

Intersector
Traverser
Others

0

5

10

15

20

G
B

ytes

Multipass

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

2

4

G
In

st
ru

ct
io

ns

Intersector
Traverser
Others

0

5

10

15

G
B

ytes

Branching

Figure 7: Compute and bandwidth usage for our scenes. Each col-
umn shows the contribution from each kernel. Left bar on each plot
is compute, right is bandwidth. The horizontal line represents the
per-second bandwidth and compute performance of our hypotheti-
cal architecture. All scenes were rendered at 1024 × 1024 pixels.

4.2 Architectural Comparisons

We now compare the multipass and branching architectures. First,
we investigate the implementation of the ray caster on the multipass
architecture. Table 2 shows the total number of rendering passes
and the distribution of passes amongst the various kernels. The
total number of passes varies between 1000-3000. Although the
number of passes seems high, this is the total number needed to
render the scene. In the conventional graphics pipeline, many fewer
passes per object are used, but many more objects are drawn. In our
system, each pass only draws a single rectangle, so the speed of the
geometry processing part of the pipeline is not a factor.

We also evaluate the efficiency of the multipass algorithm. Re-
call that rays may be traversing, intersecting, shading, or done. The
efficiency of a pass depends on the percentage of rays processed in
that pass. In these scenes, the efficiency is between 6-10% for all
of the test scenes except for the outside view of Soda Hall. This

Pass Breakdown Per Ray Maximum SIMD
Total Traversal Intersection Other Traversals Intersections Efficiency

Soda Hall Outside 2443 692 1747 4 384 1123 0.009
Soda Hall Inside 1198 70 1124 4 60 1039 0.061
Forest Top Down 1999 311 1684 4 137 1435 0.062
Forest Inside 2835 1363 1468 4 898 990 0.068
Bunny Ray Cast 1085 610 471 4 221 328 0.105

Table 2: Breakdown of passes in the multipass system. Intersection and traversal make up the bulk of passes in the systems, with the rest of
the passes coming from ray generation, traversal setup, and shading. We also show the maximum number of traversal steps and intersection
tests for per ray. Finally, SIMD efficiency measures the average fraction of rays doing useful work for any given pass.

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

5

10

15

20

G
B

yt
es

Stencil
State Variables
Data Structures

Figure 8: Bandwidth consumption by data type. Left bars are for
multipass, right bars for branching. Overhead for reading the 8-bit
stencil value is shown on top. State variables are data written to and
read from texture between passes. Data structure bandwidth comes
from read-only data: triangles, triangle lists, grid cells, and shading
data. All scenes were rendered at 1024 × 1024 pixels.

viewpoint contains several rays that miss the scene bounding box
entirely. As expected, the resulting efficiency is much lower since
these rays never do any useful work during the rest of the compu-
tation. Although 10% efficiency may seem low, the fragment pro-
cessor utilization is much higher because we are using early frag-
ment kill to avoid consuming compute resources and non-stencil
bandwidth for the fragment. Finally, table 2 shows the maximum
number of traversal steps and intersection tests that are performed
per ray. Since the total number of passes depends on the worst case
ray, these numbers provide lower bounds on the number of passes
needed. Our multipass algorithm interleaves traversal and intersec-
tion passes and comes within a factor of two to three of the optimal
number of rendering passes. The naive algorithm, which performs
an intersection as soon as any ray hits a full voxel, requires at least
a factor of five times more passes than optimal on these scenes.

We are now ready to compare the computation and bandwidth
requirements of our test scenes on the two architectures. Figure 8
shows the same bandwidth measurements shown in figure 7 broken
down by data type instead of by kernel. The graph shows that, as ex-
pected, all of the bandwidth required by the branching architecture
is for reading voxel and triangle data structures from memory. The
multipass architecture, conversely, uses most of its bandwidth for
writing and reading intermediate values to and from texture mem-
ory between passes. Similarly, saving and restoring these interme-
diates requires extra instructions. In addition, significant bandwidth
is devoted to reading the stencil buffer. This extra computation and
bandwidth consumption is the fundamental limitation of the multi-
pass algorithm.

One way to reduce both the number of rendering passes and the
bandwidth consumed by intermediate values in the multipass archi-
tecture is to unroll the inner loops. We have presented data for a

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

Shadow Reflect
Forest

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 B
an

dw
id

th

Stencil
State Variables
Voxel Data
Triangle Data
Shading Data

Figure 9: Ratio of bandwidth with a texture cache to bandwidth
without a texture cache. Left bars are for multipass, right bars for
branching. Within each bar, the bandwidth consumed with a texture
cache is broken down by data type. All scenes were rendered at
1024 × 1024 pixels.

single traversal step or a single intersection test performed per ray
in a rendering pass. If we instead unroll our kernels to perform four
traversal steps or two intersection tests, all of our test scenes reduce
their total bandwidth usage by 50%. If we assume we can suppress
triangle and voxel memory references if a ray finishes in the mid-
dle of the pass, the total bandwidth reduction reaches 60%. At the
same time, the total instruction count required to render each scene
increases by less than 10%. With more aggressive loop unrolling
the bandwidth savings continue, but the total instruction count in-
crease varies by a factor of two or more between our scenes. These
results indicate that loop unrolling can make up for some of the
overhead inherent in the multipass architecture, but unrolling does
not achieve the compute to bandwidth ratio obtained by the branch-
ing architecture.

Finally, we compare the caching behavior of the two implemen-
tations. Figure 9 shows the bandwidth requirements when a texture
cache is used. The bandwidth consumption is normalized by di-
viding by the non-caching bandwidth reported earlier. Inspecting
this graph we see that the multipass system does not benefit very
much from texture caching. Most of the bandwidth is being used
for streaming data, in particular, for either the stencil buffer or for
intermediate results. Since this data is unique to each kernel in-
vocation, there is no reuse. In contrast, the branching architecture
utilizes the texture cache effectively. Since most of its bandwidth is
devoted to reading shared data structures, there is reuse. Studying
the caching behavior of triangle data only, we see that a 96-99%
hit rate is achieved by both the multipass and the branching system.
This high hit rate suggests that triangle data caches well, and that
we have a fairly small working set size.

In summary, the implementation of the ray caster on the multi-
pass architecture has achieved a very good balance between com-
putation and bandwidth. The ratio of instruction count to band-
width matches the capabilities of a modern GPU. For example, the

Relative
Extension Instructions Bandwidth
Shadow Caster 0.85 1.15
Whitted Ray Tracer 2.62 3.00
Path Tracer 3.24 4.06

Table 3: Number of instructions and amount of bandwidth con-
sumed by the extended algorithms to render the bunny scene using
the branching architecture, normalized by the ray casting cost.

NVIDIA GeForce3 is able to execute approximately 2G instruc-
tions/s in its fragment processor, and has roughly 8GB/s of memory
bandwidth. Expanding the traversal and intersection kernels to per-
form multiple traversal steps or intersection tests per pass reduces
the bandwidth required for the scene at the cost of increasing the
computational requirements. The amount of loop unrolling can be
changed to match the computation and bandwidth capabilities of
the underlying hardware. In comparison, the branching architec-
ture consumes fewer instructions and significantly less bandwidth.
As a result, the branching architecture is severely compute-limited
based on today’s GPU bandwidth and compute rates. However, the
branching architecture will become more attractive in the future as
the compute to bandwidth ratio on graphics chips increases with the
introduction of more parallel fragment pipelines.

4.3 Extended Algorithms

With an efficient ray caster in place, implementing extensions such
as shadow casting, full Whitted ray tracing, or path tracing is quite
simple. Each method utilizes the same ray-triangle intersection
loop we have analyzed with the ray caster, but implements a differ-
ent shading kernel which generates new rays to be fed back through
our system. Figure 3 shows images of the bunny produced by our
system for each of the ray casting extensions we simulate. The total
cost of rendering a scene depends on both the number of rays traced
and the cache performance.

Table 3 shows the number of instructions and bandwidth required
to produce each image of the bunny relative to the ray casting cost,
all using the branching architecture. The path traced bunny was
rendered at 256 × 256 pixels with 64 samples and 2 bounces per
pixel while the others were rendered at 1024 × 1024 pixels. The
ray cast bunny finds a valid hit for 82% of its pixels and hence 82%
of the primary rays generate secondary rays. If all rays were equal,
one would expect the shadow caster to consume 82% of the instruc-
tions and bandwidth of the ray caster; likewise the path tracer would
consume 3.2 times that of the ray caster. Note that the instruction
usage is very close to the expected value, but that the bandwidth
consumed is more.

Additionally, secondary rays do not cache as well as eye rays,
due to their generally incoherent nature. The last two columns of
figure 9 illustrate the cache effectiveness on secondary rays, mea-
sured separately from primary rays. For these tests, we render the
inside forest scene in two different styles. “Shadow” is rendered
with three light sources with each hit producing three shadow rays.
“Reflect” applies a two bounce reflection and single light source
shading model to each primitive in the scene. For the multipass
rendering system, the texture cache is unable to reduce the total
bandwidth consumed by the system. Once again the streaming
data destroys any locality present in the triangle and voxel data.
The branching architecture results demonstrate that scenes with
secondary rays can benefit from caching. The system achieves a
35% bandwidth reduction for the shadow computation. However
caching for the reflective forest does not reduce the required band-
width. We are currently investigating ways to improve the perfor-
mance of our system for secondary rays.

5 Discussion

In this section, we discuss limitations of the current system and
future work.

5.1 Acceleration Data Structures

A major limitation of our system is that we rely on a preprocess-
ing step to build the grid. Many applications contain dynamic ge-
ometry, and to support these applications we need fast incremental
updates to the grid. Building acceleration data structures for dy-
namic scenes is an active area of research [Reinhard et al. 2000]. An
interesting possibility would be to use graphics hardware to build
the acceleration data structure. The graphics hardware could “scan
convert” the geometry into a grid. However, the architectures we
have studied in this paper cannot do this efficiently; to do opera-
tions like rasterization within the fragment processor they would
need the ability to write to arbitrary memory locations. This is a
classic scatter operation and would move the hardware even closer
to a general stream processor.

In this research we assumed a uniform grid. Uniform grids, how-
ever, may fail for scenes containing geometry and empty space at
many levels of detail. Since we view texture memory as random-
access memory, hierarchical grids could be added to our system.

Currently graphics boards contain relatively small amounts of
memory (in 2001 a typical board contains 64MB). Some of the
scenes we have looked at require 200MB - 300MB of texture mem-
ory to store the scene. An interesting direction for future work
would be to study hierarchical caching of the geometry as is com-
monly done for textures. The trend towards unified system and
graphics memory may ultimately eliminate this problem.

5.2 CPU vs. GPU

Wald et al. have developed an optimized ray tracer for a PC with
SIMD floating point extensions [Wald et al. 2001b]. On an 800
MHz Pentium III, they report a ray-triangle intersection rate of 20M
intersections/s. Carr et al. [2002] achieve 114M ray-triangle inter-
sections/s on an ATI Radeon 8500 using limited fixed point preci-
sion. Assuming our proposed hardware ran at the same speed as a
GeForce3 (2G instructions/s), we could compute 56M ray-triangle
intersections/s. Our branching architecture is compute limited; if
we increase the instruction issue rate by a factor of four (8G in-
structions/s) then we would still not use all the bandwidth available
on a GeForce3 (8GB/s). This would allow us to compute 222M ray-
triangle intersections per second. We believe because of the inher-
ently parallel nature of fragment programs, the number of GPU in-
structions that can be executed per second will increase much faster
than the number of CPU SIMD instructions.

Once the basic feasibility of ray tracing on a GPU has been
demonstrated, it is interesting to consider modifications to the GPU
that support ray tracing more efficiently. Many possibilities imme-
diately suggest themselves. Since rays are streamed through the
system, it would be more efficient to store them in a stream buffer
than a texture map. This would eliminate the need for a stencil
buffer to control conditional execution. Stream buffers are quite
similar to F-buffers which have other uses in multipass rendering
[Mark and Proudfoot 2001]. Our current implementation of the grid
traversal code does not map well to the vertex program instruction
set, and is thus quite inefficient. Since grid traversal is so similar to
rasterization, it might be possible to modify the rasterizer to walk
through the grid. Finally, the vertex program instruction set could
be optimized so that ray-triangle intersection could be performed in
fewer instructions.

Carr et al. [2002] have independently developed a method of
using the GPU to accelerate ray tracing. In their system the GPU

is only used to accelerate ray-triangle intersection tests. As in our
system, GPU memory is used to hold the state for many active rays.
In their system each triangle in turn is fed into the GPU and tested
for intersection with all the active rays. Our system differs from
theirs in that we store all the scene triangles in a 3D grid on the
GPU; theirs stores the acceleration structure on the CPU. We also
run the entire ray tracer on the GPU. Our system is much more effi-
cient than theirs since we eliminate the GPU-CPU communication
bottleneck.

5.3 Tiled Rendering

In the multipass architecture, the majority of the memory band-
width was consumed by saving and restoring temporary variables.
Since these streaming temporaries are only used once, there is no
bandwidth savings due to the cache. Unfortunately, when these
streaming variables are accessed as texture, they displace cacheable
data structures. The size of the cache we used is not large enough
to store the working set if it includes both temporary variables and
data structures. The best way to deal with this problem is to sepa-
rate streaming variables from cacheable variables.

Another solution to this problem is to break the image into small
tiles. Each tile is rendered to completion before proceeding to the
next tile. Tiling reduces the working set size, and if the tile size is
chosen so that the working set fits into the cache, then the streaming
variables will not displace the cacheable data structures. We have
performed some preliminary experiments along these lines and the
results are encouraging.

6 Conclusions

We have shown how viewing a programmable graphics processor
as a general parallel computation device can help us leverage the
graphics processor performance curve and apply it to more general
parallel computations, specifically ray tracing. We have shown that
ray casting can be done efficiently in graphics hardware. We hope
to encourage graphics hardware to evolve toward a more general
programmable stream architecture.

While many believe a fundamentally different architecture
would be required for real-time ray tracing in hardware, this work
demonstrates that a gradual convergence between ray tracing and
the feed-forward hardware pipeline is possible.

7 Acknowledgments

We would like to thank everyone in the Stanford Graphics Lab for
contributing ideas to this work. We thank Matt Papakipos from
NVIDIA for his thoughts on next generation graphics hardware,
and Kurt Akeley and our reviewers for their comments. Katie
Tillman stayed late and helped with editing. We would like to
thank Hanspeter Pfister and MERL for additional support. This
work was sponsored by DARPA (contracts DABT63-95-C-0085
and MDA904-98-C-A933), ATI, NVIDIA, Sony, and Sun.

References

3DLABS, 2001. OpenGL 2.0 whitepapers web site.
http://www.3dlabs.com/support/developer/ogl2/index.htm.

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B., PORTERFIELD,
A., AND SMITH, B. 1990. The Tera computer system. In Proceedings of the 1990
International Conference on Supercomputing, 1–6.

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal algorithm for ray
tracing. In Eurographics ’87, 3–10.

ANDERSON, B., STEWART, A., MACAULAY, R., AND WHITTED, T. 1997.
Accommodating memory latency in a low-cost rasterizer. In 1997 SIGGRAPH /
Eurographics Workshop on Graphics hardware, 97–102.

ATI, 2001. RADEON 8500 product web site.
http://www.ati.com/products/pc/radeon8500128/index.html.

CARR, N. A., HALL, J. D., AND HART, J. C. 2002. The ray engine. Tech. Rep.
UIUCDCS-R-2002-2269, Department of Computer Science, University of Illinois.

DELANY, H. C. 1988. Ray tracing on a connection machine. In Proceedings of the
1988 International Conference on Supercomputing, 659–667.

FAJARDO, M. 2001. Monte carlo ray tracing in action. In State of the Art in Monte
Carlo Ray Tracing for Realistic Image Synthesis - SIGGRAPH 2001 Course 29.
151–162.

FUJIMOTO, A., TANAKA, T., AND IWATA, K. 1986. ARTS: Accelerated ray tracing
system. IEEE Computer Graphics and Applications 6, 4, 16–26.

HALL, D., 2001. The AR350: Today’s ray trace rendering processor. 2001
SIGGRAPH / Eurographics Workshop On Graphics Hardware - Hot 3D Session 1.
http://graphicshardware.org/previous/www 2001/presentations/
Hot3D Daniel Hall.pdf.

HAVRAN, V., PRIKRYL, J., AND PURGATHOFER, W. 2000. Statistical comparison
of ray-shooting efficiency schemes. Tech. Rep. TR-186-2-00-14, Institute of
Computer Graphics, Vienna University of Technology.

IGEHY, H., ELDRIDGE, M., AND PROUDFOOT, K. 1998. Prefetching in a texture
cache architecture. In 1998 SIGGRAPH / Eurographics Workshop on Graphics
hardware, 133–ff.

KAJIYA, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of
ACM SIGGRAPH 86), 143–150.

KHAILANY, B., DALLY, W. J., RIXNER, S., KAPASI, U. J., MATTSON, P.,
NAMKOONG, J., OWENS, J. D., AND TOWLES, B. 2000. IMAGINE: Signal and
image processing using streams. In Hot Chips 12. IEEE Computer Society Press.

KIRK, D., 2001. GeForce3 architecture overview.
http://developer.nvidia.com/docs/IO/1271/ATT/GF3ArchitectureOverview.ppt.

LINDHOLM, E., KILGARD, M. J., AND MORETON, H. 2001. A user-programmable
vertex engine. In Proceedings of ACM SIGGRAPH 2001, 149–158.

MARK, W. R., AND PROUDFOOT, K. 2001. The F-buffer: A rasterization-order
FIFO buffer for multi-pass rendering. In 2001 SIGGRAPH / Eurographics
Workshop on Graphics Hardware.

MARSHALL, B., 2001. DirectX graphics future. Meltdown 2001 Conference.
http://www.microsoft.com/mscorp/corpevents/meltdown2001/ppt/DXG9.ppt.

MICROSOFT, 2001. DirectX product web site. http://www.microsoft.com/directx/.

MOLNAR, S., EYLES, J., AND POULTON, J. 1992. PixelFlow: High-speed rendering
using image composition. In Computer Graphics (Proceedings of ACM
SIGGRAPH 92), 231–240.

NVIDIA, 2001. GeForce3 Ti Family: Product overview. 10.01v1.
http://www.nvidia.com/docs/lo/1050/SUPP/gf3ti overview.pdf.

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-P. 1998.
Interactive ray tracing for isosurface rendering. In IEEE Visualization ’98,
233–238.

PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS, B., AND

HANSEN, C. 1999. Interactive ray tracing. In 1999 ACM Symposium on
Interactive 3D Graphics, 119–126.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. 2000. Interactive
multi-pass programmable shading. In Proceedings of ACM SIGGRAPH 2000,
425–432.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic acceleration
structures for interactive ray tracing. In Rendering Techniques 2000: 11th
Eurographics Workshop on Rendering, 299–306.

SPITZER, J., 2001. Texture compositing with register combiners.
http://developer.nvidia.com/docs/IO/1382/ATT/RegisterCombiners.pdf.

TORBORG, J., AND KAJIYA, J. T. 1996. Talisman: Commodity realtime 3D graphics
for the PC. In Proceedings of ACM SIGGRAPH 96, 353–363.

WALD, I., SLUSALLEK, P., AND BENTHIN, C. 2001. Interactive distributed ray
tracing of highly complex models. In Rendering Techniques 2001: 12th
Eurographics Workshop on Rendering, 277–288.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive
rendering with coherent ray tracing. Computer Graphics Forum 20, 3, 153–164.

WHITTED, T. 1980. An improved illumination model for shaded display.
Communications of the ACM 23, 6, 343–349.

Graphics Hardware (2002), pp. 1–10
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

The Ray Engine

Nathan A. Carr Jesse D. Hall John C. Hart

University of Illinois

Abstract
Assisted by recent advances in programmable graphics hardware, fast rasterization-based techniques have made
significant progress in photorealistic rendering, but still only render a subset of the effects possible with ray
tracing. We are closing this gap with the implementation of ray-triangle intersection as a pixel shader on existing
hardware. This GPU ray-intersection implementation reconfigures the geometry engine into a ray engine that
efficiently intersects caches of rays for a wide variety of host-based rendering tasks, including ray tracing, path
tracing, form factor computation, photon mapping, subsurface scattering and general visibility processing.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
Keywords:Hardware acceleration, ray caching, ray classification, ray coherence, ray tracing, pixel shaders.

1. Introduction

Hardware-accelerated rasterization has made great
strides in simulating global illumination effects, such
as shadows35, 25, 7, reflection3, multiple-bounce reflection5,
refraction9, caustics29 and even radiosity13. Nonetheless
some global illumination effects have eluded rasterization
solutions, and may continue to do so indefinitely. The
environment map provides polygon rasterization with
limited global illumination capabilities by approximating
the irradiance of all points on an object surface with the
irradiance at a single point3. This single-point irradiance
approximation can result in some visually obvious errors,
such as the boat in wavy water shown in Figure 1.

Ray tracing of course simulates all of these effects and
more. It can provide true reflection and refraction, complete
with local and multiple bounces. Complex camera mod-
els with compound lenses are easier to simulate using ray
tracing15. Numerous global illumination methods are based
on ray tracing including path tracing12, Monte-Carlo ray
tracing33 and photon mapping10.

Ray tracing is classically one of the most time consum-
ing operations on the CPU, and the graphics community has
been eager to accelerate it using whatever methods possible.
Hardware-based accelerations have included CPU-specific
tuning, distribution across parallel processors and even con-

Figure 1: What is wrong with this environment-mapped pic-
ture? (1) The boat does not meet its reflection, (2) the boat
is reflected in the water behind it, and (3) some aliasing can
be seen in the reflection.

struction of special purpose hardware, as reviewed in Sec-
tion 2.

Graphics cards have recently included support for pro-
grammable shading in an effort to increase the realism of
their rasterization-based renderers16. This added flexibility is
transforming the already fast graphics processing unit (GPU)
into a supercomputing coprocessor, and its power is being

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

applied to a wider variety of applications than its developers
originally intended.

One such application is ray tracing. Section 3 shows how
to configure the graphics processing unit (GPU) to compute
ray-triangle intersections, and Section 4 details an imple-
mentation. This GPU ray-triangle intersection reconfigures
the graphics accelerator into aray engine,described in Sec-
tion 5, that hides the details of its back-end GPU ray-triangle
intersection, allowing the ray engine to be more easily inte-
grated into existing rendering software systems.

The ray engine can make existing rasterization-based ren-
derers look better. A rasterization renderer augmented with
the ray engine could trace the rays necessary to achieve ef-
fects currently impossible with rasterization-only rendering,
including local reflections (Figure 1), true refractions and
sub-surface scattering11.

The ray engine is also designed to be efficiently integrated
into existing ray-tracing applications. The ray engine per-
forms best when intersecting caches of coherent rays21 from
host-based rendering tasks. This is a form of load balanc-
ing that allows the GPU to do what it does best (perform
the same computation on arrays of data), and lets the CPU
do what the GPU does worst (reorganize the data into effi-
cient structures whose processing requires flow control). A
simple ray tracing system we built using the ray engine is al-
ready running at speeds comparable to the fastest known ray
tracer, which was carefully tuned to a specific CPU32. The
ray engine could likewise accelerate Monte Carlo ray trac-
ing, photon mapping, form factor computation and visibility
preprocessing.

2. Previous Work

Although classic ray tracing systems support a wide variety
of geometric primitives, some recent ray tracers designed to
achieve interactive rates (including ours) have limited them-
selves to triangles. This has not been a severe limitation
as geometric models can be tessellated, and the simplicity
of the ray-triangle intersection has led to highly efficient
implementations2, 18.

