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Abstract

Fast graphics hardware including dedicated vertex processing, 3D rasterization, texturing,
and pixel processing is becoming as ubiquitous as floating-point hardware. The ubiquity
and performance of this hardware leads us to consider the extent to which this hardware
can be harnessed to solve geometric and scientific problems beyond the conventional
domain of image synthesis for the sake of pretty animation. In particular, there are a
number of complicated geometric and scientific problems whose solutions provide the
basis for many application areas in graphics, robotics, vision, simulation, computer
gaming, visualization and high-performance computing. Many of the sophisticated
"behind-the-curtain" geometric computations are often hard to perform accurately and
robustly with reasonable efficiency. At the same time, the graphics processing units offer
a lot of potential as generally programmable SIMD and streaming units. This course
covers all aspects of using graphics rasterization hardware for interactive geometric and
scientific computations.

This course will start with an overview with some of the graphics hardware features that
lend themselves to solving geometric and scientific problems. Next we will talk about
software APIs and issues in implementing some basic geometric queries on this
hardware. After that the course will deal with three main different application areas:
geometric arrangements, collision and reconstruction problems, scientific computation
including linear solvers, Fast Fourier transforms dynamic and fluid simulation and finally
global illumination and interactive walkthroughs. Each talk will present some novel
algorithms for these geometric or scientific problems that make use of the capabilities of
the rasterization hardware. The speakers will also summarize their experiences in
implementing different algorithms on graphics processors, surprises and technical lessons
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Interactive Geometric and Scientific Computations Using Graphics Hardware

Ming C. Lin and Dinesh Manocha

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

{lin,dm}@cs.unc.edu
http://gamma.cs.unc.edu

Abstract

Fast graphics hardware, including dedicated vertex processing, 3D rasterization, texturing, and pixel
processing, is becoming as ubiquitous as floating-point hardware. The development time between new
generations of graphics processor units (GPUS) is currently much less than the development cycle for
CPUs. Moreover, the rasterization performance of the GPUs appears to be progressing at a rate faster
than Moore’s law. Along with multi-pass capabilities, programmability and fast readback bandwidth,
the GPUs are becoming useful co-processors for diverse applications that are beyond the conventional
domain of image synthesis.

In this paper, we give a brief overview of using GPUs for geometric and scientific applications. These
include developing real-time algorithms for different geometric problems including intersection queries,
Voronoi diagrams and distance fields, penetration depth computation, robot motion planning, visibil-
ity determination and model simplification as well as scientific computations including sparse matrix
solvers, conjugate gradient and optimization. All these algorithms effectively utilize the SIMD capabili-
ties and treat GPUs as an efficient processor of images. The main issues, as compared to CPU-based im-
plementations, include lack of general-purpose programming tools for the GPUs, limited precision and
storage. We also demonstrate some applications of these algorithms to fast physically-based simulation,
real-time navigation of dynamic environments, and interactive display of complex 3D environments.



1 Introduction

High-performance 3D graphics systems are becoming as ubiquitous as floating-point hardware. They are
now a part of almost every personal computer or game console. In fact, the two major computational
components of a computer system are its main processor (CPU) and its graphics processor, also known as
the GPU. While the CPUs are used for general purpose computation, the GPUs were primarily designed
for drawing and filling primitives, geometric transformations and texturing. The main application has been
fast rendering of lighted, smooth shaded, depth buffered, texture mapped, anti-aliased triangles for visual
simulation, virtual reality, and computer gaming. Some of the recent GPUs also include advanced features
like multi-texturing [MH99, SAFL99], pixel textures [HS99], programmable shading and programmable
vertex engines [LKMO1], and support for floating-point fragment pipelines and frame buffers [POAUOQO].

As graphics hardware becomes more programmable, the barrier between the CPU and the GPU is being
redefined. The GPU can also be regarded as an efficient processor of images or a useful co-processor fol
many diverse applications.

One of the first GPUs was the Geometry Engine (GE) proposed by Clark [Cla82]. It was fabricated
using a3um feature size and housed in8-pin package. The GPUs have progressed at a fast rate over
the last two decades, both in terms of chip complexity as well as rendering performance. Compared to the
first GE, a recent GPU like NVIDIA's GeForce3 was manufactured using&&um process with a550-pin
package. Its peak fill-rate 584 billion AA samples/second, can perfoi60 billion operations per second
and has memory bandwidth 8fGB/sec. Its overall performance is more than three and a half orders of
magnitude higher as compared to the first GPU released dboggars. Details of different GPUs are
shown in Fig. 1. The performance growth curve of GPUs has an average slbg&ofvhereas the CPUs
have improved in performance ly7.X (per year) over the same time period. In other words, the GPUs
have been progressing at a rate faster than Moore’s law and this trend is likely to continue in the near-future.
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Figure 1: Performance of Graphics GPUs. They have been progressing at a rate faster than Moore’s law. Data
Courtesy of John Poulton, UNC Chapel Hill.

The current GPUs are optimized for rasterization of 3D geometric primitives. They can also be re-
garded as an efficient processor of images. Moreover, the vertex and pixel shaders provide the application



programmer a great deal of flexibility and power. Because of these capabilities, an incredible array of new
algorithms and real-time implementations of old algorithms have been made possible.

One of the recent trend in computer graphics has been to use the computation power of CPUs for real-
time software rendering. Some examples include real-time ray-tracing of complex scenes using shared
memory systems or clusters of PCs [PMS, WSBO01]. In contrast with these efforts, we focus on using
GPUs as a co-processor for geometric and scientific applications.

Why Geometric and Scientific Applications: Many geometric algorithms deal with discretized
inputs or outputs [GY86, GGHT97, GM95]. In many cases, the underlying operations can be performed
in parallel. This is somewhat similar to rendering algorithms that are implemented in a GPU and are very
amenable to pipelining. Furthermore, many applications demand very high computation power for inter-
active performance and current CPUs are relatively slower by one or two orders of magnitude. Examples
of such problems include proximity computations, contact analysis between rigid and deformable mod-
els for dynamic simulation, motion planning and navigation in complex static and dynamic environments,
visibility computations and model simplification for real-time walkthroughs, visual simulation of diverse
dynamic phenomena, such as fluids, clouds and smoke etc. The need to compute real-time solutions of these
problems arises in interactive computer graphics, virtual environments, simulation-based design, computer
gaming, robotics and scientific applications.

Interpolation-based graphics rasterization hardware is increasingly being used for different geomet-
ric applications. These include visibility and shadow computations [ZMHH97], CSG rendering [EJR89,
GHF86, Wie96], proximity queries [RMS92, HCK9, HZLMO01], morphing [KR92], motion planning
[DLRG90, PHLMOO], object reconstruction [MBRO, Lok01] etc. A recent survey on different applica-
tions is given in [TPKO1]. All these algorithms perform computations in the 2-D discretized image-space
and their accuracy is governed by the underlying pixel resolution. While the initial results are promising,
the current approaches can either handle only 2D (or 2.5D) inputs at interactive rates. Other major issues
in using GPUs are the difficulty of programmings, lack of high precision and storage. Some of the recent
trends, including higher level languages (e.g. NVIDIAs Cg, DirectX’s HLSL and OpenGL's SLang), sup-
port for 32bit floating point from start to finish of the pipeline, etc. seem to be overcomming these barriers.
They have recently been used for many interesting applications including interactive visibility computa-
tions on very large models [GSYMO02, GI'Y3], sparse matric conjugate gradient solver and multigrid
solvers [BFGSO03], ray-tracing [PBMHO02], visual simulation of some dynamic phenomena based on the
coupled map lattice [HCSLO02], non-linear diffusion [SRO1], etc. More information about some of these
recent applications is available at:

http://wwwx.cs.unc.edu/"harrism/gpgpu/index.shtmi

Goals of the Course:This course highlights many issues in effectively using the GPUs for different
geometric problems. These include:

1. Can we treat GPUs as co-processors and design faster algorithms for geometric computations? What
formal models do we use to analyze their performance?

2. What are the main limitations arising from the lack of high precision and programming tools for the
GPUs? How can we improve their accuracy?

3. What kind of applications can benefit from the features and capabilities of GPUs?



In particular, we will cover these topics.

e Faster Algorithms for Geometric Problems: We will consider three classes of geometric problems.
These include proximity computations, arrangements and visibility computations.

e Faster algorithms for Scientific Problems: We will survey some fast algorithms for sparse matrix
conjugate solvers, regular-grid multigrid solvers and fast fourier transforms as well as some applica-
tions to fluid dynamics.

e Programmability Issues: We will provide a brief survey of the current set of tools and languages
available to program the GPUs. We also address a number of issues in implementing the algorithms
on current GPUs.

e Applications: We will highlight a number of applications to physically-based simulation, computer
vision, robot motion planning, simulation of natural phenomenan and real-time rendering.
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PC Graphics (Current)

CPU GPU
(3 GHz) (500 MHz)
System Memory Video Memory
(1 GB) AGP 8x Bus | (256 MB)

AGP Memory (S )

(512 MB)

<
BVIDIA.

Usual Co-Processor Pitfalls

< Synchronization temporarily idles ALL processors

<" Specialized co-processor architecture
- GPU’s deep pipeline means restart is expensive

- Different mind-set needed to map problems to
architecture

@:’;'_
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GPU as a Co-Processor? Careful!

-~ CPU programmed as von Neumann architecture

<~ GPU designed to render graphics
- MAY be able to abuse it for other computations

<~ GPU is NOT von Neumann architecture
- Deep pipeline architecture
- Pipeline stages are multi-pipe SIMD designs
. Stages are vector-processors
- Optimized for large table look-ups (textures)
- AGP interconnect not symmetric

@:’;'_

AVIDIA.




GPU Schematic

GPU

Vertex

AGP 8x Bus
Setup/Raster

(2 GBJs) Proce S:

AN
Textures / E. . .E

Framebuffer

— Fragment
(180 MB/s) Shaders

AGP Bus Considerations

- Optimized for graphics:
- CPU hands GPU (lots of) data
- GPU produces image on monitor
- AGP read-back (generally) unused

< Best for “Deep Thought” kind of problems:

Lots
SofData \ Deep
“ / Thought
<

CC,?’; “42” ==
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AGP Performance Programmable Vertex Processors
i . < No connectivity info/no access to neighbors (SIMD)
< Write AGP data in 32 or 64 byte blocks
- AGP-Write combining needs to read then write 1.5 Billion VECTOR operations/s! (~6B ops/s)
Avoid ding f hics data-struct - |IEEE s23e8 32 bit floating point per component
= Avold reacing from graphics cata-structures - “Simple” operations include dot4, mad, sin, pow, g2
& Communicate intended use to driver - Oh yeah, vector swizzles/conditional writes are free
- Static versus dynamic vertex buffers or textures _ Post TnL vertex caches: >>100 Million lit tris/s
- Declare data as write-only
- Placement into video-, AGP-, or system-memory 2 Per-vertex data-dependent:
- Branches, loops
2 Allow vertex buffer renaming (avoid syncs) < Subroutines P <
- Use discard/no-overwrite and var/fence RVIDIA. i BVIDIA.




Vertex Processing Performance

<" Proportional to number of vertices

< Proportional to number of (assembly) instructions:F Cg
- Compute constant expressions on CPU takes
care
< Post TnL cache critical
< Much more so than lists versus strips!
- Must use indexed primitives to access it
- Allows for drawing up to 1 tri/0.5 vertices computed
- Free tools reorder your mesh optimally <
- http://developer.nvidia.com el
BVIDIA.

Setup/Rasterization

< Collects post TnL vertices into triangles

< Culls and clips

- Rasterizes triangles into fragments

- Per-Vertex data interpolates to per-fragment

< linearly
- perspective-correct

@:’;;
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Setup/Rasterization Performance

< Not much control over it, but...
- Does not matter: very rarely the bottleneck

- Degenerate triangles are free
- Likely that all vertices hit PostTnL cache
- No rasterization cost
- Setup engine ok w/ up to 25% degenerates

< Use target resolution as needed, no more
- Don’t alpha-, z-, or stencil-cull the whole triangle @:”;

BVIDIA.

Programmable Fragment Shader

< No connectivity info/no access to neighbors (SIMD)

- ~8 Billion VECTOR operations/s! (~32B ops/s)
< Multiple parallel fragment pipes
- Parallel RGB vector plus alpha scalar pipe
- Multiple operations per pipe and clock

- “Simple” operations include dot4, mad, sin, pow,
g2, table (texture) look-ups

- Vector swizzles/conditional writes are free

@:’;;

AVIDIA.
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Fragment Shader Data Formats

- IEEE s23e8 32 bit floating point per component

< Optional OpenEXR s10e5 16 bit fp per component
- Same format as endorsed by Pixar and ILM
< In case 16 bit floating point is good enough
< And performance is critical

< 12 bit fixed point precision

@:’;;
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Table (Texture) Look-Ups

- Additional free operations:
< Bi-Linear filtering for table (texture) look-up
- Mip-level computations
- Partial derivative computations

-~ Shadow maps (free depth compare on read)

< Up to 16 different textures
- Sampled an arbitrary number of times

< Unlimited dependent texture reads @:'
RBVIDIA.

Texture and Render Target Features

-~ 1D, 2D, 3D, cube-map, rectangle textures

< Textures and render targets with (per component)
- 8 bit fixed point
- OpenEXR 16 bit floating point
- |IEEE s23e8 32 bit floating point
- Mix and match above

< Free texture compression: HILO and S3TC

< Vertex array render targets @:‘ 4
BVIDIA.

Fragment Shader Performance

- Wider formats more expensive
- Requires more bandwidth
- Requires more computation

< More temporaries more expensive Cg
takes
< Longer shaders more expensive care

<" Non-local texture look-ups more expensive
- But 2D neighborhood is cached

- Behavior still much better than L1 cache-misses @f”;
BVIDIA.
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Other Free Computation Units

< Occlusion queries

< Last century’s tech:
< Frame-Buffer blending and alpha-testing

- Stencil operations
- Super-Accelerated via two-sided stencil, stencil-only

- Z-Buffer operations
- Super-Accelerated via early z-cull, z-compression

Available Z and Stencil Operations

- Selectable stencil test
- Test against value in stencil buffer
- Reject fragment if test fails
- Perform distinct stencil operation when
- Stencil-Test fails
- Z-Test fails
- Z-Test passes

< Selectable z-test
< Reject fragment if test fails

< <
BVIDIA. BVIDIA.
Performance Considerations And the Future Is Blindingly Bright...
GPU CPU MHz
A . 200 T——GpU MTrs ¢ 7 5000
< Occlusion query: use it asynchronously GPU 32-bit AA Fill AE D
S e
-7 T 3000
2 Alpha blending: reads and writes frame buffer 10 == 1 2000
50 = ——_ =27 + 1000
< Stencil-Only pass (no z- or color-writes): extra fast e ‘ﬁ_ ’,: :; —3 A CECEEE
- Z-cu": render Iightly sorted front-to-baCK 2H97 | 1H98 | 2H98 | 1H99 | 2H99 | 1HOO | 2HOO0 | 1HO1 | 2HO1 | 1H02 2:02
< Clear() best way to clear color, stencil, or z Avg. 18month CPU Speedup: 2.2
- Turn off color-, stencil-, or z-writes when unneeded = Avg. 18month GPU Speedup: 3.0-3.7 =
- But do not mask individual color components @i”; @i";
BVIDIA. BVIDIA.
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Last Year’s Intro Revisited

<~ Programmability: Lack of programming
tools

~'Lack of precision
<~ Formal models for performance evaluation

< Only a certain class of problems can be
mapped to the graphics hardware

©’>;

AVIDIA.

Lack of Programming Tools?

<~ NVIDIA’s Cg
<~ C-Like high-level language
- Compiles to vertex-/pixel-shader profiles
~Integrated with OpenGL and/or DirectX
- Cross-0S support: Windows, Linux, ...
<~ DirectX HLSL compatible

< DirectX’s HLSL (Windows/DirectX only)

< OpenGL’s SLang (when spec finalized) <
RVIDIA.

Lack of Precision?

< Yes, limited to 32bit floating point per component
- No support for doubles

< But 32bit floating point from start to finish of pipe
- No ifs, buts, or whens
- At least on NVIDIA’s Geforce FX family of GPUs

< Smaller formats available for optimizations
- When 32bit floating point is overkill

©’>;

AVIDIA.

Formal Performance Eval. Models?

< Not aware; architectures are still changing rapidly

< But: Lots of good stuff available in the trenches
- Websites, e.g., http://developer.nvidia.com
- Lots of GPU performance presentations
- Lots of GPU performance white-papers
< IHV’s Developer Relations
- Game Developer Conferences
- Lots of GPU performance talks and discussions

< Shader compilers/drivers optimize for you @:
RVIDIA.
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Only Certain Problems Map to GPU

Known GPU (Ab)Uses

< GPU likes
- Not needing to know about neighbors
- Closed form solutions (CPU prefers iterative)
< Table-Lookups (CPU dislikes if causing cache thrash)
- ‘Deep Thought’ problems
- Vector operations
- All pipe processors busy all the time

<~ GPU dislikes
- Synchronizing to the CPU (and vice versa!)
- MIMD
<
- Branching Q"'

BVIDIA.

- CSG via stencil ops:
- [Wiegand 1996]
- [Stewart, Leach, John 1998, 2002]

v @

cone U sphere

cone N sphere cone — sphere

<

BVIDIA.

Depth Peeling

Order Independent Transparency

- Display pixels
at nth layer of
depth
Repeatedly
render to depth
buffer, but
reject pixels
previously
determined to~
be ‘closest’

[}

<

BVIDIA.

< Corollary to depth peeling [Everitt 2001]:

- Compute all depth peels
- Stop when no pixels rendered (occlusion query) =
<

- Blend depth Is back-to-front
end depth peels back-to-fron BVIDIA.
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Particle System Physics

Game of Life/Fire Simulation

< Translate iterative
computations to closed form

- Solve closed form physics for
every particle (vertex)

 [Wloka 2001]

<

BVIDIA.

- Sample render-target
texture multiple
times to determine
neighbors’ state

< Use dependent
‘rule’-texture read to |
determine new state

< [James 2001]

()
BVIDIA.

Height-Based Water Simulation

Boiling (2D and 3D)
Rayleigh-Bénard Convection (2D)

< Simulate height-field dynamics
< Generate normals from height field

< [James 2001], [Elder Scrolis lll: Morrowind] <
RVIDIA.

< [Harris 2002] n

()
BVIDIA.
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All the Previous Stuff Runs On...

Current GPUs Allow

- Geforce 3, anno early 2001 !!!
- More restrictive pixel-shaders
- No floating point formats
- Only 4 textures, 1 sample per texture (per pass)
- Maximally 8 math instructions
- None of the fancy ‘simple’ instructions
< Much lower performance

- 2003: Geforce FX architectures available for $79
- Same full feature-set as described earlier
< Only lower performance C‘f::f_‘
BVIDIA.

< Ray-Tracing
[Purcell et al 2002]

< Cloth simulation via
render to vertex-buffer
[Green 2002]

E_; < Scientific computations

L

2 <
RVIDIA.

Advertisement:
Implementing a GPU-Efficient FFT

Questions, Comments, Feedback?

< Case study of:
- Take a highly CPU-optimized algorithm and ...
- Convert it to run (well) on GPU

< Feasibility checks

- Step-By-Step CPU to GPU conversion
- Things to avoid
- Things to strive for

< Optimizing the GPU implementation <
(R

- Taking advantage of GPU’s peculiarities BVIDIA.

< Matthias Wloka, mwloka@nvidia.com

< http://developer.nvidia.com

<

RBVIDIA.
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Introduction

This paper offers a whirlwind tour of contemporary graphics hardware functionality,
focusing on the task of accelerating geometric computations. NVIDIA’s Quadro4 XGL
and GeForce4 Ti Graphics Processing Units (GPUs) manifest all the functionality to be
discussed. While other GPUs from other vendors may also manifest much identical or
similar functionality, I constrain this papers discussion to NVIDIA’s current (Spring
2002) top-of-the-line GPU generation because these GPUs are widely regarded as the
fastest and most capable GPUs available as of this writing and, pragmatically, my own
expertise is limited to these GPUs. I recognize that other GPUs, such as ATI’s Radeon
8500, provide similar or identical functionality in many cases.

Again due to the limits of my own expertise, I’ll discuss GPU functionality in terms
of the OpenGL programming interface. I recognize that Microsoft’s Direct3D
programming interface exposes similar or identical functionality in most cases. However
OpenGL’s extension mechanism provides a means to expose NVIDIA’s complete GPU
hardware functionality which in a few cases is not otherwise exposed by the most recent
version of Direct3D for the PC, namely DirectX 8.1. For example, general hardware
shadow mapping and hardware occlusion queries are available today just through
OpenGL today." Additionally, full OpenGL support is available for Linux and Apple’s
OS X operating system whereas DirectX is only supported on Windows systems so the
functionality described is broadly available on a variety of platforms.

Focus on Functionality for Geometric Computations

GPUs sold today have a comparable design and transistor complexity to CPUs.
Graphics is a highly parallel process with regular and very pipeline-able algorithms. This
combined with the appetite for increasing realistic graphics in markets from scientific
visualization to Computer Aided Design (CAD) to 3D video games means that the
semiconductor industries ever increasing transistor densities and counts makes graphics
hardware ideally positioned to improve in performance at rates consistent with the so-
called Moore’s Law.

! The version of DirectX for Xbox does support these additional features, but the PC version of
DirectX 8 does not.
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Traditionally, the end result of this increasing graphics hardware horsepower has been
rendering images to be displayed to a computer user, whether a CAD designer or teenage
video game enthusiast. Typically, each image is rendered to be displayed to the user, and
then discarded so that yet another image can be displayed within a fraction of a second to
maintain the illusion of animation.

This paper focuses not on the traditional use of graphics hardware for animated
rendering but rather the use of graphics hardware functionality for geometric
computations. The argument for using GPUs for geometric computations is that graphics
hardware is expected to out-strip the performance of conventional CPU hardware for the
class of computations that graphics hardware is designed to accelerate. At the same time,
the trend in graphics hardware design is towards increasing programmability, rather than
mere configurability, of the graphics pipeline. This means that graphics hardware that in
the past was over-specialized for conventional 3D rendering can be brought to bear on
tasks not conventionally though of as being amenable to graphics hardware acceleration.

The point of this paper is not to present such applications but rather to note the
functionalities within contemporary graphics hardware (circa Spring 2002) as embodied
by the set of OpenGL extensions supported by NVIDIA’s current top-of-the-line GPUs,
the NVIDIA GeForce4 Ti and Quadro4 XGL lines.

If geometric computations are to be competitive with CPU algorithms and, in fact,
more efficient, it is critical that the graphics hardware is used efficiently. Not only does
this paper focus on functionality helpful to implementing geometric computation
algorithms using graphics hardware but also highlights the highest performance means to
use contemporary graphics hardware.

The remainder of this paper discusses graphics hardware functionality in roughly the
order of the graphics hardware pipeline. All the OpenGL extensions cited have
specifications that can be found in the OpenGL extension registry [8] or in NVIDIA’s
collection of formatted OpenGL extension specifications [7].

Efficient Vertex Presentation

OpenGL provides multiple methods for sending vertex information to graphics
hardware. Immediate mode uses the classic glVertex3f, etc. commands. While
convenient, immediate mode vertex transfers typically throttle the vertex transfer speeds
due to API overhead and the general inefficiency of transferring per-vertex parameters
one parameter at a time. Display lists provide a more efficient means to “batch up”
immediate mode commands statically for fast play back. OpenGL 1.1 added support for
vertex arrays where the OpenGL implementation is first configured with arrays of per-
vertex parameters in main memory, potentially interleaved arrays or separate arrays.
Then lists of vertex array indices indicate how to present vertices efficiently to the
graphics hardware. The glDrawArrays command can be used for sequential indices
while the glDrawElements command can be passed an array of random indices.

The EXT compiled vertex array extension adds the facility to lock a range of
indices. When a range of indices is locked with glLockArraysEXT, the OpenGL
implementation can assume that the vertex array data references by the indicated range of
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vertices will not change until a matching glUnlockArraysEXT unlocks the range. This
mechanism is used by id Software’s Quake3 game engine so most OpenGL
implementations today implement this extension today very efficiently. Be warned that
some OpenGL implementations only optimize vertex array configurations that are very
similar or identical to the configurations used by Quake3; NVIDIA’s recent drivers
provide very general acceleration to this functionality however.

NVIDIA provides an even more optimized variation on vertex arrays through its
NV vertex array range extension. Applications seeking to achieve the very best
vertex processing rates are recommended to use this extension however the effort may
not be worth it unless your application is truly sending millions of vertices per second to
be transformed. The vertex array range mechanism provides a way to allocate memory
for high-bandwidth transfers to the GPU. This memory is usually Advanced Graphics
Port (AGP) memory but can also be local video on the graphics card. Once this memory
is allocated, the glVertexArrayRangeNV command configures a range of this memory
for highly efficient vertex transfers. When the GL VERTEX ARRAY RANGE NV
client-side enable is enabled, vertex array commands send the requested vertex indices
directly to the GPU and the GPU issues high-bandwidth read requests for the required
memory. This is in contrast to conventional vertex array calls where when vertex array
calls (glDrawArrays or glDrawElements) return, the vertex array memory can be

immediately modified meaning that the CPU must immediately copy the vertex data to
the GPU.

Note that the vertex array range functionality provides extremely fast vertex transfer
rates but only so long as you abide by its rules. The memory allocated for the vertex
array range is uncached memory meaning that CPU reads from this memory are
exceedingly slow relative to conventional cached CPU memory. Also note all vertex
array configurations can be efficiently pulled by the CPU. These various restrictions are
noted the NV vertex array range OpenGL extension.

Another difficulty exposed to applications that choose to use the vertex array
functionality is how to update vertex data within the vertex array range dynamically and
efficiently. There is no locking mechanism for the vertex array range memory; it is
simply up to the application to be sure not to access memory corresponding to “in flight”
vertex array indices. This is facilitated by the NV_fence OpenGL extension that provides
a way to know when the hardware has completed all the commands prior to a
glSetFenceNV command. Vertex array range memory accessed by commands prior
to a finished fence (determined with glFinishFenceNV) can be modified, assuming of
course that these indices were not also issued subsequent to the fence.

The original NV vertex array range extension specified that enabling and
disabling the vertex array range with the G VERTEX ARRAY RANGE NV client-side
enable caused the hardware to stall. The later NV _vertex array range2 extension
introduced a second enable enumerant GL_VERTEX ARRAY RANGE WITHOUT FLUSH NV
that allows an application to enable and disable the vertex array range without an implicit
vertex array range flush that causes the hardware to stall. Use the later enable if your
application wishes to mix vertex array range and non-vertex array range vertex array
transfers.
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Direct3D permits a similar level of performance through its use of vertex buffers and
streams though it lacks a synchronization mechanism as efficient as the fence
mechanism.