Hardware z-buffered rasterization can quickly determine
the visibility of triangles. One early hardware optimization
for ray tracing was the first-hit speedup, which replaced eye-
ray intersections with a z-buffered rasterization of the scene
using object ID as the color34. Eye rays are a special case
of a coherent bundle of rays. Such rays can likewise be effi-
ciently intersected through z-buffered rasterization for hard-
ware accelerated global illumination28, of which ray tracing
is a subset.

One obvious hardware acceleration of ray tracing is to op-
timize its implementation for a specific CPU. The current
fastest CPU implementation we are aware of is a coherent
ray tracer tuned for the Intel Pentium III processor32. This

ray tracer capitalized on a variety of spatial, ray and mem-
ory coherencies to best utilize CPU optimizations such as
caching, branch prediction, instruction reordering, specula-
tive execution and SSE instructions. Their implementation
ran at an average of 30 million intersections per second on
an 800 Mhz Pentium III. They were able to trace between
200K and 1.5M rays per second, which was over ten times
faster than POV-Ray and Rayshade.

There have been a large number of implementations of
ray tracers on MIMD computers26. These implementations
focus on issues of load balancing and memory utilization.
One recent implementation on 60 processors of an SGI Ori-
gin 2000 was able to render at 5122 resolution scenes of from
20 to 2K patches at rates ranging from two to 20 Hz19.

Special purpose hardware has also been designed for ray
tracing. The AR350 is a production graphics accelerator de-
signed for the off-line (non-real-time) rendering of scenes
with sophisticated Renderman shaders8. A ray tracing sys-
tem designed around multiprocessors with smart memory is
also in progress23.

Our ray engine is similar in spirit to another GPU-based
ray tracing implementation that simulates a state machine24.
This state-based approach breaks ray tracing down into sev-
eral states, including grid traversal, ray-triangle intersection
and shading. This approach performs the entire ray tracing
algorithm on the GPU, avoiding the slow readback process
required for GPU-CPU communication that our approach
must deal with. The state-based method however is not par-
ticularly efficient on present and near-future GPU’s due to
the lack of control flow in the fragment program, resulting
in a large portion of pixels (from 90% to 99%) remaining
idle if they are in a different state than the one currently be-
ing executed. Our approach has been designed to organize
ray tracing to achieve full utilization of the GPU.

3. Ray Tracing with the GPU

3.1. Ray Casting

The core of any ray tracer is the intersection of rays with ge-
ometry. Rays are represented parametrically asr(t) = o+ td
whereo is the ray origin,d is the ray direction andt ≥ 0 is
a real parameter corresponding to points along the ray. The
classic implementation of recursive ray tracing casts each
ray individually and intersects it against the scene geometry.
This process generates a list of parametersti corresponding
to points of intersection with the scene’s geometric primi-
tives. The least positive element of this list is returned as the
first intersection, the one closest to the ray origin.

Figure 2(a) illustrates ray casting as a crossbar. This il-
lustration represents the rays with horizontal lines and the
(unorganized) geometric primitives (e.g. triangles) with ver-
tical lines. The crossing points of the horizontal and vertical
lines represent intersection tests between rays and triangles.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

Figure 2: Ray intersection is a crossbar.Online Submission ID: 0092

Figure 3: Programmable pixel shading is a crossbar.

vanced shading [Lindholm et al. 2001]. These programmable el-
ements can be separated into two components, the vertex shader
and the pixel shader, as shown in Figure 3(b).

The vertex shader replaces the graphics pipeline with a user-
programmable stream processor. This stream processor cannot
change the number of vertices passing through it, but it can change
the vertex attributes, including position, color and texture coordi-
nates.

The pixel shader generalizes the per-pixel access and application
of texture. The pixel shader can perform arithmetic operations on
the texture coordinates before they index into the texture, and can
then perform additional arithmetic operations with the fetched tex-
ture result. In a single pass, the pixel shader computes each pixel in
isolation, and cannot access data stored at other pixels in the frame-
buffer.

The speed of modern graphics accelerators is indicated by vertex
rate, which measures the vertical bandwidth of Figure 3, and its
pixel rate, which measures the horizontal bandwidth. The pixel
rate is an order of magnitude faster than the vertex rate on modern
graphics cards.

3.3 Mapping Ray Casting to Programmable Shading
Hardware

We map the ray casting crossbar in Figure 2 to the rasterization
crossbar in Figure 3 by distributing the rays across the pixels and
broadcasting a stream of triangles to each pixel by sending their
coordinates down the geometry pipeline as the vertex attribute data
(e.g. color, texture coordinates) of screen filling quadrilaterals.

The rays are stored in two screen-resolution textures. The color
of each pixel of the ray-origins texture stores the coordinates of
the origin of the ray. The color of each pixel of the ray-directions
texture stores the coordinates of the ray direction vector.

An identical copy of the triangle data is stored at each vertex
of a screen-filling quadrilateral. Rasterization of this quadrilateral
interpolates these attributes at each pixel of its screen projection.
Since the attributes are identical at all four vertices, interpolation
simply distributes a copy of the triangle data to each pixel.

A pixel shader performs the ray-triangle intersection computa-
tion by merging the ray data stored per-pixel in the texture maps
with the triangle data distributed per-pixel by the interpolation of
the attribute data stored at the vertices of the quadrilateral. The
specifics of this implementation will be described further in Sec-
tion 4

3.4 Discussion

The decision to store rays in texture and triangles as vertex at-
tributes was based partially on precision. The geometry pipeline
supports full-precision 32-bit floating point values whereas the tex-
ture pipeline is restricted to 8-bit clamped fixed-point values. Rays
can be specified with five real values whereas triangles require nine.

We found it easier and more accurate to store the five ray values in-
stead of the nine triangle values in the lower texture precision. We
were also able to use special high-precision texture modes designed
for bump mapping to store the ray origins as 10- and 11-bit values,
and ray directions as 16-bit values.

Vertex shaders perform computations at a higher precision and
range (currently 32-bit floating point) than do pixel shaders (cur-
rently 16-bit fixed point ranging from -8 to 8). We nonetheless de-
cided to perform ray-triangle intersection as a pixel shader instead
of a vertex shader. Vertex shaders do not have direct access to the
rasterization crossbar, so our test implementation of ray-triangle in-
tersection as a vertex shader had to store ray data as constants in the
vertex shader’s local memory. Furthermore the triangle rate is an
order of magnitude slower than the pixel rate on modern graphics
accelerators. The vertex shader was able to compute 4.1M ray-
triangle intersections per second, which is much less than what the
pixel shader (or the CPU) is capable of performing.

Since the GPU can be viewed as a SIMD processor [Peercy et al.
2000], the decision to distribite ray data as pixels and broadcast the
geometry was also influenced by other SIMD ray tracing imple-
mentations. SIMD ray tracers have the choice of rays or geometry
distribution.Ray distributionstores the ray data locally per proces-
sor and broadcasts the geometry simultaneously to all processors
whereasgeometry distributionstores the triangle data locally and
broadcasts the ray data.

The AR350 ray tracing hardware utilized a fine-grain ray dis-
tribution to isolated processors [Hall 2001]. This distribution im-
proved load balancing, but inhibited the possible advantages of ray
coherence. The geometry was broadcast from the host similar to
standard graphics cards.

The coherent ray tracer [Wald et al. 2001b] also distributed rays
at its lowest level. It intersected each triangle with four coherent
rays using the SIMD instructions available on the CPU. An axis-
aligned BSP-tree provided spatial coherence of the triangle data,
but required special implemention to efficiently support parsing by
the four ray-parallel processes.

One counterexample worth noting is a distributed-memory paral-
lel ray tracer that used a geometry distribution to handle the special
problems of ray tracing large scene databases [Wald et al. 2001a].

One final benefit of ray distribution, as the next section will show,
is that it allows us to use thez-buffer to efficiently maintain the
parametric distance to the first triangle intersected by each ray.

4 Ray-Triangle Intersection on the GPU

The pixel shader implementation of ray-triangle intersection treats
the GPU as a SIMD parallel processor [Peercy et al. 2000]. In this
model, the framebuffer is treated as an accumulator data array of 5-
vectors(r,g,b,α,z), and texture maps are used as data arrays for in-
put and variables. Operations on this data array are performed using
image-processing combinations of the textures and the framebuffer.
Pixel shaders are sequences of these image-processing combina-
tion operators. While compilers exist for multipass programming
[Peercy et al. 2000; Proudfoot et al. 2001], the current limitations
of pixel shaders required complete knowledge and control of the
available instructions and registers to implement ray intersection.

4.1 Input

Ray Data. As mentioned in Section 3.3, the GPU component of
the ray engine intersects multiple rays with a single triangle. Every
pixel in the data array corresponds to an individual ray. Our imple-
mentation stores ray data in two textures: a ray-origins texture and
a ray-directions texture. Batches of rays cast from the eyepoint or a
point light source will have a constant color ray-origins texture and

3

Figure 3: Programmable pixel shading is a crossbar.

This crossbar represents an all-pairs check of every ray
against every triangle. Since their inception, ray tracers
have avoided checking every triangle against every primi-
tive through the use of spatial coherent data structures on
both the rays and the geometry. These data structures reor-
ganize the crossbar into a sparse overlapping block structure,
as shown in Figure 2(b). Nevertheless the individual blocks
are themselves full crossbars that perform an all pairs com-
parison on their subset of the rays and geometry.

The result of ray casting is the identification of the geome-
try (if any) intersected first by each ray. This result is a series
of points in the crossbar, no greater than one per horizontal
line (ray). These first intersections are shown as black disks
in Figure 2(c). The other ray-triangle intersections are indi-
cated with open circles and are ignored in simple ray casting.

3.2. Programmable Shading Hardware

Graphics accelerators have been designed to implement a
pipeline that converts polygons vertices from model coor-
dinates to viewport coordinates. Once in viewport coordi-
nates, rasterization fills the polygon with pixels, interpolat-
ing the depth, color and texture coordinates in a perspective-
correct fashion. During rasterization, interpolated texture co-
ordinates index into texture memory to map an image texture
onto the polygon.

This rasterization process can also be viewed as a cross-
bar, as shown in Figure 3(a). The vertical lines represent
individual polygons passing through the graphics pipeline
whereas the horizontal lines represent the screen pixels.

Consider the case where each polygon, a quadrilateral, ex-

actly covers all of the screen pixels. Then rasterization of
these polygons performs an all-pairs combination of every
pixel with every polygon.

While even early graphics accelerators were pro-
grammable through firmware4, modern graphics accelera-
tors contain user-programmable elements designed specifi-
cally for advanced shading16. These programmable elements
can be separated into two components, the vertex shader and
the pixel shader, as shown in Figure 3(b). The vertex shader
is a user-programmable stream processor that can alter the
attributes (but not the number) of vertices sent to the ras-
terizer. The pixel shader can perform arithmetic operations
on multiple texture coordinates and fetched texture samples,
but does so in isolation and cannot access data stored at any
other pixel. Pixel shaders run about an order of magnitude
faster than vertex shaders.

3.3. Mapping Ray Casting to Programmable Shading
Hardware

We map the ray casting crossbar in Figure 2 to the rasteriza-
tion crossbar in Figure 3 by distributing the rays across the
pixels and broadcasting a stream of triangles to each pixel
by sending their coordinates down the geometry pipeline as
the vertex attribute data (e.g. color, texture coordinates) of
screen filling quadrilaterals.

The rays are stored in two screen-resolution textures. The
color of each pixel of the ray-origins texture stores the co-
ordinates of the origin of the ray. The color of each pixel of
the ray-directions texture stores the coordinates of the ray
direction vector.

An identical copy of the triangle data is stored at each
vertex of a screen-filling quadrilateral. Rasterization of this
quadrilateral interpolates these attributes at each pixel of its
screen projection. Since the attributes are identical at all four
vertices, interpolation simply distributes a copy of the trian-
gle data to each pixel.

A pixel shader performs the ray-triangle intersection com-
putation by merging the ray data stored per-pixel in the tex-
ture maps with the triangle data distributed per-pixel by the
interpolation of the attribute data stored at the vertices of the
quadrilateral. The specifics of this implementation will be
described further in Section 4.

3.4. Discussion

The decision to store rays in texture and triangles as vertex
attributes was based initially on precision. Since rays can be
specified with five real values whereas triangles require nine
we found it easier and more accurate to store the ray values
at the lower texture precisions.

We also chose to implement ray-triangle intersection as
a pixel shader instead of a vertex shader. Vertex shaders do

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

not have direct access to the rasterization crossbar, and hence
needed to store ray data as constants in the vertex shader’s lo-
cal memory. The vertex shader is also slower, and was able to
compute 4.1M ray-triangle intersections per second, which
is much less than what the CPU is currently capable of per-
forming.

Viewing the GPU as a SIMD processor20 allowed us to
compare other SIMD ray tracing implementations. SIMD
ray tracers typically distribute rays to the processors and
broadcast the geometry, or distribute geometry and broad-
cast the rays. The AR350 ray tracing hardware utilized a
fine-grain ray distribution to isolated processors8, which im-
proved load balancing, but inhibited the possible advantages
of ray coherence. The coherent ray tracer32 also distributed
rays at its lowest level, intersecting each triangle with four
coherent rays using SSE whereas an axis-aligned BSP-tree
coherently organized the triangles (but required special im-
plemention to efficiently intersect four-ray bundles). Geom-
etry distribution on the other hand seems better suited for
handling the special problems due to ray tracing large scene
databases31.

4. Ray-Triangle Intersection on the GPU

The pixel shader implementation of ray-triangle intersec-
tion treats the GPU as a SIMD parallel processor20. In
this model, the framebuffer is treated as an accumulator
data array of 5-vectors(r,g,b,α,z), and texture maps are
used as data arrays for input and variables. Pixel shaders
perform sequences of operations that combine the textures
and the framebuffer. While compilers exist for multipass
programming20, 22, the current limitations of pixel shaders
required complete knowledge and control of the available
instructions and registers to implement ray intersection.

4.1. Input

Ray Data. As mentioned in Section 3.3, the GPU compo-
nent of the ray engine intersects multiple rays with a sin-
gle triangle. Every pixel in the data array corresponds to an
individual ray. Our implementation stores ray data in two
textures: a ray-origins texture and a ray-directions texture.
Batches of rays cast from the eyepoint or a point light source
will have a constant color ray-origins texture and their tex-
ture map could be stored as a single pixel or a pixel shader
constant.

Triangle Data. The triangle data is encapsulated in the at-
tributes of the four vertices of a screen filling quad. Leta,b,c
denote the three vertices of the triangle, andn denote the
triangles front facing normal. The triangle id was stored as
the quad’s color, and the vectorsa,b,n,ab(= b−a),ac,bc
were mapped to multi-texture coordinate vectors. The re-
dundant vector information includes ray-independent pre-
computation that reduces the size and workload of the pixel
shader. Our implementation passes only the three vertices of

the triangle from the host, and computes the additional re-
dundant values in the vertex shader.

The texture coordinates for texture zero (s0, t0) are spe-
cial and are not constant across the quadrilateral. They are
instead set to(0,0),(1,0),(1,1),(0,1) at the four vertices,
and rasterization interpolates these values linearly across the
quad’s pixels. These texture coordinates are required by the
pixel shader to access each pixel’s corresponding ray in the
screen-sized ray-origins and ray-directions textures.

4.2. Output

The output of the ray-triangle intersection needs to be
queried by the CPU, which can be an expensive opera-
tion due to the asymmetric AGP bus on personal computers
(which sends data to the graphics card much faster than it can
receive it). The following output format is designed to return
as little data as necessary, limiting itself to the index of the
triangle that intersects the ray closest to its origin, using the
z-buffer to manage the ray parametert of the intersection.

Color. The color channel contains the color of the first trian-
gle the ray intersects (if any). For typical ray tracing appli-
cations, this color will be a unique triangle id. These triangle
id’s can index into an appearance model for the subsequent
shading of the ray-intersection results.

Alpha. Our pixel shader intersection routine conditionally
sets the fragments alpha value to indicate ray intersection.
The alpha channel can then be used as a mask by other ap-
plications if the rays are coherent (e.g. like eye rays through
the pixels in the frame buffer).

The t-Buffer. The t-value of each intersection is computed
and replaces the pixel’sz-value. The built-inz-test is used
so the newt-value will overwrite the existingt-value stored
in the z-buffer if the new value is smaller. This allows the
z-buffer to maintain the least positive solutiont for each ray.
Since the returnedt value is always non-negative, thet-value
maintained by thez-buffer always corresponds to the first
triangle the ray intersects.

4.3. Intersection

We examined a number of efficient ray-triangle intersection
tests6, 2, 18, and managed to reorganize one18 to fit in a pixel
shader.

Our revised ray-triangle intersection is evaluated as
ao = o−a, (1)

bo = o−b, (2)

t = −n ·ao
n ·d , (3)

aod = ao×d, (4)

bod = bo×d, (5)

u = ac·aod, (6)

v = −ab ·aod, (7)

w = bc ·bod. (8)

The intersection passes only if all three (unnormalized)
barycentric coordinatesu,v and w are non-negative. If the
ray does not intersect the triangles, the alpha channel for that

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

Figure 4: Leaky teapot, due to the low precision implemen-
tation on PS1.4 pixel shaders used to test the performance
of ray-triangle intersection. Our simulations using the preci-
sion available on upcoming hardware are indistinguishable
from software renderings.

pixel is set to zero and the pixel is killed. The parametert is
also tested against the current value in thez-buffer, and if it
fails the pixel is also killed. Surviving pixels are written to
the framebuffer as the ray intersection currently closest to
the ray origin.

This implementation reduces cross products, which re-
quire multiple pixel shader operations to compute. The quo-
tient (3) was implemented using thetexdepthinstruction,
which implements the “depth replace” texture shader.

4.4. Results

We tested the PS1.4 implementation of the ray-triangle in-
tersection using the ATI R200 chipset on the Radeon 8500
graphics card. The limited numerical precision of its pixel
shader (16-bit fixed point, with a range of±8) led to some
image artifacts shown in Figure 4, this implementation did
suffice to measure the speed of an actual hardware pixel
shader on the task of ray intersection.

We clocked our GPU implementation of ray intersection
at 114M intersections per second. The fastest CPU-based
ray tracer was able to compute between 20M and 40M in-
tersections per second on an 800Mhz Pentium III32. Even
doubling the CPU numbers to estimate performance on to-
day’s computers, our GPU ray-triangle intersection perfor-
mance already exceeds that of the CPU, and we expect the
gap to widen as GPU performance growth continues to out-
pace CPU performance growth.

5. Ray Engine Organization

This section outlines the encapsulation of the GPU ray-
intersection into a ray engine. It begins with a discussion of
why the CPU is a better choice for the management of rays
during the rendering process. Since the CPU is managing the
rays, the ray engine is packaged to provide easy access to the
GPU ray-intersection acceleration through a front-end inter-
face. This interface accepts rays in coherent bundles, which

can be efficiently traced by the GPU ray-intersection imple-
mentation.

5.1. The Role of the CPU

We structured the ray engine to perform ray intersection on
the GPU and let the host organize the casting of rays and
manage the resulting radiance samples. Since the bulk of the
computational resources used by a ray tracer are spent on
ray intersection, the management of rays and their results is
a relatively small overhead for the CPU, certainly smaller
than performing the entire ray tracing on the CPU.

The pixel shader on the GPU is a streaming SIMD proces-
sor good at running the same algorithm on all elements of a
data array. The CPU is a fast scalar processor that is better at
organizing and querying more sophisticated data structures,
and is capable of more sophisticated algorithmic tools such
as recursion. Others have implemented the entire ray tracer
on the GPU24, but such implementations can be cumbersome
and inefficient.

For example, recursive ray tracing uses a stack. While
some have proposed the addition of state stacks in pro-
grammable shader hardware17, such hardware is not cur-
rently available. Recursive ray tracing can be implemented
completely on the GPU24, but apparently at the expense of
generating two frame buffers full of reflection and refrac-
tion rays at each intersection, which are then managed by
the host.

The need for a stack can be avoided by path tracing12.
Paths originating from the eyepoint passing through a pixel
can accumulate its intermediate results at the same location
in texture maps. Path tracing requires importance sampling
to be efficient, even with fast ray intersection. Sophisticated
importance sampling methods30 use global queries into the
scene database, as well as queries into previous radiance re-
sults in the scene. Such queries are still performed more ef-
ficiently on the CPU than on the GPU.

Some ray tracers also organize rays and geometry into co-
herent caches that are cast in an arbitrary order to more effi-
ciently render large scenes21. The management of ray caches
and the radiances resulting

rom their batched tracing requires a lot of data shuffling.
An implementation on the GPU would require all of the pix-
els in the image returned by the batch ray intersection algo-
rithm to be shuffled to contribute to the radiance of the pre-
viously cast rays. While dependent texturing can be used to
perform this shuffling24, the GPU is ill-designed to organize
and set up this mapping.

We used the NV_FENCE extension to overlap the com-
putation of the CPU and GPU. This allows the CPU to test
whether the GPU is busy working on a ray-triangle bun-
dle so the CPU can continue to work simultaneously on ray
caching.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

5.2. The Ray Engine Interface

Organizing high-performance rendering services to be trans-
parent makes them easier to integrate into existing rendering
systems14. We structured the ray engine as both a front end
driver that runs on the host and interfaces with the appli-
cation, and a back end component that runs on the GPU to
perform ray intersections.

The front end of the ray engine accepts a cache of rays
from a host application. This front end converts the ray cache
into the texture map data for the pixel shader to use for in-
tersection. The front end then sends the geometry (from a
shared database with the application) down the geometry
pipeline to the pixel shader. The pixel shader is treated as a
back end of this system that intersects the rays with the trian-
gles passed to it. The front end grabs the results of ray inter-
section (triangle id,t-value and, if supported, the barycentric
coordinates) and returns them to the application in a more
appropriate format.

v

Ray Intersection Pixel Shader

GPU

CPU

Application (Ray Tracing, Path Tracing,
 Photon Mapping, Form Factors)

Front End

Ray Data
as

Texture
Maps

Triangle
Data as

Flat Quad
Attributes

Relevant
Intersection

Data as
Pixels

Ray
Cache

Cache
Results

The Ray Engine

Geometry

Figure 5: The organization of the ray engine.

The main drawback of implementing ray casting applica-
tions on the host is the slow readback bandwidth of the AGP
bus when transferring data from the GPU back to the CPU.
This bottleneck is addressed by the ray engine system with
compact data that is returned infrequenty (once after all tri-
angles have been sent to the GPU).

5.3. The Ray Cache

Accelerating the implementation of ray intersection is not
enough to make ray tracing efficient. The number of ray
intersections needs to be reduced as well. The ray engine
uses an octree to maintain geometry coherence and a 5-D
ray tree1 to maintain ray coherence.

The ray engine works more efficiently when groups of

similar rays intersect a collection of spatially coeherent tri-
angles. In order to maintain full buckets of coherent rays,
we utilize a ray cache21. Ray caching allows some rays to
be cast in arbitrary order such that intersection computations
can be performed as batch processes.

As rays are generated, they are added to the cache, which
collects them into buckets of rays with coherent origins
and directions. For maximum performance on the ray en-
gine, each bucket should contain some optimal hardware-
dependent number of rays. Our bucket size was 256 rays,
organized as two 64× 4 ray-origin and ray-direction tex-
tures. Textures on graphics cards are commonly stored in
small blocks instead of in scanline order to better capitalize
on spatial coherence by placing more relevant texture sam-
ples into the texture cache of the GPU. The size of these
texture blocks is GPU-dependent and can be found through
experimentation.

If adding a ray makes a bucket larger than the optimal
bucket size then the node is split into four subnodes along
the axis of greatest variance centered at the using the mean
values of the ray origins and directions. We also add rays
to the cache in random order which helps keep the tree bal-
anced.