Vertex Programs

Vertex programs (known as vertex shaders in Direct3D) provide a means for a
graphics application to specify a linear sequence of floating-point instructions on a per-
vertex basis. This is in contrast to the conventional Transformation & Lighting (T&L)
operations provided by OpenGL. This is particularly useful in the context of geometric
computations where the required per-vertex computations for an algorithm to be
implemented may not readily map to the conventional per-vertex position transformation,
lighting, and texture coordinate generation operations supported by OpenGL.

Vertex programs can play an important role in off-loading vertex-level computations
from the CPU onto the GPU. As a rough rule of thumb, a GeForce4 Ti or Quadro4 XGL
can execute two vertex program instructions per clock (twice the rate of the GeForce3
that introduced the functionality) and these GPUs are typically clocked in the
neighborhood of 300 million clocks/second. These instructions are operate on four-
component floating-point vectors so a DP4 instruction is the equivalent of 4 floating-point
multiplies and then three floating-point additions to sum up the 4 vector multiply results.
Vertex programs require no overhead for looping over each vertex, data loading or
conversion, or data storage. This makes the effective floating-point hardware utilization
(the percentage of the time that the floating-point hardware is actually busy) substantially
higher than a CPU.

There are limitations to the vertex program approach. A vertex program executes on
each vertex in isolation so there is no knowledge of adjacent vertices. There is no
support for conditional branching or looping. The resulting transformed vertices are not
available to the CPU; the transformed vertices are immediately consumed by the
hardware rasterizer.

Comprehensive coverage of vertex programs is beyond the scope of this white paper.
See the SIGGRAPH 2001 paper “A User Programmable Vertex Engine” [1] and the
NV vertex programOpenGL extension for more details.

Rasterization

Current GPUs setup geometric primitives (triangles, quads, lines, and points) at
amazing rates. The GeForce4 Ti and Quadro4 XGL GPUs can setup a primitive every 5
clocks. Prior high-end multi-chip graphics hardware would provide a relatively large
FIFO between vertex processing and rasterization so that primitives could “pile up” if the
rasterizer ever fell behind. This allows the vertex processing and rasterization workloads
to balance each other out over a period of time. With the advent of single-chip GPU
implementations, there is no longer a FIFO required to transfer data from a vertex
processing chip to a rasterization chip; it all happens within the same chip. Rather than
waste transistors on a FIFO, these same transistors can be invested in simply making the
setup process of rasterization so fast that it can “keep up” with the rate that primitives can
be generated by the vertex processor and primitive assembly. While few applications can
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drive the 60 million theoretical triangle setup rate of a GeForce4 Ti, this high rate is
available if needed.

Geometric algorithms often require back-face culling to draw all front-facing, then all
back-facing primitives, or simply as an optimization to avoid rendering non-visible
polygons of closed models. Back face culling is “free” in NVIDIA’s GPU line; this was
not always true of older graphics hardware.

Efficient early depth buffer culling (so-called Z Cull) functionality makes it
advantageous to render your scene in coarse front-to-back order when depth buffering.
The hardware can reject fragments at a much higher rate when depth occlusion can be
determined earlier in the graphics pipeline, in particular, prior to texturing. Discarding
such fragments early conserves precious memory bandwidth for visible pixels.
Geometric algorithms should definitely exploit this efficient early depth buffer culling.

Alpha testing and depth replace (see the subsequent Texture Shader section) can
interfere with efficient early depth buffer culling because texturing and alpha testing
occurs prior to depth buffering in the OpenGL fragment pipeline. Texturing can change
the alpha value and thereby change whether the alpha test fails or succeeds. Similarly if
the depth value is generated by a depth replace operation that depends on texture results,
the early depth buffer culling prior to texturing must be disabled. Keep this in mind
when using either alpha testing or depth replace. Stencil testing can create similar
ambiguities that undermine early depth buffer culling because the stencil test occurs
before the depth test in the OpenGL fragment pipeline.

Depth Clamping

Near and far clip planes are the bane of most 3D graphics programmers. The near
clip plane clips geometry that is close to the eye while the far clip plane clips away
geometry in the distance. These clip planes are conventionally required to ensure a
reasonable range of depth buffer precision and to make sure that all fragment depth
values are representable within the depth buffer.

The GeForce 3, GeForce4 Ti, and Quadro4 XGL GPUs support a capability known as
depth clamping exposed by the NV _depth clamp extension. When
GL DEPTH CLAMP NV is enabled, the near and far clip planes are effectively disabled
(fragments with a window-space w values less than or equal to zero, i.e., fragments
behind the viewer, are still discarded). Interpolated fragment depth values either larger or
smaller than range of depth values provided by the current depth range are clamped to
within the depth range.

Geometric computations that only require depth values within a given range but break
if primitives are clipped by the near or far clip plane can benefit from depth clamping.
An example of one such algorithm is the robust stenciled shadow volume algorithm
described by Cass Everitt and myself [4].

Conventional Texture Targets

Textures can be thought of as arbitrary multi-dimensional memory accesses that
benefit from texture filtering. Many clever and efficient graphics hardware algorithms
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can be constructed by pre-computing complex functions in textures for subsequent
processing during a rendering pass. OpenGL 1.3 supports 1D, 2D, 3D, and cube map
texture accesses.

Cube maps are new with OpenGL 1.3. Cube maps in particular can be useful as a
means of constructing a function of an un-normalized vector. For example, an un-
normalized vector direction can be computed per-vertex (perhaps by a vertex program or
GL _OBJECT LINEARor GL _EYE LINEAR texture coordinate generation).
Subsequently, these vectors can be interpolated and then used to access a so-called
“normalization cube map” [6] that supplies a normalized version of the vector that can be
used for per-fragment lighting or other operations during fragment coloring.

Texture Rectangles

Another useful texture type (target in OpenGL terminology) is the texture rectangle
introduced by NVIDIA’s NV _texture rectangle extension. Conventional texture
mapping uses normalized texture coordinates normalized to the [0,1] range prior to
accessing the texture image and each texture image must have power-of-two dimensions.
The texture rectangle target (GL TEXTURE RECTANGLE NV) is like a 2D texture target
except that the texture image is not restricted to power-of-two dimensions. For example,
a 23x59 texture image would work just fine. Additionally, the texture coordinate range is
the [0,width]x[0,height] range rather than a normalized range. Moreover, borders, the
GL REPEAT wrap mode, and mipmapping are not supported for texture rectangles.

In practice, texture rectangles are very useful for image processing tasks or re-using
the results from a previous frame buffer rendering as a texture. The texture coordinates
for a texture rectangle are still projective. One application for this is configuring
window-space texture coordinate generation. This allows a texture rectangle with a one-
to-one correspondence of its texels to frame buffer pixels. By copying some intermediate
result of a rendering result into a texture rectangle and then using window-space texture
coordinate generation, these intermediates can be re-used in subsequent passes.

The NV texture rectangle extension is supported by all GeForce GPUs.

Shadow Mapping

The OpenGL Architectural Review Board (ARB) has just recently (February 2002)
standardized official ARB extensions for shadow mapping. These are the
ARB depth texture and ARB shadow extensions. The former provides new texture
formats for textures containing depth components. The later provides a new texture
filtering mode for “percentage closer” filtering. This filtering scheme compares the
interpolated R texture coordinate to a depth texture’s sampled depth values at each
texture sample and then weights these comparisons to generate a final filtered texel.

This functionality is based on the prior proprietary SGIX depth texture and
SGIX shadow extensions, first implemented by SGI on the RealityEngine and
InfiniteReality graphics hardware. NVIDIA also supports these extensions on GeForce3,
GeForce4 Ti, and Quadro4 XGL GPUs. NVIDIA has recently also implemented the
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official ARB extensions (the two extensions are very similar; the ARB extension adds
only minor new functionality) [3].

Do not let the shadow name fool you. These extensions are useful in other contexts
besides shadows. Shadow mapping can be thought of as a read-only depth test with
better filtering. Geometric computations that require multiple depth buffers can use
shadow mapping to simulate multiple depth buffers. Cass Everitt’s Order Independent
Transparency algorithm [2] is a good example of this kind of innovative use of shadow

mapping.

Texture Shader

The GeForce3, GeForce4 Ti, and Quadro4 XGL GPUs from NVIDIA also support
functionality known as the texture shader for more general texture lookups. The texture
shader consists of a set of 4 texture shader stages. Among the functionality possible are
dependent texture accesses where the result of one texture access is used as the texture
coordinate set of a second texture access. The texture shader functionality is fully
described in the NV_texture shader,NV_texture shader2, and
NV_texture shader3 OpenGL extension specifications. Conventional OpenGL
texture lookups are performed (using the hierarchy of texture enables) unless the
GL _TEXTURE_SHADER NV enable is set, in which case, the texture shader
functionality is used. The details of the texture shader functionality are beyond the scope
of this article so see the texture shader OpenGL extensions for details [1].

One capability specific texture shader capability is of interest for those interested in
implementing geometric computations. The GL DOT PRODUCT DEPTH REPLACE NV and
GL DOT PRODUCT AFFINE DEPTH REPLACE NV texture shader operations (used in
conjunction with prior texture shader operations to access a texture and, in the non-affine
case, to compute a second dot product) can replace a fragment’s interpolated depth value
with a new depth value computed through a combination of the texture access and one or
two dot products. In the case of the non-affine depth replace operation, the new depth
value is the result of a division of the two dot products so that depth values can be
generated with correct projective properties required for perspective views.

One application of this feature is so-called “Z correct” displacement mapping.
Unfortunately, displacement mapping in only the window-space Z direction is not
particularly useful except for better rendering interfaces between, say, terrain and water
(see NVIDIA’s “tide pool” demo).

Other applications in the fields of image-based rendering or geometric computations
promise to be much more interesting. Cass Everitt’s Order Independent Transparency
algorithm [2] is an example of a novel algorithm that uses the depth replace functionality.

Register Combiners

Conventional OpenGL fragment coloring uses zero or more texture environment
applications, one for each enabled texture, and then a color sum and fog application.
OpenGL 1.3 provides considerably more flexible texture environment functions than
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previous versions of OpenGL. However, OpenGL 1.3 still requires a sequential model of
texture environment application.

In contrast, the NV_register combiners extension (available on all GeForce
GPUs; and augmented by the NV register combiners2 extension on GeForce3,
GeForce4 Ti, and Quadro4 XGL GPUs) provides a considerably more configurable
system for fragment coloring compared to OpenGL 1.3. Basic register combiners
provide a register model that supports a variety of signed 3-component (RGB) and 1-
component (alpha) math operations including dot products. Input values are the
interpolated primary (diffuse) and secondary (specular) colors, each filtered texture unit
color result, the constant fog color and per-fragment fog factor, and a set of RGBA
constants. Additionally, there is a “free” final combiner to generate the final RGBA
fragment color.

The original GeForce functionality for register combiners had two global RGBA
constants and up to two general combiners stages. The GeForce3 (via the
NV register combiners2 extension) introduced two RGBA constants per stage and up
to eight general combiner stages.

Both the texture shader and register combiners functionality have cumbersome APIs
due to the plethora of available options and configurations. NVIDIA has made available
a library known as NVParse [12] that makes it substantially easier to program texture
shader and register combiners functionality because you can describe your desired
configuration with a succinct, human-readable textural description rather than dozens of
OpenGL API calls. I highly recommend NVParse.

Stencil Testing

Stencil testing has been widely used since its inception for various geometric
computations included Constructive Solid Geometry (CSG), capping, shadow volumes,
etc. DirectX 6 introduced two new stencil operations, modulo increment and modulo
decrement, that wrap rather than clamp when at the maximum and zero stencil values
respectively. These are exposed in OpenGL through the EXT stencil wrap extension.
Various situations are where stencil increment & decrement clamping caused overflow
situations can be alleviated by using the new wrapping increment & decrement
operations.

Future graphics hardware is likely to support two-sided stencil testing hardware
where front- and back-facing primitives can have distinct, independent stencil state.

Both two-sided stencil testing and the wrapping increment & decrement operations
are useful for stenciled shadow volume rendering [4].

Blending and Logic Ops

Conventional OpenGL 1.0 supports basic frame buffer blending and lacks logic op
support for color buffers (logic ops are supported for color index buffers in OpenGL 1.0).
OpenGL 1.1 added logic op support for color buffers. OpenGL 1.2 specified the
ARB_imaging subset that includes support for subtractive, minimum, and maximum
blending as well as a constant blend color. These additional blend modes are sometimes
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exposed by various OpenGL extensions through the EXT blend substract,
EXT blend minmax, and EXT blend color extensions.

These additional blend modes can be useful in the context of geometric computations
(and image processing). For example, subtractive and additive blending can use the color
buffer as four distinct counters. Update of each “counter” can be independently
controlled by glColorMask. Additionally, the color logic op can be used to treat the
color buffer as a bit vector. A typical 32-bit RGBA frame buffer would allow parallel
OR, XOR, AND, etc. operations on frame buffer values being treated as bit vectors.

Occlusion Queries

Geometric computations often involve looping over a particular rendering operation
until no more pixels are drawn. Unfortunately, most existing hardware is not good at
reporting when pixels are rendered in a given rendering pass. This forces algorithms that
require such loops to make a worst-case assumption and likely loop rendering many more
times than is actually required.

The HP_occlusion test and NV _occlusion query extensions [9] provide a
means to determine if any pixels were rendered within a given interval of OpenGL
rendering commands. The HP extension gets the job done but only a single occlusion test
can be active at one time and the results are returned synchronously. The NV extension
allows a large number of occlusion queries to be active and the queries can be retired
asynchronously. This means that if you issue several dozen occlusion queries, by the
time you go to query the first of your occlusion queries, the result can be returned while
the other queries are still active. You only need to asynchronously block to wait on the
result of a query if the interval of commands for the query have not yet complete. If the
commands have completed, there is no wait.

Additionally, the NV extension returns a count of the number of rendered pixels
within the occlusion query interval rather than merely a Boolean value (the HP extension
returns only a Boolean).

Pixel Buffers, a.k.a. Pbuffers

Geometric computations with graphics hardware are often hindered by the fact that
the displayed frame buffer is a volatile surface. Rendering the results of geometric
computations into the frame buffer may be very fast, but other windows, menus, etc.
overlap your window, the frame buffer results may be corrupted.

Pixel buffers or pbuffers [14] provide a means in OpenGL to allocate off-screen,
potentially non-volatile frame buffer memory for rendering. Both WGL (the Microsoft
Windows interface for OpenGL) and GLX (the X Window System interface for OpenGL)
support a pbuffer extension. See the GLX ARB pbuffer and WGL. ARB pbuffer
OpenGL extensions. Developers of algorithms for geometric computations involving
graphics hardware are encouraged to use pbuffers.
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Render to Texture Support

While OpenGL 1.1 provides fast commands to copy frame buffer data to textures, this
still requires an extra copy of pixels. If a pbuffer could be used directly as a texture, that
would save this extra copy and improve rendering performance. Geometric computations
regularly involve the requirement to reuse frame buffer rendering results as textures so
this render to texture support is very helpful. The GLX ARB render texture (for X)
and WGL ARB render texture (for Windows) provide the programming interfaces
required for rendering into pbuffers and then using the results as a texture. These
extensions provide the capability to support both rendering into 2D and cube map
textures.

Note that it is not possible to use a pbuffer as a texture when you are actually
rendering into that pbuffer.

NVIDIA has provided further extensions [15] that permit pbuffers to be used as
texture rectangles and support depth-component textures (for shadow mapping). See
NVIDIA’s WGL NV _render depth texture and
WGL NV render texture rectangle extension specifications.

Because this render to texture support is relatively new, whitepapers detailing how to
use the functionality are not yet available at the time of this writing. Please check the
NVIDIA Developer web site though.

Automatic Mipmap Generation

NVIDIA’s OpenGL driver supports the SGIS generate mipmap extension that
provides automatic generation of mipmap levels given a base texture level. The graphic
hardware’s fast bilinear down-sampling hardware is used to construct the additional
mipmap levels. No data must be read back to the CPU when building these GPU-
constructed mipmaps so the process is very efficient.

Mipmaps can be generated automatically for texture images specified explicitly (i.e.
via glTexImage2D, etc.; indeed, NVIDIA’s driver support automatically generating
mipmap levels is often faster than the conventional gluBuild2DMipmaps routine),
texture images copied from the frame buffer (i.e. via glCopyTexSubImage2D, etc.), or
pbuffers used with render-to-texture support. This extension is very easy to use; you
simply set the GL. GENERATE MIPMAP SGIS texture parameter for a texture object to
GL TRUE. When true, whenever the base level of the mipmap is specified, the other
mipmap levels are automatically generated.

Conclusions

This whirlwind tour of contemporary graphics functionality for geometric
computations just scratches the surface of these various topics. Please consult the
references and the mentioned OpenGL extension specifications for more information.

Keep in mind that the functionality described reflects merely today’s functionality for
high-performance, reasonably-priced GPUs. Future GPUs promise more functionality,
particularly programmable functionality, at better still price/performance points.
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I look forward to seeing the GPU-accelerated algorithms for geometric computations
that are developed using current and future GPU functionality.
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ABSTRACT

Twenty-five years ago, Crow published the shadow volume
approach for determining shadowed regions in a scene. A decade
ago, Heidmann described a hardware-accelerated stencil buffer-
based shadow volume algorithm.

However, hardware-accelerated stenciled shadow volume
techniques have not been widely adopted by 3D games and
applications due in large part to the lack of robustness of
described techniques. This situation persists despite widely
available hardware support. Specifically what has been lacking is
a technique that robustly handles various "hard" situations created
by near or far plane clipping of shadow volumes.

We describe a robust, artifact-free technique for hardware-
accelerated rendering of stenciled shadow volumes. Assuming
existing hardware, we resolve the issues otherwise caused by
shadow volume near and far plane clipping through a combination
of (1) placing the conventional far clip plane “at infinity”, (2)
rasterization with infinite shadow volume polygons via
homogeneous coordinates, and (3) adopting a zfail stencil-testing
scheme. Depth clamping, a new rasterization feature provided by
NVIDIA's GeForce3 & GeForce4 Ti GPUs, preserves existing
depth precision by not requiring the far plane to be placed at
infinity. We also propose two-sided stencil testing to improve the
efficiency of rendering stenciled shadow volumes.

Keywords

Shadow volumes, stencil testing, hardware rendering.

1. INTRODUCTION

Crow’s shadow volume approach [10] to shadow determination is
twenty-five years old. A shadow volume defines a region of space
that is in the shadow of a particular occluder given a particular
ideal light source. The shadow test determines if a given point
being tested is inside the shadow volume of any occluder.
Hardware stencil testing provides fast hardware acceleration for
shadow determination using shadow volumes. Despite the
relative age of the shadow volume approach and the widespread
availability of stencil-capable graphics hardware, use of shadow
volumes in 3D games and applications is rare.

We believe this situation is due to the lack of a practical and
robust algorithm for rendering stenciled shadow volumes. We
propose here an algorithm to address this gap. Our algorithm is
practical because it requires only features available in OpenGL
1.0. The algorithm is robust because shadow volume scenarios
that vexed previous algorithms, such as a light within an open
container, are handled automatically and correctly.

We focus on robustly solving the problem of hardware-
accelerated stenciled shadow volume rendering for a number of
reasons, many noted by other authors [9][10][11][19]:

e  Shadow volumes provide omni-directional shadows.
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e  Shadow volumes automatically handle self-shadowing of
objects if implemented correctly.

e Shadow volumes perform shadow determination in window
space, resolving shadow boundaries with pixel accuracy (or
sub-pixel accuracy when multisampling is available).

e  Lastly, the fundamental stencil testing functionality required
for hardware-accelerated stenciled shadow volumes is now
ubiquitous due to the functionality’s standardization by
OpenGL 1.0 (1991) and DirectX 6 (1998) respectively. It is
near impossible to purchase a new PC in 2002 without
stencil testing hardware.

Stenciled shadow volumes have their limitations too. Shadow
volumes model ideal light sources so the resulting shadow
boundaries lack soft edges. Shadow volume techniques require
polygonal models. Unless specially handled, such polygonal
models must be closed (2-manifold) and be free of non-planar
polygons. Silhouette computations for dynamic scenes can prove
expensive. Stenciled shadow volume algorithms are inherently
multi-pass. Rendering shadow volumes can consume tremendous
amounts of pixel fill rate.

2. PREVIOUS WORK

2.1 Pre-Stencil Testing Work

Crow [10] first published the shadow volume approach in 1977.
Crow recognizes that the front- or back-facing orientations of
consistently rendered shadow volume polygons with respect to the
viewer indicate enters into and exits out of shadowed regions.
Crow also recognizes that some care must be taken to determine if
the viewer’s eye point is within a shadow volume.

Crow’s formulation fundamentally involves walking a pixel’s
view ray originating at the eye point and counting the number of
shadow volume enters and exits encountered prior to the first
visible rasterized fragment.

Brotman and Badler [8] in 1984 adapted Crow’s shadow volume
approach to a software-based, depth-buffered, tiled renderer with
deferred shading and support for soft shadows through numerous
light sources all casting shadow volumes.

Pixel-Planes [13] in 1985 provides hardware support for shadow
volume evaluation. In contrast to Crow’s original ray walking
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approach, the Pixel-Planes algorithm relies on determining if a
pixel is within an infinite polyhedron defined by a single occluder
triangle plane and its three shadow volume planes. This
determination is made for every pixel and for every occluder
polygon in the scene. Each “point within a volume” test is
computed by evaluating the corresponding set of plane equations.

Pixel-Planes is a unique architecture because the area of a
rasterized triangle in pixels does not affect the triangle’s
rasterization time. Otherwise, the algorithm’s evaluation of every
per-triangle shadow volume plane equation at every pixel would
be terribly inefficient.

Bergeron [3] in 1986 generalizes Crow’s original shadow volume
approach. Bergeron explains how to handle open models and
models containing non-planar polygons properly. Bergeron
explicitly notes the need to close shadow volumes so that a correct
initial count of how many shadow volumes the eye is within can
be computed.

Fournier and Fussell [12] in 1988 discuss shadow volumes in the
context of frame buffer computations. In their computational
model, each pixel in a frame buffer maintains a depth value and
shadow depth count. Fournier and Fussell’s frame buffer
computation model lays the theoretical foundations for
subsequent hardware stencil buffer-based algorithms.

2.2 Stencil Testing-Based Work
2.2.1 The Original Approach

Heidmann [14] in 1991 describes an algorithm for using the then-
new stencil buffer support of SGI’s VGX graphics hardware [1].
Heidmann recognizes the problem of stencil buffer overflows and
demonstrates combining contributions from multiple light sources
with the accumulation buffer to simulate soft shadows.

Heidmann’s approach is a multi-pass rendering algorithm. First,
the color, depth, and stencil buffers are cleared. Second, the
scene is drawn with only ambient and emissive lighting
contributions and using depth testing for visibility determination.
Now the color and depth buffers contain the color and depth
values for the closest fragment rendered at each pixel. Then
shadow volume polygons are rendered into the scene but just
updating stencil.

Front-facing polygons update the frame buffer with the following
OpenGL per-fragment operations (for brevity, we drop the gl and
GL prefixes for OpenGL commands and tokens):

Enable (CULL FACE) ; // Face culling enabled

CullFace (BACK) ; // to eliminate back faces
ColorMask (0,0,0,0) ; // Disable color buffer writes
DepthMask (0) ; // Disable depth buffer writes
StencilMask (~0) ; // Enable stencil writes
Enable (DEPTH _TEST) ; // Depth test enabled
DepthFunc (LEQUAL) ; // less than or equal

Enable (STENCIL TEST) ; // Stencil test enabled

StencilFunc (ALWAYS,0,~0) // always pass

StencilOp (KEEP, KEEP, INCR) ; // increment on zpass
Similarly, back-facing polygons update the frame buffer with the
following OpenGL state modifications:

CullFace (FRONT) ; // Now eliminate front faces
StencilOp (KEEP, KEEP,DECR) ; // Now decrement on zpass
Heidmann’s described algorithm computes the front- or back-
facing orientation of shadow volume polygons on the CPU. We

note (as have other authors [5][15]) that the shadow volume
polygons can be rendered in two passes: first, culling back-facing
polygons to increment pixels rasterized by front-facing polygons;
second, culling front-facing polygons to decrement pixels
rasterized by back-facing polygons. This leverages the graphics
hardware’s ability to make the face culling determination
automatically and minimizes hardware state changes at the cost of
rendering the shadow volume polygons twice. Utilizing the
hardware’s face culling also avoids inconsistencies if the CPU and
graphics hardware determine a polygon’s orientation differently in
razor’s edge cases.

After the shadow volume polygons are rendered into the scene, a
pixel’s stencil value is equal to zero if the light illuminates the
pixel and greater than zero if the pixel is shadowed. The scene
can then be re-rendered with the appropriate light configured and
enabled, with stencil testing enabled to update only pixels with a
zero stencil value (meaning the pixel is not shadowed), and
“depth equal” depth testing (to update only visible fragments).
The light’s contribution can be accumulated with either the
accumulation buffer or additive blending.

This can be repeated for multiple light sources, clearing the stencil
buffer between rendering the shadow volumes and summing the
contribution of each light.

2.2.2 Near and Far Plane Clipping and Capping
Heidmann fails to mention in his article a problem that seriously
undermines the robustness of his approach. With arbitrary scenes,
the near and/or far clip planes may (and, in fact, often will) clip
the infinite shadow volumes. Each shadow volume is, by
construction, a half-space (dividing the entirety of space into the
region shadowed by a given occluder and everything else).
However, near and far plane clipping can “slice open” an
otherwise well-defined half space. Disturbing the shadow volume
in this way leads to incorrect shadow depth counting that, in turn,
results in glaringly incorrect shadowing.

Diefenbach [11] in 1996 recognized the problem created by near
plane clipping for shadow volume rendering. Diefenbach presents
a method that he claims works “for any shadow volume geometry
from any viewpoint,” but the method, in fact, does not work in
several cases. Figure 1 illustrates three cases where Diefenbach’s
method fails.

Another solution to the shadow volume near plane clipping
problem mentioned by Diefenbach is capping off the shadow
volume’s intersection with the near clip plane. Other authors
[2][41[9]1[16][17] have also suggested this approach. The
problem with near plane capping of shadow volumes is that it is,
as described by Carmack [9], a “fragile” procedure.

Capping involves projecting each occluder’s back-facing
polygons to the near clip plane. This can be complicated when
only one or two of a projected polygon’s vertices intersect the
near plane and careful plane-plane intersection computations are
required in such cases. The capping process is further
complicated when a back-facing occluder polygon straddles the
near clip plane.

Rendering capping polygons at the near clip plane is difficult
because of the razor’s edge nature of the near clip plane. If you
are not careful, the very near plane you are attempting to cap can
clip your capping polygons! Additionally if the capping polygons
are not “watertight” (2-manifold) with the shadow volume being
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Figure 1: Three cases where Deifenbach’s capping algorithm
fails because some or all pixels requiring capping are covered
by neither a front-nor back-facing polygon so Diefenbach’s
approach cannot correct these pixels.

capped then rasterization cracks or double hitting of pixels can
create shadowing artifacts. These artifacts appear as exceedingly
narrow regions of the final scene where areas that clearly should
be illuminated are shadowed and vice versa. These artifacts are
painfully obvious in animated scenes.

Watertight capping is non-trivial, particularly if shadow volumes
are drawn using object-space geometry so that fast dedicated
vertex transformation hardware can be exploited. Kilgard [16]
proposes creating a “near plane ledge” whereby closed capping
polygons can be rendered in a way that avoids clipping by the
near clip plane even when rendering object-space shadow volume
geometry. This approach cedes a small amount of depth buffer
precision for the ledge. Additionally shadow volume capping
polygons must be rendered twice, incrementing front-faces and
decrementing back-facing geometry because the orientation
(front- or back-facing) of a polygon can occasionally flip when a
polygon of nearly zero area in window space is transformed from
object space to window space due to floating-point numerics.
Otherwise, shadow artifacts result.

Even when done carefully, shadow volume near plane capping is
treacherous because of the fragile nature of required ray-plane
intersections and the inability to guarantee identical and bit-exact
CPU and GPU floating-point computations. In any case, capping
computations burden the CPU with an expensive task that our
algorithm obviates.

2.2.3 Zpass vs. Zfail Stenciled Shadow Volumes
The conventional stenciled shadow volume formulation is to
increment and decrement the shadow depth count for front- and
back-facing polygons respectively when the depth test passes.
Bilodeau [5] in 1999 noted that reversing the depth comparison
works too. Another version of this alternative formulation is to
decrement and increment the shadow depth count for front- and
back-facing polygons respectively depth test fails (without
reversing the comparison).

Carmack [9] in 2000 realized the equivalence of the two
formulations because they both achieve the same result, if in the
“depth test fail” formulation, the shadow volume is “closed off” at
both ends (rather than being open at the ends). Compare the
following OpenGL rendering state modifications with the settings
for conventional shadow volume rendering in section 2.2.1.

Front-facing shadow volume rendering configuration:
StencilOp (KEEP,DECR,KEEP) ; // decrement on zfail
Back-facing configuration:
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StencilOp (KEEP, INCR,KEEP) ; // increment on zfail

What Carmack describes is projecting back faces, with respect to
the light source, some large but finite distance (importantly, still
within the far clip plane) and also treating the front faces of the
occluder, again with respect to the light source, as a part of the
shadow volume boundary too. This still has a problem because
when a light source is arbitrarily close to a single occluder
polygon, any finite distance used to project out the back faces of
the occluder to close off the shadow volume may not extend far
enough to ensure that objects beyond the occluder are properly
shadowed.

Still Carmack’s insight is fundamental to our new algorithm. We
call Bilodeau and Carmack’s approach zfail stenciled shadow
volume rendering because the stencil increment and decrement
operations occur when the depth test fails rather than when it
passes. We call the conventional approach zpass rendering.

One way to think of the zfail formulation, in contrast to the zpass
formulation, is that the zfail version counts shadow volume
intersections from the opposite direction. The zpass formulation
counts shadow volume enters and exits along each pixel’s view
ray between the eye point and the first visible rasterized fragment.
Technically due to near plane clipping, the counting occurs only
between the ray’s intersection point with the near clip plane and
the first visible rasterized fragment. The objective of shadow
volume capping is to introduce sufficient shadow volume enters
so that the eye can always be considered “out of shadow” so the
stencil count can reflect the true absolute shadow depth of the first
visible rasterized fragment.

The zfail formulation instead counts shadow volume enters and
exits along each pixel’s view ray between infinity and the first
visible rasterized fragment. Technically due to far plane clipping,
the counting occurs only between the ray’s intersection with the
far plane and the first visible fragment. By capping the open end
of the shadow volume at or before the far clip plane, we can force
the idea that infinity is always outside of the shadow volume.

3. OUR ALGORITHM

3.1 Requirements
For our algorithm to operate robustly, we require the following:

e Models for occluding objects must be composed of triangles
only (avoiding non-planar polygons), be closed (2-manifold),
and have a consistent winding order for triangles within the
model. Homogeneous object coordinates are permitted,
assuming w>0.

e Light sources must be ideal points. Homogeneous light
positions (w=0) allow both positional and directional lights.

e  Connectivity information for occluding models must be
available so that silhouette edges with respect to a light
position can be determined at shadow volume construction
time.

e The projection matrix must be perspective, not orthographic.

e  Functionality available in OpenGL 1.0 [18] and DirectX 6:
transformation and clipping of homogeneous positions; front
and back face culling; masking color and depth buffer writes;
depth buffering; and stencil-testing support.

e The renderer must support N bits of stencil buffer precision,
where 2" is greater than the maximum shadow depth count
ever encountered during the processing of a given scene.
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This requirement is scene dependent, but 8 bits of stencil
buffer precision (typical for most hardware today) is
reasonable for typical scenes.

e  The renderer must guarantee “watertight” rasterization (no
double hitting of pixels or missed pixels along shared edges
of rasterized triangles).

Support for non-planar polygons and open models can be
achieved using special case handling along the lines described by
Bergeron [3].

3.2 Approach

We developed our algorithm by methodically addressing the
fundamental limitations of the conventional stenciled shadow
volume approach. We combine (1) placing the conventional far
clip plane “at infinity”; (2) rasterizing infinite (but fully closed)
shadow volume polygons via homogeneous coordinates; and (3)
adopting the zfail stencil-testing scheme.

This is sufficient to render shadow volumes robustly because it
avoids the problems created by the far clip plane “slicing open”
the shadow volume. The shadow volumes we construct project
“all the way to infinity” through the use of homogeneous
coordinates to represent the shadow volume’s infinite back
projection. Importantly, though our shadow volume geometry is
infinite, it is also fully closed. The far clip plane, in eye-space, is
infinitely far away so it is impossible for any of the shadow
volume geometry to be clipped by it.

By using the zfail stencil-testing scheme, we can always assume
that infinity is “beyond” all closed shadow volumes if we, in fact,
close off our shadow volumes at infinity. This means the shadow
depth count can always start from zero for every pixel. We need
not worry about the shadow volume being clipped by the near clip
plane since we are counting shadow volume enters and exits from
infinity, rather than from the eye, due to zfail stencil-testing. No
fragile capping is required so our algorithm is both robust and
automatic.

3.2.1 Far Plane at Infinity

The standard perspective formulation of the projection matrix
used to transform eye-space coordinates to clip space in OpenGL
(see glFrustum[18]) is

2 Near Right + Left 0
Right — Left Right — Left
0 2x Near Top + Bottom 0
P= Top — Bottom  Top — Bottom
0 0 _ Far+ Near  2XFarx Near
Far — Near Far — Near
0 0 - 0

where Near and Far are the respective distances from the viewer
to the near and far clip planes in eye-space.

P is used to transform eye-space positions to clip-space positions:
7
w,]

We are interested in avoiding far plane clipping so we only
concern ourselves with the third and fourth row of P used to
compute clip-space z. and w,.. Regions of an assembled polygon
with interpolated clip coordinates outside —w, < z.< w, are clipped
by the near and far clip planes.

[x. ». z. wl=Plx, » =z
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We consider the limit of P as the far clip plane distance is driven
to infinity (this is not novel; Blinn [7] mentions the idea):

2% Near Right + Left 0
Right — Left Right — Left
. 2x Near Top + Bottom
lim P=P, = 0 0
Far—e Top — Bottom  Top — Bottom
0 0 -1 —2X Near
0 0 -1 0

The first, second, and fourth rows of Pj, are the same as P; only
the third row changes. There is no longer a Far distance.

A vertex that is an infinite distance from the viewer is represented
in homogeneous coordinates with a zero w, coordinate. If the
vertex is transformed into clip space using P, assuming the
vertex is in front of the eye, meaning that z, is negative (the
OpenGL convention), then w.=z, so this transformed vertex is not
clipped by the far plane. Moreover, its non-homogeneous depth
z/w.must be 1.0, generating the maximum possible depth value.

It may be surprising, but positioning the far clip plane at infinity
typically reduces the depth buffer precision only marginally.
Consider how much we would need to shrink our window
coordinates so we can represent within the depth buffer an infinite
eye-space distance in front of the viewer. The projection P
transforms (0,0,-1,0) in eye-space (effectively, an infinite distance
in front of the viewer) to the window-space depth Far/(Far-Near).
The largest window coordinate representable in the depth buffer is
1 so we must scale Far/(Far-Near) by its reciprocal to “fit”
infinity in the depth buffer. This scale factor is (Far-Near)/Far
and is very close to 1 if Far is many times larger than Near which
is typical.

Said another way, using Pj,s instead of P only compresses the
depth buffer precision slightly in typical scenarios. For example,
if Near and Far are 1 and 100, then the depth buffer’s precision
must be squeezed by just 1% to represent an infinite distance in
front of the viewer.

3.2.2 Infinite Shadow Volume Polygons

We assume that given a light source position and a closed model
with its edge-connectivity, we can determine the subset of
possible silhouette edges for the model. A possible silhouette
edge is an edge shared by two triangles in a model where one of
the two triangles faces a given light while the other triangle faces
away from the light.

We call these edges “possible silhouette” edges rather than just
silhouette edges because these edges are not necessarily
boundaries between shadowed and illuminated regions as implied
by the conventional meaning of silhouette. It is possible that an
edge is an actual silhouette edge, but it is also possible that the
edge is itself in shadow.

Assume we have computed the plane equations in the form
Ax+By+Cz+Dw=0 for every triangle in a given model. The plane
equation coefficients must be computed using a vertex ordering
consistent with the winding order shared by all the triangles in the
model such that Ax+By+Cz+Dw is non-negative when a point
(x,y,z,w) is on the front-facing side of the triangle’s plane.
Assume we also know the light’s homogeneous position L in the
coordinate space matching the plane equations. For each triangle,
evaluate d=AL+BL,+CL.+DL,, for the triangle’s plane equation
coefficients and the light’s position. If d is negative, then the
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triangle is back-facing with respect to L; otherwise the triangle is
front-facing with respect to L. Any edge shared by two triangles
with one triangle front-facing and the other back-facing is a
possible silhouette edge.

To close a shadow volume completely, we must combine three
sets of polygons: (1) all of the possible silhouette polygon edges
extruded to infinity away from the light; (2) all of the occluder’s
back-facing triangles, with respect to L, projected away from the
light to infinity; and (3) all of the occluder’s front-facing triangles
with respect to L.

Each possible silhouette edge has two vertices 4 and B,
represented as homogeneous coordinates and ordered based on
the front-facing triangle’s vertex order. The shadow volume
extrusion polygon for this possible silhouette is formed by the
edge and its projection to infinity away from the light. The
resulting quad consists of the following four vertices:

(B,.B,.B..B,)
(4,.4,,4,.4,)
(4L, LA, AL, ~LA, AL, ~LA,.0)
(B,L,-LB,BL,~LB, B.L, ~LB,.0)

The last two vertices are the homogeneous vector differences of
A-L and B-L. These vertices represent directions heading away
from the light, explaining why they have w coordinate values of
zero. We do assume A,>0, B,,>0, L,,>0, etc.

When we use a perspective transform of the form Py, we can
render shadow volume polygons without the possibility that the
far plane will clip these polygons.

For each back-facing occluder triangle, its respective triangle
projected to infinity is the triangle formed by the following three
vertices:

(4L,-L. A, AL, ~LA

xTTwr Ty w

(B.L,-LB,.B,L,~LB,B.L,~LB,.0)

xTwr Ty Hw y T we z7w

(c.L,-LC,.CL,~-LC,C.L,~LC,.0)

x w2 z 7w

AL, ~L.A4,0)

where 4, B, and C are each back-facing occluder triangle’s three
vertices (in the triangle’s vertex order).

The front-facing polygons with respect to L are straightforward.
Given each triangle’s three vertices 4, B, and C (in the triangle’s
vertex order), the triangle is formed by the vertices:

(4,.4,.4,.4,)

(B..B,.B..B,)

(c.c,.c.c,)

Together, these three sets of triangles form the closed geometry of
an occluder’s shadow volume with respect to the given light.

3.3 Rendering Procedure

Now we sketch the complete rendering procedure to render
shadows with our technique. Pseudo-code with OpenGL
commands is provided to make the procedure more concrete.

1. Clear the depth buffer to 1.0; clear the color buffer.
Clear (DEPTH BUFFER BIT | COLOR BUFFER BIT);

2. Load the projection with Pj;¢ given the aspect ratio, field of
view, and near clip plane distance in eye-space.
float Pinf[4] [4];

Pinf[1] [0] = Pinf[2] [0] = Pinf[3] [0] = Pinf[0] [1] =
Pinf [2] [1] = Pinf[3] [1] = Pinf[0] [2] = Pinf[1] [2] =
Pinf [0] [3] = Pinf[1] [3] = Pinf[3] [3] = 0;

Pinf [0] [0] = cotangent (fieldOfView) /aspectRatio;
Pinf[1] [1] = cotangent (fieldOfView) ;

Pinf[3] [2] = -2*near; Pinf[2] [2] = Pinf[2] [3] = -1;

MatrixMode (FROJECTION) ; LoadMatrixf (&Pinf [0] [0]) ;

3. Load the modelview matrix with the scene’s viewing
transform.
MatrixMode (MODELVIEW) ; loadCurrentViewTransform() ;

4. Render the scene with depth testing, back-face culling, and
all light sources disabled (ambient & emissive illumination
only).

Enable (DEPTH TEST) ; DepthFunc (LESS) ;

Enable (CULL FACE); CullFace(BACK);

Enable (LIGHTING) ; Disable (LIGHTO) ;
LightModelfv (LIGHT MODEL AMBIENT, &globalinbient);
drawScene () ;

5. Disable depth writes, enable additive blending, and set the
global ambient light contribution to zero (and zero any
emissive contribution if present).

DepthMask (0) ;

Enable (BLEND) ; BlendFunc (ONE,ONE) ;

LightModelfv (LIGHT MODEL AMBIENT, &zero);

6. For each light source:

A. Clear the stencil buffer to zero.

Clear (STENCTL, BUFFER BIT) ;

B. Disable color buffer writes and enable stencil testing
with the always stencil function and writing stencil..
ColorMask (0,0,0,0) ;

Enable (STENCIL, TEST) ;
StencilFunc (ALIWAYS, 0,~0) ; StencilMask(~0) ;

C. For each occluder:

a. Determine whether each triangle in the occluder’s
model is front- or back-facing with respect to the
light’s position. Update trilList [] .backfacing.

b. Configure zfail stencil testing to increment stencil
for back-facing polygons that fail the depth test.
CullFace (FRONT) ; StencilOp (KEEP, INCR, KEEP) ;

c. Render all possible silhouette edges as quads that
project from the edge away from the light to
infinity.

Vert L = currentLightPosition;
Begin (QUADS) ;
for (int i=0; i<niTris; i++) // for each triangle
// if triangle is front-facing with respect to the light
if (triList[i] .backFacing==0)
for (int j=0; j<3; j++) // for each triangle edge
// if adjacent triangle is back-facing
// with respect to the light
if (trilist[trilist[i] .adjacent [j]] .backFacing) {

// found possible silhouette edge

Vert A = trilist[i].v[j];

Vert B = trilist[i].v[(3+1) % 3]; // next vertex



Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

Vertex4f (B.x,B.y,B.z,B.w) ;
Vertex4f (A.x,A.y,A.z,A.W) ;
Vertex4f (A.x*L.w-L.X*A.w,
A.y*L.w-L.y*A.w,
A.z*L.w-L.z*A.w,
Vertex4f (B.x*L.w-L.X*B.w,
B.y*L.w-L.y*B.w,
B.z*L.w-L.z*B.w,

0); // infinite

0); // infinite

End(); // quads
d.  Specially render all occluder triangles. Project and
render back facing triangles away from the light to
infinity. Render front-facing triangles directly.
#define V trildst[i].v[j] // macro used in Vertex4f calls
Begin (TRIANGIES) ;
for (int i=0; i<muniTris; i++) // for each triangle
// if triangle is back-facing with respect to the light
if (trilist[i] .backFacing)
for (int j=0; j<3; j++) // for each triangle vertex
Vertex4f (V.x*L.w-L.x*V.w, V.y*L.w-L.y*V.w,
V.z*L.w-L.z*V.w, 0); // infinite
else
for (int j=0; j<3; j++) // for each triangle vertex
Vertex4f (V.x,V.y,V.z,V.w) ;
End(); // triangles
e. Configure zfail stencil testing to decrement stencil
for front-facing polygons that fail the depth test.
CullFace (BACK) ; StencilOp (KEEP,DECR,KEEP) ;

f.  Repeat steps (c) and (d) above, this time rendering
front facing polygons rather than back facing ones.

Position and enable the current light (and otherwise

configure the light’s attenuation, color, etc.).

Enable (LIGHTO) ;

Lightfv(LIGHTO, POSITION, &currentlightPosition.x);

E. Set stencil testing to render only pixels with a zero
stencil value, i.e., visible fragments illuminated by the
current light. Use equal depth testing to update only the
visible fragments, and then, increment stencil to avoid
double blending. Re-enable color buffer writes again.
StencilFunc (EQUAL, 0, ~0); StencilOp (KEEP,KEEP, INCR) ;
DepthFunc (EQUAL) ; ColorMask(1,1,1,1);

F. Re-draw the scene to add the contribution of the current
light to illuminated (non-shadowed) regions of the
scene.
drawScene () ;

Restore the depth test to /ess.

DepthFunc (LESS) ;

7. Disable blending and stencil testing; re-enable depth writes.
Disable (BLEND) ; Disable (STENCIL TEST); DepthMask(1);

G.

3.4 Optimizations

Possible silhouette edges form closed loops. If a loop of possible
silhouette edges is identified, then sending QUAD STRIP primitives
(2 vertices/projected quad), rather than independent quads (4
vertices/projected quad) will reduce the per-vertex transformation
overhead per shadow volume quad. Similarly, the independent
triangle rendering used for capping the shadow volumes can be
optimized for rendering as triangle strips or indexed triangles.
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The INCR zpass stencil operation in step 6.E avoids the double
blending of lighting contributions in the usually quite rare
circumstance when two fragments alias to the exact same pixel
location and depth value. Using the KEEP zpass stencil operation
instead can avoid usually unnecessary stencil buffer writes,
improving rendering performance in situations where double
blending is deemed unlikely.

In the case of a directional light, all the vertices of a possible
silhouette edge loop project to the same point at infinity. In this
case, a TRIANGLE FAN primitive can render these polygons
extremely efficiently (1 vertex/projected triangle).

If the application determines that the shadow volume geometry for
a silhouette edge loop will never pierce or otherwise require
capping of the near clip plane’s visible region, zpass shadow
volume rendering can be used instead of zfail rendering. The
zpass formulation is advantageous in this context because it does
not require the rendering of any capping triangles. Mixing the
zpass and zfail shadow volume stencil testing formulations for
different silhouette edge loops does not affect the net shadow
depth count as long as each particular loop uses a single
formulation.

Shadow volume geometry can be re-used from frame to frame for
any light and occluder that have not changed their geometric
relationship to each other.

4. IMPROVED HARDWARE SUPPORT

4.1 Wrapping Stencil Arithmetic

DirectX 6 and the OpenGL EXT stencil wrap extension provide
two additional increment wrap and decrement wrap stencil
operations that use modulo, rather than saturation, arithmetic.
These operations reduce the likelihood of incorrect shadow results
due to an increment operation saturating a stencil value’s shadow
depth count. Using the wrapping operations with an N-bit stencil
buffer, there remains a remote possibility that a net 2" increments
(or a multiple of) may alias with the unshadowed zero stencil
value and lead to incorrect shadows, but in practice, particularly
with an 8-bit stencil buffer, this is quite unlikely.

4.2 Depth Clamping

NVIDIA’s GeForce3 and GeForce4 Ti GPUs support depth
clamping via the NV _depth _clamp OpenGL extension. When
enabled, depth clamping disables the near and far clip planes for
rasterizing geometric primitives. Instead, a fragment’s window-
space depth value is clamped to the range [min(zn,zf),max(zn,zf)]
where zn and zf are the near and far depth range values.
Additionally when depth clamping is enabled, no fragments with
non-positive w, are generated.

With depth clamping support, a conventional projection matrix
with a finite far clip plane distance can be used rather than the Pj,¢
form. The only required modification to our algorithm is enabling
DEPTH CLAMP NV during the rendering of the shadow volume
geometry.

Depth clamping recovers the depth precision (admittedly quite
marginal) lost due to the use of a Py, projection matrix. More
significantly, depth clamping generalizes our algorithm so it
works with orthographic, not just perspective, projections.
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4.3 Two-Sided Stencil Testing

We propose two-sided stencil testing, a new stencil functionality
that uses distinct front- and back-facing stencil state when
enabled. Front-facing primitives use the front-facing stencil state
for their stencil operation while back-facing primitives use the
back-facing state. With two-sided stencil testing, shadow volume
geometry need only be rendered once, rather than twice.

Two-sided stencil testing generates the same number of stencil
buffer updates as the two-pass approach so in fill-limited shadow
volume rendering situations, the advantage of a single pass is
marginal. However, pipeline bubbles due to repeated all front-
facing or all back-facing shadow volumes lead to inefficiencies
using two passes. Perhaps more importantly, two-sided stencil
testing reduces the CPU overhead in the driver by sending shadow
volume polygon geometry only once.

Because stencil increments and decrements are intermixed with
two-sided stencil testing, the wrapping versions of these
operations are mandatory.

5. EXAMPLES

Figures 2 through 5 show several examples of our algorithm.

6. FUTURE WORK

Because of the extremely scene-dependent nature of shadow
volume rendering performance and space constraints here, we
defer thorough performance evaluation of our technique. Still we
are happy to report that our rendering examples, including
examples that seek to mimic the animated behavior of a
sophisticated 3D game (see Figure 4), achieve real-time rates on
current PC graphics hardware.

Yet naive rendering with stenciled shadow volumes consumes
tremendous amounts of stencil fill rate. We expect effective
shadow volume culling schemes will be required to achieve
consistent interactive rendering rates for complex shadowed
scenes.  Portal, BSP, occlusion, and view frustum culling
techniques can all improve performance by avoiding the rendering
of unnecessary shadow volumes. Additional performance scaling
will be through faster and cleverer hardware designs that are
better tuned for rendering workloads including stenciled shadow
volumes.

Future graphics hardware will support more higher-order graphics
primitives beyond triangles. Combining higher-order hardware
primitives with shadow volumes requires automatic generation of
shadow volumes in hardware. Two-sided stencil testing will be
vital since it only requires one rendering of automatically
generated shadow volume geometry. Automatic generation of
shadow volumes will also relieve the CPU of this chore.

7. CONCLUSIONS

Our stenciled shadow volume algorithm is robust, straightforward,
and requires hardware functionality that is ubiquitous today. We
believe this will provide the opportunity for 3D games and
applications to integrate shadow volumes into their basic
rendering repertoire. The algorithm we developed is the result of
careful integration of known, but not previously integrated,
techniques to address methodically the shortcomings of existing
shadow volume techniques caused by near and/or far plane

clipping.
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Shadowed scene with the light near the eye

and surrounded by a complex surface.

An alternate view of the scene including
shadow volumes and silhouette edges with
everything outside the eye's infinite frustum
clipped away.

View of scene in eye’s clip space (left) and visualizing shadow volumes (right).

Figure 2: These images show a scene with a yellow light source surrounded by a
green complex object. This arrangement is a “hard” case for shadow volume ] )
rendering. The infinite capping polygons can be seen behind the wall and floor in San'le as above, except the scene is shown in
the bottom right image. All the scenes use a Py, projection matrix. eye's clip space.

Figure 3: These images illustrate the

capping at infinity that is required for
correct closed shadow computation.

Figure 5: Shadowed scene lit by a directional

Figure 4: Game-like scenes with 3 independent colored light sources (left, light (left) and the corresponding clip-space
34 frames/second on a GeForce4 Ti 4600 at 640x480, 80+ fps for 1 light) view with the shadow volume’s back projection
and 12 clustered lights to simulate soft shadows (right, 8 fps). Characters meeting at infinity on the far clip plane (right).

have diffuse/specular per-pixel bump map shading, correctly shadowed.
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Hardware Shadow Mapping

Cass Everitt Ashu Rege Cem Cebenoyan
cass@nvidia.com arege@nvidia.com cem@nvidia.com

Introduction

Shadows make 3D computer graphics look better. Without them, scenes often feel
unnatural and flat, and the relative depths of objects in the scene can be very unclear.
The trouble with rendering high quality shadows is that they require a visibility test for
each light source at each rasterized fragment. For ray tracers, adding an extra visibility
test is trivial, but for rasterizers, it is not. Fortunately, there are a number of common
cases where the light visibility test can be efficiently performed by a rasterizer. The two
most common techniques for hardware accelerated complex shadowing are stenciled
shadow volumes and shadow mapping. This document will focus on using shadow
mapping to implement shadowing for spotlights.

Shadow mapping is an image-based shadowing technique developed by Lance
Williams [8] in 1978. It is particularly amenable to hardware implementation because it
makes use of existing hardware functionality — texturing and depth buffering. The only
extra burden it places on hardware is the need to perform a high-precision scalar
comparison for each texel fetched from the shadow map texture. Shadow maps are also
attractive to application programmers because they are very easy to use, and unlike
stenciled shadow volumes, they require no additional geometry processing.

Hardware accelerated shadow mapping [5] is available today on GeForce3 GPUs. It
is exposed in OpenGL [4] through the SGIX shadow and SGIX depth_texture
extensions [6], and in Direct3D 8 through a special texture format.
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The A < B shadowed fragment case

Al / depth map image plane

x '.f\"\_-'
light
source

depthmap Z = A

:@\

eye

position
eye view image plang,
a.k.a. the frame buffer

The A = B unshadowed fragment case

S / depth map image plane

, 'S
light
source

depthmapZ = A

eye
position

eye view image plane,
a.k.a. the frame buffer

fragment's

fragment's ;
lightZ =B '-"

lightzZ=B

Figure 1. These diagrams were taken from Mark Kilgard’s shadow mapping presentation at
GDC 2001. They illustrate the shadowing comparison that occurs in shadow mapping.

How It Works

The clever insight of shadow mapping is that the depth buffer generated by rendering
the scene from the light’s point of view is a pre-computed light visibility test over the
light’s view volume. The light’s depth buffer (a.k.a. the shadow map) partitions the view
volume of the light into two regions: the shadowed region and the unshadowed region.
The visibility test is of the form

p. < shadow _ map(px, P y)

where p is a point in the light’s image space. Shadow mapping really happens in the
texture unit, so the comparison actually looks like:

Pr < foxture 2D &,& :

Py Py Py

Note that this form of comparison is identical to the depth test used for visible surface
determination during standard rasterization. The primary difference is that the rasterizer
always generates fragments (primitive samples) on the regular grid of the eye’s
discretized image plane for depth test, while textures are sampled over a continuous space
at irregular intervals. If we made an effort to sample the shadow map texture in the same
way that we sample the depth buffer, there would be no difference at all. In fact, we can
use shadow maps in this way to perform more than one depth test per fragment [2].

Figure 1 illustrates the depth comparison that takes place in shadow mapping. The
eye position and image plane are shown, but they are not relevant to the visibility test
because shadowing is view-independent.
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! Projective Spotlight Texture

Figure 2. A shadow mapped scene rendered from the eye’s point of view (left), the scene as
rendered from the light’s point of view (center), and the corresponding depth/shadow map
(right).