When the ray tracer needs a result or the entire ray cache
becomes full, a bucket is sent to the ray engine to be inter-
sected with geometry. We send the fullest buckets first to
maximize utilization of the ray engine resources. Each node
of the tree contains the total number of rays contained in the
buckets below it. Our search traverses down the largest val-
ued nodes until a bucket is reached. While this simple greedy
search is not guaranteed to find the largest bucket, it is fast
and works well in practice since the buckets share the same
maximum size. This greedy search also tends to balance the
tree.

Once the search has chosen a bucket, rays are stolen from
that node’s siblings to fill the bucket to avoid wasting inter-
section computations. Due to the greedy search and the node
merging described next, this ensures that buckets sent to the
ray engine are always as full as possible, even though in the
ray tree they are typically only 50-80% full.

Once a bucket has been removed from the tree and traced,
it can often leave neighboring buckets containing only a few
rays. Our algorithm walks back up the tree from the removed
bucket leaf node, collecting subtrees into a single bucket
leaf node if the number of rays in the subtree has fallen be-
low a threshold. Our tests showed that this process typically
merged only a single level of the tree.

The CPU performs a ray bucket intersection test1 against
the octree cells to determine which should be sent to the
GPU. We also used the vertex shader to cull back-facing tri-
angles as well as triangles outside the ray bucket from inter-
section consideration. The vertex shader cannot change the
number of vertices passing through it, but it can transform

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

the screen-filling quad containing the triangle data to an off-
screen location which causes it to be clipped.

5.4. Results

We implemented the ray engine on a simulator for an up-
coming GPU based on the expected precision and capabil-
ities needed to support the Direct3D 9 specification. These
capabilities allow us to produce full precision images that
lack the artifacts shown earlier in Figure 4.

We used the ray engine to classically ray trace a teapot
room and an office scene, shown in Figure 6(a) and (c).
We applied the ray engine to a Monte-Carlo ray tracer that
implemented distributed ray tracing and photon mapping,
which resulted in Figure 6(b). The ray engine was also used
to ray trace two views of one floor from the Soda Hall
dataset, shown in Figures 6(d) and (e).

The performance is shown in Figure 1. Since our imple-
mentation is on a non-realtime simulator, we have estimated
our performance using the execution rates measured on the
GeForce 4. We measured the performance in rays per sec-
ond, which measures the number of rays intersected with
the entire scene per second. This figure includes the expen-
sive traversal of the ray-tree and triangle octree as well as the
ray-triangle intersections.

Scene Polygons Rays/sec.

Teapot Room Classical 2,650 206,905
Teapot Room Monte-Carlo 2,650 149,233
Office 34,000 114,499
Soda Hall Top View 11,052 129,485
Soda Hall Side View 11,052 131,302

Table 1: Rays per second across a variety of scenes and ap-
plications.

This perfomance meets the low end performance of the
coherent ray tracer, which was able to trace from 200K to
1.5M rays per second32. It too used coherent data structures
to increase performance, in this case an axis aligned BSP tree
organized specifically to be efficiently traversed by the CPU.
Our ray traversal implementation is likely not as carefully
optimized as theirs.

6. Analysis and Tuning

Suppose we are given a set ofR rays and a set ofT trian-
gles for performing ray-triangle intersection tests. We de-
note the time to run the tests on the GPU and CPU respec-
tively as GPU(R,T) and CPU(R,T). To acheive improved
performance, we are only interested in values ofRandT for
which GPU(R,T) ≤ CPU(R,T), suggesting the right prob-
lem granularity for which the GPU performs best.

Since the GPU performs all pairs intersection test between

the rays and triangles passed to it, its performance is inde-
pendent of scene structure

GPU(R,T) = O(RT). (9)

The running time for CPU(R,T) is dependent on both scene
and camera (sampling) structure since partitioning structures
in both triangle and ray space may be used to reduce com-
putation

CPU(R,T)≤O(RT). (10)

As Section 4.4 shows, the constant of proportionality in the
O(RT) in (9) is smaller (by at least a factor of two) than the
one in (10). Tuning the ray engine will require balancing the
raw speed of GPU(R,T) with the efficiency of CPU(R,T).

6.1. The Readback Bottleneck

We can model GPU(R,T) by analyzing the steps in the GPU
ray-triangle intersection in terms of GPU operations, and
empirically measuring the speed of these operatrions. A sim-
ple version of this model sufficient for our analysis is

GPU(R,T) = TRfill−1 +Rγ readback−1, (11)

whereγ is the number of bytes read back from the graphics
card per ray. This model shows that the GPU ray-triangle
intersection time is linearly dependent on the number of
rays and affinely dependent on the number of triangles. This
model does not include the triangle rate, which would add a
negligible term proportianal toT to the model. Once we de-
termine values for fill and readback we can then determine
the smallest number of trianglesTmin needed to make GPU
ray-triangle intersection practical.

The fill rate is measured in pixels per second (which in-
cludes the cost of the fragment shader execution) whereas
the readback rate is measured in bytes per second. The fill
rate is measured pixels per second instead of bytes per sec-
ond because it is non-linear in the number of bytes trans-
ferred (modern graphics cards can for example multitexture
two textures simultaneously). Since our ray engine uses two
ray textures (an origins texture and a directions texture) we
simply divide the number of rays (pixels) by the fill rate (pix-
els per second) to get the fragment shader execution time.

We determine values for the fill and readback rates empir-
ically. For example, the GeForce3 achieves a fill rate of 390
MP/sec. (dual-textured pixels) and an AGP 4x readback rate
of 250 MB/sec (which is only one quarter of the 1 GB/sec
that should be available on the AGP bus). Returning a single
64-bit triangle ID uses aγ of four, whereas returning an ad-
ditional three single-precision floating-point barycentric co-
ordinates setsγ to 16. Hence we can return triangle ID’s at a
rate of 62.5M/sec., but when we include barycentrics the rate
drops to 15.6M/sec. We can further increase performance by
reducing the number of bytes used for the index of each tri-
angle, especially since the ray engine sends smaller buckets
of coherent triangles to the GPU.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

(a) (b) (c) (c) (c)

Figure 6: Images tested by the ray engine: teapot Cornell box ray traced classically (a) and Monte Carlo (b), office (c), and
Soda Hall side (d) and top (e) views.

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600
R ay T riangle Intersection P erformance: (R T)/G P U(R ,T)

triangles

m
ill

io
n

 in
te

rs
e

ct
io

n
 t

e
st

s/
se

c

Radeon 8500 LE perf.

Radeon 8500 LE max perf.

GeForce3 perf.

GeForce3 max perf.

GeForce4 max perf.

GeForce4 perf.GeForce4 w/full �
AGP 4x bandwidth

Figure 7: Theoretical performance in millions of ray-
triangle intersection tests per second on the GPU withγ = 4.

For small values ofT the performance is limited by the
readback rate. AsT increases, the constant cost of read-
back is amortized over a larger number of intersections tests.
(When we measured peak ray-triangle intersection rates on
the Radeon 8500, we sent thousands of triangles to the
GPU.) In each case, the curve asymptotically approaches the
fill rate, which is listed as the maximum performance possi-
ble. Realistically, only smaller values ofT should be con-
sidered since the GPU intersection routine is an inefficient
all-pairsO(RT) solution and our goal is to only send coher-
ent rays and triangles to it.

Figure 7 shows that even for small value ofT, the perfor-
mance is quite competitive with that of a CPU based imple-
mentation in spite of the read back rate limitation. For exam-
ple, the ray-triangle intersections per second for ten triangles
clock at 240M on the GeForce3 and 286M on the GeForce4
Ti4600 (if they had the necessary fragment processing capa-
bilities). The recent availability of AGP 8x, and the upcom-
ing AGP 3.0 standard will further reduce the impact of the

readback bottleneck and further validate this form of general
GPU processing.

6.2. Avoiding Forced Coherence

The previous section constructed a model for the efficiency
of the GPU ray-triangle intersection. We must now deter-
mine when it is more efficient to use the CPU instead of the
GPU.

It is important to exploit triangle and ray coherence only
where it exists, and not to force it where it does not. We
hence identify the locations in the triangle octree where the
ray-triangle coherence is high enough to support efficient
GPU intersection. This preprocess occurs after the triangle
octree construction, and involves an additional traversal of
the octree, identifying cells that represent at leastTmin trian-
gles. Since these cells are ideal for GPU processing we refer
to these cells as GPU cells.

Rendering employs a standard recursive octree traversal
routine. When a ray ray traverses through a cell not tagged
as a GPU cell, the standard CPU based ray-triangle intersec-
tion is performed. If a ray encounters a GPU cell during its
traversal, the ray’s traversal is terminated and it is placed in
the ray cache for that cell for future processing. When the
ray cache corresponding to a given GPU cell reachesRmin
rays, its rays and triangles are sent to the GPU for process-
ing using the ray-intersection kernel.

A point may be reached where the ray engine has receive
all known rays from the application to be processed. At this
poing there may exist GPU cells whose ray cache is non-
empty, but containing less thanRmin rays. A policy may be
chose to select a GPU cell and force its ray cache to be send
to the CPU instead of the GPU. This allows the ray engine
to continually advance towards completion for rendering the
scene.

6.3. Results

We have performed numerous tests to tune the parameters of
the geometry engine to eek out the highest performance.

Table 2 demonstrates the utilization of the GPU. As men-
tioned earlier, only reasonably sized collections of coherent

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

Scene % GPU Rays

Teapot Room Classical 89%
Teapot Room Monte-Carlo 71%
Office 65%
Soda Hall Top View 70%
Soda Hall Side View 89%

Table 2: Percentage of rays sent to the GPU across a variety
of scenes and applications.

rays and triangles are sent to the GPU. The remaining rays
and triangles are traced by the CPU. The best performers
resulted from classical ray tracing of the teapot room and
the ray casting of the Soda Hall side view. The numerous
bounces from Monte Carlo ray tracing likely reduce the co-
herence on all but the eye rays. Coherence was reduced in the
office scene due to the numerous small triangles that filled
the triangle cache before the ray cache could be optimally
filled. The Soda Hall top view contains a lot of disjoint small
“silhouette” wall polygons that likely failed to fill the trian-
gle cache for a given optimally filled ray cache.

System Rays/sec. Speedup

CPU only 135,812
plus GPU 165,098 22%
Asynch. Readback 183,273 34%
Infinitely Fast GPU 234,102 73%

Table 3: Speedup by using the GPU to render the teapot
room.

Table 3 illustrates the efficiency of the ray engine. The
readback delay was only responsible for 12% of the poten-
tial speedup of 34%. One feature that would allow us to re-
cover that 12% is to be able to issue an asynchronous read-
back (as is suggested in OpenGL 2.0), such that the CPU
and GPU can continue to work during the readback process.
The NV_FENCE mechanism could then report when the
readback is complete. This feature could possibly be added
through the use of threads, but this idea has been left for fu-
ture research.

The last row of Table 3 shows the estimated speed if we
had an infinitely fast GPU, which shows that most of our
time is spent on the CPU reorganizing the geometry and
rays into coherent structures. This effect has been observed
in similar ray tracers32, where BSP tree traversal is “typically
2-3 times as costly as ray-triangle intersection.”

Table 4 shows the effect of tuning the number of triangles
that get sent to the GPU. In each of these cases, the number
of rays intersected by each GPU pass was set to 64.

Table 5 shows that the number of rays in each bucket can
also be varied to achieve peak efficiency. Tuning the ray en-
gine to assign more rays to the GPU frees the CPU to per-

T GPU Rays Rays/sec. Speedup

CPU 135,812
4–16 78% 147,630 8%
5–12 81% 157,839 16%
5–15 89% 165,098 22%

Table 4: Tuning the ray engine by varying the range of tri-
angles T sent to the GPU, measured on the teapot room.

R Rays/sec. Speedup

CPU 135,812
64 165,098 22%

128 177,647 31%
256 180,558 33%
512 175,904 29%

Table 5: Tuning the number of rays R sent to the GPU for
intersection.

form more caching. For example, for the teapot room clas-
sical ray tracing, we were able to achieve a 52% speedup
over the CPU by settingR to 256 and hand tuning the octree
resolution.

7. Conclusions

We have added ray tracing to the growing list of applications
accelerated by the programmable shaders found in modern
graphics cards. Our ray engine performed at speeds compa-
rable to the fastest CPU ray tracers. We expect the GPU will
become the high-performance ray-tracing platform of choice
due to the rapid growth rate of GPU performance.

By partitioning computation between the CPU and GPU,
we combined the best features of both, at the expense of
the slow readback of data and the overhead of ray caching.
The AGP graphics bus supports high-bandwidth transmis-
sion from the CPU to the GPU, but less bandwidth for re-
covery of results. We expect future bus designs and driver
implementations will soon ameliorate this roadblock.

The overhead of ray caching limited the performance
speedup of GPU to less than double that of the CPU only,
and this overhead as also burdened others32. Even though
our method for processing the data structures is considered
quite efficient27, we are anxious to explore alternative struc-
tures that can more efficiently organize rays and geometry
for batch processing by the GPU.

Acknowledgements

This research was supported in part by the NSF grant #ACI-
0113968, and by NVidia. The idea of using fragment pro-
grams for ray-triangle intersection and the crossbar formal-
ism resulted originally from conversations with Michael Mc-
Cool.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

References

1. ARVO, J., AND K IRK , D. B. Fast ray tracing by ray classifi-
cation.Proc. SIGGRAPH 87(July 1987), 55–64.

2. BADOUEL, D. An efficient ray-polygon intersection. In
Graphics Gems. Academic Press, Boston, 1990, pp. 390–393,
735.

3. BLINN , J. F.,AND NEWELL, M. E. Texture and reflection in
computer generated images.Comm. ACM 19, 10 (Oct. 1976),
542–547.

4. CLARK , J. The geometry engine: A VLSI geometry system
for graphics.Proc. SIGGRAPH 82(July 1982), 127–133.

5. DIEFENBACH, P. J.,AND BADLER, N. I. Multi-pass pipeline
rendering: Realism for dynamic environments. InProc. Sym-
posium on Interactive 3D Graphics(Apr. 1997), ACM SIG-
GRAPH, pp. 59–70.

6. ERICKSON, J. Pluecker coordinates. Ray Trac-
ing News 10, 3 (1997), 11. www.acm.org-
/tog/resources/RTNews/html/rtnv10n3.html#art11.

7. FERNANDO, R., FERNANDEZ, S., BALA , K., AND GREEN-
BERG, D. P. Adaptive shadow maps.Proc. SIGGRAPH 2001
(Aug. 2001), 387–390.

8. HALL , D. The AR350: Today’s ray trace rendering proces-
sor. InHot 3D Presentations, P. N. Glagowski, Ed. Graphics
Hardware 2001, Aug. 2001, pp. 13–19.

9. HEIDRICH, W., LENSCH, H., AND SEIDEL, H.-P. Light
field-based reflections and refractions.Eurographics Render-
ing Workshop(1999).

10. JENSEN, H. W. Importance driven path tracing using the
photon map.Proc. Eurographics Rendering Workshop(Jun.
1995), 326–335.

11. JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND

HANRAHAN , P. A practical model for subsurface light trans-
port. Proc. SIGGRAPH 2001(Aug. 2001), 511–518.

12. KAJIYA , J. T. The rendering equation.Proc. SIGGRAPH 86
(Aug. 1986), 143–150.

13. KELLER, A. Instant radiosity. Proc. SIGGRAPH 97(Aug.
1997), 49–56.

14. KIPFER, P.,AND SLUSALLEK , P. Transparent distributed pro-
cessing for rendering.Proc. Parallel Visualization and Graph-
ics Symposium(1999), 39–46.

15. KOLB, C., HANRAHAN , P. M., AND M ITCHELL , D. A real-
istic camera model for computer graphics.Proc. SIGGRAPH
95 (Aug. 1995), 317–324.

16. LINDHOLM , E., KILGARD , M. J., AND MORETON, H. A
user-programmable vertex engine.Proc. SIGGRAPH 2001
(July 2001), 149–158.

17. MCCOOL, M. D., AND HEIDRICH, W. Texture shaders.
In Proc. Graphics Hardware 99(August 1999), SIG-
GRAPH/Eurographics Workshop, pp. 117–126.

18. MÖLLER, T., AND TRUMBORE, B. Fast, minimum storage
ray-triangle intersectuion.Journal of Graphics Tools 2, 1
(1997), 21–28.

19. PARKER, S., MARTIN , W., SLOAN , P.-P. J., SHIRLEY, P. S.,
SMITS, B., AND HANSEN, C. Interactive ray tracing. In1999
ACM Symposium on Interactive 3D Graphics(Apr. 1999),
ACM SIGGRAPH, pp. 119–126.

20. PEERCY, M. S., OLANO , M., A IREY, J.,AND UNGAR, P. J.
Interactive multi-pass programmable shading.Proc. SIG-
GRAPH 2000(2000), 425–432.

21. PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN ,
P. M. Rendering complex scenes with memory-coherent ray
tracing.Proc. SIGGRAPH 97(Aug. 1997), 101–108.

22. PROUDFOOT, K., MARK , W. R., TZVETKOV, S.,AND HAN-
RAHAN , P. A real-time procedural shading system for
programmable graphics hardware.Proc. SIGGRAPH 2001
(2001), 159–170.

23. PURCELL, T. J. SHARP ray tracing architecture. SIGGRAPH
2001 Real-Time Ray Tracing Course Notes, Aug. 2001.

24. PURCELL, T. J., BUCK, I., MARK , W. R.,AND HANRAHAN ,
P. Ray tracing on programmable graphics hardware.Proc.
SIGGRAPH 2002(July 2002).

25. REEVES, W. T., SALESIN, D. H., AND COOK, R. L. Render-
ing antialiased shadows with depth maps.Proc. of SIGGRAPH
87 (Jul. 1987), 283–291.

26. REINHARD, E., CHALMERS, A., AND JANSEN, F. Overview
of parallel photorealistic graphics.Eurographics ’98 STAR
(Sep. 1998), 1–25.

27. REVELLES, J., URENA, C., AND LASTRA, M. An efficient
parametric algorithm for octree traversal.Proc. Winter School
on Computer Graphics(2000).

28. SZIRMAY-KALOS, L., AND PURGATHOFER, W. Global ray-
bundle tracing with hardware acceleration.Proc. Eurograph-
ics Rendering Workshop(June 1998), 247–258.

29. TRENDALL , C., AND STEWART, A. J. General calculations
using graphics hardware with applications to interactive caus-
tics. InRendering Techniques 2000: 11th Eurographics Work-
shop on Rendering(Jun. 2000), Eurographics, pp. 287–298.

30. VEACH, E., AND GUIBAS, L. J. Metropolis light transport.
Proc. SIGGRAPH 97(Aug. 1997), 65–76.

31. WALD , I., SLUSALLEK , P., AND BENTHIN, C. Interactive
distributed ray tracing of highly complex models. InRender-
ing Techniques 2001(2001), Eurographics Rendering Work-
shop, pp. 277–288.

32. WALD , I., SLUSALLEK , P., BENTHIN, C., AND WAGNER,
M. Interactive rendering with coherent ray tracing.Computer
Graphics Forum 20, 3 (2001), 153–164.

33. WARD, G. J. The radiance lighting simulation and rendering
system.Proc. SIGGRAPH 94(Jul. 1994), 459–472.

34. WEGHORST, H., HOOPER, G., AND GREENBERG, D. Im-
proved computational methods for ray tracing.ACM Trans.
on Graphics 3, 1 (Jan. 1984), 52–69.

35. WILLIAMS , L. Casting curved shadows on curved surfaces.
Proc. SIGGRAPH 78(Aug. 1978), 270–274.

c© The Eurographics Association 2002.

1

Ray Tracing and Global Ray Tracing and Global
Illumination on Illumination on

Programmable Graphics Programmable Graphics
HardwareHardware

Timothy J. PurcellTimothy J. Purcell
Stanford UniversityStanford University

OverviewOverview

•• Explore computation kernels Explore computation kernels
used in ray tracing and photon used in ray tracing and photon
mappingmapping
•• Each kernel is applicable to more Each kernel is applicable to more

general scientific computinggeneral scientific computing

•• Demonstrate ray tracing and Demonstrate ray tracing and
photon mapping system utilizing photon mapping system utilizing
these kernelsthese kernels

•• Discuss some open issues in Discuss some open issues in
mapping algorithms to mapping algorithms to GPUsGPUs

OutlineOutline

•• GPU abstractionGPU abstraction
•• Ordering dataOrdering data

•• SortingSorting

•• BinningBinning

•• Finding dataFinding data
•• Searching an ordered listSearching an ordered list

•• Nearest neighbor queriesNearest neighbor queries

•• Bringing it all togetherBringing it all together
•• Ray tracing and photon mapping Ray tracing and photon mapping

demosdemos

•• Open issues in mapping Open issues in mapping
algorithms to algorithms to GPUsGPUs

GPU AbstractionGPU Abstraction

2

Graphics PipelineGraphics Pipeline

ApplicationApplication

GeometryGeometry

RasterizationRasterization

TextureTexture

FragmentFragment

DisplayDisplay

CommandCommand

TexturesTextures

FragmentFragment
ProgramProgram

RegistersRegisters

FragmentFragment
InputInput

FragmentFragment
OutputOutput

Traditional PipelineTraditional PipelineProgrammable Fragment PipelinProgrammable Fragment Pipelin

GPU Abstraction BasicsGPU Abstraction Basics

•• Programmable GPU is a Programmable GPU is a
programmable stream processorprogrammable stream processor
•• Think ofThink of multipassmultipass rendering as rendering as

stream and kernel programmingstream and kernel programming

•• Texture memory is memoryTexture memory is memory
•• Think of dependent texture fetches as Think of dependent texture fetches as

pointer pointer dereferencingdereferencing

•• These insights were key for These insights were key for
mapping ray tracing to a mapping ray tracing to a
programmable GPUprogrammable GPU

Stream Programming ModelStream Programming Model

Programmable fragment Programmable fragment
processor is essentially a processor is essentially a
stream processorstream processor

•• Kernels and streamsKernels and streams
•• Stream is a set of data recordsStream is a set of data records

•• Kernels operate on recordsKernels operate on records

•• Streams connect kernels togetherStreams connect kernels together

•• Kernels can read global memoryKernels can read global memory

kernkern
elel

inputinput
recordrecord
streamstream

outputoutput
recordrecord
streamstream

kernkern
elel

globalsglobals

globalsglobals

Streaming Flow ControlStreaming Flow Control

FragmentsFragments
(Input Stream)(Input Stream)

Fragment ProgramFragment Program
(Kernel)(Kernel)

Fragment Program OutputFragment Program Output
(Output Stream)(Output Stream)

RasterizationRasterization

TextureTexture
((GlobalsGlobals))

ApplicationApplication
and Geometryand Geometry

StagesStages

3

Texture Memory Texture Memory
OrganizationOrganization

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

…… xyxy
zz

00 44 1111 3838 …… 5656
44

00 33 11 33 77 2121 2121
66

……

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

…… xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

xyxy
zz

…… xyxy
zz

Uniform GridUniform Grid
3D Luminance 3D Luminance

TextureTexture

Triangle ListTriangle List
1D Luminance1D Luminance

Texture Texture

TrianglesTriangles
3x 1D RGB 3x 1D RGB
TexturesTextures

vox0vox0vox1vox1vox2vox2vox3vox3vox4vox4vox5vox5 voxMvoxM

vox0vox0 vox2vox2

tri0tri0 tri1tri1 tri2tri2 tri3tri3 tri4tri4 tri5tri5 triNtriN

v0v0

v1v1

v2v2

SortingSorting

SortingSorting

•• Given an unordered list of Given an unordered list of
elements, produce list ordered elements, produce list ordered
by key valueby key value