How To Do It

The basic steps for rendering with shadow maps are quite simple:

e render the scene from the light’s point of view,
e use the light’s depth buffer as a texture (shadow map),
e projectively texture the shadow map onto the scene, and

e use “texture color” (comparison result) in fragment shading.

Figure 2 shows an example scene with shadows, the same scene shown from the
light’s point of view, and the corresponding shadow map (or depth buffer). Note that
samples that are closer to the light are darker than samples that are further away.

Since applications already have to be able to render the scene, rendering from the
light’s point of view is trivial. If it is available, polygon offset should be used to push
fragments back slightly during this rendering pass.

Why Is Polygon Offset Needed?

If implemented literally, the light visibility test described in the previous section
is prone to self-shadowing error due to it’s razor’s edge nature in the case of
unshadowed objects. In the hypothetical “infinite resolution, infinite precision” case,
surfaces that pass the visibility test would have depth equal to the depth value stored
in the shadow map. In the real world of finite precision and finite resolution,
precision and sampling issues cause problems. These problems can be solved by
adding a small bias to the shadow map depths used in the comparison.

If the problem were only one of precision, a constant bias of all the shadow map
depths would be sufficient, but there is also a less obvious sampling issue that affects
the magnitude of bias necessary. Consider the case illustrated in Figure 3. When the
geometry is rasterized from the eye’s point of view, it will be sampled in different
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without polygon offset with polygon offset

self-shadowing b\
samples S
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unshadowed \EA /O/
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shadow map
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Figure 3. These figures illustrate the need for polygon offsetting to eliminate self-
shadowing artifacts. The variable sampling location necessitates the use of z slope-based
offset.

locations than when it was rasterized from the light’s point of view. The difference in
the depths of the samples is based on the slope of the polygon in light space, so in

order to account for this we must supply a positive “slope factor” (typically about 1.0)
to the polygon offset.

Direct3D does not expose polygon offset, so applications must provide this bias
through matrix tweaks. This approach is workable, but because it fails to account for
z slope, the uniform bias is generally much larger than it would otherwise need to be,
which may introduce incorrectly unshadowed samples, or “light leaking”.

The depth map as rendered from the light’s point of view is the shadow map. With
OpenGL, turning it into a real texture requires copying it into texture memory via
glCopyTex{Sub}Image2D(). Even though the copy is card-local, it is still somewhat
expensive. Direct3D’s render-to-texture capability makes this copy unnecessary. You
can render directly to the shadow map texture. This render-to-texture capability will also
be available soon in OpenGL through extensions.

Once the shadow map texture is generated, it is projectively textured onto the scene.
For shadow mapping, we compute 3D projective texture coordinates, where 7 is the
sample depth in light space, and s and ¢ index the 2D texture. Figure 4 shows these
quantities, which are compared during rendering to determine light visibility.

i Projective Spotlight Texture i Projective Spotlight Texture

Figure 4. A shadow mapped scene (left), the scene showing each sample’s distance from the
light source (center), and the scene with the shadow map shadow map projected onto it (right).
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The final step in rendering shadows is to actually factor the shadow computation
result into the shading equation. The result of the comparison is either 1 or 0, and it is
returned as the texture color. If linear filtering is enabled, the comparison is performed at
the four neighboring shadow map samples, and the results are bilinearly filtered just as if
they had been colors.

Figure 5. A very low resolution shadow map is used to demonstrate the difference
between nearest (left) and linear (right) filtering for shadow maps. Credit: Mark
Kilgard.

With GeForce3 hardware, it is easiest to use NV _register combiners to implement
the desired per-fragment shading based on the shadow comparison. One simple approach
is to use the shadowing result directly to modulate the diffuse and specular intensity.
Kilgard points out [3] that leaving some fraction of diffuse intensity in helps keep
shadows areas from looking too “flat”.

OpenGL API Details

Support for shadow mapping in OpenGL is provided by the SGIX shadow and
SGIX depth texture extensions. The SGIX shadow extension exposes the per-texel
comparison as a texture parameter, and SGIX depth_texture defines a texture internal
format of DEPTH _COMPONENT, complete with various bits-per-texel choices. It also
provides semantics for glCopyTex {Sub}Image*() calls to read from the depth buffer
when performing a copy.
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Direct3D API Details

Support for shadow mapping in Direct3D is provided by special depth texture
formats exposed in drivers version 21.81 and later. Support for both 24-bit
(D3DFMT _D24S8) and 16-bit (D3DFMT _D16) shadow maps is included.

Setup

The following code snippet checks for hardware shadow map support on the
default adapter in 32-bit color:

HRESULT hr = pD3D->CheckDeviceFormat (

D3DADAPTER DEFAULT, //default adapter

D3DDEVTYPE HAL, //HAL device

D3DFMT_ X8R8G8BS, //display mode

D3DUSAGE _DEPTHSTENCIL, //shadow map is a depth/s surface
D3DRTYPE TEXTURE, //shadow map is a texture
D3DFMT_D24sS8 //format of shadow map

)

Note that since shadow mapping in Direct3D relies on “overloading” the meaning
of an existing texture format, the above check does not guarantee hardware
shadow map support, since it’s feasible that a particular hardware / driver combo
could one day exist that supports depth texture formats for another purpose. For
this reason, it’s a good idea to supplement the above check with a check that the
hardware is GeForce3 or greater.

Once shadow map support has been determined, you can create the shadow map
using the following call:

pD3DDev->CreateTexture (texWidth, texHeight, 1,

D3DUSAGE_DEPTHSTENCIL, D3DFMT_D24S8, D3DPOOL DEFAULT,
&pTex) ;

Note that you must create a corresponding color surface to go along with your

depth surface since Direct3D requires you to set a color surface / z surface pair

when doing a SetRenderTarget(). If you’re not using the color buffer for

anything, it’s best to turn off color writes when rendering to it using the

D3DRS COLORWRITEENABLE renderstate to save bandwidth.

Rendering

Rendering uses the same ideas as in OpenGL: you render from the point of view
of the light to the shadow map you created, then set the shadow map texture in a
texture stage and set the texture coordinates in that stage to index into the shadow
map at (s / q, t/ q) and use the depth value (r / q) for the comparison. There are a
few Direct3D-specific idiosyncrasies to be aware of, however:
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The (z / w) value used to compare with the value in the shadow map is in
the range [0..2""%P™_1], not [0..1], where ‘bitdepth’ is the bitdepth of the
shadowmap (24 or 16 bits). This means you have to put an additional
scale factor into your texture matrix.

Direct3D addresses pixels and texels in different ways [1], where integral
screen coordinates address pixel centers and integral texture coordinates
address texel boundaries. You need to take this into account when
addressing the shadow map. There are two ways to do this: either offset
the viewport by half a texel when rendering the shadow map, or offset by
half a texel when addressing the shadow map.

As stated earlier, there is no native polygon offset support in Direct3D.
The closest thing is D3DRS ZBIAS, but this doesn’t help us when
shadow mapping since it can only be used to bias depth a constant amount
towards the camera, not away. Instead we can get similar functionality,
albeit without taking into account polygon slope, by adding a small bias
amount to our texture matrix.

Here is a sample texture matrix that takes into account these limitations:

float fOffsetX = 0.5f + (0.5f / fTexWidth);
float fOffsetY = 0.5f + (0.5f / fTexHeight);

D3DXMATRIX texScaleBiasMat( 0.5f, 0.0f, 0.0f, 0.0f,
0.0f, -0.5f, 0.0f, 0.0f,
0.0f, 0.0f, fzScale, 0.0f,
fOffsetX, fOffsetY, fBias, 1.0f );

Where fZScale is the (2"P™-1) and fBias is a small negative value. Note that
this matrix is applied post-projection, not in eye space.

Once the texture coordinates have been setup properly, the hardware will
automatically compare (r / q) > shadowMap[s / q, t / q] and return zero to indicate
in shadow or one to indicate in light (or potentially something in between if
you’re on the shadow edge and using D3ADTEXF LINEAR). The following pixel
shader shows a simple use of shadow mapping (but note that you don’t have to
use pixel shaders to use shadow maps, DirectX7-style texture stage states work as

well):

tex tO // normal map

tex tl // decal texture

tex t2 // shadow map

dp3_sat r0, t0 bx2, v0 bx2 //light vector is in v0

mul r0, r0, t2 //modulate lighting contribution by shadow result

mul r0, r0, tl //modulate lighting contribution by decal
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Advantages and Limitations

As with any technique, shadow mapping has certain advantages and limitations to be
aware of. The fact that it is image-based turns out to be both an advantage and a
limitation. It’s advantageous, because it doesn’t require additional application geometry
processing, it works well with GPU-created and GPU-altered geometry and correctly
handles fragment culling like alpha test. The associated limitation is that because it’s
image based, it works well for spotlights, but not point light sources. One could imagine
a cube map —based shadow mapping system, but they would require six 90-degree frusta,
which would each need to be fairly high resolution, and five more passes over the

Figure 6. The “dueling frusta” problem occurs when the spotlight points toward the eye.
The eye’s view (left) shows the variation in sampling frequency of the shadow map, blue
being the highest . The light’s view (right) shows the very small portion of the light’s
image plane needs high frequency sampling.

geometry to generate the shadow map.

Along the same lines, the quality of shadow mapping depends on how well the
shadow map sampling frequency matches the eye’s sampling frequency. When the eye
and light have similar location and orientation, the sampling frequencies match pretty
well, but when the light and eye are looking toward each other, the sampling frequencies
rarely match well. Figure 6 illustrates this “dueling frusta” situation.

Another problem that comes up with any projective texture mapping is the phantom
“negative projection”. This is actually pretty simple to remove at the cost of an
additional texture unit, or per-vertex color. The goal is just to make sure that the shadow
test always returns “shadowed” for surfaces behind the light.

Finally, the polygon offset fudge factor, while quite adequate for virtually all uses of
shadow mapping, can be a bit dissatisfying. Andrew Woo [9] suggested an alternative
shadow map generation that is produced from averaging the nearest and second-nearest
depth layers from the light’s point of view. This technique can actually be implemented
as a two-pass technique on GeForce3 hardware using the depth peeling technique
described in [2] and with a slight twist. In the second pass, the shadow map is used to
peel away the nearest surfaces, but all depths are computed as the average of the
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fragment’s original depth and the nearest depth at that fragment’s (x,y). The nearest
surface (that is not peeled away), is then the average of the first and second nearest
fragments!

Wang and Molnar introduce another technique to reduce the need for polygon offset [7].
Their technique works by rendering only back-faces into the shadow map, relying on the
observation that back-face z-values and front-face z-values are likely far enough apart in
z to not falsely self-shadow. This only helps front-faces, of course, but back-faces (with
respect to the light) are, by definition, not in light, which helps hide artifacts. Note that
this algorithm only works for closed polygonal objects.

Computing Transformations for Shadow Mapping

Computing the transformations required for shadow mapping can be somewhat
tricky. This section provides details on the various transformations that need to be applied
during the two render passes. While this section provides details for the OpenGL case,
the transformations required for Direct3D are very similar with the main exception being
that the texture coordinate generation is done directly via a matrix instead of the texgen
planes. Also, keep in mind that the scale-bias matrix in Direct3D requires an additional
offset to account for the discrepancy between pixel and texel coordinates as mentioned
earlier, and that eye linear texgen is called D3DTSS TCI CAMERASPACEPOSITION.

Object Space Eye Space
V\/vﬂ y
M\A /
"4
L T L’

ﬂt Space

Figure 7: Schematic view of the basic transformations involved in shadow mapping.

Figure 7 shows the three primary transformations (and inverses) used in shadow
mapping. Note that we use the convention of using the forward transforms as going to
world coordinates. The standard ‘modelview’ matrix using the above notation will
therefore be: ¥'M. In addition to the above transformations, we also have to account for
the projections involved in the two passes — these could be different depending on the
frusta for the light and eye. The projection transformation will also be applied during the
texture coordinate generation phase which is depicted in Figure 8 for OpenGL. As shown
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in the figure, two transformations are applied to the eye coordinates — the texgen planes,
and the fexture matrix. For eye linear texgen planes, OpenGL will automatically multiply
the eye coordinates with the inverse of the modelview matrix in effect when the planes
are specified. (See Appendix A for a more detailed explanation of the texgen planes in
the eye linear case.)

eye-linear texture
plane > matrix >
equations
I_(ss t! r! q)
ohject modeiview cye . projection cip
coordinates matrix coordinates matrix coordinates
divide normalized viewport & w._ Xy 2
—
by w v depth range coordinates
coordinates

Figure §: OpenGL Transformation Pipeline

The resulting texture coordinates are therefore computed as:
T _ . T
[Xe9Ye,Ze9We] - (mOdelVleW) [X09Y(”Z0awo]
E.= Epo(modelviewpo)'1

[,t,1,q]" = T E, [XesYesZesWe] "

Equation 1

Here the subscript ‘0’ denotes object space coordinates, and the subscript ‘e’ refers to eye
space coordinates, modelviewp, is the modelview matrix in effect when the eye linear
texgen plane equations are specified, Ep, is the matrix composed of the eye linear plane
equations as specified to OpenGL (i.e. in their own object space), E. is the matrix
composed of the transformed plane equations (these are the plane equations that are
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actually stored by OpenGL), T is the texture matrix, and modelview is the modelview
matrix when rendering the scene geometry.

Setting Up the Transformations

We want to set the transformations in Equation 1 to compute texture coordinates
(s,t,r,q) such that (s/q,t/q) will be the fragment’s location within the depth texture, and
r/q will be the window-space z of the fragment relative to the light’s frustum. In other
words, we want to compute:

[S,t,l',q]T =S Plight L-l M [XO,yO’ZO’WO]T

Equation 2

Here, S is the scale-bias matrix, given by:

200 %
0% 0%
0 0% %
0 001

Piign¢ 1s the projection matrix for the light frustum. The “texgen matrix” (E.), however, is
applied to eye coordinates [Xe,Ye,Ze,We] ' but we want to generate the coordinates in light
space, since that is where the depth map computation takes place. So we need to take
[XesYesZesWel - back into world space by applying the transform V. That is, we want to
compute [s,t,r,q]T as:

[S,t,l‘,q]T =S Plight L-l \Y% [Xesyeazeawe]T

Equation 3

Note that the right hand side of Equation 3 reduces to S Piignt L'M [X05Yo0sZosWol,
precisely what we want. A straightforward way to compute Equation 3 is to set
modelview,, to identity and set:

TEp=SPigne L'V

Equation 4

The first observation is that we have two matrices T (the texture matrix) and E,, (the
eye linear texgen planes specified to OpenGL) so we can compute Equation 4 in several
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ways. Since we are going to have to set the eye linear planes in any case, the less
expensive thing to do is to not set the texture matrix at all, and use the texgen matrix G
for the entire computationf, 1.e., set

Epo =S Pign L'V

Equation 5

This assumes that the modelview matrix, modelviewp,, was identity at the time the
texgen planes are set. Another improvement is to make use of the fact that OpenGL
automatically multiplies [Xe,Ye,Ze,We]* With (modelview,,)" for eye linear texgen. The
sole purpose of using V in Equation 5 is to eliminate V™. If we set modelview,, = v,
then OpenGL will do the elimination for us and we can avoid having to compute V, the
inverse of the view matrix. The steps can be summarized as follows:

First Pass (Depth Map Generation)

e Render from light’s point of view. Set projection matrix to Pjigne. Set the view
portion of the modelview matrix to L™.

e Render scene (with appropriate modeling transform(s) M).

Second Pass (Depth Map Comparison)

e Render from eye’s point of view. Set projection matrix to be Peye. Set the view
portion of the modelview matrix to be V.

e Settexgen to be EYE LINEAR. Specify texgen planes as Epo = S Piigh¢ L’

e Render scene (with appropriate modeling transform(s) M)

Conclusions

Shadow mapping is an easy-to-use shadowing technique that makes 3D rendering just
look better. It enjoys hardware acceleration on GeForce3 GPUs. There is example
source code in the NVSDK (hw_shadowmaps simple, hw_woo shadowmaps) that
demonstrate the technique, and the corresponding OpenGL extensions. Please direct
questions or comments to cass@nvidia.com.
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Appendix A: Another Way to Think about EYE_LINEAR planes in
OpenGL

An unfortunate thing about EYE LINEAR texgen in OpenGL is that the name
implies that the plane equations are specified in eye space, when they are, in fact,
specified in their own object space. There are two ways one can think about the planes
specified in EYE LINEAR texgen. As mentioned earlier, OpenGL will automatically
multiply the planes specified with (modelview,,)", i.e. the inverse of the modelview
matrix in effect when the planes are specified. From Equation 1 we see that the net effect
is to map the vertex position in eye coordinates [xe,ye,ze,we]T back to the ‘object space’
defined by (modelviewpo)'l. The transformed coordinates are then evaluated at each
plane in this object space to get the texture coordinates. An alternate way to think about
the texgen planes is to consider the matrix E, = Epo(modelview)'l, which defines a map
whose domain is eye space, with the planes Ep, being specified in object space. E.
therefore defines the transformed planes in eye space. In either case, the planes are being
specified in the ‘object space’ defined by (modelviewpo)'1 and not in eye space.

In the shadow mapping case described earlier, the modelview matrix is set to V™'
when the texgen plane equations are specified. This is the same thing as saying that we
are specifying the plane equations in world space. If the modelview matrix were set to
identity, then we would be specifying the equations in eye space. The same is true if we
were specifying vertex positions.
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We could set the modelview matrix to V'L, and specify the plane equations in light
space. This might be handy, because we would only need to update our plane equations
if the light’s projection (Pjgn¢) changed. We could even put the whole transformation into
the modelview matrix as V'lLPﬁgh{IS'l. In this case, the texgen planes are always just
specified as identity (Ep, = I)!
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Interactive Order-Independent Transparency

Cass Everitt
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() (b)

Figure 1. These images illustrate correct (a) and incorrect (b) rendering of transparent
surfaces.

Introduction

Correctly rendering non-refractive transparent surfaces with core OpenGL
functionality [9] has the vexing requirements of depth-sorted traversal and non-
intersecting polygons. This is frustrating for most application developers using OpenGL
because the natural order of scene traversal (usually one object at a time) rarely satisfies
these requirements. Objects can be complex, with their own transformation hierarchies.
Even more troublesome, with advanced graphics hardware, the vertices and fragments of
objects may be altered by user-defined per-vertex or per-fragment operations within the
GPU. When these features are employed, it becomes intractable to guarantee that
fragments will arrive in sorted order for each pixel. The technique presented here solves
the problem of order dependence by using a technique we call depth peeling. Depth
peeling is a fragment-level depth sorting technique described by Mammen using Virtual
Pixel Maps [7] and by Diefenbach using a dual depth buffer [3]. Though no dual depth
buffer hardware fitting Diefenbach’s description exists, Bastos observed that shadow
mapping hardware in conjunction with alpha test can be used to achieve the same effect
[2]. Using this variation of depth peeling, each unique depth in the scene is extracted into
layers, and the layers are composited in depth-sorted order to produce the correctly
blended final image. The peeling of a layer requires a single order-independent pass over
the scene. Figure 1 contrasts correct and incorrect rendering of transparent surfaces.
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The goal of this document is to enable OpenGL developers to implement this
technique with NVIDIA OpenGL extensions and GeForce3 hardware. Since shadow
mapping is integral to the technique a very basic introduction is provided, but the
interested reader is encouraged to explore the referenced material for more detail.

Shadow Mapping

Shadow mapping is a multi-pass shadowing technique developed by Lance Williams
[11]1in 1978. In the first pass, the scene is rendered from the light’s point of view. The
depth buffer generated in that pass is copied to a special “depth texture” or shadow map.
In the second pass, the shadow map is projected onto the scene using projective texture
mapping [10, 4]. Unlike regular 2D projective texture mapping where the  coordinate is
unused, we use the » coordinate to compute the distance of the rasterized fragment to the
light source. Then, the lookup of (s,?) is the distance to the nearest surface to the light
source (along that direction). If » < 1ookup (s, ), then the current fragment is visible to
the light source, and therefore not in shadow. Essentially, we use depth-buffering in the
first pass to determine which surfaces are visible from the light’s point of view, and in the
second pass we show those surfaces as illuminated. Figure 2 helps illustrate this concept.

The A < B shadowed fragment case The A = B unshadowed fragment case
Sle depth map image plane Sl depth map image plane
ol B / depthmap Z = A b " / depthmapzZ = A

light
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light
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@ @)
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é :_.‘: \ 4‘_._,....---" g \
v: eye view image plane, v eye view image plane,
i a.k.a. the frame buffer H ak.a. the frame buffer

fragment's fragment's
light Z=B ,‘" light Z=B

eye
position

¥

Figure 2. These diagrams were taken from Mark Kilgard’s shadow mapping presentation at
GDC 2001. They illustrate the shadowing comparison that occurs in shadow mapping.

We use the sGIX shadow and SGIX depth texture extensions [8] to take advantage
of GeForce3 shadow mapping hardware in OpenGL." The sGIX shadow extension
provides the ability to compute a comparison of the r texture coordinate with the results
of the 2D lookup. The SGIX depth texture extension exposes GL_DEPTH COMPONENT
internal texture formats and defines semantics for g1CopyTex { Sub} Image2D for fast
copies from the depth buffer to a depth texture. These features are fully accelerated on
GeForce3.

' The OpenGL Architectural Review Board (the “ARB”) has since standardized the ARB shadow and
ARB depth texture extensions in February 2002. These extensions are very similar to the SGIX
extensions. The technique described here could use either the ARB or SGIX extensions. NVIDIA drivers
after March 2002 support the ARB and SGIX extensions for shadow mapping.
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It has been shown by Heidrich [5] that multitexturing can be used to implement a
limited form of shadow mapping. It is limited in that it requires multiple texture units
and it only supports nearest filtering and 8-bit depth texels (16-bit depth on GeForce [6]).
For depth peeling, we need full depth buffer precision (24 bits) that necessitates the use
of the sc1x shadowing extensions.

Depth Peeling

Depth peeling is the underlying technique that makes this approach for order-
independent transparency possible. The standard depth test gives us the nearest fragment
at each pixel, but there is also a fragment that is second nearest, third nearest, and so on.
Standard depth testing gives us the nearest fragment without imposing any ordering
restrictions, however, it does not give us any straightforward way to render the second
nearest or n'" nearest surface.

Depth peeling solves this problem. The essence of what happens with this technique
is that with n passes over a scene, we can get n layers deeper into the scene. For
example, with 2 passes over the scene, we can extract the nearest and second nearest
surfaces in a scene. We get both the depth and color (RGBA) information for each layer.

The images we get from peeling away depth are shown in Figure 3. It can be quite
confusing to make sense of the images of layer 1 and beyond, because the notion of a

Layer 0 Layer 1

Layer 3

Figure 3. These images illustrate simple depth peeling. Layer 0 shows the nearest depths,
layer 1 shows the second depths, and so on. Two-sided lighting with vivid coloring is used
to help distinguish the surfaces.
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Laver 0 Laver 1 Laver 2

0 depth 1 0 depth 1 0 depth 1

Figure 4. Depth peeling strips away depth layers with each successive pass. The frames
above show the frontmost (leftmost) surfaces as bold black lines, hidden surfaces as thin
black lines, and “peeled away” surfaces as light grey lines.

“second nearest surface” is unintuitive. To help distinguish the various surfaces, the
teapot is rendered with two-sided lighting (outside is red and inside is green), and the
ground plane is drawn in blue. Note that the image labeled ‘Layer 2’ is in the shape of a
teapot, but most of the fragments in that layer are from the ground plane (they are blue).
Without the coloring, this would be difficult to interpret.

Figure 4 provides a more diagrammatic view of depth peeling. The diagrams there
are analogous to the images in Figure 3, except we are now looking at a cross section of
the view volume and highlighting each layer. It is evident from the view in Figure 4 that
the depths vary within each layer, and the number of samples is decreasing. The peeling
process clearly happens at the fragment level, so the pieces are generally not whole

polygons.

The process of depth peeling is actually a for (i=0; i<num_passes; i++)

straightforward multi-pass algorithm. In the first {
pass we render as normal, and the depth test gives jef;%/o'gr buffer
us the nearest surface. In the second pass, we use B=(i +°1) % 2
the depth buffer computed in the first pass to “peel depth unit 0:
away” depths that are less than or equal to nearest if(i == 0)
depths from the first pass. The second pass disable depth test
generates a depth buffer for the second nearest else

. enable depth test
surface, which can be used to peel away the first bind buffer 4
and second nearest surfaces in the third pass. The disable depth writes
pattern is simple, but there is a catch. We need to set depth func to GREATER
perform two depth tests per fragment for it to work! depth unit 1:

bind buffer B
Multiple Depth Tests clear depth buffer
enable depth writes
The most natural way to describe this technique enable depth test

is to imagine that OpenGL supported multiple renfjitrdsi%t:efunc o LESS
simultaneous depth units, each with its own depth save color buffer RGBA as layer i
buffer and associated state. We diverge from }

Diefenbach’s dual depth buffer API in that we
assume there are n depth units, all writeable, that are executed in sequential order. The
first depth test to fail discards the fragment and terminates further processing. The
pseudocode in Listing 1 implements depth peeling using two depth units.
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In each pass except the first, depth unit 0 is used to peel away the previously nearest
fragments while the depth unit 1 performs “regular” depth-buffering. We decouple the
depth buffer from the depth unit because it simplifies the presentation of the algorithm
and more closely matches the semantics of ARB multitexture. This decoupling is
convenient because we need to use the depth buffer produced by depth unit 1 in pass i as
the “peeling” depth buffer for depth unit 0 in pass i+1.

It is also worth mentioning that we only enable depth writes on depth unit 1. This
will be important later.

Shadow Mapping as Depth Test

Shadow mapping is a depth test. For the purposes of our discussion, there are only a
few major differences between shadow mapping and the depth-buffer algorithm:

¢ the shadow mapping comparison sets a fragment color attribute,
e the shadow mapping depth test is not tied to the camera position, and

e the shadow map (depth buffer) is not writeable during the shadow comparison
(depth test).

It is not difficult to compensate for these differences. We write the results of the
shadow mapping comparison to fragment alpha and use alpha test to discard fragments
that fail the “depth test” we have chosen. We make the orientation and resolution of the
shadow map identical to that of the camera. We can then use shadow mapping as a read-
only depth test. This is good news, because this is all we needed to implement depth
peeling as described in the previous section using our imaginary multiple depth test
OpenGL. Except now, we can actually implement it using real OpenGL and with
hardware acceleration!

An Invariance Issue

As simple as depth peeling sounds, it is actually pretty intolerant to variance. Due to
the nature of the technique, many of the fragments generated in each pass will be on the
razor’s edge of the comparison. In our imaginary OpenGL that supports multiple depth
tests, we would not expect variance to be a problem because we are re-using the same
interpolator to compute depth the same way in each pass. Things are a little more
complicated when we use shadow mapping as a depth test, though. This is primarily
because

e z, (window space z) is interpolated linearly in window space at the precision
of the current depth buffer, and

e rand g are interpolated linearly in clip space (hyperbolically in window
space) at high precision

The possible differences in precision and/or interpolation implementation are the hazards
that cause variance. Consider the depth .

int lation in Equation 1, which is linear in Listing 1. Pseudocode for depth
nterpo q > peeling using multiple simultaneous

window space. depth buffers.
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Where z,, is window space z, z. is clip space z, w, is clip space w, and the numeric
specifiers 1 and 2 indicate two points that are being interpolated. When we perform
shadow mapping, we must interpolate quantities as texture coordinates which vary

V4 V4
a t(l-a) 2

r=z, = Mi”l chz (2)
oa—+(-a)—
cl WcZ

linearly in clip space, so we interpolate z. and w, as the  and g texture coordinates

1 1 (3)

a—+(-a)—
Wcl WcZ
respectively, and use the #/g quotient to produce a value that varies linearly in window
space. For the particular case we have been considering, shadow mapping from the
camera’s point of view we get Equations 2 and 3.

When we compute the 7/g quotient, we recognize that the denominators in Equations 2
and 3 cancel, and that for our special case of shadow mapping from the camera’s point of
view, the numerator of Equation 3 is 1. This leaves only the numerator of Equation 2,
which is identical to the expression in Equation 1. While this is algebraically true, the
hardware may not be able to make some of these cancellations. For fragments with the

ZC
WL‘
1
Ml E )
w, We
WC
1
w

c

same depth, hardware could evaluate the comparison shown in (4). The left side of the
expression interpolates three quantities and performs four divides while the right simply
interpolates one quantity.

ZL'
z ==z

w wl

+(l-a)z,, =a—L +(1-a)22 1)
c Wcl Wc2
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Luckily GeForce3’s NvV_texture shader extension [8] supports a mode called
GL_DOT PRODUCT DEPTH REPLACE NV that allows us to compute fragment depth using
texture coordinates. The depth computed in this texture shader replaces the fragment
depth that was computed in the rasterizer. This means that for GeForce3, we can
compute the depth that we store in the depth buffer in exactly the same way that we
compute it when making the comparison. When we use this texture shader in generating

Dot Product Depth Replace

TEX Texture Coords Shader Texture Bound Texture Output
# (S.TR.Q) Operations Fetch Target/Format Color
2D
Unsigned HILO
0 (SuToReQ) =»  Texture 2D ) - (0,0,0.0)
| v
1 (5., TuRY) Z = (8, T,R)[H.L 1] No None =p (0,0,0,0)
| v
2 (SR W=\S,T.,R)*[HLT]  None None =% (0.0,0.0)
Z ;
F— W — P Replaces current fragment’s depth

Figure 5. This diagram is a slightly modified slide taken from Dominé and
Spitzer’s GDC 2001 presentation on GeForce3 texture shaders. It
describes the depth replace texture shader.

our shadow map, there are no variances in the least significant bits. This is nice because
it means we do not have to employ fudge factors to deal with LSB variance. The depth
replace texture shader is very general, and this is a very simple use of it. Figure 5
illustrates the general operation of the depth replace texture shader.

For our purposes, we really only want to interpolate z. and w, using a single texture
coordinate for each, so we use a 1x1 GL UNSIGNED HILO NV texture where H and L are
zero. By definition, the 3™ component of an unsigned HILO is 1, so we perform a dot
product of (S, T, R) with (0, 0, 1). In this way, we can interpolate the R coordinates of
stages 1 and 2, and we use texture coordinate generation to make sure that R; is z. and R,
is w.. When we perform the division z./w, at each fragment, we are effectively
interpolating window space depth in the same way that s/¢g does it in the subsequent
shadow mapping pass.

There is one clarification we should make. When we consider the standard
transformation pipeline, we often place the perspective divide before the viewport and
depth range scale and bias. The depth replace texture shader and shadow mapping depth
computation perform the divide (z./w. and s/q respectively) as the final operation. This
means that we must apply the depth range scale and bias before the perspective divide.
Or, said another way, for depth replace and shadow mapping, we must transform
coordinates into homogeneous window coordinates rather than homogeneous clip space.
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qlActiveTextureARB(GLiTEXTUREOiARB);
simple 1x1 uhilo.bind();
glTexEnvi (GL TEXTURE SHADER NV, GL_ SHADER OPERATION NV, GL TEXTURE 2D);

matrix4f m;

glACtiveTextureARB(GL_TEXTUREl_ARB);

glTexEnvi (GL_TEXTURE SHADER NV, GL_ SHADER OPERATION NV, GL_DOT_ PRODUCT NV);
glTexEnvi (GL_TEXTURE SHADER NV, GL PREVIOUS TEXTURE INPUT NV, GL TEXTUREQO ARB);
glTexEnvi (GL_TEXTURE ENV, GL TEXTURE ENV MODE, GL NONE);

glMatrixMode (GL_MODELVIEW) ;

glPushMatrix () ;

glLoadIdentity () ;

eye linear texgen(); // set EYE LINEAR texgen with identity planes

texgen (true) ; // enable texgen on s,t,r, and g

glPopMatrix () ;

glMatrixMode (GL TEXTURE) ;

glLoadIdentity () ;

glTranslatef( 0, 0,.5);

glScalef( 0, 0, .5);

reshaper.apply perspective(); // apply the camera’s perspective projection matrix
glMatrixMode (GL MODELVIEW) ;

glActiveTextureARB (GL TEXTURE2 ARB);

glTexEnvi (GL_TEXTURE SHADER NV, GL SHADER OPERATION NV, GL DOT PRODUCT DEPTH REPLACE NV);
glTexEnvi (GL_TEXTURE SHADER NV, GL PREVIOUS TEXTURE INPUT NV, GL_ TEXTUREQ ARB);

glTexEnvi (GL_TEXTURE ENV, GL TEXTURE ENV MODE, GI NONE);

glPushMatrix () ;

glLoadIdentity () ;

eye linear texgen(); // set EYE LINEAR texgen with identity planes
texgen (true) ; // enable texgen on s,t,r, and g
glPopMatrix () ;

glMatrixMode (GL_TEXTURE) ;
glLoadIdentity ()

m(0,0) = 0; m(0,1) 0; m(0,2) = 0; m(0,3) = 0;
m(l,0) = 0; m(l,1) = 0; m(l,2) = 0; m(l,3) = 0;
m(2,0) = 0; m(2,1) = 0; m(2,2) = 0; m(2,3) =1; // move g to r
m(3,0) = 0; m(3,1) = 0; m(3,2) = 0; m(3,3) = 0;

glMultMatrix (m) ;
reshaper.apply perspective(); // apply the camera’s perspective projection matrix
glMatrixMode (GL_MODELVIEW) ;

glActiveTextureARB (GL TEXTURE3 ARB);
glTexEnvi (GL TEXTURE SHADER NV, GL SHADER OPERATION NV, GL TEXTURE RECTANGLE NV);
glTexEnvi (GL_TEXTURE ENV, GL TEXTURE ENV MODE, GL NONE);

glActiveTextureARB (GL TEXTUREO ARB);

Listing 2. Example code for setting up depth replace texture shader for use in depth peeling.

The code in Listing 2 illustrates how to set up the GL_DOT PRODUCT DEPTH -
REPLACE_NV texture shader to compute window z in a way that closely matches the
standard projective texture mapping computation of window z. For illustrative purposes,
we use eye linear texgen with an identity mapping for the » coordinate [ 0 0 1 0 ], and we
use the texture matrix to perform the transforms. The most efficient approach would be
to encode the transform in the texgen plane.

Another slightly odd aspect the depth replace texture shader is illustrated in the code
in Listing 2. It is that the homogeneous window coordinate must be moved from the
fourth row of the texture matrix into the » coordinate. This is because the dot product
texture shaders only perform a 3-component dot product, so all quantities must be in the
s, t, or r coordinates.
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Putting It All Together

Now we have a way to compute the RGBA color for each unique depth at every
pixel. These are stored as separate layers (or viewport-sized textures). All that remains
is to compute the correct order-dependent color at each pixel by compositing the layers in
order. Rendering each layer as viewport-sized textured quad does this. For back-to-front
compositing a (GL_SRC_ALPHA, GL, ONE_MINUS SRC ALPHA) blending function is used.

Figure 5 illustrates the results of compositing of the layers into a final image. Note
also that the bottom two images in Figure 5 look virtually (but not completely) identical.
For completely correct results we should extract every semitransparent sample up to the
first opaque sample, but in practice that is not necessary. The nature of the transparency
computation is that samples further back have diminished effect, so truncation is a
reasonable (and efficient) form of approximation. For example, the scene in Figure 5 is
“good enough” after three layers.

1 layer 2 layers

3 layers 4 layers

Figure S. The depth peeled layers of the scene are correctly sorted per-fragment. If we
simply save the color (RGBA) for each layer, we can composite them in depth-sorted order
as a final pass. These images illustrate blending more layers for more correct
transparency.
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Conclusion

The technique presented is a straightforward and convenient way to render scenes
with transparency because it does not require that the scene be rendered in sorted order,
and it makes good use of graphics hardware. In addition, there may be no practical
alternative to this approach of layer extraction and compositing for scenes that cannot be
rendered in sorted order in a single pass.

Some of the figures in this paper come from the layerz and order independent -
transparency demos that can be found in the NVIDIA OpenGL SDK, which can be
found at http://www.nvidia.com/developer. The demos only illustrate the technique
described here, but many variations like those described in Diefenbach [3] are possible.
The GDC 2001 presentations that were used in some figures are also available at the
above web site.
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Abstract a scene one by one. Interestingly enough, the idea of using two-
sided depth tests to implement depth peeling was proposed earlier
Shadow mapping is a technique for doing real-time shadowing. Re- by Mammen [1989], who used the ideawftual pixel maps The

cent work has shown that shadow mapping hardware can be usedkey observation by Everit al. was that existing shadow mapping

as asecond depth tesh addition to the z-test. In this paper, we

explore the computational power provided by this second depth test

by examining the problem of rendering objects described as CSG
(Constructive Solid Geometry) expressions. We provide an algo-

hardware can be used to simulate this test.

Our Contributions In this paper, we study the computational
power of the two-sided depth test in the context of rendering objects
represented as CSG trees.

rithm that asymptotically improves the number of rendering passes
required to display a CSG object by a factomoby exploiting the
two-sided depth test. Interestingly, a matching lower bound can be
proved demonstrating that our algorithm is optimal.

e We show that the two-sided depth test can be used to render
CSG trees with a factor of (number of primitives in the CSG
expression) fewer passes than the best known OpenGL-based
algorithms (see Section 2 for more details).

e Our algorithm can render arbitrary CSG objects, and does not

require the explicit precalculation of levels that prior results

did.

We use no external storage or readbacks; all computations are

performed directly on the GPU.

Our algorithm works by performing tpological sweepver

the arrangement of the objects; this technique may be of inde-

pendent interest.

Keywords: Constructive solid geometry, Graphics hardware, Z-
buffer, Shadow mapping

CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage Gen-
eration 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modelling F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems

1 Introduction

) i ) Paper Outline  The rest of the paper is organized as follows. We
In recent years, the increased power of graphics rendering hard-giscuss prior work in Section 2. We define the problem of render-
ware has led to the use of the graphics pipeline for general purposeing a CSG tree in Section 3, and present our solution for a single
stream computations. One of the early examples of this was the useproduct in Section 4. The solution is extended to arbitrary CSG
of hierarchical z-buffering for visibility calculations [Greene et al. expressions in Section 5. We discuss implementation details and

1993], and subsequently in programmable vertex shaders [Peercyyresent our algorithm performance in Section 6 and we conclude in
et al. 2000; Lindholm et al. 2001; Proudfoot et al. 2001]. Other gection 7.

uses of the graphics pipeline as a general purpose stream computing
engine have been demonstrated in computational geometry[Hoff IlI .
etal. 1999; Mustafa et al. 2001; Krishnan et al. 2002], robotics[Hoff 2  Prior Work
et al. 2000], numerical analysis[Larsen and McAllister 2001], and
ray tracing[Purcell et al. 2002]. There has been extensive work on the problem of rendering solid

In a recent development, work by Ever#t al. [2002] has objects defined in terms of CSG trees. A general survey of CSG
shown that the shadow mapping hardware (supported in the nVidiamethods is beyond the scope of this paper. We will focus solely on
GeForce3 and newer architectures) can be used to perform ordermethods that make use of the graphics hardware.
independent transparency. They demonstrate this by using the Goldfeatheret al. [1986] presented an algorithm for render-
shadow mapping phase in the pipeline to filter out fragments that ing a CSG tree oftonvexobjects (and subsequently [1989] for
have a z-value less than (or greater than) values stored in a deptthon-convex objects) using an extension of the Pixel-Planes graph-
texture. This operation, combined with the standard z-test, pro- ics hardware [Fuchs and Poulton 1981]. This algorithm was re-
vides a two-sided depth test on fragments. This feature is exploitedfined and implemented on modern graphics hardware by Wie-
in a technique they catllepth peelinghat can “peel” off layers of gand [1996]. The running time of the algorithm, expressed as the
number of rendering passes required, is essentially quadratic in the
number of primitives (the running time also includes a quadratic
term that depends on tlwenvexityof the objects).

The Trickle algorithm, developed by Epstesh al. [1989] and
later refined by Rossignac and Wu [1992], takes a different ap-
proach using “depth-interval buffers” (which essentially provide
the functionality of a two-sided test) to do the rendering. Their
approach requires three depth buffers, the two-sided depth test
and two color buffers, and thus is not readily adaptable to current
OpenGL-based architectures. Although they do not analyze their
algorithm in terms of rendering passes, we believe that their ap-
proach (for each product) requires number of passes proportional
to the depth complexity from the given viewpoint.

*Supported by NSF grant CCR-0113217
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Stewartet al. [1998] presented an improvement to the Gold-
featheret alalgorithm that takes into account the fact that objects
may be disjoint and thus can be rendered in parallel. If the depth
complexity of a collection ofn primitives is k, then the modifi-
cation proposed by Stewaet alrequiresO(kn) rendering passes.

In the case when the primitives are sufficiently disjoint in screen
space (and thug < n), this algorithm is superior. Erhart and
Tobler [2000] provide a modification to this algorithm that yields
more accurate results (in terms of depth tests). However, in the
worst case, their algorithm again requi@gn?) passes.

More recently, Stewast al.[2000; 2002] present improvements

that compute a CSG product in a constant number of passes when

all the primitives are convex. They use a universal sequence to
model the depth ordering of the primitives without having to com-
pute an explicit front-to-back ordering. The caveat with this ap-

proach is that a quadratic number of objects are rendered in each

pass (because primitives are duplicated).

All of the algorithms above compute a union of objects by merg-
ing the partial depth buffers obtained for each product. This merg-
ing step is performed via the use of readbacks, and is thus slow.

3 CSG Trees and Normalization

A three dimensional object can be described as the result of per-
forming set operations_(, N, \) on a ground set of shapes (called
primitiveg. A CSG treecan be used to define an object by defining
the sequence of operations that are performed.

The CSG tree is usually assumed to be in a canonical form to
aid in rendering. A CSG tree is said to besam-of-product$orm
if the expression it defines can be written as a union of intersec-
tions/subtractions (a sum of products). Such a tree is said to be
normalized Goldfeatheeet al.[1986] provide an algorithm for nor-

faces of complemented primitives contribute to the visible portions
of P. Hence, only these faces (termappropriate primitivey are
considered by our algorithm in the front-to-back traversal. Once
a pixel in P is found, no further updates are made for this pixel.
Thus the algorithm maintains &BNT of all pixels (with associated
depth values in the z-buffer) for which membershigimas not yet
been determined. In each step,

1. We test which pixels in theHONT satisfy membership .

. If the pixel fails the membership test then its depth is updated
to the depth of the next face in the front-to-back ordering —
this is calledadvancing the RONT.

3. If the pixel passes the membership test, a mask is applied to
ensure its depth value is not updated in subsequent steps.

After the algorithm has traversed all layers the z-buffer holds the
depth field of P. We then render all the objects with depth test set
to EQUALto obtainP. We illustrate the working of the algorithm
in Figure 1.

Testing Product membership Assume that a poinp is in

the product and its depth is stored in the z-buffer. Goldfeatiher
al. [1986] made the observation that (a) if a primitiveccurs un-
complemented in a product, the number of layers of that primitive
(both front and back) that have depth greater thanust beodd

and similarly (b) the number of layers (with depth greater than
must beevenif the object occurs complemented.

Let f (o, p) denote the number of front faces@bf depth greater
than the depth gb. Similarly letb(o, p) denote the number of back
faces ofo satisfying the same depth condition. Since all objects
are simple and thus have no self-intersections, each front fase of
is followed immediately by a back face of and thusf(o,p) <
b(o,p) < f(o,p) + 1. For an uncomplemented objebto, p) —

malizing a CSG tree; we use their technique, and the rest of the Pa-f(o, p) = 1 and for a complemented objeéto, p) — f(o,p) = 0.
per assumes without loss of generality that the CSG tree has beerfor a general produd?, we can summarize thé’| equations in a

normalized.

Given a normalized CSG tree and a procedure to compute the
product of a set of primitives, unions can be computed easily by
merging the results of individual products in the depth buffer. The

above mentioned algorithms make use of this observation, and thus

focus on the problem of rendering a CSG tree denoted by a single
product. For clarity of presentation, we will explain the working of
our algorithm on a single product, and subsequently we will show
how the same ideas can be extended to render a sum of products.

3.1 Notation and Preliminaries

We denote a normalized CSG expressioPas) - - - U P,,,, where
eachpP; is a product of primitives. A single product is a general ex-

pression involving intersections and complementations. Consider aAdvancing the Front

single product? = (((o1 No2) \ 03) No4). P can be rewritten
aso; N o2 N 03 Nos. Thus each product is the intersection of a
set of (possibly complemented) objects. For a prodedet U (P)
denote the set of uncomplemented objects@#) denote the set
of complemented objects. In this examplg(P) = {o1,02,04}
andC(P) = {os}.

Every objecio is a collection of alternating front and back faces
(or layers [Goldfeather et al. 1989]) as seen from the viewpoint.
Thedepthd(P) of a productP is the maximum number of layers
in P (with respect to the viewpoint).

4 Rendering A Product

Consider a produd®P. Our algorithm works by traversing the layers
of the primitives inP in a front-to-back order. It is easy to see
that only the front faces of uncomplemented primitives and back

single condition as follows:

>

ocC(P)

bo.p)— Y flept Y blep)— Y. flo.p) = [U(P)]

ocC(P) ocU(P) o€U(P)

It is not difficult to show that only points in the final product will
satisfy the above equation. Moreover, this equation is crucial be-
cause it allows us to check membership for a ppiimt two render-

ing passes (instead af). We use the stencil buffer to implement
this test. We group together the back (front) faced/¢f) and
C(P) in a single pass to increment (decrement) the stencil buffer.
Pixels whose stencil value |§/(P)| have passed the membership
test, and are masked with a suitable value to prevent future depth
updates.

The FRONT is maintained as depth val-
ues in the z-buffer. The initial front is obtained by rendering the
appropriate primitiveswith the depth-test set toESS. To advance

the front, we copy the depth buffer to a shadow buffer, and invoke
the depth peelingsubroutine to pass only those fragments whose
depth is greater than the value in the shadow buffer using the alpha
test. We refer the reader to [Everitt 2002] for details of the depth
peeling algorithm. This test, coupled with the normal z-test (depth
test set td_ESS), provides fragments whose depth value is imme-
diately behind the current front. In our case, we selectively advance
the FRONT using the stencil mask. Observe the crucial role of the
second depth test provided by the depth peeling routine. Without
this, we would be unable to implement the two-sided depth test,
a < Zvalue < b, and would not be able to advance the frontin a
single rendering pass.

The full algorithm is as follows. The sentindl is used to mask
points which have been determined to be in the product: the front
is not updated for these pixels.
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() (b)

(d)

©

Figure 1: An illustration of the algorithm for a single product. (a) A prodBct= A N B — C. The original primitives are dotted and the
appropriate primitives are drawn solid? is shaded. (b) The initial contents of the front (dashed). (c) The front after a single step of the

algorithm. (d) Final step: pixels marked solid arefin

Algorithm 1 Algorithm for a single producP

Initialize z-buffer to first front.

Initialize stencil buffer with O

while stencil buffer contains @o
Test points on front for membership in P
Set stencil buffer taV (> n) for pixels passingtest
Set stencil buffer t® for pixelsnot passingtest
Advance front

end while

5 Computing Unions of Products

We now describe the computation of a sum of products. Let the

products bePy, P, ... P,. The computation proceeds incremen-
tally. Assume that we have correctly computedJ. ..U P;,_;. At

the start of the'” step, the z-buffer contains the depth values for
P U...U P;_; (denoted byD;_,) and the color buffer contains
the appropriate values (denoted @Gy.- ).

We first copy the content of the z-buffer into a second shadow

buffer buf. Then, we compute the depth field fBy using the algo-

rithm described in the previous section. This sets the color buffer
appropriately as well. We now need to merge the two depth fields,
retaining the minimum value at each pixel. Let the depth and color

field for P; be denoted byi; andc; respectively. Thus the new
depth fieldD; = min(D;—1, d;). The new color field is

Ci = {Cil if D;—1 < di,
Ci

otherwise

In the second phase, update the depth buffer to thdD,in;
wherever the stencil bits are cleared in the previous phase. We
set the shadow test to pass fragments whose degthrisst(<)
D;_1. The depth test is set to GREATER. By rendering all objects
in P U...U P;_1, this two-sided depth test passes only fragments
whose depth value i®,_;. This completes the z-buffer update,
and it now containd);. The union algorithm can be summarized
as follows:

Algorithm 2 Algorithm for a union of product#, . . .
Initialize shadow buffebuf to 1.
for i =1tomdo
Compute produck;

7Pm

Set shadow test tgreater

Set depth test tequal

Set stencil buffer t@® on depth pass
RenderP; and update depth and color buffer

Set shadow test tiessor_equal
Set depth test tgreater
Set stencil test tequal to 0
RenderP;, ..., P,_1 and update depth buffer
Copy depth buffer to shadow buffeuf
end for

Running Time Analysis The total number of rendering passes
is the number of passes taken to compute each product,nplus
passes to compute the union. Therefore the total number of passes

This is accomplished in two phases. In the first phase, we iden-ism + 2", d(P;) = O(_, d(P;)). This running time is asymp-

tify those pixels wherd; > D;_; and tag them appropriately using

totically superior to all prior techniques by a factorafwheren

the stencil buffer to be updated in the next phase. This is accom- is (on average) the number of primitives appearing in each product.
plished by setting the shadow test to pass fragments whose depth idloreover, in our algorithm, we only render while there are pixels

greaterthan D,_; and setting the depth test to EQUAL. The sten-

whose correct depth is yet to be determined. Therefore, in practice,

cil function is set to clear the stencil bits if the depth test passes (i.e our algorithm takes much fewer passes than predicted by the above

the fragment depth is equal to thatdp). Intuitively, this encodes
the two-sided tesD;_1 < d = d;, whered is the fragment depth.
Now, rendering the faces d?; has the effect of clearing the sten-
cil buffer in all pixels for which the minimum depth is achieved by
D,_ i.e all pixels for whichD; = D;_,. Note that this is precisely

the set of pixels for which the current depth buffer contents are in-
correct. The contents of the color buffer can be updated to reflect

worst-case expression. In contrast, the running times of the pre-
vious algorithms is “worst-case”: the number of rendering passes
required in any run is always the (same) worst-case.

6 Implementation Details

P, U. ..U P;inthis phase by going through one extra rendering of All our code was implemented using C++/OpenGL on a

the faces ofP; at places where the stencil buffer is not cleared.

1.8Ghz/1GB PC running Red Hat 7.3. The graphics card is an
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Application of the Two-Sided Depth Test to CSG Rendering - Gatieal.

(a) GRID: The desired output is the flat sheet with the 25 spheres subtracted from it.
Only two layers are necessary to compute the product.

(b) HELIX: Note that in this example two of the objects are non-convex (the two helices). The desired output is the subtraction of the
two helices and the inner pipe from the outer pipe.

— — —~— —_ -

(c) CUBE: In this example, the boolean combination desired is the union of one of the cylinders with the product consisting the yellow sphere
and the green cube minus the front-facing cylinder

. /‘\\ ..

(d) HOLLOW PIPE: In this example, for ease of viewing we show the original objects in the two left-most figures. The output should be a hollow
pipe formed by the subtraction of the inner tube (colored in pink) from the outer tube (in red)

Figure 2: Examples of CSG renderings produced by our algorithm. In each example, the left-most figure depicts all the primitives prior to
any boolean operations. Each subsequent figure depicts the rendered output after successive steps of the algorithm, and the right-most figure
shows the final answer.
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Abstract

The need for analyzing and processing massive data in real time has led to a flurry of activity related
to performing computations on a data stream. In this paper we propose algorithms for solving a variety of
geometric optimization problems on a stream of points in R? or R3. In particular, we study the problems
of computing various extent measures (e.g. diameter, width, smallest enclosing disk), collision detection
(penetration depth and distance between polytopes), and shape fitting (minimum width annulus, circle/line
fitting).

The main contribution of this paper is a unified approach to solving all of the above problems efficiently
using modern graphics hardware All the above problems can be approximated using a constant number
of passes over the data stream. All of our algorithms are easily implemented, and our empirical study
demonstrates that the running times of our programs are comparable to the best implementations for the
above problems. Another significant property of our results is that although the best known implementations
for the above problems are quite different from each other, our algorithms all draw upon the same set of tools,
making their implementation significantly easier.

Our graphics-hardware based technique can also be used to solve a number of other geometric optimiza-
tion problems (problems in layered manufacturing, Hausdorff distance between planar point sets), which do
not necessarily arise in the streaming model.
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1 Introduction

Motivated by various applications (e.g., data warehousing, data mining, query optimization), the need for ana-
lyzing and processing massive data in real time has led to a flurry of activity related to performing computations
on a data stream, such as the computation of frequently occurring items in a stream. Several techniques have
been developed for computing statistical aggregates and histograms over data streams, which scan the input a
few times (e.g. a small constant number of times) and compute the desired information using very little space.
In general, these methods achieve efficiency by returning approximate answers to queries.

In this paper we propose algorithms for solving a variety of geometric optimization problems over a stream
of two or three dimensional geometric data (e.g. points, lines, polygons). In particular, we study three classes of
problems: (a) Extent Measures: computing various extent measures (e.g. diameter, width, smallest enclosing
circle ) of a stream of points in R? or R?, (b) Collision Detection: computing the penetration depth of a pair of
convex polyhedra in three dimensions and ShapeFitting: approximating a set of points by simple shapes like
circles or annuli.

Many of the problems we study can be formulated as computing and/or overlaying lower and upper envelopes
of certain functions. We will be considering approximate solutions, and thus it suffices to compute the value
of these envelopes at a set of uniformly sampled points, i.e., on a grid. This allows us to exploit recent devel-
opments in graphics hardware accelerators. Almost all modern graphics cards (examples include the nVidia
GeForce and ATI Radeon series) provide hardware support for computing the envelope of a stream of bivariate
functions at a uniform sample of points in [—1,+1]2 and for performing various arithmetic and logical opera-
tions on each of these computed values, which makes them ideal for our applications. We therefore study the
above streaming problems in the context of graphics hardware.