•• BitonicBitonic merge sortmerge sort

•• Used to order photons during Used to order photons during
construction of photon map data construction of photon map data
structurestructure

BitonicBitonic Merge SortMerge Sort

1

2

3

4

5

6

7

8

4

BitonicBitonic Merge SortMerge Sort

1

2

3

4

5

6

7

8

BitonicBitonic Merge SortMerge Sort

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

5

BitonicBitonic Merge SortMerge Sort

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

6

BitonicBitonic Merge SortMerge Sort

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

2

3

1

4

7

5

8

6

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

2

3

1

4

7

5

8

6

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

BitonicBitonic Merge SortMerge Sort

1

3

2

4

7

6

8

5

2

3

1

4

7

5

8

6

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

7

BitonicBitonic Merge Sort SummaryMerge Sort Summary

•• Separate rendering pass for each Separate rendering pass for each
swapswap
•• O(logO(log22n) passesn) passes

•• Hand coded to around 20 Hand coded to around 20
instructionsinstructions
•• 512x512 elements 512x512 elements -- 3060 instructions 3060 instructions

per pixelper pixel

BinningBinning

BinningBinning

•• Given an unordered list of Given an unordered list of
elements, produce list ordered elements, produce list ordered
by key valueby key value
•• Multiple elements with same key are Multiple elements with same key are

binned together as they have no binned together as they have no
ordering amongst themselves ordering amongst themselves

•• Stencil binningStencil binning

•• Alternate approach to building Alternate approach to building
the photon map data structurethe photon map data structure

Stencil BinningStencil Binning

•• Treat Treat
framebufferframebuffer as a as a
flattened gridflattened grid

•• Vertex program Vertex program
sends each sends each
photon to its photon to its
grid cellgrid cell
•• Only the last Only the last

photon in each photon in each
cell is savedcell is saved

ertex (photon_pos)

Vertex Program

Flattened Grid

1 pixel

8

Stencil BinningStencil Binning

•• Enlarge each Enlarge each
grid cell to ngrid cell to n22

pixelspixels
•• Draw fat points Draw fat points

to cover each to cover each
fat cellfat cell
•• glPointSizeglPointSize(n)(n)

ertex (photon_pos)

Vertex Program

Flattened Grid

4 pixels

Stencil BinningStencil Binning

•• Control location Control location
written to with written to with
stencilstencil
•• Same stencil Same stencil

pattern for each pattern for each
grid cellgrid cell

•• Pass when stencil Pass when stencil
is nis n22 --11

•• Stencil always Stencil always
incrementsincrements

ertex (photon_pos)

Vertex Program

Flattened Grid
Stencil

Stencil Values

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Stencil BinningStencil Binning

•• Control location Control location
written to with written to with
stencilstencil
•• Same stencil Same stencil

pattern for each pattern for each
grid cellgrid cell

•• Pass when stencil Pass when stencil
is nis n22 --11

•• Stencil always Stencil always
incrementsincrements

ertex (photon_pos)

Vertex Program

Flattened Grid

1 pixel

Stencil

4 pixels

Stencil Values

0 1

2 3

1 2

3 4

0 1

2 3

0 1

2 3

Stencil BinningStencil Binning

•• Control location Control location
written to with written to with
stencilstencil
•• Same stencil Same stencil

pattern for each pattern for each
grid cellgrid cell

•• Pass when stencil Pass when stencil
is nis n22 --11

•• Stencil always Stencil always
incrementsincrements

ertex (photon_pos)

Vertex Program

Flattened Grid
Stencil

1 pixel

4 pixels

Stencil Values

0 1

2 3

2 3

4 5

0 1

2 3

0 1

2 3

9

Photon Map StructurePhoton Map Structure

p0p0 p1p1 p2p2 p3p3 p4p4 p5p5 p1p1
11

v0

55 44 33 22 1010 99 88 77 44 33 22 11

v1 v2

tencil Buffer (photon count)

Grid

ssuming p6 – p10 all land in v1

Stencil Binning SummaryStencil Binning Summary

•• Single rendering passSingle rendering pass
•• Vertex program is fastVertex program is fast

•• 42 instructions (Cg 1.1)42 instructions (Cg 1.1)

•• 100K 4x4 ‘fat’ points in around .02s100K 4x4 ‘fat’ points in around .02s

•• Resulting structure is sparseResulting structure is sparse
•• Fixed number of entries per bin Fixed number of entries per bin

may be unacceptablemay be unacceptable

SearchingSearching

SearchingSearching

•• Find a specific element in an Find a specific element in an
ordered listordered list

•• Binary searchBinary search

•• Used to build uniform grid Used to build uniform grid
structure for photon mapstructure for photon map

10

Binary SearchBinary Search

•• Find the first element in each Find the first element in each
grid cellgrid cell
•• If none, find first element in next cellIf none, find first element in next cell

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0

00 11 33 44 55 6622

v5v5

77SortedSorted
Photon ListPhoton List
(v# is key)(v# is key)

Binary SearchBinary Search

•• Find the first element in each Find the first element in each
grid cellgrid cell
•• If none, find first element in next cellIf none, find first element in next cell

44 44 44 44

v0v0 v1v1 v2v2 v3v3 v4v4 v5v5

44 44

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0

00 11 33 44 55 6622

v5v5

77

initializeGridGrid

SortedSorted
Photon ListPhoton List
(v# is key)(v# is key)

Binary SearchBinary Search

•• Find the first element in each Find the first element in each
grid cellgrid cell
•• If none, find first element in next cellIf none, find first element in next cell

44 44 44 44

v0v0 v1v1 v2v2 v3v3 v4v4 v5v5

44 44

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0

00 11 33 44 55 6622

v5v5

77

22 22 66 6622 66

initialize

step 1

GridGrid

SortedSorted
Photon ListPhoton List
(v# is key)(v# is key)

Binary SearchBinary Search

•• Find the first element in each Find the first element in each
grid cellgrid cell
•• If none, find first element in next cellIf none, find first element in next cell

44 44 44 44

v0v0 v1v1 v2v2 v3v3 v4v4 v5v5

44 44

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0

00 11 33 44 55 6622

v5v5

77

22 22 66 6622 66

initialize

step 1

11 33 55 5533 55 step 2

GridGrid

SortedSorted
Photon ListPhoton List
(v# is key)(v# is key)

11

Binary SearchBinary Search

•• Find the first element in each Find the first element in each
grid cellgrid cell
•• If none, find first element in next cellIf none, find first element in next cell

44 44 44 44

v0v0 v1v1 v2v2 v3v3 v4v4 v5v5

44 44

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0

00 11 33 44 55 6622

v5v5

77

22 22 66 6622 66

initialize

step 1

11 33 55 5533 55 step 2

00 22 66 6622 66 step 3

GridGrid

SortedSorted
Photon ListPhoton List
(v# is key)(v# is key)

Binary SearchBinary Search

•• Find the first element in each Find the first element in each
grid cellgrid cell
•• If none, find first element in next cellIf none, find first element in next cell

44 44 44 44

v0v0 v1v1 v2v2 v3v3 v4v4 v5v5

44 44

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0

00 11 33 44 55 6622

v5v5

77

22 22 66 6622 66

initialize

step 1

11 33 55 5533 55 step 2

00 22 66 6622 66 step 3

00 33 66 6633 66 step 4

GridGrid

SortedSorted
Photon ListPhoton List
(v# is key)(v# is key)

Binary Search SummaryBinary Search Summary

•• Single rendering passSingle rendering pass
•• O(log n) stepsO(log n) steps

•• 18 instructions per step (Cg 1.1)18 instructions per step (Cg 1.1)

•• 512x512 elements 512x512 elements –– 342 instructions 342 instructions
per pixelper pixel

Nearest Neighbor QueriesNearest Neighbor Queries

12

Nearest Neighbor QueriesNearest Neighbor Queries

•• Given a sample point Given a sample point pp, find the , find the
kk points nearest points nearest pp within a data within a data
setset

•• KnnKnn--gridgrid

•• Used when computing radiance Used when computing radiance
estimate of a given sample point estimate of a given sample point
during photon mappingduring photon mapping

KnnKnn--grid Algorithmgrid Algorithm

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 0

KnnKnn--grid Algorithmgrid Algorithm

•• Candidate Candidate
photons must be photons must be
within max within max
search radiussearch radius
•• Fixed radius Fixed radius

search uses all search uses all
photons within photons within
max search radiusmax search radius

•• Visit Visit voxelsvoxels in in
order of order of
distance to distance to
sample pointsample pointsample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 0

KnnKnn--grid Algorithmgrid Algorithm

•• If current If current
number of number of
photons in photons in
estimate is less estimate is less
than number than number
requested, grow requested, grow
search radiussearch radius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 1

13

KnnKnn--grid Algorithmgrid Algorithm

•• If current If current
number of number of
photons in photons in
estimate is less estimate is less
than number than number
requested, grow requested, grow
search radiussearch radius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 2

KnnKnn--grid Algorithmgrid Algorithm

•• Don’t add Don’t add
photons outside photons outside
maximum search maximum search
radiusradius

•• Don’t grow Don’t grow
search radius search radius
when photon is when photon is
outside outside
maximum radiusmaximum radius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 2

KnnKnn--grid Algorithmgrid Algorithm

•• Add photons Add photons
within search within search
radiusradius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 3

KnnKnn--grid Algorithmgrid Algorithm

•• Add photons Add photons
within search within search
radiusradius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 4

14

KnnKnn--grid Algorithmgrid Algorithm

•• Don’t expand Don’t expand
search radius if search radius if
enough photons enough photons
already foundalready found

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 4

KnnKnn--grid Algorithmgrid Algorithm

•• Add photons Add photons
within search within search
radiusradius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 5

KnnKnn--grid Algorithmgrid Algorithm

•• Visit all other Visit all other
voxelsvoxels
accessible accessible
within within
determined determined
search radiussearch radius

•• Add photons Add photons
within search within search
radiusradius

sample point

photon

candidate photon

Want a 4 photon estimate

Photons in estimate: 6

KnnKnn--grid Summarygrid Summary

•• Requires 95 instructions per Requires 95 instructions per
candidate neighborcandidate neighbor
•• Plus 65 instructions per pass overheadPlus 65 instructions per pass overhead

•• Compiled under Cg 1.1Compiled under Cg 1.1

•• Locates more than Locates more than kk nearest nearest
neighborsneighbors

15

Bringing It All TogetherBringing It All Together

Ray Tracing and Photon Ray Tracing and Photon
Mapping DemosMapping Demos

Open Issues in Mapping Open Issues in Mapping
Algorithms to Algorithms to GPUsGPUs

Open IssuesOpen Issues

•• Compute mask, branching, or Compute mask, branching, or
stream buffer?stream buffer?
•• Need some way to prevent execution Need some way to prevent execution

of expensive programs over of expensive programs over
programmed subset of pixelsprogrammed subset of pixels

•• ReadRead--modifymodify--write bufferswrite buffers
•• Efficient save and restore over Efficient save and restore over

multiple passesmultiple passes

•• Addressing modesAddressing modes
•• 2D textures vs. 1D textures2D textures vs. 1D textures

•• Integer computationInteger computation
•• Sometimes you need a mod or a divSometimes you need a mod or a div

•• Readback Readback speedspeed

AcknowledgementsAcknowledgements

•• PatPat HanrahanHanrahan
•• Ian Buck, Bill MarkIan Buck, Bill Mark
•• CraigCraig DonnerDonner, Mike, Mike CammaranoCammarano,,

Henrik WannHenrik Wann JensenJensen
•• FundingFunding

•• Nvidia Graduate Research FellowshipNvidia Graduate Research Fellowship

•• ATI, DARPA, MERL, Nvidia, Sony, SunATI, DARPA, MERL, Nvidia, Sony, Sun

•• ATI ATI –– James Percy, BobJames Percy, Bob DrebinDrebin
•• Nvidia Nvidia –– MattMatt PapakiposPapakipos, David , David

Kirk, KurtKirk, Kurt AkeleyAkeley

Interactive Walkthroughs using Multiple GPUs

Dinesh Manocha
University of North Carolina at Chapel Hill

Appeared in the proceedings of ACM Symposium on Interactive 3D Graphics, 2003

Interactive Visibility Culling in Complex Environments using
Occlusion-Switches

Naga K. Govindaraju Avneesh Sud Sung-Eui Yoon Dinesh Manocha
University of North Carolina at Chapel Hill
{naga,sud,sungeui,dm}@cs.unc.edu
http://gamma.cs.unc.edu/switch

Abstract: We present occlusion-switches for interactive
visibility culling in complex 3D environments. An occlusion-
switch consists of two GPUs (graphics processing units) and
each GPU is used to either compute an occlusion representa-
tion or cull away primitives not visible from the current view-
point. Moreover, we switch the roles of each GPU between
successive frames. The visible primitives are rendered in par-
allel on a third GPU. We utilize frame-to-frame coherence to
lower the communication overhead between different GPUs
and improve the overall performance. The overall visibility
culling algorithm is conservative up to image-space preci-
sion. This algorithm has been combined with levels-of-detail
and implemented on three networked PCs, each consisting
of a single GPU. We highlight its performance on complex
environments composed of tens of millions of triangles. In
practice, it is able to render these environments at interac-
tive rates with little loss in image quality.
CR Categories and Subject Descriptors: I.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling
Keywords: Interactive display, multiple GPUs, conserva-
tive occlusion culling, parallel rendering, levels-of-detail

1 Introduction
Interactive display and walkthrough of large geometric en-
vironments currently pushes the limits of graphics technol-
ogy. Environments composed of tens of millions of primitives
are common in applications such as simulation-based design
of large man-made structures, architectural visualization, or
urban simulation. In spite of the rapid progress in the perfor-
mance of graphics processing units (GPUs), it is not possible
to render such complex datasets at interactive rates, i.e., 20
frames a second or more, on current graphics systems.

Many rendering algorithms that attempt to minimize the
number of primitives sent to the graphics processor during
each frame have been developed. These are based on visibil-
ity culling, level-of-detail modeling, sample-based represen-
tations, etc. Their goal is to not render any primitives that
the user will not ultimately see. These techniques have been
extensively studied in computer graphics and related areas.

In this paper, we primarily deal with occlusion culling.
Our goal is to cull away a subset of the primitives that are

not visible from the current viewpoint. Occlusion culling
has been well-studied in the literature and the current al-
gorithms can be classified into different categories. Some
are specific to certain types of models, such as architec-
tural or urban environments. Others require extensive pre-
processing of visibility, or the presence of large, easily identi-
fiable occluders in the scene, and may not work well for com-
plex environments. The most general algorithms use some
combination of object-space hierarchies and image-space oc-
clusion representation. These algorithms can be further clas-
sified into three categories:

1. Specialized Architectures: Some specialized hard-
ware architectures have been proposed for occlusion
culling [Greene et al. 1993; Greene 2001].

2. Readbacks and Software Culling: These algo-
rithms read back the frame-buffer or depth-buffer, build
a hierarchy, and perform occlusion culling in software
[Greene et al. 1993; Zhang et al. 1997; Baxter et al.
2002]. However, readbacks can be expensive (e.g. 50
milliseconds to read back the 1K× 1K depth-buffer on
a Dell 530 Workstation with NVIDIA GeForce 4 card).

3. Utilize Hardware Occlusion Queries: Many
vendors have been supporting image-space occlusion
queries. However, their use can impose an additional
burden on the graphics pipeline and can sometimes re-
sult in reduced throughput and frame rate [Klowoski
and Silva 2001].

Overall, occlusion culling is considered quite expensive and
hard to achieve in real-time for complex environments.

Main Contribution: We present a novel visibility culling
algorithm based on occlusion-switches. An occlusion-switch
consists of two graphics processing units (GPUs). During
each frame, one of the GPUs renders the occluders and com-
putes an occlusion representation, while the second GPU
performs culling in parallel using an image-space occlusion
query. In order to avoid any depth-buffer readbacks and
perform significant occlusion culling, the two GPUs switch
their roles between successive frames. The visible primitives
computed by the occlusion-switch are rendered in parallel
on a third GPU. The algorithm utilizes frame-to-frame co-
herence to compute occluders for each frame as well as lower
the bandwidth or communication overhead between different
GPUs. We have combined the occlusion-culling algorithm
with static levels-of-detail (LODs) and used it for interactive
walkthrough of complex environments. Our current imple-
mentation runs on three networked PCs, each consisting of a
NVIDIA GeForce 4 graphics processor, and connected using
Ethernet. We highlight the performance of our algorithm
on three complex environments: a Powerplant model with
more than 13 million triangles, a Double Eagle tanker with
more than 82 million triangles and a part of a Boeing 777

airplane with more than 20 million triangles. Our system,
SWITCH, is able to render these models at 10 − 20 frames
per second with little loss in image quality. However, our
algorithm based on occlusion-switches introduces one frame
of latency into the system.

As compared to earlier approaches, our overall occlusion
culling and rendering algorithm offers the following advan-
tages:

1. Generality: It makes no assumption about the scene
and is applicable to all complex environments.

2. Conservative Occlusion Culling: The algorithm
performs conservative occlusion up to screen-space im-
age precision.

3. Low Bandwidth: The algorithm involves no depth-
buffer readback from the graphics card. The bandwidth
requirements between different GPUs varies as a func-
tion of the changes in the visible primitives between
successive frames (e.g. a few kilobytes per frame).

4. Significant Occlusion Culling: As compared to ear-
lier approaches, our algorithm culls away a higher per-
centage of primitives not visible from the current view-
point.

5. Practicality: Our algorithm can be implemented on
commodity hardware and only assumes hardware sup-
port for the occlusion query, which is becoming widely
available. Furthermore, we obtain 2− 3 times improve-
ment in frame rate as compared to earlier algorithms.

Organization: The rest of the paper is organized in the
following manner. We give a brief overview of previous work
on parallel rendering and occlusion culling in Section 2. Sec-
tion 3 presents occlusion-switches and analyzes the band-
width requirements. In Section 4, we combine our occlusion
culling algorithm with pre-computed levels-of-detail and use
it to render large environments. We describe its implemen-
tation and highlight its performance on three complex envi-
ronments in Section 5. Finally, we highlight areas for future
research in Section 6.

2 Related Work
In this section, we give a brief overview of previous work on
occlusion culling and parallel rendering.

2.1 Occlusion Culling

The problem of computing portions of the scene visible from
a given viewpoint has been well-studied in computer graph-
ics and computational geometry. A recent survey of differ-
ent algorithms is given in [Cohen-Or et al. 2001]. In this
section, we give a brief overview of occlusion culling algo-
rithms. These algorithms aim to cull away a subset of the
primitives that are occluded by other primitives and, there-
fore, are not visible from the current viewpoint.

Many occlusion culling algorithms have been designed
for specialized environments, including architectural models
based on cells and portals [Airey et al. 1990; Teller 1992]
and urban datasets composed of large occluders [Coorg and
Teller 1997; Hudson et al. 1997; Schaufler et al. 2000; Wonka
et al. 2000; Wonka et al. 2001]. However, they may not
be able to obtain significant culling on large environments
composed of a number of small occluders.

Algorithms for general environments can be broadly clas-
sified based on whether they are conservative or approxi-
mate, whether they use object space or image space hierar-
chies, or whether they compute visibility from a point or a
region. The conservative algorithms compute the potentially

visible set (PVS) that includes all the visible primitives, plus
a small number of potentially occluded primitives [Coorg and
Teller 1997; Greene et al. 1993; Hudson et al. 1997; Klowoski
and Silva 2001; Zhang et al. 1997]. On the other hand, the
approximate algorithms include most of the visible objects
but may also cull away some of the visible objects [Bartz
et al. 1999; Klowoski and Silva 2000; Zhang et al. 1997].
Object space algorithms make use of spatial partitioning or
bounding volume hierarchies; however, performing “occluder
fusion” on scenes composed of small occluders with object
space methods is difficult. Image space algorithms including
the hierarchical Z-buffer (HZB) [Greene et al. 1993; Greene
2001] or hierarchical occlusion maps (HOM) [Zhang et al.
1997] are generally more capable of capturing occluder fu-
sion.

It is widely believed that none of the current algorithms
can compute the PVS at interactive rates for complex envi-
ronments on current graphics systems [El-Sana et al. 2001].
Some of the recent approaches are based on region-based
visibility computation, hardware-based visibility queries and
multiple graphics pipelines in parallel.

2.2 Region-based Visibility Algorithms

These algorithms pre-compute visibility for a region of space
to reduce the runtime overhead [Durand et al. 2000; Schau-
fler et al. 2000; Wonka et al. 2000]. Most of them work well
for scenes with large or convex occluders. Nevertheless, a
trade-off occurs between the quality of the PVS estimation
for a region and the memory overhead. These algorithms
may be extremely conservative or unable to obtain signifi-
cant culling on scenes composed of small occluders.

2.3 Hardware Visibility Queries

A number of image-space visibility queries have been added
by manufacturers to their graphics systems to accelerate vis-
ibility computations. These include the HP occlusion culling
extensions, item buffer techniques, ATI’s HyperZ extensions
etc. [Bartz et al. 1999; Klowoski and Silva 2001; Greene
2001; Meissner et al. 2002; Hillesl et al. 2002]. All these al-
gorithms use the GPU to perform occlusion queries as well
as render the visible geometry. As a result, only a fraction of
a frame time is available for rasterizing the visible geometry
and it is non-trivial to divide the time between perform-
ing occlusion queries and rendering the visible primitives. If
a scene has no occluded primitives, this approach will slow
down the overall performance. Moreover, the effectiveness of
these queries varies based on the model and the underlying
hardware.

2.4 Multiple Graphics Pipelines

The use of an additional graphics system as a visibility server
has been used by [Wonka et al. 2001; Baxter et al. 2002].
The approach presented by Wonka et al. [2001] computes
the PVS for a region at runtime in parallel with the main
rendering pipeline and works well for urban environments.
However, it uses the occluder shrinking algorithm [Wonka
et al. 2000] to compute the region-based visibility, which
works well only if the occluders are large and volumetric
in nature. The method also makes assumptions about the
user’s motion.

Baxter et al. [2002] used a two-pipeline based occlusion
culling algorithm for interactive walkthrough of complex 3D
environments. The resulting system, GigaWalk, uses a vari-
ation of two-pass HZB algorithm that reads back the depth
buffer and computes the hierarchy in software. GigaWalk
has been implemented on a SGI Reality Monster and uses
two Infinite Reality pipelines and three CPUs. In Section
5, we compare the performance of our algorithm with Gi-
gaWalk.

2.5 Parallel Rendering

A number of parallel algorithms have been proposed in the
literature to render large datasets on shared-memory sys-
tems or clusters of PCs. These algorithms include tech-
niques to assign different parts of the screen to different
PCs [Samanta et al. 2000]. Other cluster-based approaches
include WireGL, which allows a single serial application to
drive a tiled display over a network [Humphreys et al. 2001]
as well as parallel rendering with k-way replication [Samanta
et al. 2001]. The performance of these algorithms varies with
different environments as well as the underlying hardware.
Most of these approaches are application independent and
complementary to our parallel occlusion algorithm that uses
a cluster of three PCs for interactive display.

Parallel algorithms have also been proposed for interac-
tive ray-tracing of volumetric and geometric models on a
shared-memory multi-processor system [Parker et al. 1999].
A fast algorithm for distributed ray-tracing of highly com-
plex models has been described in [Wald et al. 2001].

3 Interactive Occlusion Culling
In this section, we present occlusion-switches and use them
for visibility culling. The resulting algorithm uses multiple
graphics processing units (GPUs) with image-space occlu-
sion query.

3.1 Occlusion Representation and Culling

An occlusion culling algorithm has three main components.
These include:

1. Compute a set of occluders that correspond to an ap-
proximation of the visible geometry.

2. Compute an occlusion representation.

3. Use the occlusion representation to cull away primitives
that are not visible.

Different culling algorithms perform these steps either ex-
plicitly or implicitly. We use an image-based occlusion rep-
resentation because it is able to perform “occluder fusion”
on possibly disjoint occluders [Zhang et al. 1997]. Some of
the well-known image-based hierarchical representations in-
clude HZB [Greene et al. 1993] and HOM [Zhang et al. 1997].
However, the current GPUs do not support these hierarchies
in the hardware. Many two-pass occlusion culling algorithms
rasterize the occluders, read back the frame-buffer or depth-
buffer, and build the hierarchies in software [Baxter et al.
2002; Greene et al. 1993; Zhang et al. 1997].

However, reading back a high resolution frame-buffer or
depth-buffer can be slow on PC architectures. Moreover,
constructing the hierarchy in software incurs additional over-
head.

We utilize the hardware-based occlusion queries
that are becoming common on current GPUs. These
queries scan-convert the specified primitives (e.g.
bounding boxes) to check whether the depth of any
pixels changes. Different queries vary in their func-
tionality. Some of the well-known occlusion queries
based on the OpenGL culling extension include the
HP Occlusion Query (http://oss.sgi.com/projects/
ogl-sample/registry/HP/occlusion_test.txt) and
the NVIDIA OpenGL extension GL NV occlusion query
(http://oss.sgi.com/projects/ogl-sample/registry/
NV/occlusion_query.txt). These queries can sometime
stall the pipelines while waiting for the results. As a result,
we use a specific GPU during each frame to perform only
these queries.

Our algorithm uses the visible geometry from frame i
as an approximation to the occluders for frame i + 1. The

Figure 1: System Architecture: Each color represents a separate
GPU. Note that GPU1 and GPU2 switch their roles each frame
with one performing hardware culling and other rendering occlud-
ers. GPU3 is used as a display client.

occlusion representation implicitly corresponds to the depth
buffer after rasterizing all these occluders. The occlusion
tests are performed using hardware-based occlusion queries.
The occlusion switches are used to compute the occlusion
representation and perform these queries.

3.2 Occlusion-Switch

An occlusion-switch takes the camera for frame i+1 as input
and transmits the potential visible set and camera for frame
i as the output to the renderer. The occlusion-switch is com-
posed of two GPUs, which perform the following functions,
each running on a separate GPU in parallel:

• Compute Occlusion Representation (OR): Ren-
der the occluders to compute the occlusion representa-
tion. The occluders for frame i + 1 correspond to the
visible primitives from frame i.

• Hardware Culling (HC): Enable the occlusion query
state on the GPU and render the bounding boxes cor-
responding to the scene geometry. Use the image-
space occlusion query to determine the visibility of each
bounding box and compute the PVS. Moreover, we dis-
able modifications to the depth buffer while performing
these queries.

During a frame, each GPU in the occlusion-switch per-
forms either OR or HC and at the end of the frame the
two GPUs inter-change their function. The depth buffer
computed by OR during the previous frame is used by HC
to perform the occlusion queries during the current frame.
Moreover, the visible nodes computed by HC correspond to
the PVS. The PVS is rendered in parallel on a third GPU
and is used by the OR for the next frame to compute the
occlusion representation. The architecture of the overall sys-
tem is shown in Fig. 1. The overall occlusion algorithm
involves no depth buffer readbacks from the GPUs.

3.3 Culling Algorithm

The occlusion culling algorithm uses an occlusion-switch to
compute the PVS and renders them in parallel on a separate
GPU. Let GPU1 and GPU2 constitute the occlusion-switch
and GPU3 is used to render the visible primitives (RVG). In
an occlusion-switch, the GPU performing HC requires OR
for occlusion tests. We circumvent the problem of transmit-
ting occlusion representation from the GPU generating OR
to GPU performing hardware cull tests by “switching” their
roles between successive frames as shown in Fig. 1. For

example, GPU1 is performing HC for frame i and sending
visible nodes to GPU2 (to be used to compute OR for frame
i+1) and GPU3 (to render visible geometry for frame i). For
frame i + 1, GPU2 has previously computed OR for frame
i+ 1. As a result, GPU2 performs HC, GPU1 generates the
OR for frame i+2 and GPU3 displays the visible primitives.

3.4 Incremental Transmission

The HC process in the occlusion culling algorithm computes
the PVS for each frame and sends it to the OR and RVG.
To minimize the communication overhead, we exploit frame-
to-frame coherence in the list of visible primitives. All the
GPUs keep track of the visible nodes in the previous frame
and the GPU performing HC uses this list and only transmits
the changes to the other two GPUs. The GPU performing
HC sends the visible nodes to OR and RVG, and therefore, it
has information related to the visible set on HC. Moreover,
the other two processes, OR and RVG, maintain the visible
set as they receive visible nodes from HC. To reduce the
communication bandwidth, we transmit only the difference
in the visible sets for the current and previous frames. Let
Vi represent the potential visible set for frame i and δj,k =
Vj − Vk be the difference of two sets. During frame i, HC
transmits δi,i−1 and δi−1,i to OR and RVG, respectively.
We reconstruct Vi at OR and RVG based on the following
formulation:

Vi = (Vi−1 − δi−1,i) ∪ δi,i−1.

In most interactive applications, we expect that the size of
the set δi−1,i ∪ δi,i−1 is much smaller than that of Vi.

3.5 Bandwidth Requirements

In this section, we discuss the bandwidth requirements of our
algorithm for a distributed implementation on three different
graphics systems (PCs). Each graphics system consists of a
single GPU and they are connected using a network. In
particular, we map each node of the scene by the same node
identifier across the three different graphics systems. We
transmit this integer node identifier across the network from
the GPU performing HC to each of the GPUs performing
OR and RVG. This procedure is more efficient than sending
all the triangles that correspond to the node as it requires
relatively smaller bandwidth per visible node (i.e. 4 bytes
per node). So, if the number of visible nodes is n, then GPU
performing HC must send 4n bytes per frame to each OR and
RVG client. Here n refers to the number of visible objects
and not the visible polygons. We can reduce the header
overhead by sending multiple integers in a packet. However,
this process can introduce some extra latency in the pipeline
due to buffering. Moreover, the size of camera parameters
is 72 bytes; consequently, the bandwidth requirement per
frame is 8n+ nh/b+ 3(72 + h) bytes, where h is the size of
header in bytes and buffer size b is the number of node-ids
in a packet. If the frame rate is f frames per second, the
total bandwidth required is 8nf + nhf/b + 216f + 3hf . If
we send visible nodes by incremental transmission, then n is
equal to the size of δi,i−1 ∪ δi−1,i.

4 Interactive Display
In this section, we present our overall rendering algorithm for
interactive display of large environments. We use the occlu-
sion culling algorithm described above and combines it with
pre-computed static levels-of-detail (LODs) to render large
environments. We represent our environment using a scene
graph, as described in [Erikson et al. 2001]. We describe
the scene graph representation and the occlusion culling al-
gorithm. We also highlight many optimizations used to im-
prove the overall performance.

4.1 Scene Graph

Our rendering algorithm uses a scene graph representation
along with pre-computed static LODs. Each node in the
scene graph stores references to its children as well as its
parent. In addition, we store the bounding box of each node
in the scene graph, which is used for view frustum culling and
occlusion queries. This bounding box may correspond to an
axis-aligned bounding box (AABB) or an oriented bounding
box (OBB). We pre-compute the LODs for each node in the
scene graph along with hierarchical levels-of-detail (HLODs)
for each intermediate node in the scene graph [Erikson et al.
2001]. Moreover, each LOD and HLOD is represented as a
separate node in the scene graph and we associate an er-
ror deviation metric that approximately corresponds to the
Hausdorff distance between the original model and the sim-
plified object. At runtime, we project this error metric to
the screen space and compute the maximum deviation in the
silhouette of the original object and its corresponding LOD
or HLOD. Our rendering algorithm uses an upper bound on
the maximum silhouette deviation error and selects the low-
est resolution LOD or HLOD that satisfies the error bound.

HardwareCull(Camera *cam)

1 queue = root of scene graph

2 disable color mask and depth mask

3 while(queue is not empty)

4 do

5 node = pop(queue)

6 visible= OcclusionTest(node)

7 if(visible)

8 if(error(node) < pixels of error)

9 Send node to OR and RVG

10 else

11 push children of node to end of queue

12 endif

13 end if

14 end do

ALGORITHM 4.1: Pseudo code for Hardware cull (HC). Oc-
clusionTest renders the bounding box and returns either the number
of visible pixels or a boolean depending upon the implementation of
query. The function error(node) returns the screen space projection
error of the node. Note that if the occlusion test returns the num-
ber of visible pixels, we could use it to compute the level at which
it must be rendered.

4.2 Culling Algorithm

At runtime, we traverse the scene graph and cull away por-
tions of geometry that are not visible. The visibility of a
node is computed by rendering its bounding box against the
occlusion representation and querying if it is visible or not.
Testing the visibility of a bounding box is a fast and con-
servative way to reject portions of the scene that are not
visible. If the bounding box of the node is visible, we test
whether any of the LODs or HLODs associated with that
node meet the pixel-deviation error-bound. If one of the
LODs or HLODs is selected, we include that node in the
PVS and send it to the GPU performing OR for the next
frame as well as to the GPU performing RVG for the cur-
rent frame. If the node is visible and none of the HLODs
associated with it satisfy the simplification error bound, we
traverse down the scene graph and apply the procedure re-
cursively on each node. On the other hand, if the bounding
box of the node is not visible, we do not render that node
or any node in the sub-tree rooted at the current node.

The pseudocode for the algorithm is described in Algo-
rithm 4.1. The image-space occlusion query is used to per-
form view frustum culling as well as occlusion culling on the

bounding volume.

4.3 Occluder Representation Generation

At runtime, if we are generating OR for frame i + 1, we
receive camera i + 1 from RVG and set its parameters. We
also clear its depth and color buffer. While OR receives
nodes from GPU performing HC, we render them at the
appropriate level of detail. An end-of-frame identifier is sent
from HC to notify that no more nodes need to be rendered
for this frame.

4.4 Occlusion-Switch Algorithm

We now describe the algorithm for the “switching” mecha-
nism described in Section 3. The two GPU’s involved in the
occlusion-switch toggle or interchange their roles of perform-
ing HC and generating OR. We use the algorithms described
in sections 4.2 and 4.3 to perform HC and OR, respectively.
The pseudocode for the resulting algorithm is shown in Al-
gorithm 4.2.

1 if GPU is generating OR
2 camera=grabLatestCam()
3 end if
4 Initialize the colormask and depth mask to true.
5 if GPU is performing HC
6 Send Camera to RVG
7 else /*GPU needs to render occluders */
8 Clear depth buffer
9 end if
10 Set the camera parameters
11 if GPU is performing HC
12 HardwareCull(camera)
13 Send end of frame to OR and RVG
14 else /* Render occluders */
15 int id= end of frame +1 ;
16 while(id!=end of frame)
17 do
18 id=receive node from HC
19 render(id, camera);
20 end do
21 end if
22 if GPU is performing HC
23 do OR for next frame
24 else
25 do HC for next frame
26 end if

ALGORITHM 4.2: The main algorithm for the implementa-
tion of occlusion-switch. Note that we send the camera parameters
to the RVG client at the beginning of HC (on line 6) in order to
reduce latency.

4.5 Render Visible Geometry

The display client, RVG, receives the camera for the current
frame from HC. In addition, it receives the visible nodes in
the scene graph and renders them at the appropriate level-
of-detail. Moreover, the display client transmits the camera
information to the GPU’s involved in occlusion-switch based
on user interaction. The colormask and depthmask are set
to true during initialization.

4.6 Incremental Traversal and Front Tracking

The traversal of scene graph defines a cut that can be par-
titioned into a visible front and an occluded front.

• Visible Front: Visible front is composed of all the
visible nodes in the cut. In addition, each node belong-
ing to the visible front satisfies the screen space error
metric while its parent does not.

• Occluded Front: Occluded front is composed of all
the occluded nodes in the cut. Also, note that an oc-

Figure 2: System Overview: Each color represents a separate GPU
with GPU1 and GPU2 forming a switch and GPU3 as the display
client. Each of GPU1 and GPU2 has a camera-receiver thread and
receives camera parameters when the client transmits them due to
user’s motion and stores them in a camera buffer of size one. The
GPU performing OR grabs the latest camera from this thread as the
camera position for the next frame. Notice that in this design, the
GPU performing HC doesn’t have any latency in terms of receiving
the camera parameters.

cluded node may not satisfy the screen space error met-
ric.

We reduce the communication overhead by keeping track of
the visible and occluded fronts from the previous frame at
each GPU. Each node in the front is assigned one of the
following states:

• Over-refined: Both the node and its parent satisfy
the silhouette deviation metric in screen space.

• Refined: The node satisfies the silhouette deviation
metric while the parent does not.

• Under-refined: The node does not satisfy the silhou-
ette deviation metric.

Each node in the front is updated depending upon its state.
If the node is Over-refined, we traverse up the scene graph to
reach a parent node which is Refined. If the node is Under-
refined, we traverse down the scene graph generating a set of
Refined children nodes. At the beginning of each frame, both
OR and RVG update the state of each node in the visible
front before rendering it.

We also render each node in δi,i−1 at OR and RVG. At
the end of the frame, the visible nodes for the current frame
are reconstructed as described in Section 3.4. The update
of the state of each node is important for maintaining the
conservative nature of the algorithm.

At the GPU performing HC, we also maintain the oc-
cluded front in addition to the visible front of previous frame.
This enables us to compute δi,i−1 efficiently by performing
culling on the occluded front before the visible front. A
node in the occluded front is refined only if it is in the Over-
refined state. Each of the occluded fronts and visible fronts
is refined before performing culling algorithm on the refined
fronts. Moreover, δi,i−1 is a part of the refined occluded
front.

4.7 Optimizations

We use a number of optimizations to improve the perfor-
mance of our algorithms, including:

• Multiple Occlusion Tests: Our culling al-
gorithm performs multiple occlusion tests using
GL NV occlusion query; this avoids immediate read-
back of occlusion identifiers, which can stall the
pipeline. More details on implementation are described
in section 4.7.1.

• Visibility for LOD Selection: We utilize the
number of visible pixels of geometry queried using
GL NV occlusion query in selecting the appropriate
LOD. Details are discussed in section 4.7.2.

4.7.1 Multiple Occlusion Tests

Our rendering algorithm performs several optimiza-
tions to improve the overall performance. The
GL NV occlusion query on NVIDIA GeForce 3 and
GeForce 4 cards allows multiple occlusion queries at a
time and query the results at a later time. We traverse
the scene graph in a breadth first manner and perform all
possible occlusion queries for the nodes at a given level.
This traversal results in an improved performance. Note
that certain nodes may be occluded at a level and are not
tested for visibility. After that we query the results and
compute the visibility of each node. Let Li be the list of
nodes at level i which are being tested for visibility as well
as pixel-deviation error. We generate the list Li+1 that
will be tested at level i + 1 by pushing the children of a
node n ∈ Li only if its bounding box is visible, and it does
not satisfy the pixel-deviation error criterion. We use an
occlusion identifier for each node in the scene graph and
exploit the parallelism available in GL NV occlusion query
by performing multiple occlusion queries at each level.

4.7.2 Visibility for LOD Selection

The LODs in a scene graph are associated with a screen
space projection error. We traverse the scene graph until
each LOD satisfies the pixels-of-error metric. However, this
approach can be too conservative if the object is mostly oc-
cluded. We therefore utilize the visibility information in se-
lecting an appropriate LOD or HLOD of the object.

The number of visible pixels for a bounding box of a node
provides an upper bound on the number of visible pixels for
its geometry. The GL NV occlusion query also returns the
number of pixels visible when the geometry is rendered. We
compute the visibility of a node by rendering the bounding
box of the node and the query returns the number of visible
pixels corresponding to the box. If the number of visible
pixels is less than the pixels-of-error specified by a bound,
we do not traverse the scene graph any further at that node.
This additional optimization is very useful if only a very
small portion of the bounding box is visible, and the node
has a very high screen space projection error associated with
it.

4.8 Design Issues

Latency and reliability are two key components considered
in the design of our overall rendering system. In addition to
one frame of latency introduced by an occlusion-switch, our
algorithm introduces additional latency due to the transfer
of camera parameters and visible node identifiers across the
network. We also require reliable transfer of data among
different GPUs to ensure the correctness of our approach.

4.8.1 System Latency

A key component of any parallel algorithm implemented us-
ing a cluster of PCs is the network latency introduced in
terms of transmitting the results from one PC to another
during each frame. The performance of our system is depen-
dent on the latency involved in receiving the camera param-
eters by the GPUs involved in occlusion-switch. In addition,

Figure 3: Comparison of number of nodes transmitted with and
without incremental transmission (described in section 4.6) for
a sample path on Double Eagle Tanker model. Using incremen-
tal transmission, we observe an average reduction of 93% in the
number of nodes transmitted between the GPUs.

there is latency in terms of sending the camera parameters
from the GPU performing HC to the GPU performing RVG.
Moreover, latency is also introduced in sending the visible
nodes across the network to RVG and OR. We eliminate the
latency problem in receiving the camera parameters by the
GPU performing HC using the switching mechanism.

Let GPU1 and GPU2 constitute an occlusion-switch.
GPU1 performs HC for frame i and GPU2 generates OR for
frame i+ 1. For frame i+ 1, GPU1 generates OR for frame
i + 2, and GPU2 performs HC for frame i + 1. Given that
GPU2 has already rendered the occluders for frame i + 1,
it already has the correct camera parameters for performing
HC for frame i+1. As a result, no additional latency occurs
in terms of HC receiving the camera parameters. However,
the GPU performing OR requires the camera-parameters
from the GPU performing RVG. This introduces latency in
terms of receiving the camera parameters. Because HC takes
some time to perform hardware cull tests before transmitting
the first visible node to GPU performing OR, this latency
is usually hidden. We reduce the latency in transmitting
camera parameters from HC to RVG by sending them in the
beginning of each frame. Figure 2 illustrates the basic proto-
col for transferring the camera parameters among the three
GPU’s. We enumerate other sources of network latency in
Section 5.2.

4.8.2 Reliability

The correctness and conservativity of our algorithm depends
on the reliable transmission of camera parameters and the
visible nodes between the GPUs. Our system is synchronized
based on transmission of an end of frame (EOF) packet. This
protocol requires us to have reliable transmission of camera
parameters from GPU performing HC to GPU performing
RVG. Also, we require reliable transmission of node-ids and
EOF from GPU performing HC to each GPU performing OR
and RVG. We used reliable transfer protocols (TCP/IP) to
transfer the data across the network.

5 Implementation and Performance
We have implemented our parallel occlusion culling algo-
rithm on a cluster of three 2.2 GHz Pentium-4 PCs, each
having 4 GB of RAM (on an Intel 860 chipset) and a GeForce
4 Ti 4600 graphics card. Each runs Linux 2.4, with bigmem
option enabled giving 3.0 GB user addressable memory. The

Average FPS

Pixels of SWITCH Distributed GigaWalk

Model Error GigaWalk

PP 5 14.17 6.2 5.6
DE 20 10.31 4.85 3.50

B-777 15 13.01 5.82

Table 1: Average frame rates obtained by different acceleration
techniques over the sample path. FPS = Frames Per Second, DE
= Double Eagle Tanker model, PP = Power Plant model, B-777
= Boeing 777 model

Pixels of Number of Polygons

Model Error SWITCH GigaWalk Exact Visibility

PP 5 91550 119240 7500
DE 20 141630 173350 10890

Table 2: Comparison of number of polygons rendered to the ac-
tual number of visible polygons by the two implementations. DE =
Double Eagle Tanker model, PP = Power Plant model

PCs are connected via 100 Mb/s Ethernet. We typically ob-
tain a throughput of 1−2 million triangles per second in im-
mediate mode using triangle strips on these graphics cards.
Using NVIDIA OpenGL extension GL NV occlusion query,
we perform an average of around 50, 000 queries per second.

The scene database is replicated on each PC. Commu-
nication of camera parameters and visible node ids between
each pair of PCs is handled by a separate TCP/IP stream
socket over Ethernet. Synchronization between the PCs is
maintained by sending a sentinel node over the node sockets
to mark an end of frame(EOF).

We compare the performance of the implementation of
our algorithm (called SWITCH) with the following algo-
rithms and implementations:

• GigaWalk: A fast parallel occlusion culling system
which uses two IR2 graphics pipelines and three CPUs
[Baxter et al. 2002]. OR and RVG are performed in
parallel on two separate graphics pipelines while occlu-
sion culling is performed in parallel using a software
based hierarchical Z-buffer. All the interprocess com-
munication is handled using the shared memory.

• Distributed GigaWalk: We have implemented a dis-
tributed version of GigaWalk on two PCs with NVIDIA
GeForce 4 GPUs. One of the PCs serves as the occlu-
sion server implementing OR and occlusion culling in
parallel. The other PC is used as a display client. The
occlusion culling is performed in software similar to Gi-
gaWalk. Interprocess communication between PCs is
based on TCP/IP stream sockets.

We compared the performance of the three systems
on three complex environments: a coal fired Power Plant
(shown in the color plate) composed of 13 million polygons
and 1200 objects, a Double Eagle Tanker (shown in the color
plate) composed of 82 million polygons and 127K objects,
and part of a Boeing 777 (shown in the color plate) com-
posed of 20 million triangles and 52K objects. Figures 4,
5(a) and 5(b) illustrate the performance of SWITCH on a
complex path in the Boeing 777, Double Eagle and Power-
plant models, respectively (as shown in the video). Notice
that we are able to obtain 2− 3 times speedups over earlier
systems.

We have also compared the performance of occlusion
culling algorithm in terms of the number of objects and
polygons rendered as compared to the number of objects
and polygons exactly visible. Exact visibility is defined as

Pixels of Number of Objects

Model Error SWITCH GigaWalk Exact Visibility

PP 5 1557 2727 850
DE 20 3313 4036 1833

Table 3: Comparison of number of objects rendered to the actual
number of visible objects by the two implementations. DE = Double
Eagle Tanker model, PP = Power Plant model

the number of primitives actually visible up to the screen-
space and depth-buffer resolution from a given viewpoint.
The exact visibility is computed by drawing each primitive
in a different color to an “itembuffer” and counting the num-
ber of colors visible. Figures 6(a) and 6(b) show the culling
performance of our algorithm on the Double Eagle Tanker
model.

The average speedup in frame rate for the sample paths
is shown in Table 1. Tables 2 and 3 summarize the compar-
ison of the primitives rendered by SWITCH and GigaWalk
with the exact visibility for polygons and objects respec-
tively. As the scene graph of the model is organized in terms
of objects and we perform visibility tests at an object level
and not at the polygon level. Consequently, we observe a
discrepancy in the ratios of number of primitives rendered
to the exact visibility for objects and polygons.

5.1 Bandwidth Estimates

In our experiments, we have observed that the number of
visible objects n typically ranges in the order of 100 to 4000
depending upon scene complexity and the viewpoint. If we
render at most 30 frames per second (fps), header size h
(for TCP, IP and ethernet frame) is 50 bytes and buffer
size b is 100 nodes per packet, then we require a maximum
bandwidth of 8.3 Mbps. Hence, our system is not limited
by the available bandwidth on fast ethernet. However, the
variable window size buffering in TCP/IP [Jacobson 1988],
introduces network latency. The incremental transmission
algorithm greatly lowers the communication overhead be-
tween different GPUs. Figure 3 shows the number of node
identifiers transmitted with and without incremental trans-
mission for a sample path in the Double Eagle Tanker model.
We observe a very high frame-to-frame coherence and an
average reduction of 93% in the bandwidth requirements.
During each frame, the GPUs need to transmit pointers to
a few hundred nodes, which adds up to a few kilobytes. The
overall bandwidth requirement is typically a few megabytes
per second.