Related Work. Data streams were first referred to in the early 1980s and were formalized in the late 1990s
through a series of papers [5, 21, 11]. In the standard streaming model, the input {z1,...,z,} is written in
sequence on an input tape. The algorithm has a read head, and works in passes. In each pass, the read head
makes one sequential scan over the input tape, and then returns to the beginning. It is not permitted to move
backwards in the course of a scan. The algorithm is allowed a work space of size o(n) on which it can perform
any arbitrary computation, and also has an output tape on which it writes the result of the computation. The
efficiency of an algorithm is measured in terms of the size of the working space, the number of passes, and the
time it spends on performing the computation. Typically, algorithms are deemed to be efficient if they work in
one or a few passes, and use O(n¢),e < 1 workspace memory. Efficient streaming algorithms for computing
the mean and median [31, 30, 15], histograms of time-series data [14], the k-center and k-median [8, 18], and a
number of other problems have been proposed. Most of these algorithms provide a tradeoff between efficiency
and accuracy. Lower bounds on various problems in the streaming model have also been proposed; see [33, 6]
and the references therein. Recently, Korn et al. [25] developed a streaming algorithm for the reverse nearest-
neighbor problem, in which given a fixed set of red points and a stream of blue points, the algorithm is required
to compute, for each red point r, the number of blue points for which r is their nearest neighbor.

Traditionally, the graphics hardware has been used for rendering three-dimensional scenes. But the growing
sophistication of graphics cards and their relatively low cost has led researchers to use their power for a variety
of other problems, including constructive solid geometry [17], robotics [22], GIS [35], and scientific comput-
ing [27, 34]. In the context of geometric computing, it has been successfully used for computing \Voronoi
diagrams [23], map simplification [32], depth contours [26], and other problems. These algorithms use vari-
ous frame buffers (e.g. color, depth, stencil, and accumulation buffers), texture memory, and pixel processors
in clever ways, exploiting the streaming SIMD architecture of graphics cards. Fournier and Fussel [13] were
the first to study general stream computations on graphics cards; a recent paper [16] shows lower bounds on
the number of passes required by hardware-based k*-element selection operations, as well as showing the
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necessity of certain hardware functions in reducing the number of passes in selection from Q(n) to O(logn).
There has been extensive work in computational geometry and computing extent measures and shape fit-
ting [3]. The most relevant work in a recent result by Agarwal et al. [2] in which they present an algorithm for
computing a small size “core set” C of a given set S of points in R% whose extent approximates the extent of
S. As a corollary, their algorithm can compute the diameter of S in time O(n + 1/¢3(4=1)/2) and the smallest
spherical shell containing S in time O(n + 1/e24log1/e). Their algorithm can be adapted to the streaming
model, in the sense that C' can be computed by performing one pass over S, after which one can compute an
e-approximation of the desired extent measure in 1/e°( time using 1/£°(Y) memory. Recently, Feigenbaum et
al. [12] studied the computation of the diameter of a set of points in the streaming and sliding-window models.

Our Work. In this paper, we demonstrate a large class of geometric optimization problems that can be ap-
proximated efficiently using graphics hardware. A unifying theme of the problems that we solve is that they
can be expressed in terms of minimizations over envelopes of bivariate functions.

Extent Problems: Table 1 summarizes our results for computing the diameter and width (in two and three
dimensions) and the smallest enclosing ball (in two dimensions) of a set of points. All the algorithms are
approximate, and compute the desired answer in a constant number of passes. We note here that although
the number of passes is more than one, each pass does not use any information from prior passes and the
computation effectively runs in a single pass. For reasons that will be made clear in Section 4, the graphics
pipeline requires us to perform a series of passes that explore different regions of the search space.

In addition, the smallest bounding box of a planar point set can also be approximated in a constant number
of passes; computing the smallest bounding box in three dimensions can be done in 1/v/a — 1 passes, where «
is an approximation parameter.

Problem Approximation | Number of passes
Diameter (2D/3D) a-OPT 6
1-center (2D) a-OPT 2
Width (2D/3D) a-0PT+ 6
Bounding Box (2D) a-0PT+ 4 4
Bounding Box (3D) a-0PT+p 1/vVa-1
Hausdorff Distance (2D) | «-OPT + 2

Table 1: Results for Extent Problems. In all cases, the algorithm works for any choice of & > 1,5 > 0

Collision detection: We present a hardware-based algorithm for approximating the penetration depth be-
tween two convex polytopes. In general, our method can compute any inner product-based distance between
any two convex polyhedra (intersecting or not). Our approach can also be used to compute the Minkowski sum
of two convex polygons in two dimensions.

Shapefitting and other problems: We also present heuristics for a variety of shape fitting problems in the
plane: computing the minimum width annulus, best fit circle, and best-fit line for a set of points, and computing
the Hausdorff distance between two sets of points. Our methods are also applicable to many problems in
computer-aided design; most notably, we can address with a single approach the multi-criteria optimization
problems in layered manufacturing [28].

Experimental results: An important practical consequence of our unified approach to solving these prob-
lems is that all our implementations make use of the same underlying procedures, and thus a single imple-
mentation provides much of the code for all of the problems we consider. We present an empirical study that
compares our algorithms to existing implementations for representative problems from the above list; in all
cases we are comparable, and in many cases we are far superior to existing software-based implementations.
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Paper Outline In Section 2 we introduce the graphics pipeline, the basic primitive operations that it can
perform, and some of the tools that we will use in our algorithms. Section 3 discusses Gauss maps, duality, and
how we use the two-dimensional grid to represent a Gauss map. Sections 4,5 and 6 present our results on extent
measures, collision detection and shape fitting. We present a detailed experimental study in Section 7. Finally,
Appendix A describes the pseudocode for our general bivariate envelope computation.

2 Preliminaries

The Graphics Pipeline. The graphics pipeline is primarily used as a rendering (or “drawing”) engine
to facilitate interactive display of complex three-dimensional geometry. The input to the pipeline is a set of
geometric primitives and images to be “drawn” on a two-dimensional grid of pixels known as the frame buffer.
The frame buffer is a collection of several individual dedicated buffers (color, stencil, depth buffers etc.). The
user interacts with the pipeline via a standardized software interface such as OpenGL or DirectX that is designed
to mimic the graphics subsystem.

Display
List
Per—Vertex Per— Frame
x » Evaluator — grﬁ’emrﬁti'\?ens &__»|Rasterization| » Fragment | Buffer
Commands Assembly Operations
Texture
Memory
y » Pixel
Operations

Figure 1: The Graphics Pipeline [36]

We describe some of the key elements of the pipeline here (see Figure 1). For more details, the reader may
refer to The OpenGL Programming Guide [36]. Inputs to the pipeline are usually in one of two forms —
geometry and images. Per-vertex operations take geometric primitives (described by points, line segments, and
polygons) as input. The results of this stage are transformed and clipped vertices (with respect to a viewing
volume) with related color, depth, and sometimes texture-coordinate values. In the next phase, rasterization,
geometric data is rendered to produce an array of fragments corresponding to a two-dimensional description of
the geometry.The pipeline also provides special pixel copy operations to copy data to/from the framebuffer and
texture memory.

Next, operations on individual fragments are performed before they finally alter the framebuffer. This is the
stage of the pipeline that we exploit for our computations: the operations performed include conditional updates
into the framebuffer based on incoming and previously stored depth or stencil values, blending of incoming
fragment colors with stored colors, as well as masking and other logical operations on fragment values. Table 2
lists a subset of the per-fragment operations. Consider a pixel P;; at position (4, j) in the framebuffer with color,
stencil and depth values denoted by C'B;;, SB;; and DB;; respectively. Let us assume that an input fragment
arrives at position (i, ) with depth value z and color RG B, and a user-specified constant K. SB op and DB op
are any stencil buffer or depth buffer operations.

Finally, contents (or some computed statistics like histograms or min/max) of the framebuffer can be trans-
ferred to the system memory through a single OpenGL call. This is usually termed the readback stage. The cost
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Color buffer operations: Stencil buffer operations: Depth buffer operations:
CBZ']' — {min, max}(C’B,-j, RGB) SBZ']' + K, SBZ']' +—0 DBZ'J' — =z
CBZ']' — OBij ® RGB, 6 = {—|—, —, X, A\, V} SBZ‘]' — SBij + {1, -1, 0} DBij — {min, max}(DBij, Z)
CBZ']' +— RGB SBZ'J' — 'SBZJ DBZ'J' — DBij

Table 2: Framebuffer Operations

of a readback is directly proportional to the bandwidth requirement for this data transfer and can be significantly
larger (by orders of magnitude) than the cost of sending geometric objects to the hardware. Thus an efficient
algorithm attempts to minimize the number of readbacks (which is closely related to the number of passes).

Computing Envelopes. Let F' = {f1,..., fn} be a set of d-variate functions. The lower envelope of F’
is defined as E (z) = min; fi(z), and the upper envelope of F is defined as E/(z) = max; f;(z). The
projection of E (resp. E}) is called the minimization (resp. maximization) diagram of S. Set f. (x) (resp.
f;f (x)) to be the index of a function of F' that appears on its lower (resp. upper ) envelope. Finally, define
Ip(z) = Ef(z) — Ex (). We will omit the subscript F when it is obvious from the context.

If F is a family of piecewise-linear bivariate functions, we can compute E—, E*, f—, f* for each pixel
x € [—1,41]2, using the graphics hardware. We will assume that function f;(z) can be described accurately
as a collection of triangles. Pseudocode for the computations below is given in Appendix A.

Computing E~ (E™): Each vertex v;; is assigned a color equal to its z-coordinate (depth) (or function value).
The graphics hardware generates color values across the face of a triangle by performing bilinear interpolation
of the colors at the vertices. Therefore, the color value at each pixel correctly encodes the function value.
We disable the stencil test, set the depth test to min (resp. max). After rendering all the functions, the color
values in the framebuffer contains their lower (resp. upper) envelope. In the light of recent developments in the
programmability of the graphics hardware, nonlinear functions can be encoded as part of a shading language
(or fragment program) to compute their envelopes as well.

Computing f~ (f*): Each vertex v;; of function f; is assigned the color ¢; (in most cases, ¢; is determined by
the problem). By setting the graphics state similar to the previous case, we can compute f~ and f.

In many of the problems we address, we will compute envelopes of distance functions. That is, given a
distance function §(-,-) and a set S = {p1,...,pn} of points in R2, we define F = {f;(z) = 6(z,p;) | 1 <
i < n}, and we wish to compute the lower and upper envelopes of F. For the Euclidean metric, the graph of
each f; is a cone whose axis is parallel to the z-axis and whose sides are at an angle of = /4 to the zy-plane.
For the square Euclidean metric, it is a paraboloid symmetric around a vertical line. Such surfaces can be
approximated to any desired degree of approximation by triangulations ([23]).

Approximations. For purposes of computation, the two-dimensional plane is divided into pixels. This
discretization of the plane makes our algorithms approximate by necessity. Thus, for a given problem, the cost
of a solution is a function both of the algorithm and the screen resolution. We define a (3, g)-approximation
algorithm to be one that provides a solution of cost at most 3 times the optimal solution, with a grid cell size of
g = g(I, 8), where I is the instance of the problem. This definition implies that different instances of the same
problem may require different grid resolutions.

3 Gauss Maps And Duality
LetS = {p1,...,pn} beasetof n points in R?. A direction in R¢ can be represented by a unit vector u € S4~1,

Foru € S, let 4 be its central projection, i.e., the intersection point of the ray o7 with the hyperplane z 4 = 1
(resp. zg = —1) if w lies in the positive (resp. negative) hemisphere.
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x=-1 x=1

(@) (b)

Figure 2: (a) An illustration of central projection (b) Two duals used to capture the Gauss Map

For a direction u, we define the extremal point in direction « to be A(u, S) = arg max,cg (4, p), where (-, -)
is the inner product. We refer to w(u, s) = max,eg (4, p) — minyeg (4, p) as the directional width of S. The
Gaussian map of the convex hull of S is the decomposition of S¢~! into maximal connected regions so that the
the extremal point is the same for all directions within one region.

For apoint p = (p1,...,pq), We define its dual to be the hyperplane p* : 4 = p1z1 + - - + pa_1Z4_1 + Pa-
Let H = {p* | p € S} be the set of hyperplanes dual to the points in S. The following is easy to prove.

Lemma3.1. For u € S¥Y A(u, S) = f# (@, .., g 1) if u lies in the positive hemisphere, and A(u, S) =
fg (a1, ..., 4q-1) if u lies in the negative hemisphere; here @ = (a1, ..., Gq).

Hence, we can compute A(u,.S) using f} and f;;. Note that the central projection of the portion of the
Gaussian map of S in the upper (resp. lower) hemisphere is the maximization (resp. minimization) diagram
of H. Thus, for d = 3 we can compute portion of the Gaussian map of S whose central projection lies in
the square [—1, +1]2, using graphics hardware, as described in Section 2. In other words, we can compute the
extremal points of S for all w such that 4 € [-1,1]? x {1,—1}.

If we also take the central projection of a vector « € S? onto the planes y = 1 and = = 1, then at least one of
the central projections of v lies in the square [—1,+1]? of the corresponding plane. Let R, (resp. R,) be the
rotation transform that maps the unit vector (1,0, 0) (resp. (0,1,0)) to (0,0,1). Let H, (resp. H,) be the set of
planes dual to the point set R, (S) (resp. R, (S)). If we compute fgz,fgx,flﬁy, and fﬁy forall z € [-1,+1]?,
then we can guarantee that we have compute extremal points in all directions (see Fig. 2(b) for an example in
two dimensions).

In general, vertices of the arrangement of dual hyperplanes may not lie in a [-1, +1]3 box. A generalization
of the above idea can be used to compute a family of three duals such that any vertex of the dual arrangement
is guaranteed to lie in the region [—1,+1]2 x [—n,n] in some dual. Such a family of duals can be used to
compute more general functions on arrangements using the graphics hardware; a special case of this result in
two dimensions was proved in [26]. In general, the idea of using a family of duals to maintain boundedness of
the arrangement can be extended to d dimensions. We defer these more general results to a full version of the

paper.

4 Extent Measures

Let S = {p1,...,pn} be aset of points in RY. We describe streaming algorithms for computing the diameter
and width of S for d < 3 and the smallest enclosing box and ball of S for d = 2.

Diameter. In this section we describe a six-pass algorithm for computing the diameter of a set S (the max-
imum distance between any two points of S) of n points in R3. It is well known that the diameter of S is
realized by a pair of antipodal points, i.e., there exists a direction « in the positive hemisphere of S2 such that
diam(S) = [|A(u,S) — A(—u, 9)|| = || f1 (41, 42) — f5 (41, 02)||, where H is the set of planes dual to the
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points in S. In order to compute | f;;(z) — fz(z)||, we assign the RGB values of the color of a plane p} to
be the coordinates of p;. The first pass computes f;;, so after the pass, the pixel z in the color buffer contains
the coordinates of f;(z). We copy this buffer to the texture memory and compute f; in the second pass. We
then compute || f;;(z) — 5 (z)|| for each pixel. Since the hardware computes these values for z € [—1, +1]?,
we repeat these steps for R, (S) and R,(S) as well. Detailed pseudo-code for the diameter computation is
presented in Appendix A. Since our algorithm operates in the dual plane, the discretization incurred is in terms
of the directions, yielding the following result.

Theorem 4.1. Given a point set S C R®, o > 1, there is a six-pass (a, g(«))-approximation algorithm for
computing the diameter of S.

Width. Let S be a set of n points in R3. The width of S is the minimum distance between two parallel
planes that enclose P between them, i.e., width(S) = min, g2 w(u, S). The proof of the following lemma is
relatively straightforward.

Lemma4.1. Let R, R, be the rotation transforms as described earlier, and let H (resp. H, Hy) be the set of
planes dual to the points in S (resp. R;(S), Ry(S)). Then

width(S) = mi

— min{I g, (p), L ; .
e [ R

This lemma implies that the algorithm for width can be implemented similar to the algorithm for diameter.
Consider a set of coplanar points in R3. No discretized set of directions can yield a good approximation to the
width of this set (which is zero). Hence, we can only prove a slightly weaker approximation result, based on
knowing a lower bound on the optimal width. We omit the details from this version and conclude the following.

Theorem 4.2. Given a point set S C R, a > 1, and @ < w*, there is a six-pass (a, g(a, 17))-approximation
algorithm for computing the width of S.

1-center The 1-center of a point set S in R? is a point ¢ € R? minimizing max,cp d(c,p). This is an
envelope computation, but in the primal plane. For each point p € S, we render the colored distance cone
as described in Section 2. The 1-center is then the point in the upper envelope of the distance cones with the
smallest distance value. The center of the smallest enclosing ball will always lie inside conv(S). The radius of
the smallest enclosing ball is at least half the diameter of S. Thus, if we compute the farthest point Voronoi
diagram on a grid of cell size ¢ = aA /2, the value we obtain is a (1 + «)-approximation to the radius of the
smallest enclosing ball. An approximate diameter computation gives us A < 2A, and thus a grid size of aA/4
will obtain the desired result.

Theorem 4.3. Given a point set S in R? and a parameter o > 1, there is a two-pass («, g(«))-approximation
algorithm for computing the smallest-area disk enclosing S.

Smallest Bounding Box. Let S be a set of points in R2. A rectangle enclosing S consists of two pairs of
parallel lines, each of which are orthogonal to the other. For a direction u € S, let u be the direction normal
to w. Then the side lengths of the smallest rectangle whose edges are in directions » and u= that contains
S are W(u) = w(u,S) and H(u) = w(ut,S). Hence, the area of the smallest rectangle containing S is
min, g1 W(u) - H(u). The algorithm to compute the minimum-area two-dimensional bounding box can now
be viewed as computing the minimum widths in two orthogonal directions and taking their product. Similarly,
we can compute a minimum-perimeter rectangle containing S. Since the algorithm is very similar to computing
the width, we omit all the details and conclude the following.
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Theorem4.4. Given a point set S in R, o > 1, and a lower bound & on the area of the smallest bounding box,
there is a four-pass («, g(«, a))-approximation algorithm for computing the smallest enclosing bounding box.

It is not clear how to extend this algorithm to R3 using a constant number of passes since the set of directions
normal to a given direction is S*. However, by sampling the possible choices of orthogonal directions, we can
geta (1 + «)-approximation in 1/4/a — 1 passes. Omitting all the details, we obtain the following.

Theorem 4.5. Given point set § C R3, o > 1 and lower bound & on the area of the smallest bounding box,
there isan O(1/+v/a — 1)-pass («, g(«, a))-approximation algorithm for computing the smallest bounding box.

5 Collision Detection

Given two convex polytopes P and @ in R3, their penetration depth, denoted PD(P,Q) is defined as the
translation vector ¢ such that P and Q) + ¢ are disjoint. We can specify a placement of @ by fixing a reference
point ¢ € @ and specifying its coordinates. Assume that initially ¢ is at the origin o. Since M = P @& —Q is
the set of placements of @ at which Q intersects P, PD(P, Q) = min,css d(0, z) For a direction u € S?, let
har(u) be the tangent plane of A normal to direction w. As shown in [1], PD(P, Q) = min, g2 d(o, hpr(u))

Let A be a convex polytope in R? and let V' be the set of vertices in A. For a direction v € S?, let g4(u) =
maxpcy (p, @). It can be verified that the tangent plane of A in direction w is k4 (u) : (&, z) = ga(u). Therefore

PD(P,Q) = min, g2 %ﬁ’r). The following lemma shows how to compute £z (u) from hp(u) and h_g(u).
Lemma5.1. For any u € S?,
gum(u) = gp(u) +9-@(u)

This lemma follows from the fact that for convex P and @), the point of M extreme in direction w is the sum
of the points of P and ) extreme in direction u. Therefore,

et o)
i

Hence, we discretize the set of directions in S2, compute gp(u), g—g(u), (gp (u)+9—q(u))/||4|| and compute
their minimum. Since gp and g_q are upper envelopes of a set of linear functions, they can be computed at a set
of directions by the graphics hardware in six passes, as described in Section 4. Pseudocode for this computation
is described in Appendix A

We note here that the above approach can be generalized to compute any inner product-based distance be-
tween two non-intersecting convex polytopes in three dimensions. It can also be used to compute the Minkowski
sum of polygons in two dimensions.

6 Shape Fitting

We now present hardware-based heuristics for shape analysis problems. These problems are solved in the
primal, by computing envelopes of distance functions.

Circle fitting. The minimum width annulus of a point set P C R? is a pair of concentric disks Ry, Ry of
radii 7; > 7o such that P lies in the region Ry \ Re and r; — 7o is minimized. It is well-known [10] that
the center of the minimum-width annulus lies on a vertex of the overlay of the nearest and farthest-neighbor
\Voronoi diagrams.

74



Note that the center of the minimum width annulus could be arbitrarily far away from the point set (for
example, the degenerate case of points on a line). Furthermore, when the minimum width annulus is thin, the
pixelization induces large errors which cannot be bounded. Therefore, we look at the special case when the
annulus is not thin, i.e. 71 > (1 + ¢)ry. For this case, Chan [7] presents a (1 + ) approximation algorithm as
follows: lay a uniform grid of resolution - w on the pointset, where w is some constant factor approximation to
the minimum width, snap each point to the nearest grid point and remove duplicates. Chan shows that the grid
dimensions are at most 1/e2? x 1/&? and the center realizing the approximation is one of the grid points. This
algorithm can be implemented efficiently in hardware as follows: set the buffer B to be of size 1/e? x 1/¢?;
for each point p;, draw its Euclidean distance cone C; as described in Section 2. Let C = {C1,Cs,...,Cy}
be the collection of distance functions. Then the minimum width annulus can be computed as minge g Ic(x)
with center arg minge g I (x). This approach yields a fast streaming (1 + €)-approximation algorithm for the
minimum-width annulus (and for the minimum-area annulus as well, by using paraboloids instead of cones).

The best-fit circle of a set of points P = {p1,pa,...,pn} C R? isacircle C(c,r) of radius r centered at
¢ such that the expression ZpeP d*(p, C) is minimized. For a fixed center ¢, elementary calculus arguments
show that the optimal r is given by r* = 1/n 3" p d(p, ¢). Let d; = ||p; — c||. The cost of the best fit circle of
radius r* centered at ¢ can be shown tobe =, d? — (1/n)(3,<,, di)*-

Once again, this function can be represented as an overlay of distance cones, and thus for each grid point,
the cost of the optimal circle centered at this grid point can be computed. Unfortunately, this fails to yield an
approximation guarantee for the same reasons as above.

Hausdorff distance. Given two point sets P, Q C R2, the Hausdorff distance dy from P to Q is max,cp
mingeq d(p, g). Once again, we draw distance cones for each point in @, and compute the lower envelope of
this arrangement of surfaces restricted to points in P. Now each grid point corresponding to a point of P has a
value equal to the distance to the closest point in (). A maximization over this set yields the desired result. For
this problem, it is easy to see that as for the width, given any lower bound on the Hausdorff distance we can
compute a (3, g(3)-approximation to the Hausdorff distance.

7 Experiments

In this section we describe some implementation specific details, and report empirical results of our algorithms,
and compare their performance with software-based approximation algorithms.

Cost bottleneck. The costs of operations can be divided into two types: geometric operations, and frag-
ment operations. Most current graphics cards have a number of geometry engines and raster managers to handle
multiple vertex and fragment operations in parallel. Therefore, we can typically assume that the geometry trans-
formation and each buffer operation takes constant time. This assumption breaks down when the input causes
certain parts of the graphics pipeline to act as bottlenecks. Most graphics cards describe their performance in
terms of the number of triangles processed per second (since there is a fixed cost associated with transforming
input objects) and in their processing rate of fragments (called the fill rate) in the imaging pipeline [4]. Typical
numbers for current cards range between 50-100 millions of triangles per second and a fill rate of 0.5-2 billion
fragments per second, and these numbers are constantly increasing. For the sort of geometric problems that we
address, the fill rate is the main bottleneck.

Figure 3(a) shows the running times of the different components of our algorithm for width for various grid
sizes. As the plot shows, the rendering stage bottleneck is roughly unchanged till we saturate the fill-rate, at
which point performance degrades severely. We now propose a hierarchical method that circumvents the fill
limitation by doing refined local searches for the solution.
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Figure 3: (a) Breakdown of the width algorithm under varying window sizes (b)Tree of height three produced
by the hierarchical computation

Hierarchical Refinement. One way to reduce the fill-rate bottleneck is to produce fewer fragments per
plane. Instead of sampling the search space with a uniform grid, we instead perform adaptive sampling by con-
structing a coarse grid, computing the solution value for each grid point and then recursively refining candidate
points. See Figure 3(b) for a tree of height three. The advantage of using adaptive refinement is that not all
the grid cells need to be refined to a high resolution. However, the local search performed by this selective re-
finement could fail to find an approximate solution with the guarantee implied by this higher resolution. In our
experiments, we will compare the results obtained from this approach with those obtained by software-based
methods.

Empirical Results. In this section we report on the performance of our algorithms. All our algorithms
were implemented in C++ and OpenGL, and run on a 2.4GHz Pentium IV Linux PC with an ATl Radeon 9700
graphics card and 512 MB Memory. Our experiments were run on three types of inputs: (i) randomly generated
convex shapes [19] (ii) large geometric models of various objects, available at ht t p: / / www. cc. gat ech.
edu/ graphnodel s/ and (iii) randomly generated input using r box (a component of ghul | ). In all our
algorithms below, we use hierarchical refinement (with depth two) to achieve more accurate solutions.
Penetration Depth. We compare our implementation of penetration depth (called HwPD) with our own imple-
mentation of an exact algorithm (called SWPD) based on Minkowski sums which exhibits quadratic complexity
and with DEEP [24], which to the best of our knowledge is the only other implementation for penetration depth.
DEEP is an incremental approach based on local search, specially suited to maintain the penetration depth when
the objects are in motion. The software implementation generates the quadratic vertices from the original poly-
topes, computes its convex hull and then determines the closest distance from the origin. We used the convex
polytopes available at [19], as well as random polytopes found by computing the convex hull of points on ran-
dom ellipsoids as inputs to test our code. The performance of the algorithms on the input set is presented in
Table 3: column two and three gives the sizes of the two input polytopes. HWMPD always outperforms SwPD
in running time, in some cases by over three orders of magnitude. With regard to DEEP, the situation is less
clear. DEEP performs significant preprocessing on its input, so a single number is not representative of the
running times for either program. Hence, we report both preprocessing times and query times (for our code,
preprocessing time is merely reading the input). We note that DEEP crashed on some of our inputs; we mark
those entries with an asterisk. it is instructive to see that the penetration depth values we get are close to the
right answer in all the cases we were able to compare.
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Polygon HwPD DEEP SwPD

Size | Size | Preproc. | Query Time | Pen. Depth | Preproc. | Query Time | Pen. Depth | Time | Pen. Depth
500 500 0 0.04 1.278747 0.15 0 1.29432 27.69 1.289027
750 750 0 0.08 1.053032 0.25 0 1.07359 117.13 | 1.071013
789 1001 | 0.01 0.067 1.349714 * * * 148.87 | 1.364840
789 5001 | 0.01 0.17 1.360394 * * * - -

5001 4000 | 0.02 0.30 1.362190 * * * - -

10000 | 5000 | 0.04 0.55 1.359534 3.28 0 1.4443 - -

Table 3: Comparison of running times for penetration depth. On the last three datasets, we stopped SwWPD after
it ran for over 25 minutes. Asterisks mark inputs where DEEP crashed.