5.2 Performance Analysis

In this section, we analyze different factors that affect the
performance of occlusion-switch based culling algorithm.
One of the key issues in the design of any distributed ren-
dering algorithm is system latency. In our architecture, we
may experience latency due to one of the following reasons:

1. Network : Network latencies mainly depend upon
the implementation of transport protocol used to com-
municate between the PCs. The effective bandwidth
varies depending on the packet size. Implementations
like TCP/IP inherently buffer the data and may in-
troduce latencies. Transmission of a large number of
small size packets per second can cause packet loss and
re-transmission introduces further delays. Buffering of
node ids reduces loss but increases network latency.

2. Hardware Cull : The occlusion query can use only a
limited number of identifiers before the results of pixel
count are queried. Moreover, rendering a bounding box
usually requires more resources in terms of fill-rate as
compared to rasterizing the original primitives. If the
application is fill-limited, HC can become a bottleneck

in the system. In our current implementation, we have
observed that the latency in HC is smaller as compared
to the network latency. Using a front based ordered
culling, as described in section 4.6, reduces the fill-
requirement involved in performing the queries and re-
sults in a better performance.

3. OR and RVG : OR and RVG can become bottlenecks
when the number of visible primitives in a given frame is
very high. In our current implementation, HC performs
culling at the object level. As a result, the total number
of polygons rendered by OR or RVG can be quite high
depending upon the complexity of the model, the LOD
error threshold and the position of the viewer. We can
reduce this number by selecting a higher threshold for
the LOD error.

The overall performance of algorithm is governed by two
factors: culling efficiency for occlusion culling and the overall
frame-rates achieved by the rendering algorithm.

• Culling Efficiency: Culling efficiency is measured in
terms of the ratio of number of primitives in the po-
tential visible set to the number of primitives visible.
The culling efficiency of occlusion-switch depends upon
the occlusion-representation used to perform culling. A
good selection of occluders is crucial to the performance
of HC. The choice of bounding geometric representa-
tion used to determine the visibility of an object affects
the culling efficiency of HC. In our current implemen-
tation, we have used rectangular bounding box as the
bounding volume because of its simplicity. As HC is
completely GPU-based, we can use any other bounding
volume (e.g. a convex polytope, k-dop) and the per-
formance of the query will depend on the number of
triangles used to represent the boundary of the bound-
ing volume.

• Frame Rate: Frame rate depends on the culling effi-
ciency, load balancing between different GPUs and the
network latency. Higher culling efficiency results in OR
and RVG rendering fewer number of primitives. A good
load balance between the occlusion-switch and the RVG
would result in maximum system throughput. The or-
der and the rate at which occlusion tests are performed
affects the load balance across the GPUs. Moreover,
the network latency also affects the overall frame rate.
The frame rate also varies based on the LOD selection
parameter.

With faster GPUs, we would expect higher culling efficiency
as well as improved frame rates.

5.3 Comparison with Earlier Approaches

We compare the performance of our approach with two
other well-known occlusion culling algorithms: HZB [Greene
et al. 1993] and HOM [Zhang et al. 1997]. Both of these
approaches use a combination of object-space and image-
space hierarchies and are conservative to the image precision.
Their current implementations are based on frame-buffer
readbacks and performing the occlusion tests in software.
The software implementation incurs additional overhead in
terms of hierarchy construction. Moreover, they project the
object’s bounding volume to the screen space and compute a
2D screen space bounding rectangle to perform the occlusion
test. As a result, these approaches are more conservative as
compared to occlusion-switch based culling algorithm. Fur-
ther, the frame-buffer or depth-buffer readbacks can be ex-
pensive as compared to the occlusion queries, especially on
current PC systems. In practice, we obtained almost three

Figure 4: Frame rate comparison between SWITCH and distributed
Gigawalk at 1024× 1024 screen resolution and 15 pixels of error on
Boeing model.

times speed-up over an implementation of HZB on two PCs
(Distributed GigaWalk).

Our algorithm also utilizes the number of visible pix-
els parameter returned by GL NV occlusion query for LOD
selection. This bound makes our rendering algorithm less
conservative as compared to earlier LOD-based rendering
algorithms, which only compute a screen space bound from
the object space deviation error.

5.4 Limitations

Occlusion-switch based culling introduces an extra frame of
latency in addition to double-buffering. The additional la-
tency does not decrease the frame rate as the second pass
is performed in parallel. However, it introduces additional
latency into the system; the overall algorithm is best suited
for latency-tolerant applications. In addition, a distributed
implementation of the algorithm may suffer from network de-
lays, depending upon the implementation of network trans-
mission protocol used. Our overall approach is general and
independent of the underlying networking protocol.

Our occlusion culling algorithm also assumes high spatial
coherence between successive frames. If the camera position
changes significantly from one frame to the next, the visible
primitives from the previous frame may not be a good ap-
proximation to the occluder set for the current frame. As a
result, the culling efficiency may not be high.

Our algorithm performs culling at an object level and
does not check the visibility of each triangle. As a result, its
performance can vary based on how the objects are defined
and represented in the scene graph.

6 Summary and Future Work
We have presented a new occlusion culling algorithm based
on occlusion-switches and used it to render massive models
at interactive rates. The occlusion-switches, composed of
two GPUs, make use of the hardware occlusion query that
is becoming widely available on commodity GPUs. We have
combined the algorithm with pre-computed levels-of-detail
and highlighted its performance on three complex environ-
ments. We have observed 2− 3 times improvement in frame
rate over earlier approaches. The culling performance of the
algorithm is further improved by using a sub-object hierar-
chy and it is used for interactive shadow generation [Govin-
daraju et al. 2003].

Many avenues for future work lie ahead. A low latency
network implementation is highly desirable to maximize the
performance achieved by our parallel occlusion culling al-
gorithm. One possibility is to use raw GM sockets over

(a) Double Eagle Tanker model at 20 pixels of error (b) Powerplant model at 5 pixels of error

Figure 5: Frame rate comparison between SWITCH, GigaWalk and Distributed GigaWalk at 1024× 1024 screen resolution. We obtain 2− 3
times improvement in the frame rate as compared to Distributed GigaWalk and GigaWalk.

Myrinet. We are also exploring the use of a reliable protocol
over UDP/IP. Our current implementation loads the entire
scene graph and object LODs on each PC. Due to limita-
tions on the main memory, we would like to use out-of-core
techniques that use a limited memory footprint. Moreover,
the use of static LODs and HLODs can lead to popping ar-
tifacts as the rendering algorithm switches between different
approximations. One possibility is to use view-dependent
simplification techniques to alleviate these artifacts. Finally,
we would like to apply our algorithm to other complex en-
vironments.

Acknowledgments
Our work was supported in part by ARO Contract DAAD19-
99-1-0162, NSF award ACI 9876914, ONR Young Investiga-
tor Award (N00014-97-1-0631), a DOE ASCI grant, and by
Intel Corporation.

The Double Eagle model is courtesy of Rob Lisle, Bryan
Marz, and Jack Kanakaris at NNS. The Power Plant envi-
ronment is courtesy of an anonymous donor. The Boeing 777
model is courtesy of Tom Currie, Bill McGarry, Marie Mur-
ray, Nik Prazak, and Ty Runnels at the Boeing Company.
We would like to thank David McAllister, Carl Erikson,
Brian Salomon and other members of UNC Walkthrough
group for useful discussions and support.

References
Airey, J., Rohlf, J., and Brooks, F. 1990. Towards image realism

with interactive update rates in complex virtual building environ-
ments. In Symposium on Interactive 3D Graphics, 41–50.

Bartz, D., Meibner, M., and Huttner, T. 1999. Opengl assisted oc-
clusion culling for large polygonal models. Computer and Graphics
23, 3, 667–679.

Baxter, B., Sud, A., Govindaraju, N., and Manocha, D. 2002.
Gigawalk: Interactive walkthrough of complex 3d environments.
Proc. of Eurographics Workshop on Rendering.

Cohen-Or, D., Chrysanthou, Y., and Silva, C. 2001. A survey of
visibility for walkthrough applications. SIGGRAPH Course Notes
30 .

Coorg, S., and Teller, S. 1997. Real-time occlusion culling for models
with large occluders. In Proc. of ACM Symposium on Interactive
3D Graphics.

Durand, F., Drettakis, G., Thollot, J., and Puech, C. 2000. Con-
servative visibility preprocessing using extended projections. Proc.
of ACM SIGGRAPH , 239–248.

El-Sana, J., Sokolovsky, N., and Silva, C. 2001. Integrating occlusion
culling with view-dependent rendering. Proc. of IEEE Visualiza-
tion.

Erikson, C., Manocha, D., and Baxter, B. 2001. Hlods for fast
display of large static and dynmaic environments. Proc. of ACM
Symposium on Interactive 3D Graphics.

Govindaraju, N., Lloyd, B., Yoon, S., Sud, A., and Manocha, D.

2003. Interactive shadow generation in complex environments.
Tech. rep., Department of Computer Science, University of North
Carolina.

Greene, N., Kass, M., and Miller, G. 1993. Hierarchical z-buffer
visibility. In Proc. of ACM SIGGRAPH, 231–238.

Greene, N. 2001. Occlusion culling with optimized hierarchical z-
buffering. In ACM SIGGRAPH COURSE NOTES ON VISIBIL-
ITY, # 30.

Hillesl, K., Salomon, B., Lastra, A., and Manocha, D. 2002. Fast
and simple occlusion culling using hardware-based depth queries.
Tech. Rep. TR02-039, Department of Computer Science, University
of North Carolina.

Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., and Zhang,

H. 1997. Accelerated occlusion culling using shadow frusta. In
Proc. of ACM Symposium on Computational Geometry, 1–10.

Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., and

Hanrahan, P. 2001. Wiregl: A scalable graphics system for clus-
ters. Proc. of ACM SIGGRAPH .

Jacobson, V. 1988. Congestion avoidance and control. Proc. of ACM
SIGCOMM , 314–329.

Klowoski, J., and Silva, C. 2000. The prioritized-layered projection
algorithm for visible set estimation. IEEE Trans. on Visualization
and Computer Graphics 6, 2, 108–123.

Klowoski, J., and Silva, C. 2001. Efficient conservative visiblity
culling using the prioritized-layered projection algorithm. IEEE
Trans. on Visualization and Computer Graphics 7, 4, 365–379.

Meissner, M., Bartz, D., Huttner, T., Muller, G., and Einighammer,

J. 2002. Generation of subdivision hierarchies for efficient occlusion
culling of large polygonal models. Computer and Graphics.

(a) At polygon level (b) At object level

Figure 6: Double Eagle Tanker: Comparison of exact visibility computation with SWITCH and GigaWalk at 20 pixels of error at 1024×1024
screen resolution. SWITCH is able to perform more culling as compared to GigaWalk. However, it renders one order of magnitude more
triangles or twice the number of objects as compared to exact visibility.

Parker, S., Martic, W., Sloan, P., Shirley, P., Smits, B., and

Hansen, C. 1999. Interactive ray tracing. Symposium on In-
teractive 3D Graphics.

Samanta, R., Funkhouser, T., Li, K., and Singh, J. P. 2000. Hy-
brid sort-first and sort-last parallel rendering with a cluster of pcs.
Eurographics/SIGGRAPH workshop on Graphics Hardware, 99–
108.

Samanta, R., Funkhouser, T., and Li, K. 2001. Parallel rendering
with k-way replication. IEEE Symposium on Parallel and Large-
Data Visualization and Graphics.

Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F. 2000. Con-
servative volumetric visibility with occluder fusion. Proc. of ACM
SIGGRAPH , 229–238.

Teller, S. J. 1992. Visibility Computations in Densely Occluded
Polyheral Environments. PhD thesis, CS Division, UC Berkeley.

Wald, I., Slusallek, P., and Benthin, C. 2001. Interactive distributed
ray-tracing of highly complex models. In Rendering Techniques,
274–285.

Wonka, P., Wimmer, M., and Schmalstieg, D. 2000. Visibility prepro-
cessing with occluder fusion for urban walkthroughs. In Rendering
Techniques, 71–82.

Wonka, P., Wimmer, M., and Sillion, F. 2001. Instant visibility. In
Proc. of Eurographics.

Zhang, H., Manocha, D., Hudson, T., and Hoff, K. 1997. Visibility
culling using hierarchical occlusion maps. Proc. of ACM SIG-
GRAPH .

Figure 1: Performance of occlusion-switch algorithm on the DoubleEagle Tanker model: This environment consists of more than 82 million
triangles and our algorithm renders it a t 9− 15 fps on a cluster of 3 PCs, each consisting of an NVIDIA GeForce 4 GPU. Occlusion-switch
culls away most occluded portions of the model and renders around 200K polygons in the view shown. Objects are rendered in following colors
- visible: yellow; view-frustum culled: violet; and occlusion-culled: orange.

(a) Portion of a Boeing 777 model rendered at 15 pixels of error.
Our system, SWITCH, is able to render it at 11− 18 frames per
second on a 3-PC cluster.

(b) Powerplant model composed of more than 12.7 million trian-
gles. SWITCH can render it at 11 − 19 frames per second using
5 pixels of deviation error.

Figure 2: Performance of Occlusion-switch on complex CAD models: Both the models are rendered at 1024 × 1024 screen resolution using
NVIDIA GeForce 4 cards.

Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

GigaWalk: Interactive Walkthrough of Complex Environments

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha

University of North Carolina at Chapel Hill
{baxter,sud,naga,dm}@cs.unc.edu
http://gamma.cs.unc.edu/GigaWalk

Abstract
We present a new parallel algorithm and a system, GigaWalk, for interactive walkthrough of complex, gigabyte-
sized environments. Our approach combines occlusion culling and levels-of-detail and uses two graphics pipelines
with one or more processors. GigaWalk uses a unified scene graph representation for multiple acceleration tech-
niques, and performs spatial clustering of geometry, conservative occlusion culling, and load-balancing between
graphics pipelines and processors. GigaWalk has been used to render CAD environments composed of tens of
millions of polygons at interactive rates on systems consisting of two graphics pipelines. Overall, our system’s
combination of levels-of-detail and occlusion culling techniques results in significant improvements in frame-rate
over view-frustum culling or either single technique alone.

Keywords: Interactive display systems, parallel rendering,
occlusion culling, levels-of-detail, Engineering Visualiza-
tion.

1. Introduction

Users of computer-aided design and virtual reality applica-
tions often create and use geometric models of large, com-
plex 3D environments. Gigabyte-sized datasets represent-
ing power plants, ships, airplanes, submarines and urban
scenes are not uncommon. Simulation-based design and de-
sign review of such datasets benefits significantly from the
ability to generate user-steered interactive displays orwalk-
throughsof these environments. Yet, rendering these envi-
ronments at interactive rates and with high fidelity has been
a major challenge.

Many acceleration techniques for interactive display of
complex datasets have been developed. These include vis-
ibility culling, object simplification and the use of image-
based or sampled representations. They have been success-
fully combined to render certain specific types of datasets
at interactive rates, including architectural models15, ter-
rain datasets25, scanned models33 and urban environments
42. However, there has been less success in displaying more
general complex datasets due to several challenges facing
existing techniques:

Occlusion Culling: While possible for certain environ-
ments, performing exact visibility computations on large,
general datasets is difficult to achieve in real time on current
graphics systems11. Furthermore, occlusion culling alone
will not sufficiently reduce the load on the graphics pipeline
when many primitives are actually visible.

Object Simplification: Object simplification techniques

Figure 1: Coal-Fired Power plant: This 1.7 gigabyte environment
consists of over 13 million triangles and 1200 objects. GigaWalk
can display it 12-37 frames per second on an SGI Onyx workstation
using two IR2 graphics pipelines and three 300MHz R12000 CPUs.

alone have difficulty with high-depth-complexity scenes, as
they do not address the problems of overdraw and fill load
on the graphics pipeline.

Image-based Representations:There are some promis-
ing image-based algorithms, but generating complete sam-
plings of large complex environments automatically and ef-
ficiently remains a difficult problem. The use of image-based
methods can also lead to popping and aliasing artifacts.

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

1.1. Main Results

We present a parallel architecture that enables interactive
rendering of complex environments comprised of many tens
of millions of polygons. Initially, we precompute geomet-
ric levels-of-detail (LODs) and represent the dataset using
a scene graph. Then at runtime we compute apotentially
visible set(PVS) of geometry for each frame using a com-
bination of view frustum culling and a two-pass hierarchical
Z-buffer occlusion culling algorithm19 in conjunction with
the pre-computed LODs. The system runs on two graphics
rasterization pipelines and one or more CPU processors. Key
features of our approach include:

1. A parallel rendering algorithm that is general and au-
tomatic, makes few assumptions about the model, and
places no restrictions on user motion through the scene.

2. A unified scene graph hierarchy that is used for both ge-
ometric simplification and occlusion culling.

3. A parallel, image-precision occlusion culling algorithm
based on the hierarchical Z-buffer19, 20. It useshierar-
chical occludersand can perform conservative as well as
approximate occlusion culling.

4. A parallel rendering algorithm that balances the compu-
tational load between two rendering pipelines and one or
more processors.

5. An interactive system, GigaWalk, to render large, com-
plex environments with good fidelity on two-pipeline
graphics systems. The graphics pipelines themselves re-
quire only standard rasterization capabilities.

We demonstrate the performance of our system on two com-
plex CAD environments: a coal-fired power plant (Fig. 1)
composed of 13 million triangles, and a Double Eagle
Tanker (Plate 1) composed of over 82 million triangles. Gi-
gaWalk is able to render models such as these at 11− 50
frames a second with little loss in image quality on an SGI
Onyx workstation using two IR2 pipelines. The end-to-end
latency of this implementation is typically 50−150 millisec-
onds. We have also developed a preliminary implementation
of GigaWalk on a pair of networked PCs.

1.2. Organization

The rest of the paper is organized as follows. We give a brief
survey of previous work in Section 2. Section 3 gives an
overview of our approach. In Section 4 we describe the scene
representation and preprocessing steps. Section 5 presents
the parallel algorithm for interactive display. We describe
the system implementation and highlight its performance on
complex models in Section 6.

2. Prior Work

In this section, we present a brief overview of previous re-
search on interactive rendering of large datasets, including
geometric simplification and occlusion culling algorithms,
and other systems that have combined multiple rendering ac-
celeration techniques.

2.1. Geometric Simplification

Simplification algorithms compute a reduced-polygon ap-
proximation of a model while attempting to retain the shape
of the original. A recent survey of simplification algorithms
is presented in30.

Algorithms for simplifying large environments can be
classified as either static (view-independent) or dynamic
(view-dependent). Static approaches pre-compute a discrete
series of levels-of-detail (LODs) in a view-independent man-
ner 9, 17, 32, 35. Erikson et al.10 presented an approach to
large model rendering based on the hierarchical use of static
LODs, or HLODs. We also use LODs and HLODs in our
system.

At run-time, rendering algorithms for static LODs choose
an appropriate LOD to represent each object based on the
viewpoint. Selecting the LODs requires little run-time com-
putation, and rendering static LODs on contemporary graph-
ics hardware is also efficient.

View-dependent, dynamic algorithms pre-compute a data
structure that encodes a continuous range of detail. Ex-
amples include progressive meshes23, 24, 44 and hierarchies
of decimation operations29, 12. Selection of the appropriate
LOD is based on view-parameters such as illumination and
viewing position. Overall, view-dependent LODs can pro-
vide better fidelity than static LODs and work well for large
connected datasets such as terrain and spatially large objects.
However, the run-time overhead is higher compared to static
LODs, since all level-of-detail selection is done at the indi-
vidual feature level (vertex, edge, polygon), rather than the
object level.

2.2. Occlusion Culling

Occlusion culling methods attempt to quickly determine a
PVS for a viewpoint by excluding geometry that is occluded.
A recent survey of different algorithms is presented in6.

Several effective algorithms have been developed for spe-
cific environments. Examples include cells and portals for
architectural models2, 39 and algorithms for urban datasets
or scenes with large, convex occluders7, 22, 36, 41, 42. In this
section, we restrict the discussion to occlusion culling algo-
rithms for general environments.

Algorithms for occlusion culling can be broadly classi-
fied based on whether they are conservative or approximate,
whether they use object space or image space hierarchies,
and whether they compute visibility from a point (from-
point) or a region (from-region). Conservative algorithms
compute a PVS that includes all the visible primitives, plus a
small number of potentially occluded primitives7, 19, 22, 28, 45.
The approximate algorithms identify most of the visible ob-
jects but may incorrectly cull some objects5, 27, 45.

Object space algorithms can perform culling efficiently
and accurately given a small set of large occluders, but it

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

is difficult to perform the “occluder fusion" necessary to ef-
fectively cull in scenes composed of many small occluders.
For these types of scenes, the image space algorithms typi-
fied by the hierarchical Z-buffer (HZB)19, 20 or hierarchical
occlusion maps (HOM)45 are more effective.

From-region algorithms pre-compute a PVS for each re-
gion of space to reduce the run-time overhead8, 36, 41. This
works well for scenes with large occluders, but the amount of
geometry culled by a given occluder diminishes as the region
sizes are increased. Thus there is a trade-off between the
quality of the PVS estimation for each region and the mem-
ory overhead. These algorithms may be overly conservative
and have difficulty obtaining significant culling in scenes
including only small occluders. In contrast, from-point al-
gorithms generally provide more accurate culling, but they
have a higher run-time cost.

2.3. Parallel Approaches

A number of parallel approaches based on multiple graph-
ics pipelines have been proposed. These can provide scal-
able rendering on shared-memory systems or clusters of
PCs. These approaches can by classified mainly as either
object-parallel, screen-space-parallel, or frame-parallel21, 37.
Specific examples include distributing primitives to different
pipelines by the screen region into which they fall (screen-
space-parallel), or rendering only every Nth frame on each
pipeline (frame-parallel).

Another parallel approach to large model rendering that
shows promise is interactive ray tracing4, 40. The algorithm
described in40 is able to render the Power Plant model at 4-5
frames a second with 640×480 pixel resolution on a cluster
of seven dual processor PCs.

Garlick et al.16 presented a system for performing view-
frustum culling on multiple CPUs in parallel with the render-
ing process. Their observation that culling can be performed
in parallel to improve overall system performance is the fun-
damental concept behind our approach as well.

Wonka et al.42 presented a “visibility server” that per-
formed occlusion culling to compute a PVS at run-time in
parallel on a separate machine. Their system works well
for urban environments; however, it relies on theoccluder
shrinkingalgorithm41 to compute the region-based visibil-
ity. This approach is effective only if the occluders are large
and volumetric in nature.

2.4. Hybrid Approaches

The literature reports several systems that combine multi-
ple techniques to accelerate the rendering of large models.
For example, The BRUSH system34 used LODs with hierar-
chical representation for large mechanical and architectural
models. The UC Berkeley Architecture Walkthrough system
15 combined hierarchical algorithms with object-space visi-
bility computations39 and LODs for architectural models.

More recently, Anjudar et al.3 presented a framework
that integrates occlusion culling and LODs. The crux of the
approach is to estimate the degree of visibility of each ob-
ject in the PVS and use that value both to select appropri-
ate LODs and to cull. The method relies on decomposing
scene objects into overlapping convex pieces (axis-aligned
boxes) that then serve as individual “synthetic occluders”.
Thus the effective maximum occluder size depends on the
largest axis-aligned box that will fit inside each object.

Another recent integrated approach uses a prioritized-
layered projection visibility approximation algorithm with
view-dependent rendering11. The resulting rendering algo-
rithm seems a promising approach when approximate (non-
conservative) visibility is acceptable.