Error: €2 = 0.002
HAnnWidth SAnnWidth
Dataset size | Time | Width Time | Width
R-Circle-0.1 (1,000) | 0.36 | 0.099882 | 0.53 0.099789
R-Circle-0.2 (1,000) | 0.35 | 0.199764 | 0.42 0.199442
R-Circle-0.1 (2,000) | 0.66 | 0.099882 | 0.63 0.099816
R-Circle-0.1 (5,000) | 1.58 | 0.099882 | 26.44 | 0.099999
R-Circle-0.1  (10,000) | 3.12 | 0.099882 | 0.93 0.099999

Table 4: Comparison of running time and approximation quality for 2D-Min Width Annulus

As an example, consider the two polytope shown in Figure 4(a). After running our algorithm, the penetration
depth obtained was 1.118479 and the vector achieving this was (—0.038276, —0.833938, —0.550529). Fig-
ure 4(b) shows the results of translating the first polytope accordingly (the viewpoint is rotated slightly). 2D

(a) The original polytopes

(b) After translation

Figure 4: An illustration of the working of our algorithm for penetration depth

Minimum Width Annulus. We compare our implementation of minimum width annulus (called HAnnW dt h)
with the software implementation of the grid based method, called SAnnW dt h: the software implementation
lays a grid of 1/e2 x 1/£2, snaps the points to the grid (removing redundant points), and finds the nearest and
furthest neighbour of each grid point. The input point sets to the programs were synthetically generated using
r box: R-Circle-r refers to a set of points with minimum width annulus r and is generated by sampling points
from a circle and introducing small perturbations. See Table 4 for the timings results.
3D Width. We compare our implementation of width (called HW dt h) with the code of Duncan et al. [9]
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Error HWidth DGRWidth
Dataset size | € Time | Width Time | Width

Club (16,864) | 0.250 | 0.45 | 0.300694 | 0.77 | 0.312883
Bunny  (35,947) | 0.060 | 0.95 | 1.276196 | 2.70 | 1.29231
Phone  (83,034) | 0.125 | 255 | 0.686938 | 6.17 | 0.697306
Human  (254,721) | 0.180 | 653 | 0.375069 | 18.91 | 0.374423
Hand  (327,323) | 0.090 | 8.66 | 0.479850 | 21.64 | 0.499391
Dragon  (437,645) | 0.075 | 10.88 | 0.813487 | 39.34 | 0.803875
Buddha (543,652) | 0.075 | 13.77 | 0.794050 | 50.32 | 0.809624
Blade  (882,954) | 0.090 | 23.45 | 0.715578 | 66.71 | 0.726137

Table 5: Comparison of running time and approximation quality for 3D-width

Error: e = 0.015

HDiam MBDiam PDiam
Dataset size | Time | Diam Time | Diam Time | Diam
Club (16,864) | 0.023 | 2.326992 | 0.0 2.32462 | 0.00 | 2.32462

Bunny (35,947) | 0.045 | 2.549351 | 0.75 | 2.54772 | 0.03 | 2.54772
Phone (83,034) | 0.11 | 2.416497 | 0.01 | 2.4115 | 0.07 | 2.4115

Human (254,721) | 0.32 | 2.020594 | 3.5 2.01984 | 0.04 | 2.01938
Hand (327,323) | 041 | 2.120115 | 0.06 | 2.11791 | 0.09 | 2.11499
Dragon (437,645) | 0.55 | 2.063075 | 17.27 | 2.05843 | 0.21 | 2.05715
Buddha (543,652) | 0.68 | 2.113198 | 7.75 | 2.10768 | 0.14 | 2.09697
Blade (882,954) | 1.10 | 2.246725 | 0.1 2.23939 | 0.22 | 2.22407

Table 6: Comparison of running time and approximation quality for 3D-diameter

(DGRW dt h). Algorithm DGRW dt h reduces the computation of the width to O(1/¢) linear programs. It then
tries certain pruning heuristics to reduce the number of linear programs solved in practice. The performance of
both the algorithms on a set of real graphical models is presented in Table 5: column four gives the (1 + €)-
approximate value of the width computed by the two algorithms for the e given in the second column (this e
value dictates the window size required by our algorithm, as explained previously, and the number of linear
programs solved by DGRW dt h). HW dt h always outperforms DGRW dt h in running time, in some cases by
more than a factor of five.

3D Diameter. We compare our implementation (HDi anm) with the approximation algorithm of Malandain and
Boissonnat [29] (MBDi am), and Har-Peled [20] (PDi am). PDi ammaintains a hierarchical decomposition of
the point set, and iteratively throws away pairs that are not candidate for the diameter until an approximate
distance is achieved by a pair of points. MBDi amis a further improvement on PDi am Table 6 reports the
timing and approximation comparisons for two error measures for graphical models. Although our running
times in this case are worse than the software implementations, they are comparable even for very large input,
illustrating the generality of our approach.
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A Pseudo-code

Algorithm A.1 Pseudocode for the lower (upper) envelope computation

for i = 1 to n do {/* For eachpiecewise-linearfunction f; */}
for j = 1to m; do {/* For eachvertexin function f; */}
/* Let vertex Vij = (wij,yij, Zij) */
Set color value of v;; appropriately depending on problem
end for
end for
/* Compute lower (upper) envelopein color buffer */
Set depth test to min (max)
Render all functions in F’
Readback the color buffer
/* Color value at eachpixel determinesenvelope*/

Algorithm A.2 Pseudocode for penetration depth computation

/* Giventwo corvex polytopesP and  */
for i = 1to 3 do {/* For eachdual */}
Compute dual planes DP and D9 for vertices of P and @
Set color of each vertex based on its z-coordinate
Compute lower envelope of DP in color buffer
Copy color buffer to texture memory
Compute lower envelope of D7 in color buffer
Enable blending and set blending function to ADD
Use texture mapping to access contents of texture
Compute component-wise sum with the color buffer
Readback the color buffer
/* Repeatthis for upper envelopes*/
for each pixel in color buffer do
Compute distance from origin based on color value
Track minimum
endfor
endfor
/* Minimum value and pixel location determine penetration depth and dir ection */
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Short Note on Algorithm for Penetration Depth using Graphics
Hardware

Shankar Krishnan*

Abstract

This note discussed the use of the graphics hardware to perform proximity queries and penetration depth
computations on convex polytopes. We use the idea of duality mapping to find this information without
explicitly constructing the Minkowski sum.

1 Introduction

The ability to track closest feature pairs and collisions in an environment with moving objects has been an
important and well studied problem in computer graphics and computational geometry. They find applications
games and simulation-based design. In order to resolve collisions, a useful way to quantify the contact is called
penetration depth. The penetration depth of a pair of intersecting objects is the shortest vector over which
one object needs to be translated in order that the pair become disjoint. Over the last two decades, a number
of algorithms and software systems have been developed to perform collision detection and computation of
penetration depth. A complete survey of all the previous work in this area is beyond the scope of this note. We
refer the reader to [3, 4, 2] for surveys and recent work on these topics.

In this draft, we will explain an algorithm that takes a different approach to compute the closest distance or
the penetration depth between convex polytopes. All the computation required is done purely on the graphics
hardware. Another feature of our algorithm is that, unlike other methods for penetration depth computation, we
do not explicitly compute the Minkowski sum of the polytopes which is the main computational bottleneck.

We will briefly review some definitions of point-hyperplane duality and Minkowski sums in the next section.
We then provide our algorithm for computing the penetration depth and justify its correctness.

2 Definitions

Duality The principle of duality has been known in computational geometry for a long time. The main idea
is that points in one space can be mapped into hypeplanes in another space keeping certain geometric atributes
invariant. Consider the case in two dimensions. A point p = (p,py) in the plane can be mapped to the line
p* 1y = —pyx + py in the dual plane. In what follows, we use the superscript z* to denote objects in the dual
plane. Similarly, a line in the plane is mapped to a point whose coordinates depend on the coefficients of the
line. Some of the main properties of duality are:

e it preserves incidences i.e, if a point p lies on (above) a line [, then the point [* lies on (below) the line
p* in the dual plane.

e Given a set of point P = {p1,po,...,pn}, the set of lines P* = {p},p5,...,pk:} in the dual plane
forms an arrangement. The convex hull of P can be obtained from the upper and lower envelope of
the arrangement P*. Figure 1 shows a set of points in the primal plane and the corresponding dual
arrangement.

*AT& T Research. Email: kri shnas@ esear ch. att. com
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Figure 1: Hlustration of point-line duality

e Consider a point I* = (c, lo) in the lower envelope and the corresponding point u* = (¢, h%) in the upper
envelope of the dual arrangement P*. In R?, c is a (d — 1)-dimensional point, and  and « are the heights
of the lower and upper envelope (think of the envelopes as terrains). Then the corresponding lines / and
u in the original plane are parallel to each other and they are tangential to the convex hull of P (as shown
in the figure).

The above facts are true in any dimension.

Na

Figure 2: Minkowski sum of two convex polyhedra

Minkowski Sum  Given two objects P and @, the Minkowski sum M = P & Q@ of is given by

M={p +q:peP,qeQ} (2.1)

Figure 2 shows an example of two convex polygons and its Minkowski sum. If P and @ are convex, then
so is M. In fact, closure under Minkowski sums extends to the class of star-shaped objects. The algorithm
to compute the Minkowski sum of two convex polytopes is relatively straightforward but exhibits quadratic
complexity. Therefore, software approaches to compute the Minkowski sum can be fairly time consuming.

Given two convex polytopes P and @ in R? and let V, and V,, be their respective set of vertices. Vy (V) is
the dual arrangements of the vertices of P (Q).

Then the upper (lower) envelope in the dual arrangement of the vertices of M = P & @ can be obtained by
adding the height values of the upper (lower) envelopes of V;y and V. The main intuition in this observation
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is that the extremal point of M in any particular direction is obtained by the sum of extremal points of P and @
in the same direction. This observation is true only in the case of convex polytopes.

3 Penetration Depth

PD(P.Q) Q orlgin
7 M=P®(-Q)

Figure 3: Penetration depth of two convex polyhedra and its relation to Minkowski sum

Given two convex polytopes P and @, their penetration depth, denoted PD(P, @) is defined as the smallest
translation vector ¢ such that P and @) + t are disjoint. It is known that penetration depth is the minimum
distance from the origin to the polytope M = P & —Q.

PD(P,Q) = min d(o,2),

where o is the origin and 9 M denotes the boundary of M. It was shown by [1] that it is equivalent to compute
the distance from the origin to the set of all tangent planes to the polytope M.

We will now use this fact to compute the penetration depth without explicitly computing the Minkowski sum
of P and —(). We had observed in the section on Duality that the set of all tangent planes to a polytope A can
be obtained by looking at the lower and upper envelopes of the dual arrangement of V* and that for the case
of Minkowski sums this arrangement can be obtained by adding the corresponding envelope “heights” of the
polytopes P and —@). Our algorithm for penetration depth is:

[EEN

. Compute vertices of —Q.

2. For each vertex of P and —@Q, compute its dual hyperplane

3. Compute the upper and lower envelope of the dual arrangement V

4. Compute the upper and lower envelope of the dual arrangement V=,

5. Add the heights of the individual upper and lower envelopes

6. Find tangent planes to the polytope M and compute distance from the origin.

7. Take minimum
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Use of graphics hardware Most of the operations detailed above can be solved remarkably well using
the graphics hardware. It is specially suited to compute lower and upper envelopes by a simple use of the
depth buffer. Moreover, the technique is very efficient because the primitives to be rendered are simple quads.
However, we do have a required readback to compute the minimum over all the distances. A simple pseudo-
code to compute envelopes and the penetration depth using the hardware is provided in Algorithms 3.1 and
3.2 respectively.

Algorithm 3.1 Pseudocode for the lower (upper) envelope computation
for i = 1to n do {/* For each piecewise-linear function f; */}
for j = 1to m; do {/* For each vertex in function f; */}

/* Let vertex Vij = (xij,yij, Zij) */
Set color value of v;; appropriately depending on problem
end for
end for
/* Compute lower (upper) envelopein color buffer */
Set depth test to min (max)
Render all functions in ¥
Readback the color buffer
/* Color value at each pixel determines envelope */

Algorithm 3.2 Pseudocode for penetration depth computation
* Given two convex polytopes P and @ */
for 4 = 1to 3 do {/* For each dual */}
Compute dual planes DP and D? for vertices of P and @
Set color of each vertex based on its z-coordinate
Compute lower envelope of DP in color buffer
Copy color buffer to texture memory
Compute lower envelope of D9 in color buffer
Enable blending and set blending function to ADD
Use texture mapping to access contents of texture
Compute component-wise sum with the color buffer
Readback the color buffer
/* Repeat thisfor upper envelopes */
for each pixel in color buffer do
Compute distance from origin based on color value
Track minimum
end for
end for
/* Minimum value and pixel location deter mine penetration depth and direction */

This algorithm has been implemented on a standard graphics card using OpenGL. A naive implementation
of the above algorithm is competitive with some of the best known software solutions, and in most cases
outperforming them. For a detailed description of our experimental results, refer to the accompanying paper on
“Geometric Optimization”.
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4 Conclusion

This note was meant to provide an easy-to-read description of the penetration depth algorithm that was described
in the paper accompanying the course notes. The algorithm presented here can easily be extended to maintain
closest feature pairs between convex polytopes.
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ABSTRACT

Applications of of the medial axis have been limited because
of its instability and algebraic complexity. In this paper, we
use a simplification of the medial axis, the -SMA, that is pa-
rameterized by a separation angle (0) formed by the vectors
connecting a point on the medial axis to the closest points
on the boundary. We present a formal characterization of
the degree of simplification of the -SMA as a function of 0,
and we quantify the degree to which the simplified medial
axis retains the features of the original polyhedron.

We present a fast algorithm to compute an approximation
of the #-SMA. It is based on a spatial subdivision scheme,
and uses fast computation of the distance field and its gra-
dient using interpolation-based rasterization hardware. The
complexity of the overall algorithm varies based on the error
threshold used by the approximation scheme and is a linear
function of the input size. We have applied this algorithm
to approximate the SMA of complex models composed of
tens or hundreds of thousands of triangles. Its running time
varies from a few seconds, for a model consisting of hun-
dreds of triangles, to minutes for highly complex models on
a 2-GHz PC.

Categories and Subject Descriptors

1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling— Curve, surface, solid, and object repre-
sentations; 1.4 [Image Processing and Computer Vi-
sion]: Reconstruction, Image Representation

General Terms

Algorithms, Experimentation, Performance, Theory
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1. INTRODUCTION

The medial axis [5] of a solid, defined as the set of centers
of maximal balls contained in the solid, has been proposed
as a tool for shape analysis, surface reconstruction, motion
planning, and many other applications. It is useful because
it provides a local lower-dimensional characterization of the
solid. In particular, for a solid in 3D the medial axis con-
sists of a union of surfaces that provide information about
the shape and topology of the solid. If the distance to the
boundary is also stored for each medial axis point, the result-
ing structure is known as the medial axis transform (MAT)
and the entire boundary representation can be reconstructed
from it.

The use of the medial axis has been limited mainly by two
significant drawbacks: It is unstable, in that small deforma-
tions in the boundary of the solid can lead to large changes
in the medial axis. It is also difficult to compute because
of the underlying algebraic complexity. For a polyhedron,
the surfaces constituting the medial axis are quadrics, and
the seam curves can have degree four. For solids with curved
boundaries, the medial axis sheets and seam curves can have
much higher degree. Geometric computation with primitives
of such high degree is is hard to make both reliable and fast.

There have been numerous approaches to these problems.
While exact algorithms have been proposed to compute the
MAT for relatively simple polyhedra, it is non-trivial to scale
them to very complex models composed of tens or hundreds
of thousands of faces. As a result, most of the practical algo-
rithms attempt to compute an approximation to the MAT.
Different approximation algorithms, based on using a uni-
form grid, a spatial subdivision, or a point sampling of the
surface, have been proposed in the literature. A number
of techniques have also been proposed to simplify these ap-
proximations, in terms of reducing the number of geometric
primitives or pruning away portions that can cause instabil-
ity. We will give a review of this literature in Section 2.

In this paper, we primarily deal with a subset of the medial
axis, which we call the 0-simplified medial axis, or -SMA.
The 6 refers to the angle formed by the vectors connecting a
point on the medial axis to its corresponding closest points



on the object boundary. We call this angle the separation
angle, and the 6-SMA is simply the set of medial axis points
for which the separation angle exceeds 0. The relationship
between the stability of the medial axis and the separation
angle has been known in the literature and used in many
applications including surface reconstruction and skeleton-
based modeling [1, 13, 26].

Main Results:  We present novel properties of the 6-
SMA and a fast algorithm to compute an approximation
of the #-SMA of a complex polyhedron. The 6-SMA, as
indicated above, is parameterized by a minimum separation
angle 0. It has the property that Me, C My, whenever 6; >
0;. Moreover, My more closely approximates the medial
axis as § — 0, and becomes more stable as § — 7. We
describe a formal characterization of the simplification of the
medial axis as a function of . Given the distance function at
each point on My, an approximation to the boundary of the
original solid can be reconstructed, and we give a formula
relating the tightness of this approximation to 6.

We also present a novel and fast algorithm to compute an
approximation to My at an adjustable resolution e. The €
determines the maximum error between the computed ap-
proximation and -SMA. It is based on efficient computation
of a distance field and its gradient using a spatial decompo-
sition. The complexity of the resulting algorithm is ©(n/e®)
where n is the number of primitives in the model and ¢ is the
resolution (voxel width). We describe an adaptive subdivi-
sion scheme for computing a bounded-error approximation.
Moreover, we present a number of techniques to improve the
quality of the approximation by smoothing operations and
accelerate the performance of the overall algorithm.

The algorithm has been implemented and applied to com-
plex polyhedra composed of tens or hundreds of thousands
of triangles. Its running time ranges from a few seconds
for a model composed of hundreds of triangles to minutes
for highly complex models on a 2 GHz PC with an nVidia
GeForce 4 graphics card.

As compared to other approximate schemes, our approach
offers the following advantages:

e Complex Models: It can handle very large and com-
plex models as the running time is a linear function of
the input size.

e Efficiency: We use fast algorithms for computing the
distance field and its gradient based on interpolation-
based rasterization hardware. As a result, our algo-
rithm can handle complex models composed of tens of
thousands of polygons in a few minutes.

e Approximation: The e-approximation to the 9-SMA
is everywhere within \/3/ 2 ¢ of the medial axis, and it
converges to the true §-SMA as € — 0.

e Stability: The criterion for simplification is scale-
invariant, so that small shallow bulges are ignored, but
thin, extended features in the medial axis are repre-
sented.

e Simplification: The simplification criterion is rather
intuitive, depending only on the separation angle.

The rest of the paper is organized as follows. In Section 2
we give an overview of related work. In Section 3 we de-
fine My and present some of its properties. In Section 4 we
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present our algorithm, and in Section 5 we analyze the time
complexity of our algorithms and various sources of error in
the approximation. We describe our implementation in Sec-
tion 6 and highlight its performance on a number of complex
models. In Section 7 we compare our approach to others in
the literature, and we conclude in Section 8.

2. RELATED WORK

There is an extensive literature on both the computation
and the simplification of the MAT and related construc-
tions. In this section, we give a brief overview of exact and
approximate algorithms for MAT computation as well as
simplification.

2.1 Medial Axis Computation

At a broad level, algorithms for medial-axis computa-
tion can be classified into four categories: thinning algo-
rithms, distance field based algorithms, algebraic methods,
and surface-sampling approaches. These categories differ in
terms of the underlying representations used for the medial-
axis as well as how they compute it.

2.1.1 Thinning Algorithms

Thinning algorithms use a voxel-based representation of
the initial figure, and perform erosion operations to arrive
at a set of voxels approximating the medial axis. Lam et
al. [19] give a survey of these approaches, and Zhang et
al. [32] compare various methods. These methods are sig-
nificant in the areas of image processing and pattern recog-
nition, since the input data is represented as a discrete grid.
We also use a voxel-based spatial decomposition to localize
regions containing the medial surfaces. This is followed by
an extraction step to represent the medial axis as a union of
polygonal surfaces.

2.1.2 Distance Field Computations

Many approaches compute an approximation of the me-
dial axis based on distance fields. Danielsson [12], uses a
scanning approach in 2D to create an image in which each
pixel contains the Euclidean distance to the nearest pixel
on the boundary of the figure being analyzed. Moreover,
the resulting distance map can be analyzed for local direc-
tional maxima to get an approximation of the medial axis.
This algorithm has also been extended to three and higher
dimensions [22].

Vleugels and Overmars [30] use a spatial subdivision to
represent the medial axis, relying on nearest-neighbor queries
to determine whether a cell must be further subdivided.
They subdivide if the cell has vertices in different Voronoi
regions and is larger than a certain threshold.

Hoff et al. [17] use graphics hardware to render a polygo-
nal approximation of the distance field. The interpolation-
based rasterization hardware is used to store the distance
field in the depth buffer. We have extended this algorithm
to compute the gradient of the distance field, also using ras-
terization hardware. We then use the gradient field for fast
computation of the medial axis.

Siddiqi et al. [25] have also presented an approximate al-
gorithm based on distance fields. Their analysis is based
on a differential equation simulating the inward progress of
a front starting at the boundary of the object. They com-
pute a vector field that, at every point p, is equal to the
vector from the nearest point on the surface, to p. Given



the fact that this vector field points towards the medial axis
from both sides, Siddiqi et al. consider a point to be on
the medial axis if the mean flux of the vector field, enter-
ing a neighborhood of the point, is positive. This algorithm
has been designed assuming that the input is represented in
terms of voxels.

2.1.3 Algebraic Methods

There is a family of methods that rely fundamentally on
the fact that the algebraic form is explicitly known for each
surface patch (i.e., each sheet) of the medial axis of a poly-
hedron.

Etzion and Rappoport [16] represent the curves and sur-
faces symbolically, but use a spatial subdivision to resolve
the connectivity of the curves. They use algebraic tests to
determine whether the surfaces pass into the cells of the
subdivision, and subdivide until either the proper connec-
tivity is determined, or a minimum cell size is reached. The
presence of a minimum cell size means that it is not always
possible to isolate all vertices and fully resolve the local con-
nectivity of seams (and hence the surfaces they bound).

Most algorithms that represent the medial axis symboli-
cally use a tracing approach [21, 23]. Starting from a junc-
tion point on the medial axis, a seam emanating from the
junction is followed. The seam terminates at another junc-
tion and the process is applied recursively. Chiang [8] de-
scribes an algorithm for computing the medial axis of a pla-
nar region bounded by piecewise C? curves. The algorithm
involves tracing branches using systems of polynomial equa-
tions. Sherbrooke et al. [24] present a variation on the algo-
rithm. Their method explicitly traces along the seam, cre-
ating a piecewise-linear approximation to the seam curves.

Culver et al. [11] use exact computation to represent the
curves and surfaces of the 3D medial axis. Their method is
a tracing approach that computes an exact representation
of the medial axis of a polyhedron provided there are no
degeneracies (such as more than four or seams intersecting
at a point). They also use a spatial subdivision technique
to improve the running time of the overall algorithm. Dutta
and Hoffmann [15] and Hoffmann [18] present an approach
to compute the medial axes of constructive solid geometry
(CSG) models.

All of the methods in this family have been applied to
polyhedra composed of only a few hundred faces. It is not
clear whether they can be either applied to complex models
composed of tens or hundreds of thousands of faces. Either
their running time is more than O(n?), where n is the num-
ber of faces, or these algorithms are susceptible to accuracy
and robustness problems.

2.1.4 Surface Sampling Approaches

Surface sampling methods represent the initial figure as a
dense cloud of sample points presumed to be on or near the
boundary. The medial axis of the figure is approximated by
a subset of the Voronoi diagram of the point cloud. Different
algorithms based on this approach use different methods for
selecting the desired subset of the Voronoi diagram. Many
such variations have been proposed. Boissonnat [6] classified
certain triangles of the Delaunay tetrahedralization of the
point cloud as interior to the model; the Voronoi vertices
dual to those tetrahedra approximate the medial axis.

Using a similar approach, Amenta et al. [1] construct
an approximate, simplified medial axis which they use as
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a stage in a surface reconstruction from the original point
cloud, a common application for this approach. Dey and
Zhao [13, 14] also create a simplified surface model of a me-
dial axis. Turkiyyah et al. [29] focus on improved accuracy
rather than simplification. They follow the initial approxi-
mation with a numerical optimization step to move the sam-
ple points so that the Voronoi vertices are closer to the true
medial axis. Both [1] and [13] have given good surveys of
the literature on surface sampling medial axis approaches.

These algorithms have been applied to models composed
of tens of thousands of points. One of the main issues when
applying these algorithms to polyhedral models is in gener-
ating appropriate point samples on the boundary to ensure
a tight approximation of the medial axis. In general, the
worst-case running time of these algorithms can be O(n?),
where n is the number of point samples. Recently, Attali
and Boissonnat [2] have shown that the running time is only
linear when the points are distributed on a fixed number of
well-sampled facets. However, the point sampling of the
surface has to satisfy certain criteria.

2.2 Medial Axis Simplification

A fundamental problem with the medial axis as a tool in
shape analysis and surface reconstruction is that it is un-
stable, in the sense that small perturbations in the surface
model lead to large changes in the structure of the medial
axis. For a polyhedral model, every pair of adjacent faces
produces a medial axis sheet extending to the edge connect-
ing the two faces, producing a cluttered and uninformative
medial axis. A number of methods for simplifying the me-
dial axis have been proposed.

One of the criteria to identify parts of a medial axis that
are stable is what we call the separation angle S(x). It
is the maximum angle formed by the vectors connecting the
medial axis point x to its closest points on the boundary, and
portions of the medial axis with a larger separation angle
tend to be more stable. This has been noted by several
researchers based on analyzing functions on the boundary
surface [4], investigating the effect of noise [3] or samples [7]
on the medial axis or in other skeleton-based applications
[26]. Amenta et al. [1] use a similar criterion to determine
whether a point on the medial axis is stable.

Dey and Zhao [13, 14] use a pair of criteria to retain
faces from the Voronoi diagram of a set of points. For one
criterion, they consider the angle between an approximate
inward-pointing surface normal and a Delaunay edge (dual
to a Voronoi face). If that angle is small, the Voronoi face
is retained. The other criterion retains Voronoi faces if they
are much farther from the surface sample points than the
sample points are from each other.