The UNC Massive Model Rendering (MMR) system1

combined LODs with image-based impostors and occlusion
culling to deliver interactive walkthroughs of complex mod-
els. A more detailed comparison with this system will be
made later in Section 6.5.

Various proprietary systems exist as well, such as the one
Boeing created in the 1990’s to visualize models of large
passenger jets. However, to the best of our knowledge, no
detailed descriptions of this system are available, so it is dif-
ficult to make comparisons.

3. Overview

In this section, we give a brief overview of the main compo-
nents of our approach. These components are simplification,
occlusion culling, and a parallel architecture.

3.1. Model Simplification

Given a large environment, we generate a scene graph by
clustering small objects, and partitioning large objects to cre-
ate a spatially coherent, axis-aligned bounding box (AABB)
hierarchy. The hierarchy construction will be discussed in
more detail in Section 4.

3.2. Parallel Occlusion Culling

At run-time, our algorithm performs occlusion culling, in ad-
dition to view frustum culling, based on the pre-computed
AABB scene graph hierarchy. We use a two-pass version of
the hierarchical Z-buffer algorithm19 with a two-graphics-
pipeline parallel architecture. In this architecture, occlud-
ers are rendered on one pipeline while the final interac-
tive rendering of visible primitives takes place on the sec-
ond pipeline. A separate software thread performs the actual
culling using the Z-buffer that results from the occluder ren-
dering. The architecture will be presented in detail in Sec-
tion 5.

We chose to use the hierarchical Z-buffer (HZB) because
of its good culling performance, minimal restrictions on the

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

type of occluders, and for its ability to perform occluder fu-
sion. Moreover, it can be made to work well without extra
preprocessing or storage overhead by exploiting temporal
coherence. The preprocessing and storage cost of GigaWalk
is thus the same as that of an LOD-only system.

Occluder Selection: A key component of any occlusion
culling algorithm is occluder selection, which can be ac-
complished in a number of ways. A typical approach uses
solid angles and spatial distributions of objects to estimate
a small set of good occluders45, 27. However, occluders se-
lected according to such heuristics are not necessarily op-
timal in terms of the number of other objects they actually
occlude. The likelihood of obtaining good occlusion can be
increased by making the occluder set larger, but computa-
tional costs usually demand the set be as small as possible.

Our parallel approach, on the other hand, allows us to take
advantage of the temporal coherence based occluder selec-
tion algorithm presented by Greene et al.19, which treatsall
the visible geometry from the previous frame as occluders
for the current frame. This method makes use of frame-to-
frame coherence and provides a good approximation to the
foreground occluders for the current frame.

Figure 2: System Architecture: Each shaded region represents a
separate process. The OR and RVG processes are associated with
separate graphics pipelines, whereas the STC uses one or more pro-
cessors.

3.3. GigaWalk Architecture

Fig. 2 presents the overall architecture of our run-time sys-
tem. It shows the three processes that run in parallel:

1. Occluder Rendering (OR): Using all the visible geom-
etry from a previous frame as the occluder set, this pro-
cess renders that set into a depth buffer. It runs on the first
graphics pipeline.

2. Scene Traversal, Culling and LOD Selection (STC):
This process computes the HZB using the depth buffer
computed by OR. It traverses the scene graph, computes
the visible geometry and selects appropriate LODs based
on the user-specified error tolerance. The visible geome-
try is used by RVG for the current frame and OR for the
next frame. It runs on one or more processors.

3. Rendering Visible Scene Geometry (RVG):This pro-
cess renders the visible scene geometry computed by
STC. It uses the second graphics pipeline.

More details of the run-time system are given in Sections 5
and 6.

4. Scene Representation

In this section, we give an overview of our pre-processing
algorithm used to compute a scene graph representation of
the geometric environment.

CAD datasets often consist of a large number of objects
which are organized according to a functional, rather than
spatial, hierarchy. By “object” we mean simply the low-
est level of organization in a model or model data structure
above the primitive level. The size of objects can vary dra-
matically in CAD datasets. For example, in the Power Plant
model a large pipe structure, which spans the entire model
and consists of more than 6 million polygons, is one ob-
ject. Similarly, a relatively small bolt with 20 polygons is
another object. Our rendering algorithm computes LODs,
selects them, and performs occlusion culling at the object
level; therefore, the criteria used for organizing primitives
into objects has a serious impact on the performance of the
system. Our first step, then, is to redefine objects in a dataset
based on criteria that will improve performance.

4.1. Unified Scene Hierarchy

Our rendering algorithm performs occlusion culling in two
rendering passes: Pass 1 renders occluders to create a hier-
archical Z-buffer to use for culling, Pass 2 renders the ob-
jects that are deemed visible by the HZB culling test. Given
this two-pass approach, we could consider using a separate
representation for occluders in Pass 1 than for displayed ob-
jects in Pass 222, 45. Using different representations has the
advantage of allowing different criteria for partitioning and
clustering of each hierarchy. Moreover, it gives us the flex-
ibility to use an alternate error metric for creating simpli-
fied occluders, one optimized to preserve occlusion proper-
ties rather than visual fidelity.

Despite these potential advantages, we use a single, uni-
fied hierarchy for occlusion culling and LOD-based render-
ing. A single hierarchy offers several benefits. First, using
the same representation decreases the storage overhead and
the overall preprocessing cost. Second, it leads to a conser-
vative occlusion culling algorithm. Our rendering algorithm
treats the visible geometry from the previous frame as the
occluder set for the current frame. In order to guarantee con-
servative occlusion culling, it is sufficient to ensure that ex-
actly the same set of nodes and LODs in the unified scene
graph are used by each process.

4.1.1. Criteria for Hierarchy

A good hierarchical representation of the scene graph is cru-
cial for the performance of occlusion culling and the over-

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

all rendering algorithm. We use the same hierarchy for view
frustum culling, occluder selection, occlusion tests on po-
tential occludees, hierarchical simplification, and LOD se-
lection. Though there has been considerable work on spa-
tial partitioning and bounding volume hierarchies, includ-
ing top-down and bottom-up strategies and spatial cluster-
ing, none of them seem to have addressed all the charac-
teristics desired by our rendering algorithm. These include
good spatial localization, object size, balance of the hierar-
chy, and minimal overlap between the bounding boxes of
sibling nodes in the tree.

Bottom-up hierarchies lead to better localization and
higher fidelity LODs. However, it is harder to use bottom-up
techniques to compute hierarchies that are both balanced and
have minimal spatial overlap between nodes. On the other
hand, top-down schemes are better at ensuring balanced hi-
erarchies and bounding boxes with little or no overlap be-
tween sibling nodes. Given their respective benefits, we use
a hybrid approach that combines both top-down partitioning
and hierarchy construction with bottom-up clustering.

4.2. Hierarchy Generation

In order to generate uniformly-sized objects, our pre-
processing algorithm first redefines the objects using a com-
bination of partitioning and clustering algorithms. The par-
titioning algorithm takes large objects and splits them into
multiple objects. The clustering step groups objects with low
polygon counts based on their spatial proximity. The combi-
nation of these steps seems to result in a redistribution of
geometry with good localization and emulates some of the
benefits of pure bottom-up hierarchy generation. The overall
algorithm proceeds as follows:

1. Partition large objects into sub-objects in the initial
database (top-down)

2. Organize disjoint objects and sub-objects into clusters
(bottom-up)

3. Partition again to eliminate any uneven spatial clusters
(top-down)

4. Compute an AABB bounding volume hierarchy on the
final redefined set of objects (top-down).

The partitioning (stages 2 and 4) uses standard top-down
techniques that group polygons based on an object’s center
or center-of-mass, along with several heuristics for selecting
the split axis. The clustering algorithm (stage 3) was adapted
from a computer vision technique for image segmentation
14. The algorithm uses minimum spanning trees (MST) to
represent clusters and is similar toKruskal’s algorithm 26.
Plate 2 shows the results of clustering and partitioning on
the Power Plant and Double Eagle models. More details on
the partitioning and clustering algorithm as well as hierarchy
computation are given in38.

4.3. HLOD Generation

Given the AABB-based scene graph representation, the al-
gorithm computes a series of LODs for each node. The
HLODs are computed in a bottom-up manner. The HLODs
of the leaf nodes are the same as static LODs, while the
HLODs of intermediate nodes are computed by combining
the LODs of the nodes with the HLODs of node’s children10.
We use the GAPS9 simplification algorithm, which can
merge disjoint objects.

The majority of the pre-computation time is spent in LOD
and HLOD generation. The HLODs of an internal node de-
pend only on the LODs of the children, so by keeping only
the LODs of the current node and its children in main mem-
ory, HLOD generation is accomplished within a small mem-
ory footprint. Specifically, the memory usage is given by

main_memory_ f oot print ≤ sizeo f(AABBHierarchy)

+ max
Ni∈SG

(sizeo f(Ni) +

∑
Cj∈Child(Ni)

sizeo f(Cj)),

where SG corresponds to the scene graph.

4.4. HLODs as Hierarchical Occluders

Our occlusion culling algorithm uses LODs and HLODs of
nodes as occluders to compute the HZB. They are selected
based on the maximum screen-space pixel deviation error on
object silhouettes.

The HLODs used by the rendering algorithm can also
be regarded as “hierarchical occluders”. A hierarchical oc-
cluder associated with a nodeNi is an approximation of a
group of occluders contained in the subtree rooted atNi . The
approximation provides a lower polygon count representa-
tion of a collection of object-space occluders. It can also be
regarded as object-space occluder fusion.

5. Interactive Display

In this section, we present our parallel rendering architec-
ture for interactive display of complex environments. Here
we describe in detail the operations performed by each of the
two graphics pipelines and each of the three processes: oc-
cluder rendering (OR), scene traversal and culling (STC) and
rendering visible geometry (RVG), which run synchronously
in parallel (as shown in Fig. 3).

5.1. Run-time Architecture

The relationship between different processes and the tasks
performed by them is shown in Fig. 2.

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

Figure 3: Timing relationship between different processes. The arrows indicate data passed between processes during the computation of frame
2. Along with the other data indicated, viewpoints also travel through the pipeline according to the frame numbers. This diagram demonstrates
the use of occluders from framei−2 rather thani−1 (see Section 5.2).

5.1.1. Occluder Rendering

The first stage for a given frame is to render the occluders.
The occluders are simply the visible geometry from a pre-
vious frame. By using this temporal coherence strategy, the
load on the two graphics pipelines is essentially balanced,
since they render the exact same set of primitives, just shifted
in time. The culling and LOD selection performed for dis-
playing framei results in an occluder set for framei + 1
that has manageable size. A brief pseudo-code description
is given in Algorithm 5.1.

Occluder_Render(δ,framei)
• get current instantaneous camera position
(camerai)
• while (more nodes on node queue from STC (i-1))
∗ pop next node off the queue
∗ select LOD/HLOD for the node according to

error tolerance,δ, using camerai
∗ render that LOD/HLOD into Z-bufferi

• read back Z-bufferi from graphics hardware
• push Z-bufferi onto queue for STCi
• push camerai onto queue for STCi

ALGORITHM 5.1: Occluder_Render.

Since the list of visible geometry for rendering comes
from the culling stage (STC), and STC gets its input from
this process (OR), a start-up procedure is required to initial-
ize the pipeline and resolve this cyclic dependency. During
startup, the OR stage is bypassed on the first frame, and STC
generates its initial list of visible geometry without occlusion
culling.

5.1.2. Scene Traversal, Culling and LOD Selection

The STC process first computes the HZB from the depth
buffer output from OR. It then traverses the scene graph, per-
forming view-frustum culling, occlusion culling and LOD
error-based selection in a recursive manner. The LOD se-
lection proceeds exactly as in10, 43: recursion terminates at

nodes that are either culled, or which meet the user-specified
pixel-error tolerance. A pseudo-code description is given in
Algorithm 5.2. The occlusion culling is performed by com-

Scene_Traversal_Cull(ε, framei)
• get Z-bufferi from OR i via Z-buffer queue
• build HZB i
• get camerai from OR i queue
• push copy of camerai onto queue for RVGi
• set NodeList[i] = Root(SceneGraph)
• while (NotEmpty(NodeList[i]))
∗ node = First(NodeList[i])
∗ set NodeList[i] = Delete(NodeList[i],node)
∗ if (View_Frustum_culled(node)) then next;
∗ if (Occlusion_Culled(node)) then next;
∗ if HLOD_Error_Acceptable(ε,node) then
− push node onto queue for ORi + 1;
− push node onto display queue for RVGi;

∗ else
set NodeList[i] = Add(NodeList[i],

Children(node));

ALGORITHM 5.2: Scene_Traversal_Cull.

paring the bounding box of the node with the HZB. It can be
performed in software or can make use of hardware-based
queries as more culling extensions become available.

5.1.3. Rendering Visible Scene Geometry

All the culling is performed by STC, so the final render loop
has only to rasterize the nodes from STC as they are placed
in the queue. See Algorithm 5.3.

5.2. Occluder Selection

Ideally, the algorithm uses the visible geometry from the pre-
vious frame (i−1) as the occluders for the current frame to
get the best approximation to the current foreground geome-
try. However, using the previous frame’s geometry can lead

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

Render_Visible_Scene_Geometry(framei)
• get camerai from STCi queue
• while (more nodes on queue from STCi)

• pop node off queue
• render node

ALGORITHM 5.3: Render_Visible_Scene_Geometry.

to bubbles in the pipeline, because of the dependency be-
tween the OR and STC stages: STC must wait for OR to fin-
ish rendering the occluders before it can begin traversing the
scene graph and culling. Fortunately, using the visible ge-
ometry from two frames previous can eliminate that depen-
dency, and still provides a good approximation to the visible
geometry for most interactive applications.

5.3. Trading Fidelity for Performance

The user can trade off fidelity for better performance in a
number of ways. The primary control for achieving higher
frame rates is the allowable LOD pixel error (see Plate 3).

Our system has been designed primarily to offer conserva-
tive occlusion culling, and we report all of our results based
on this mode of operation. Our system can guarantee con-
servative culling results for two reasons: 1) the underlying
HZB algorithm used is itself conservative, and 2) for a given
framei we choose the exact same set of LODs for both OR
and STC stages. By choosing the same LODs, we ensure that
the Z-buffer used for culling is consistent with the geometry
it is used to cull. Without this selection algorithm, conserva-
tivity is not guaranteed.

We have also modified our run-time pipeline in a number
of ways to optionally increase frame rate or decrease latency,
by allowing the user to relax the restriction that occlusion
culling be performed conservatively:

• Asynchronous rendering pipeline:Rather than waiting
for the next list of visible geometry from the culling stage
(STC) to render framei + 1, the render stage (RVG) can in-
stead proceed to render another frame, still using the geom-
etry from framei, but using the most recent camera posi-
tion, corresponding to the user’s most up-to-date position.
This modification eliminates the extra frame of latency in-
troduced by our method. The main drawback is that it may
introduce occlusion errors that, while typically brief, are po-
tentially unbounded when the user moves drastically.

• Nth Farthest Z Buffer Values: The occlusion culling can
be modified to use not the farthest Z values in building the
depth pyramid, but the Nth farthest20, thereby allowing for
approximate “aggressive” culling.

• Lower HZB resolution for occluder rendering: The
pixel resolution of the OR stage can be set smaller than that
of the RVG stage. If readback from the depth buffer or HZB
computation is relatively slow, this can improve the perfor-
mance. However, using a lower resolution source for HZB

allows for the possibility of depth buffer aliasing artifacts
that can manifest themselves as small occlusion errors. In
practice, however, we have not been able to visually detect
any such errors when using OR depth buffers with as little
as half the RVG resolution.

6. Implementation and Performance

We have implemented our parallel rendering algorithm
on two hardware systems. The first is a shared-memory
multiprocessor machine with dual graphics rasterization
pipelines: an SGI Onyx workstation with 300MHz R12000
MIPS processors, Infinite Reality (IR2e) graphics boards,
and 16GB of main memory. Our algorithm uses three CPUs
and two graphics pipelines of this machine. We have also
made a preliminary port of the system to a pair of networked,
dual processor PCs: both are Dell Precision Workstations
with GeForce 4 graphics cards, 2GHz processors, and 2GB
of main memory.

All of the inter-process communication is implemented
using a templated producer-consumer queue data structure.
For the SGI implementation, this uses shared memory to
pass data between processes. On the PC, the queue class
was re-implemented to pass data over TCP/IP sockets. Each
stage (OR,STC,RVG) is connected with the others using one
or more instances of this queue data structure. Synchroniza-
tion between the processes is accomplished by pushing sen-
tinel nodes onto the shared queues to delimit the data at the
end of a frame. The scene graph resides in shared memory
in the SGI version, and is simply replicated on both PCs for
the PC version. The overall run-time system is about 6,000
lines of C++ code.

We have tested the performance of GigaWalk on two
complex environments, a coal-fired Power Plant (shown in
Fig. 1) and a Double Eagle Tanker (shown in Plate 1). The
details about these environments are shown in Table 1. In
addition to the model complexity, the table also lists the ob-
ject counts after the clustering and partitioning steps. Unless
otherwise noted, performance results from this point on will
refer to the SGI implementation.

6.1. Improvement in Frame Rate

GigaWalk is able to render our two example complex en-
vironments at interactive rates from most viewpoints. The
frame rate varies from 11 to 50 FPS. It is more than 20
frames a second from most viewpoints in the scene. We
have recorded and analyzed some example paths through
these models, as shown on the video available at the WWW
site:http://gamma.cs.unc.edu/GigaWalk. In Fig. 5, we show
the improvement in frame rate for each environment. The
graphs compare the frame rate for each individual render-
ing acceleration technique alone and for the combination.
Table 2 shows the average speed-ups obtained by each tech-
nique over the same path. The comparison between the tech-
niques for a given viewpoint is shown in Fig. 4.

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

(a) Polygon Count = 202666 (b) Polygon Count = 3578485 (c) Polygon Count = 61771

Figure 4: Comparison between different acceleration techniques from the same viewpoint. (a) Rendered with only HLODs. (b) Rendered with
only HZB occlusion culling. (c) Rendered with GigaWalk using HLODs and HZB occlusion culling.

Figure 5: Comparison of acceleration techniques on a path in the Power Plant model at 10 pixels of error (left) and Double Eagle at 30 pixels
of error (right), on the SGI Workstation using two IR pipelines. The Y-axis shows the instantaneous frame rate. The combination of HLODs +
occlusion culling results in 2-5 times improvement over using only one of them. Display resolution was 640×480.

The networked PC implementation achieved an average
frame rate of 10 frames per second on the Powerplant model
at 1024×1024 resolution with at most 10 pixels of screen-
space error, and about 11.5 frames per second on the Double
Eagle tanker model rendered at 1024×1024 resolution with
at most 20 pixels of screen-space error. It compares favor-
ably with the shared memory implementation, but has much
higher variance. This increase in variance is due to latency
incurred from TCP/IP network buffering.

6.2. Culling Performance

Figure 6 shows the number of objects and polygons rendered
for each frame on a path through the Power Plant and a path
through the Double Eagle. It is clear from the left graphs that
most of the reduction in object count comes from occlusion
culling. The differences between the exact visibility counts
and GigaWalk’s are explained by GigaWalk’s HZB occlu-
sion algorithm, which culls based on objects’ axis-aligned
screen-space bounding rectangles rather than actual object
polygons. On average for these paths, GigaWalk draws about
twice many objects as a perfect object-level visibility algo-
rithm, and about ten times as many polygons as a perfect
polygon-level visibility algorithm.

Object Count
Env Poly Init Part 1 Clust Part2

×106 ×104 ×104 ×103 ×105

PP 12.2 0.12 6.95 3.33 0.38

DE 82.4 12.7 2.21 2.31 1.2

Table 1: A breakdown of the complexity of each environ-
ment. Poly is the polygon count.Init is the number of
objects in the original dataset. The algorithm first parti-
tions (Part1) objects into sub-objects, then generates clus-
ters (Clust), and finally partitions large uneven spatial clus-
tersPart2. The table shows the object count after each step.

6.3. System Latency

Our algorithm introduces a frame of latency to rendering
times. Latency can be a serious issue for many interactive ap-
plications like augmented reality. Our approach is best suited
for latency-tolerant applications, namely walkthroughs of
large synthetic environments on desktop or projection dis-
plays. The end-to-end latency in the shared-memory imple-

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

Figure 6: Comparison of object counts (left column) and polygon counts (right column) for different acceleration techniques. Top row is a path
on the Powerplant model at 10 pixels of error. Bottom row is a path on the Double Eagle model at 30 pixels of error. The Y-axis shows number
of objects or polygons drawn. “Exact” indicates what would be drawn by a perfect visibility algorithm using HLODs. Display resolution was
640x480.

Model Average FPS
OCH HLOD+VFC OCC+VFC VFC

PP 30.67 9.55 9.48 1.15

DE 29.43 9.76 3.27 0.02

Table 2: Average frame rates obtained by different accelera-
tion techniques over the sample path.FPS= Frames Per Sec-
ond,HLOD = Hierarchical levels of detail,OCH = Occlu-
sion culling with HLOD,OCC = Occlusion Culling,VFC =
View Frustum Culling

mentation varies with the frame rate. It is typically in the
range 50− 150 ms. The high end of this range is achieved
when the frame rate dips close to 10 frames a second. This
latency is within the range that most users can easily adapt to
(less than 300 ms) without changing their interaction mode
with the model13.

In many interactive applications, the dominant component
of latency is the frame rendering time13. Through the use
of our two-pass occlusion culling technique, our rendering
algorithm improves the frame rate by a factor of 3-4. As a
result, the overall system latency is decreased, in contrast to
an algorithm that does not use occlusion culling.

6.4. Preprocessing

This section reports the amount of time and memory used by
our preprocessing.

6.4.1. Time and Space Requirements

The preprocessing was done on a single-processor 2GHz
Pentium 4 PC with 2GB RAM. The preprocessing times for
the Double Eagle model were: 177 min for hierarchy gener-
ation (partitioning/clustering), and 32.5 hours for out of core
HLOD generation. The size of the final HLOD scene graph
representation is 7.6GB which is less than 2 times the orig-
inal data size. The AABB hierarchy skeleton occupies 7MB
of space, though this could easily be further reduced.

The main memory requirement for partitioning and clus-
tering is bounded by the size of the largest object/cluster.
For the Double Eagle it was less than 200MB for partition-
ing, 1GB for clustering and 300MB for out of core HLOD
generation.

6.5. Comparison with Earlier Approaches

A number of algorithms and systems have been proposed for
interactive display of complex environments. These include
specialized approaches for architectural, terrain and urban
environments, as highlighted in Section 2. Given low depth
complexity scenes, or scenes composed of large or convex
occluders (e.g, architectural or urban models), our general

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

approach is not likely to perform any better than special-
purpose algorithms designed specifically to exploit such fea-
tures.

Of the previous systems which do handle general envi-
ronments, however, few have been able to reduce both depth
complexity (e.g. by using occlusion culling) and screen-
space complexity (e.g. by using LODs). It is worth mak-
ing the comparison with one previous system which was de-
signed to do both, the MMR1.

The MMR system combined LODs and occlusion culling
for near-field geometry with image-based textured meshes to
approximate the far-field, in a cell-based framework. While
the combination of techniques proved capable of achiev-
ing interactive frame rates, the system had some drawbacks.
First, the creation of cells required user intervention. For in-
stance, some hand-selected model-dependent features were
used in the Powerplant to define viewpoint cells. In con-
trast, the preprocessing and scene graph computation in Gi-
gaWalk is fully automatic. Second, the image-based far-field
representations used in the MMR system resulted in dra-
matic popping and distortion when switching between dif-
ferent cells. Third, the memory overhead and preprocessing
cost of creating six meshes and textures per cell was quite
quite high. Finally, since the MMR used just a single ren-
dering pipeline, it could only afford to use a few objects as
occluders, rather than all the visible objects from the previ-
ous frame. The occluders had to be pre-selected offline using
a heuristic which could not always find good candidates.

In MMR’s favor, however, the cell based spatial decompo-
sition allowed for a simple out-of-core prefetching and ren-
dering algorithm. In contrast, GigaWalk currently assumes
that the entire scene graph and the LODs and HLODs are
loaded into main memory.

7. Conclusions and Lessons Learned

We have presented an approach to rendering interactive
walkthroughs of complex 3D environments. The algorithm
features a novel integration of conservative occlusion culling
and levels-of-detail using a parallel algorithm. We have
demonstrated a new parallel rendering architecture that
integrates these acceleration techniques on two graphics
pipelines, and highlighted its performance on two complex
CAD environments. To the best of our knowledge, GigaWalk
is the first system that can render such complex environ-
ments at interactive rates with this level of fidelity.

There are many complex issues with respect to the design
and performance of systems for interactive display of com-
plex environments. These include load balancing, extent of
parallelism and scalability of the resulting approach, the ef-
fectiveness of occlusion culling and issues related to loading
and managing large datasets.

7.1. Load Balancing

There is a trade-off between the depth of scene graph, which
is controlled by the choice of minimum cluster size, and
the culling efficiency. Smaller bounding boxes lead to bet-
ter culling since more boxes can be rejected, so less geome-
try is sent to RVG. On the other hand, more boxes increases
the cost of scene graph traversal and culling in STC. In our
system, scene traversal and object culling (STC) operate in
parallel with rendering (OR and RVG). If our performance
bottleneck is the rendering processes (RVG and OR), we can
shift the load back to the culling (STC) process by creating
a finer partitioning. Conversely, we can use a coarser parti-
tioning to move the load back to RVG and OR. Thus, the sys-
tem can achieve load balancing between different processes
running on the CPUs or graphics pipelines by changing the
granularity of partitioning.

7.2. Parallelism

Parallel graphics hardware is increasingly being used to
improve the rendering performance of walkthrough sys-
tems. Generally, though, the speed-up obtained from using
N pipelines is no more than a factor ofN. Using a sec-
ond pipeline for occlusion culling (i.e.N = 2), however, en-
ables GigaWalk to achieve more than two times speed-up for
scenes with high depth complexity. For low depth complex-
ity scenes there is little or no speed-up, but there is no loss
in frame rate as the occlusion culling is performed using a
separate pipeline. However, our parallel algorithm does in-
troduce a frame of latency.

Note also that other parallel approaches21, 37 are funda-
mentally orthogonal to our approach, and could potentially
be used in conjunction with our architecture as black-box
replacements for the OR and RVG rendering pipelines.

7.3. Load Times

One of the considerations in developing a walkthrough sys-
tem to render gigabyte datasets is the time taken to load gi-
gabytes of data from secondary storage, which can be many
hours. To speed up the system we have implemented an on-
demand loading system. Initially the system takes a few sec-
onds to load the skeletal representation of the scene graph
with just bounding boxes. Once loaded, the user commences
the walkthrough while a fourth, asynchronous background
process automatically loads the geometry for the nodes in
the scene graph that are visible. We have found that adding
such a feature is very useful in terms of system development
and testing its performance on new complex environments.

8. Limitations and Future Work

Our current implementation of GigaWalk has many limi-
tations. The current system works only for static environ-
ments, and it would be desirable to extend it to dynamic en-
vironments as well, perhaps with a strategy similar to that
proposed in Erikson et al.10.

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

The memory overhead of GigaWalk can be high. In
the current implementation, viewing an entire model re-
quires loading the scene graph and HLODs. Vardahan and
Manocha43 have recently developed an out-of-core algo-
rithm that renders massive datasets using view-frustum
culling and LOD/HLOD based selection which we may be
able to benefit from.

The preprocessing time for our largest dataset, the Dou-
ble Eagle, was also higher than desired. Since most nodes in
the scene graph are non-overlapping, the LODs can be gen-
erated independently. Thus the algorithm could compute the
LODs and HLODs in parallel, using multiple threads. This
could improve the preprocessing performance considerably,
reducing the 32.5 hours spent on the Double Eagle to a few
hours.

The algorithm described in this paper guarantees image
quality in terms of a bound on screen-space LOD error. First,
we recognize that this is far from an ideal image-quality met-
ric, and better metrics which are suitable for interactive dis-
play are desired. Second, our system gives no guarantees on
the frame rate. The current system would be improved by
the addition of a target-frame-rate rendering mode. Further-
more, the current system’s use of static LODs and HLODs
leads to some popping when switching between different
levels. We would like to explore view-dependent or hybrid
view-dependent/static LOD-based simplification approaches
that can improve the fidelity of our geometric approxima-
tions without increasing the polygon count.

Finally, while the current PC implementation shows
promise, we need to lower the networking latency in the
system. Our implementation indicates that the bandwidth is
sufficient with commodity TCP/IP over Ethernet, but to re-
duce latency it may be necessary to move to a lightweight
protocol like UDP or even use specialized low-latency net-
work hardware like Myrinet. We are also interested in using
new hardware occlusion culling extensions on PC graphics
cards to accelerate GigaWalk. Govindaraju et al.18 recently
devised one approach which uses three PCs and three GPUs.

Acknowledgments

Our work was supported in part by ARO Contract DAAD19-
99-1-0162, NSF award ACI 9876914, ONR Young Investi-
gator Award (N00014-97-1-0631), a DOE ASCI grant, and
by Intel Corporation.

The Double Eagle model is courtesy of Rob Lisle, Bryan
Marz, and Jack Kanakaris at NNS. The Power Plant en-
vironment is courtesy of an anonymous donor. We would
like to thank Carl Erikson, Brian Salomon and other mem-
bers of UNC Walkthrough group for their useful discussions
and support. Special thanks to Sungeui Yoon for porting Gi-
gaWalk to the PC, and to Dorian Miller for help measuring
end-to-end latencies with his latency meter31.

References

1. D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson,
K. Hoff, T. Hudson, W. Stuerzlinger, E. Baker, R. Bas-
tos, M. Whitton, F. Brooks, and D. Manocha. MMR:
An integrated massive model rendering system using
geometric and image-based acceleration. InProc. of
ACM Symposium on Interactive 3D Graphics, 1999.

2. J. Airey, J. Rohlf, and F. Brooks. Towards image re-
alism with interactive update rates in complex virtual
building environments. InSymposium on Interactive
3D Graphics, pages 41–50, 1990.

3. C. Andujar, C. Saona-Vazquez, I. Navazo, and
P. Brunet. Integrating occlusion culling and levels of
detail through hardly-visibly sets. InProceedings of
Eurographics, 2000.

4. J. Alex and S. Teller. Immediate-mode ray-casting.
Technical report, MIT LCS Technical Report 784,
1999.

5. D. Bartz, M. Meibner, and T. Huttner. OpenGL assisted
occlusion culling for large polygonal models.Com-
puter and Graphics, 23(3):667–679, 1999.

6. D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey
of visibility for walkthrough applications.SIGGRAPH
Course Notes # 30, 2001.

7. S. Coorg and S. Teller. Real-time occlusion culling for
models with large occluders. InProc. of ACM Sympo-
sium on Interactive 3D Graphics, 1997.

8. F. Durand, G. Drettakis, J. Thollot, and C. Puech. Con-
servative visibility preprocessing using extended pro-
jections. Proc. of ACM SIGGRAPH, pages 239–248,
2000.

9. C. Erikson and D. Manocha. GAPS: General and auto-
matic polygon simplification. InProc. of ACM Sympo-
sium on Interactive 3D Graphics, 1999.

10. C. Erikson, D. Manocha, and W. Baxter. HLODs for
fast display of large static and dynamic environments.
Proc. of ACM Symposium on Interactive 3D Graphics,
2001.

11. J. El-Sana, N. Sokolovsky, and C. Silva. Integrating
occlusion culling with view-dependent rendering.Proc.
of IEEE Visualization, 2001.

12. J. El-Sana and A. Varshney. Generalized view-
dependent simplification.Computer Graphics Forum,
pages C83–C94, 1999.

13. S. Ellis, M. Young, B. Adelstein, and S. Ehrlich. Dis-
crimination of changes of latency during voluntary
hand movement of virtual objects. InProc. of the Hu-
man Factors and Ergonomics Society, 1999.

14. P. Felzenszwalb and D. Huttenlocher. Efficiently com-
puting a good segmentation. InProceedings of IEEE
CVPR, pages 98–104, 1998.

15. T.A. Funkhouser, D. Khorramabadi, C.H. Sequin, and
S. Teller. The UCB system for interactive visualiza-
tion of large architectural models.Presence, 5(1):13–
44, 1996.

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

16. B. Garlick, D. Baum, and J. Winget. Interactive View-
ing of Large Geometric Databases Using Multiproces-
sor Graphics Workstations. InSIGGRAPH ’90 Course
Notes (Parallel Algorithms and Architectures for 3D
Image Generation), volume 28, 1990.

17. M. Garland and P. Heckbert. Surface simplification us-
ing quadric error bounds.Proc. of ACM SIGGRAPH,
pages 209–216, 1997.

18. N. Govindaraju, A. Sud, S. Yoon, and D. Manocha. Par-
allel Occlusion Culling for Interactive Walkthroughs
using Multiple GPUs TR02-27, Dept. of Computer Sci-
ence, UNC-Chapel Hill, 2002.

19. N. Greene, M. Kass, and G. Miller. Hierarchical Z-
buffer visibility. In Proc. of ACM SIGGRAPH, pages
231–238, 1993.

20. N. Greene. Occlusion culling with optimized hierarchi-
cal Z-buffering. InACM SIGGRAPH COURSE NOTES
ON VISIBILITY, # 30, 2001.

21. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Ev-
erett, and P. Hanrahan. WireGL: A scalable graphics
system for clusters.Proc. of ACM SIGGRAPH, 2001.

22. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow
frusta. InProc. of ACM Symposium on Computational
Geometry, pages 1–10, 1997.

23. H. Hoppe. Progressive meshes. InProc. of ACM SIG-
GRAPH, pages 99–108, 1996.

24. H. Hoppe. View dependent refinement of progressive
meshes. InACM SIGGRAPH Conference Proceedings,
pages 189–198. ACM SIGGRAPH, 1997.

25. H. Hoppe. Smooth view-dependent level-of-detail con-
trol and its application to terrain rendering. InIEEE
Visualization Conference Proceedings, pages 35–42,
1998.

26. J.B. Kruskal On the shortest spanning subtree of a
graph and the traveling salesman problem.Proceedings
of American Mathematical Society, 7:48–50, 1956.

27. J. Klowoski and C. Silva. The prioritized-layered pro-
jection algorithm for visible set estimation. IEEE
Trans. on Visualization and Computer Graphics,
6(2):108–123, 2000.

28. J. Klowoski and C. Silva. Efficient conservative vis-
ibility culling using the prioritized-layered projection
algorithm.IEEE Trans. on Visualization and Computer
Graphics, 7(4):365–379, 2001.

29. D. Luebke and C. Erikson. View-dependent simplifi-
cation of arbitrary polygon environments. InProc. of
ACM SIGGRAPH, 1997.

30. D. Luebke. A developer’s survey of polygon simplifi-
cation algorithms.IEEE CG & A, pages 24–35, May
2001.

31. D. Miller and G. Bishop. Latency meter: A device for
easily monitoring VE delay. InProceedings of SPIE,
Vol. #4660 Stereoscopic Displays and Virtual Reality
Systems IX, San Jose, CA, January 2002.

32. J. Rossignac and P. Borrel. Multi-resolution 3D ap-
proximations for rendering. InModeling in Computer
Graphics, pages 455–465. Springer-Verlag, June–July
1993.

33. S. Rusinkiewicz and M. Levoy. QSplat: A multiresolu-
tion point rendering system for large meshes.Proc. of
ACM SIGGRAPH, 2000.

34. B. Schneider, P. Borrel, J. Menon, J. Mittleman, and
J. Rossignac. BRUSH as a walkthrough system for ar-
chitectural models. InFifth Eurographics Workshop on
Rendering, pages 389–399, July 1994.

35. W. Schroeder. A topology modifying progressive dec-
imation algorithm. InProceedings of Visualization’97,
pages 205–212, 1997.

36. G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Con-
servative volumetric visibility with occluder fusion.
Proc. of ACM SIGGRAPH, pages 229–238, 2000.

37. R. Samanta, T. Funkhouser, K. Li, and J. P. Singh.
Hybrid sort-first and sort-last parallel rendering with a
cluster of PCs.Eurographics/SIGGRAPH workshop on
Graphics Hardware, pages 99–108, 2000.

38. A. Sud, N. Govindaraju, and D. Manocha. Partition-
ing and Clustering Large Environments for Interactive
Walkthroughs TR02-29, Dept. of Computer Science,
UNC-Chapel Hill, 2002.

39. S. J. Teller. Visibility Computations in Densely Oc-
cluded Polyhedral Environments. PhD thesis, CS Di-
vision, UC Berkeley, 1992.

40. I. Wald, P. Slusallek, and C. Benthin. Interactive dis-
tributed ray-tracing of highly complex models. InRen-
dering Techniques, pages 274–285, 2001.

41. P. Wonka, M. Wimmer, and D. Schmalstieg. Visibil-
ity preprocessing with occluder fusion for urban walk-
throughs. InRendering Techniques, pages 71–82, 2000.

42. P. Wonka, M. Wimmer, and F. Sillion. Instant visibility.
In Proc. of Eurographics, 2001.

43. G. Varadhan and D. Manocha. Out-of-Core Rendering
of Massive Geometric Environments TR02-28, Dept. of
Computer Science, UNC-Chapel Hill, 2002. To appear
in Proc. of IEEE Visualization, 2002.

44. J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time
level-of-detail-based rendering for polygonal models.
IEEE Transactions on Visualization and Computer
Graphics, 3(2):171–183, June 1997.

45. H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visi-
bility culling using hierarchical occlusion maps.Proc.
of ACM SIGGRAPH’97, 1997.

c© The Eurographics Association 2002.

William V. Baxter III Avneesh Sud Naga K. Govindaraju Dinesh Manocha / GigaWalk

Plate 1: Double Eagle Tanker: This 4 gigabyte environment consists of more than 82 million triangles and 127 thousand objects. Our algorithm
can render it 11-50 frames per second on an SGI system with two IR2 graphics pipelines and three 300MHz R12000 CPUs.

(a) Partitioning & Clustering on Power
Plant

(b) Original Objects in Double Eagle (c) Partitioning & Clustering on Double Ea-
gle

Plate 2: The image on the left shows the application of the partitioning and clustering algorithm to the Power Plant model. The middle image
shows the original objects in the Double Eagle tanker model with different colors. The right image shows the application of the clustering
algorithm on the same model. Each cluster is shown with a different color.

(a) Pixel Error = 0 (b) Pixel Error = 20 (c) Difference Image
Plate 3: The Engine Room in the Double Eagle Tanker displayed without and with HLODs. The inset shows a magnification of one region.
Original resolution 1280×960.

c© The Eurographics Association 2002.

	Dinesh Manocha
	University of North Carolina at Chapel Hill
	
	Speakers
	University of North Carolina at Chapel Hill
	AT & T Labs
	University of North Carolina at Chapel Hill
	University of North Carolina at Chapel Hill
	Stanford
	Caltech
	NVIDIA
	Abstract
	Course Presenters Information
	Dinesh Manocha
	Michael Doggett

	Wloka - Overview.pdf
	Overview of Graphics Hardware
	PC Graphics (Current)
	Usual Co-Processor Pitfalls
	GPU as a Co-Processor? Careful!
	GPU Schematic
	AGP Bus Considerations
	AGP Performance
	Programmable Vertex Processors
	Vertex Processing Performance
	Setup/Rasterization
	Setup/Rasterization Performance
	Programmable Fragment Shader
	Fragment Shader Data Formats
	Table (Texture) Look-Ups
	Texture and Render Target Features
	Fragment Shader Performance
	Other Free Computation Units
	Available Z and Stencil Operations
	Performance Considerations
	And the Future Is Blindingly Bright…
	Last Year’s Intro Revisited
	Lack of Programming Tools?
	Lack of Precision?
	Formal Performance Eval. Models?
	Only Certain Problems Map to GPU
	Known GPU (Ab)Uses
	Depth Peeling
	Order Independent Transparency
	Particle System Physics
	Game of Life/Fire Simulation
	Height-Based Water Simulation
	Boiling (2D and 3D)Rayleigh-Bénard Convection (2D)
	All the Previous Stuff Runs On…
	Current GPUs Allow
	Advertisement:Implementing a GPU-Efficient FFT
	Questions, Comments, Feedback?

	Matthias CoureNotes_GraphicsHardwareFunctionalityForGeometricComputations.pdf
	Introduction
	Focus on Functionality for Geometric Computations
	Efficient Vertex Presentation
	Vertex Programs
	Rasterization
	Depth Clamping
	Conventional Texture Targets
	Texture Rectangles
	Shadow Mapping
	Texture Shader
	Register Combiners
	Stencil Testing
	Blending and Logic Ops
	Occlusion Queries
	Pixel Buffers, a.k.a. Pbuffers
	Render to Texture Support
	Automatic Mipmap Generation
	Conclusions
	References

	Matthias CoureNotes_HardwareShadowMapping.pdf
	Introduction
	How It Works
	How To Do It
	Why Is Polygon Offset Needed?

	OpenGL API Details
	Direct3D API Details
	Setup
	Advantages and Limitations

	Computing Transformations for Shadow Mapping
	
	
	
	
	Equation 1

	Setting Up the Transformations
	
	
	
	
	Equation 2
	Equation 3
	Equation 5
	
	First Pass (Depth Map Generation)

	Conclusions
	References

	Matthias CoureNotes_OrderIndependentTransparency.pdf
	Introduction
	Shadow Mapping
	Depth Peeling
	Multiple Depth Tests
	Shadow Mapping as Depth Test

	An Invariance Issue
	Putting It All Together
	Conclusion
	Acknowledgements
	References

	Matthias CoureNotes_OrderIndependentTransparency.pdf
	Introduction
	Shadow Mapping
	Depth Peeling
	Multiple Depth Tests
	Shadow Mapping as Depth Test

	An Invariance Issue
	Putting It All Together
	Conclusion
	Acknowledgements
	References

	Cover Ray Tracing and Global Illumination on.pdf
	Ray Tracing and Global Illumination on
	Programmable Graphics Hardware

	Cover Section K.pdf
	Manocha section K

	Cover Section D.pdf
	Shankar Krishnan
	AT&T Labs–Research

	Cover Section G.pdf
	California Institute of Technology

	Cover Section H.pdf
	Implementing a GPU-Efficient FFT
	Matthias M Wloka

	Cover Section B.pdf
	Overview of Graphics Hardware
	Matthias M Wloka

	NVIDIA

	8 Page Space Holder for Naga.pdf
	8 Page Space Holder for Naga's Paper

	SIGGRAPH03 opening.pdf
	Dinesh Manocha
	University of North Carolina at Chapel Hill
	
	Speakers
	University of North Carolina at Chapel Hill
	AT & T Labs
	University of North Carolina at Chapel Hill
	University of North Carolina at Chapel Hill
	Stanford
	Caltech
	NVIDIA
	Abstract
	Course Presenters Information
	Dinesh Manocha
	Michael Doggett

	D-1: 1
	D-2: 2
	D-3: 3
	D-4: 4
	D-5: 5
	D-6: 6
	D-7: 7
	D-8: 8
	D-9: 9
	D-10: 10
	D-11: 11
	D-12: 12
	D-13: 13
	D-14: 14
	D-15: 15
	D-16: 16
	D-17: 17
	D-18: 18
	D-19: 19
	D-20: 20
	D-21: 21
	D-22: 22
	D-23: 23
	D-24: 24
	D-25: 25
	D-26: 26
	D-27: 27
	D-28: 28
	D-29: 29
	D-30: 30
	D-31: 31
	D-32: 32
	D-33: 33
	D-34: 34
	D-35: 35
	D-36: 36
	D-37: 37
	D-38: 38
	D-39: 39
	D-40: 40
	D-41: 41
	D-42: 42
	D-43: 43
	D-44: 44
	D-45: 45
	D-46: 46
	D-47: 47
	D-48: 48
	D-49: 49
	D-50: 50
	D-51: 51
	D-52: 52
	D-53: 53
	D-54: 54
	D-55: 55
	D-56: 56
	D-57: 57
	D-58: 58
	D-59: 59
	D-60: 60
	D-61: 61
	D-62: 62
	D-63: 63
	D-64: 64
	D-65: 65
	D-66: 66
	D-67: 67
	D-68: 68
	D-69: 69
	D-70: 70
	D-71: 71
	D-72: 72
	D-73: 73
	D-74: 74
	D-75: 75
	D-76: 76
	D-77: 77
	D-78: 78
	D-79: 79
	D-80: 80
	D-81: 81
	D-82: 82
	D-83: 83
	D-84: 84
	D-85: 85
	D-86: 86
	D-87: 87
	D-88: 88
	D-89: 89
	D-90: 90
	D-91: 91
	D-92: 92
	D-93: 93
	D-94: 94
	D-95: 95
	D-96: 96
	D-97: 97
	D-98: 98
	D-99: 99
	D-100: 100
	D-101: 101
	D-102: 102
	D-103: 103
	D-104: 104
	D-105: 105
	D-106: 106
	D-107: 107
	D-108: 108
	D-109: 109
	D-110: 110
	D-111: 111
	D-112: 112
	D-113: 113
	D-114: 114
	D-115: 115
	D-116: 116
	D-117: 117
	D-118: 118
	D-119: 119
	D-120: 120
	D-121: 121
	D-122: 122
	D-123: 123
	D-124: 124
	D-125: 125
	D-126: 126
	D-127: 127
	D-128: 128
	D-129: 129
	D-130: 130
	D-131: 131
	D-132: 132
	D-133: 133
	D-134: 134
	D-135: 135
	D-136: 136
	D-137: 137
	D-138: 138
	D-139: 139
	D-140: 140
	D-141: 141
	D-142: 142
	D-143: 143
	D-144: 144
	D-145: 145
	D-146: 146
	D-147: 147
	D-148: 148
	D-149: 149
	D-150: 150
	D-151: 151
	D-152: 152
	D-153: 153
	D-154: 154
	D-155: 155
	D-156: 156
	D-157: 157
	D-158: 158
	D-159: 159
	D-160: 160
	D-161: 161
	D-162: 162
	D-163: 163
	D-164: 164
	D-165: 165
	D-166: 166
	D-167: 167
	D-168: 168
	D-169: 169
	D-170: 170
	D-171: 171
	D-172: 172
	D-173: 173
	D-174: 174
	D-175: 175
	D-176: 176
	D-177: 177
	D-178: 178
	D-179: 179
	D-180: 180
	D-181: 181
	D-182: 182
	D-183: 183
	D-184: 184
	D-185: 185
	D-186: 186
	D-187: 187
	D-188: 188
	D-189: 189
	D-190: 190
	D-191: 191
	D-192: 192
	D-193: 193
	D-194: 194
	D-195: 195
	D-196: 196
	D-197: 197
	D-198: 198
	D-199: 199
	D-200: 200
	D-201: 201
	D-202: 202
	D-203: 203
	D-204: 204
	D-205: 205
	D-206: 206
	D-207: 207
	D-208: 208
	D-209: 209
	D-210: 210
	D-211: 211
	D-212: 212
	D-213: 213
	D-214: 214
	D-215: 215
	D-216: 216
	D-217: 217
	D-218: 218
	D-219: 219
	D-220: 220
	D-221: 221
	D-222: 222
	D-223: 223
	D-224: 224
	D-225: 225