Styner et al. [27] iteratively merge and prune sheets ac-
cording to a pair of cost functions designed to minimize the
change to the reconstructed model. They achieve a sub-
stantial reduction in medial axis complexity while retaining
better than 98% volume overlap with the original model.

Choi and Seidel [10] study the stability of the medial axis
and derive a bound on one measure of the instability of the
medial axis for solids satisfying certain hypotheses.

3. 6-SIMPLIFIED MEDIAL AXIS

In this section we formally define the §-SMA and give
some of its properties. While the relationship between the
separation angle and stability is well known, we are not



Figure 1: The separation angle S(x) for a point on the medial
axis. The thick border is the boundary of X.

aware of this particular subset of the medial axis being stud-
ied as an object in its own right. We show the degree to
which it is more stable than the medial axis. Moreover, we
define the -SMAT, which includes the distance information
just as the MAT does, and show that the original model
can be reconstructed from the -SMAT to an accuracy that
depends in a simple way on 0. The significance of this rela-
tionship is that it is a way of quantifying the importance of
the portion of the medial axis retained in the -SMA. If the
original model can be reconstructed with reasonable accu-
racy, then one can argue that the most significant portions
of the medial axis are being preserved.

Notation and Terminology: In this paper, vectors and
points will be in boldface. Sets and functions will generally
be denoted by capital letters. Unless otherwise specified, X
will denote a solid with a polyhedral boundary.

Given a set of geometric primitives S = {P;}, the Voronoi
region of a primitive P; is the set of points that are at least
as close to P; as to any other primitive. The collection of
Voronoi regions is the generalized Voronoi diagram, or GVD.
The medial axis of a polyhedron is a subset of the GVD of
its faces, edges, and vertices.

We will say that an edge or vertex of X is reflex if its in-
cident faces are not coplanar and it intersects the boundary
of a ball whose interior lies in the interior of X.

Let X be a polyhedral solid with medial axis M. Re-
call that M can be characterized as the closure of the set
of points in the interior of X having at least two nearest
neighbors on the boundary of X. (Sometimes the require-
ment that the points be in the interior of X is relaxed.)
Consider a point x € M, and let NS(x) denote the set of
its nearest neighboring points on the boundary of X. There
is a sphere centered at x that does not cross the boundary
of X, but that touches it at just the points of N.S(x).

For each pair of points p1,p2 € NS(x), we can consider
the angle Zpi1xp2. (We will treat all angles as values in
[0,7].) If x has more than two nearest neighbors, then we
consider the largest angle subtended by a pair of nearest
neighbors. We call this angle the separation angle S(x) for
the medial axis point x:

S(x)

max

Zp1X
Pl;PQEN‘Sx( p1 p2)

(see Figure 1).
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The intuitive motivation for this definition is as follows: If
the separation angle is exactly 7, then x is directly between
its nearest neighbors, while if the angle is small, then both
neighboring points are on the same side of x, and there is
space on the other side of x that is, in a natural sense, deeper
in X.

Given an angle 0, define the 0-simplified medial azis Mg of
X to be the set of points of M with separation angle greater
than 8. When we wish to emphasize the relationship of My
to a particular solid X, we will write My (X). The following
facts follow from the definitions of M and Mpy:

e The 0-SMAs are nested, with larger angles implying
smaller subsets. That is, if 0 < 6; < 02 < m, then
M92 C Mgl.

° U My = M, where X denotes the closure of X.
6 (0,m)

In this sense we can say that My — M as § — 0. Note that,
even though we specified X as a polyhedral solid, all of the
above applies to any solid.

3.1 Quantifying the Significance of 0

In this section we derive a formula that quantifies the
degree to which the 6-SMA retains the significant portions
of the medial axis. It is well known that X can be recon-
structed from M along with the radius values for each point
on M. If we use My instead of M in the reconstruction, then
we get a subset of X, which we can call Xy. The accuracy
with which Xy approximates X is a measure of the degree
to which My captures the important geometric features of
X. Next, we formalize these notions, explaining what we
mean by the accuracy of the approximation, and show how
the accuracy is related to the separation angle 6, used as the
angle cutoff in simplifying the original medial axis.

Formally, the medial axis transform is the set of all maxi-
mal balls contained in X. The centers of the balls constitute
the medial axis, and retaining the balls is equivalent to re-
taining the radius information associated to each medial axis
point. We define the 0-simplified medial azis transform (0-
SMAT) to be the subset of the MAT consisting of those balls
centered on points of the -SMA. X can be reconstructed
as the union of all the maximal balls in the MAT of X, and
Xp C X is the union of the balls in the §-SMAT of X. By
construction, My is the medial axis of Xp, but note that Xy
may not correspond to a polyhedron.

We can measure how closely Xy approximates X in two
ways. First, we can compare the volumes of the two spaces,
computing the ratio Vol(X)/Vol(Xy), where Vol(X) denotes
the volume of X. Second, we can look at the distance be-
tween points on the boundary of Xy and the nearest neigh-
boring points on X. For each point p on the boundary of
Xo, there is a well-defined local radius R(p) given by the ra-
dius of the smallest maximal ball touching p (see Figure 1).
We can measure the local error as the distance from p to its
nearest neighbor p’ on the boundary of X, as compared to
the local radius of p. That is, the local error E(p) is defined
by

_ o=l
R(p) ’

where p’ is the point on the boundary of X that is nearest
to p.

E(p)
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Figure 2: Computing the error bound. The angle subtended
by p1 and p2 is equal to 6, so no circle tangent only to the
edges containing p1 and p2 is represented in Mpy. If the solid
circle is enlarged into the dashed circle, then the vertex p will
be included. The radius 7 is equal to the local radius R(p1) =
R(p2).

The following theorem shows how well Xy approximates
X, as a function of 6.

THEOREM 1. Let

Then Vol(X)/Vol(Xs) < g(0)® and, for each point p on the
boundary of Xo, E(p) < g(0) — 1.

PROOF. We claim that, if all the balls of the §-SMAT are
enlarged by a factor of g(f), then their union will contain
X. The largest local feature that can be excluded from Xy
is a corner such that the normals to the respective faces
differ by an angle no greater than 6. If all the balls are
enlarged by an appropriate ratio to include such corners,
then their union will include all of X. We will argue that
g(0) as defined above is the required ratio by which all the
balls of the -SMAT must be enlarged to include all of X.

First consider the 2D analogue (Figure 2). If there are
two adjacent edges whose normals differ by an angle equal
to the threshold angle 6, then no disk tangent only to those
two edges will be added to the medial axis transform. Hence
a disk such as the one shown will be the medial axis disk
that is closest to the vertex p, and the external radius 7ext
is the radius to which that disk must be enlarged to contain
all of that corner. Thus, in two dimensions, g(0) = rext/r =
sec(0/2).

In three dimensions, the corresponding situation consists
of three faces coming together at p such that each pair of
normals differs by 6. Let x be the center of the maximal
ball closest to the extremal vertex p, and let p1, p2, and ps
be the points nearest to x on each of the three faces meeting
at p (see Figure 3).

Consider the planes passing through x, p, and p; fori =1,
2, and 3. Since each pair of normals differs by the same
angle, these planes must have dihedral angles of 27/3 to one
another, and the points p1, p2, and ps form an equilateral
triangle in a plane orthogonal to Xp. Let q be the point
where this plane crosses Xp, and let q’ be the midpoint of
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r=1

} %,

!

q

Figure 3: Computing rex: = [[p —x||. The vector (p1 —x) is
a normal vector from x to a face on the boundary of X. There
are two other such faces; the endpoints of the normal vectors
to those faces, p2 and ps, are not shown. The point q bisects
Pip2, Which is one side of an equilateral triangle.

PiP2. Let rext = ||p — x|, and 7 = ||p1 — x||. Then our goal
is to compute the ratio rext /r. For convenience, assume
without loss of generality that » = 1, so that we only need
to compute rext.

If we denote Zp1xp by «, then rext 1/cosa. We will
compute sina. Let a = ||p1 — q'||, and b = ||p1 — q||. Then
b =sina, and a = sin(0/2). (This is because Zpi1xp2 = 6.)
Also, a = b\/§/2 because p1q’ is perpendicular to qq’, and
mZp1qq’ = 7/3. Bear in mind that q is the center of the
equilateral triangle Apip2ps. Thus,

2 2
sina=b=—a=—=sin6/2.
VRV
Therefore,
., 1 1
ext — =
V1—sina \/1—%sin2g
O

3.2 Stability and Connectivity

In this section we discuss the stability of My, that is, how
much it is altered by small changes in X. We also observe
that My is not guaranteed to preserve the connectivity prop-
erties of X.

One of the benefits of the §-SMA is that it is more stable
than the medial axis. The medial axis of a finely tessel-
lated polyhedron will have a sheet for every adjacent pair of
faces, and many other pairs as well. The §-SMA will only
retain sheets for pairs of faces whose normals differ by an
angle greater than 0, and thus, whose respective dihedral
angles are less than m — 0. Thus, introducing new vertices
to generate a finer tessellation of the model will not create
new sheets of the -SMA unless the new faces that are in-
troduced to the polyhedron create sufficiently small angles
with each other or with other faces in the model.

However, by design the 0-SMA detects small, elongated
features, as in Figure 4. If such features are expected to
arise as noise, then the §-SMA will be affected by the noise.
The relationship of 0 to the stability of the simplified medial
axis is illustrated by Figure 5.

The 6-SMA does not in general preserve the homotopy
type of the model. It can be disconnected and have holes,
even if X is simply connected. In Figure 4, My(X) is shown
for 6 = 7 /3. The point x is on the medial axis of the space
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0 =15°

Triceratops model

Figure 5: Different ©-SMA for the same model.
components decreases.

Figure 4: Disconnectedness. The point x is on the medial
axis but has a small separation angle.

X, but not on M /3 because its separation angle is too low.
If x were to move towards the rectangular feature at the
top, the separation angle would increase until it exceeded
the threshold angle, at which point x would be on M /3.

This lack of a connectivity guarantee can be problematic
for some applications. However, for others, what is desired
is a characterization of the geometric properties of an ob-
ject whose connectivity may already be understood. Also,
it is possible to use a larger value of 6 to select significant
components of the object, and then compute again with a
smaller value of 6 to achieve improved connectivity. The
more connected version can then be pruned, retaining just
enough information to connect the components correspond-
ing to the larger value of 6.

Finally, if it is desired to simplify X, one can remove small
detached components of My, yielding a pruned version of the

0=5°
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6 =15° 6 = 60°.
0 = 30° 0 = 60°.

As the separation angle increases, the number of high frequency or sharp

0-SMA. After that one can reconstruct an approximation to
X from the pruned 6-SMA.

4. ALGORITHM

In this section we present a fast algorithm to approximate
Mp(X). The algorithm has two variations, one based on a
uniform voxel grid, and the other on an adaptive subdivi-
sion of space. We first give an overview of the algorithm.
We then describe in more detail the criterion we use to de-
termine whether to add a face to the representation of My,
after which we describe the different spatial subdivision ap-
proaches. We conclude by describing two approaches to im-
proving the surface representation of the §-SMA.

The algorithm is based on a vector field that we call the
netghbor direction field of X, denoted Nx. If x is a point
having a unique nearest neighbor p on the boundary of X,
then

o
TP

This field consists of the negated gradients of the distance
field defined by the boundary of X, and it is well-defined
everywhere outside the boundary and medial axis of X.
Using Nx, we define a separation criterion to determine
whether an arbitrary line segment in the interior of X crosses
a sheet of the medial axis. The essence of the criterion is
that two points x; and x3 are taken to be on opposite sides
of a medial axis sheet if Nx(x1) and Nx (x2) diverge. We
use this criterion to test either the centers of the voxels of a
uniform grid, or the cell vertices of an adaptive subdivision.
When a pair of points passes the separation criterion, we
add a facet between them to our model of My. Once the
polygonal model is generated, it can be filtered to improve
the fit of the represented sheets to those of the actual 6-

Nx(x)
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Figure 6: The direction vectors at neighboring voxels can
differ by a large angle even when the voxels are not on different
sides of the medial axis.

SMA.

4.1 The Separation Criterion

For a given pair of points we first determine the angle
between the respective direction vectors given by Nx. If
the angle is not greater than the threshold 6 then we reject
the pair. However, if it is greater than the threshold, we
need to be careful to avoid false positives. If, say, a reflex
vertex is the nearest neighbor to both points in a pair, then
both direction vectors will converge towards the vertex (see
Figure 6).

If the points are close enough to the vertex, then the angle
between the vectors can be greater than the threshold, even
though the segment between the points does not cross the
medial axis.

To avoid this error, we need to check whether the vectors
diverge. We check this condition by ensuring that the heads
of the vectors are at least as far apart as the tails, where
the lengths of the vectors are scaled to equal the separation
between the neighboring points.

Given the separation criterion, we present algorithms for
two spatial subdivision schemes, namely a uniform grid and
an adaptive grid.

4.2 Uniform Subdivision

The simplest spatial subdivision is a uniform grid. There
are efficient ways to compute a distance field and its gradient
that make use of the uniformity of the grid [17, 12]. We
extend the algorithm presented in [17] for fast computation
of the distance field.

Our goal is to create a uniform sampling of the direction
field of the model X. We divide the volume into an axis-
aligned voxel grid, referring to a set of voxels with a constant
z-value as a slice. The algorithm we use relies on the parallel
nature of interpolation-based graphics hardware to perform
the computation efficiently for one slice at a time. The al-
gorithm simultaneously computes a distance field and a di-
rection field over a uniform 2D grid for each slice. We will
describe the computation of the distance field first and then
explain how we use it for direction computation. For each
slice, the distance field is a scalar function Dx: R xR — R.
If we decompose X into sub-objects X;, then Dx is deter-
mined by the lower envelope (or minima) of the set of all
the distance functions Dx,. We thus decompose X into its
faces, edges, and vertices and compute the lower envelope
of the distance fields of each of these primitives.

The distance functions of these primitives can be repre-
sented in a simple form. We highlight these functions for
points, lines and planes. For edges and triangular faces,
these definitions are combined in piecewise fashion to rep-
resent the full distance field for the primitive. We describe
formulas for the slice z = 0 and for primitives placed in par-
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ticularly convenient configurations. The general forms can
be derived by simple coordinate transformations.

For a point p = (0,0,¢) and the slice z = 0, the distance
field is the hyperboloid

Dyp(,y) = Va2 +y* + .

For a point with arbitrary coordinates we perform a trans-
lation on the distance field.

For the line L in the zz plane given parametrically by
(ta,0,tc) with a® + c? 1, the distance is given by the
elliptical cone

Dp(z,y) = Va?c + 2.

For a general line, we perform a translation and a rotation.
Finally, let F' be the plane defined by the equation ax +
by + cz+d = 0. If we assume that a, b, and ¢ are chosen so
that a? + b% + ¢ = 1, then the distance from a point to the
plane is simply found by evaluating the left-hand side of the
equation at that point. Thus, for the slice z = 0 we have

Dp(z,y) = ax + by + d.

In 3-space, the Voronoi region of the interior of a triangu-
lar face is defined by the three planes perpendicular to the
face and passing through the edges. Points in this region
are closer to the interior of the triangle than any of its edges
or vertices. Similarly, the Voronoi region of the interior of
a segment is defined by the planes normal to the segment
and passing through the endpoints. For points outside the
Voronoi region of the interior of a face or segment, we define
the distance to be infinite by convention. Then, when the
lower envelope of the distance fields for all the faces, edges
and vertices is taken, the proper nearest neighbor will be
determined for each point.

As we generate the distance field for each primitive, we
also generate the direction field for that particular primitive.
The distance field allows the lower envelope to be defined,
and the lower envelope determines, for each point in the
volume, which primitive defines the direction field at that
point. With the point p, the line L, and the plane F' defined
as above, unnormalized direction fields are given by

Np(may) = (_‘Tv_y7c)
NL(LL', y) = (—(E027 -Y, Iac)
NF(may) = —(ax+by+d)(a7b7c)

To extract My, we construct Nx for each slice by com-
bining the direction fields for the primitives of X. We then
evaluate each pair of voxels in the z, y, and z directions,
adding a face to the approximate §-SMA for each pair that
passes the separation test. The computation of the distance
field and the direction field maps very well to the rasteriza-
tion hardware. More details are given in Section 6.

4.3 Adaptive Subdivision

Given the non-linear nature of the medial axis, in many
applications it is possible to compute a better approxima-
tion by using a non-uniform grid. We present an algorithm
based on octree subdivision of the space. This approach re-
quires two primitive operations. First, one needs to evaluate
the neighbor direction field Nx(x) at an arbitrary point x
in the volume of interest. Second, one must be able to de-
termine whether an axis-aligned box contains, overlaps, or
is contained by the object X. Both of these tests can be



performed quickly using either a spatial subdivision to in-
dex the faces of the boundary of X, or by using a bounding
volume hierarchy of X. There are standard collision detec-
tion packages that also provide the capability for distance
queries, an example being PQP [20]. While these algorithms
have been designed for object-object distance computation,
it is straightforward to modify them to handle point-object
computation. For instance, given a bounding volume hierar-
chy of the object, one can compute the feature on X that is
closest to x by computing the distance from x to the bound-
ing volumes at different levels in the hierarchy. Given the
closest feature, the algorithm also computes the direction
vector from x.

Using these two primitive operations, the algorithm is as
follows:

1. Begin with a single cell containing X.

2. Until a chosen cell size is reached, iteratively subdivide
the cells that either

(a) contain at least part of X but are not contained
in X, or

(b) are contained in X and have a pair of neighboring
cell vertices that meet the separation criterion.

3. For each pair of vertices meeting the separation crite-
rion, add a face to the medial axis as in the uniform
grid approach.

This algorithm is more memory efficient, as well as more
time efficient (in terms of operation count), than the the
uniform grid algorithm. However, the uniform subdivision
scheme is simpler to implement and maps well to the ras-
terization hardware.

4.4 Refining the Medial-Axis Approximation

The polyhedral approximation generated by the spatial
subdivision schemes represents the -SMA up to a specified
resolution. However, the sheets of the medial axis (which
correspond to a portion of a quadric surface) are not well
approximated by the axis-aligned facets of the voxel grid.
In this section, we present two methods to refine the medial
axis approximation.

Smoothing. When we use uniform subdivision of space,
the algorithm we we use to compute the distance field pro-
duces distance values with a bounded error, with a bound
equal to half the diagonal width of a voxel. For this reason,
we cannot use the distance mesh to achieve subpixel accu-
racy in placing the faces of the medial axis mesh. However,
we use the smoothing algorithm proposed by Taubin [28],
a fast, non-shrinking smoothing filter. Because this filter
is non-shrinking, it retains the shape of the medial axis
sheets, while avoiding the stair-stepping appearance of the
axis-aligned faces.

Iterative Retraction. We have described an approach to
perform distance queries (to the boundary) and direction
computation at arbitrary points in the space. Based on this
information, we can quickly find points that are very close
to the medial axis. Let x be a point in the interior of X, but
not on the medial axis. Let p be the unique point on the
boundary of X nearest to x, and let p’ be any other point on
the boundary of X. Then p’ places an upper bound on how
far x can be from the medial axis. Let Sx,p be the sphere
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Figure 7: The first step in an iterative refinement of the
approximate #-SMA. x is the initial guess, and p is the nearest
neighbor of x on the boundary. Sxp is the center centered
on x and passing through p. There is a maximal circle Smax
(not shown) that is contained in X and contains Sxp. We
approach the medial axis by approaching Smax. Smax touches
the boundary in at least two places. p’ and p” are successive
approximations to to the second point where S ax touches the
boundary of X.

centered at x and passing through p, with radius ||x — p||.
Since x is not on the medial axis, Sx,p is not a maximal
sphere. Let Smax be the maximal sphere containing Sx p.
Then Smax exhibits the following properties:

e It will be tangent to Sx,p, and hence centered on the
line pX passing through p and x.

e It will be no larger than the unique sphere S’ centered
on px and passing through both p and p’, because S’
already touches two points on the boundary of X.

The center x’ of S’ is the most distant possible point from
x where px could cross the medial axis. See Figure 7.

In this way, points on the medial axis are computed us-
ing an iterative algorithm. The algorithm proceeds in the
following manner: Once S’ is found, we can define x’ to be
its center, and choose a new point p”’ on the boundary of
X as the boundary point nearest x’. Using p” in place of
p’, we construct S”, and repeat the process. As we perform
more iterations, a sequence of circles is constructed that ap-
proaches Smax. This algorithm fits quite well with the adap-
tive subdivision approach as now we can compute vertices
that are very close to the medial axis. Our method is simi-
lar to a method used by Wilmarth, Amato, and Stiller [31]
to retract randomly generated sample points to the medial
axis.

5. ANALYSIS

In this section, we analyze the performance of our algo-
rithm. This includes the accuracy of our approximation as
well as the running time.

5.1 Accuracy

In this section we show that the discrete approximation
computed by our algorithm converges to the actual §-SMA
as the resolution becomes arbitrarily fine. As before, let X
be a polyhedral subspace of R3, and let M be the medial
axis of X. Let X denote the interior of X. For a given € >
0, let #-simplified medial axis, M. ¢, be the approximation
produced by our algorithm at the resolution e.

The idea of our argument is that our algorithm estimates
the set of points over which the neighborhood direction field



Nx is discontinuous. The following theorem says that, in-
side X, the direction field can only be discontinuous at the
medial axis. Since the direction field is not defined on the
medial axis, it follows that, in X, the medial axis is precisely
the set of discontinuities of the direction field. We prove it
based on the following theorem.

THEOREM 2. The neighbor direction field Nx is continu-
ous on the space X \ M.

PRrROOF. Let x € X be a point not on M. Either x is
in a Voronoi cell of one of the faces, edges, or vertices of
the boundary of X, or it is on the boundary between the
Voronoi cells of a reflex edge and a face, or between the cells
of a reflex vertex and a reflex edge. For each of these cases
the distance field can be computed explicitly and is shown
to be continuous in a neighborhood of x. [

The result does hold for all curvilinear shapes of practi-
cal interest as well, but there are pathological cases where it
fails. Choi, Choi, and Moon [9] give examples of such patho-
logical cases in two dimensions, along with easily-satisfied
criteria to ensure that a region does not exhibit such behav-
ior.

THEOREM 3. For a given ¢ > 0, the €,0-SMA is within
a Hausdorff distance of v/3¢/2 from a subset of the medial
axis of X.

PRrROOF. Let F' be any face of M.y. F is a square face
separating two voxels that satisfied the separation criterion.
Let x1 and x2 denote the centers of those two voxels. Note
that F is nowhere more than v/3¢/2 from the most distant
point on the segment X1xX2, because each cubical voxel has
side €, and the distance from the center of a cube to the
farthest point on its face is v/3/2 times the side of the cube.
We will show that the medial axis of X passes between x;
and x2. It follows that no point on F' is farther than \/56/2
from some point on the medial axis.

Let p; be the point on the boundary of X that is nearest
x;, for i = 1,2. The separation criterion ensures that the p;
are farther apart than the x;, which implies that the p; are
on different features (faces, edges, or vertices) of the poly-
hedral boundary of X. This inference follows by considering
each type of feature in turn. Certainly the p; cannot be on
the same vertex. If the p; are on the same edge, then the
lines L; containing p; and x; for each i are perpendicular
to the edge. Thus the distance from pi1 to p2 is the nearest
distance from L; to L2, and so x; can be no closer to xa.
The same reasoning applies to show that the p; cannot be
on the same face.

For each t with 0 < ¢ < 1, define x(t) to be (1 — t)x1 +
tx2, so that x(t) traverses the segment X3x2. For each ¢,
let p(t) be the nearest neighbor to x(t), if the neighbor is
unique. There cannot be a path traversed by p(t) from
p1 to p2 that only crosses reflex vertices and edges, since
the direction vectors converge towards such edges, and the
vectors at the endpoints of the segment diverge. Hence,
there must be an intervening convex edge or vertex, resulting
in a discontinuity in the direction field. Therefore, X1x2
crosses the medial axis, and hence F' is entirely within the
specified bound. [

We have shown M. ¢ is within a bounded distance of the
medial axis of X. It remains to show that it actually con-
verges to M.
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THEOREM 4. The €,0-SMA converges to the 0-SMA in
Hausdorff distance as e — 0.

PROOF. We need only consider the sheets, since the dis-
tance from the seams to the sheets is zero. Consider a point
x on a sheet of My. Let vi and v2 be the unit direction vec-
tors to its two nearest neighbors. Recall that S(x) denotes
the separation angle for x, that is, the angle between v; and
va. Since x is on My, S(z) > 0. Let n = (S(z) — 0)/2. By
the continuity of Nx, there is a neighborhood B containing
x such that the angle between Nx (x’) and v; is less than n
for each x’ in B and on the same side of the medial axis as
Vj.

Now for sufficiently small €, there will be adjacent voxels
in the lattice of M ¢ such that both voxels are contained in
B, and the voxel centers are on opposite sides of the medial
axis. Each such pair of voxels determines a face of M, ¢ that
is contained in B. Since this applies for any sufficiently small
neighborhood of x, this shows that the minimum distance
from x to M. can be made arbitrarily small. Combined
with Theorem 3, this completes the proof. [

5.2 Time Complexity

In this section we discuss the time complexity of our algo-
rithm. For the uniform grid approach, the analysis depends
on the computational model that is used for the graphics
hardware. If we assume that the hardware takes a a con-
stant amount of time to render the distance field for each
primitive, then the algorithm we use to compute the direc-
tion field requires time ©(p/¢) where € is the resolution and p
is the number of primitives (faces, edges, and vertices) in the
model. Extracting the -SMA requires a single pass through
the volume, requiring time proportional to 1/637 so that the
running time for the entire algorithm is ©(p/e+1/€®). If we
assume that rendering a slice of a distance field takes time
proportional to the number of voxels in the slice, then the
total time is ©(p/e?) or, equivalently, ©(pv), where v is the
number of voxels.

For the approach using an adaptive subdivision, the run-
ning time is highly output sensitive. We note that each
distance query can require time logarithmic in the size of
the model, using current techniques, but the constant factor
is quite small.

6. IMPLEMENTATION AND RESULTS

In this section we describe the implementation of our algo-
rithm and highlight its performance on a number of complex
benchmarks.

6.1 Implementation

We implemented the system in C++ using Microsoft Vi-
sual Studio, with OpenGL as our graphics API. Our imple-
mentation for computing the distance field is based on the
techniques described in Hoff et al. [17]. In that approach, a
volume is processed one slice at a time. For each slice, and
each geometric primitive in the model, a surface, called a
distance mesh, is rendered such that the depth buffer con-
tains the shortest 3-space distance from each point in the
slice to the given geometric primitive (which may not be
in the given slice). If a pixel from a given primitive’s dis-
tance mesh passes the depth test, then the pixel is in that
primitive’s Voronoi region.

We extend this method to acquire direction information
as well, by encoding the directions to the nearest primitive



Model Tris | Resolution | T(Nx) | T(SMA)
Bent Torus 2,000 127x128x42 5.42 0.321
Cassini PM 90,879 23x32x24 141 0.661
Cassini PM 90,879 94x128x96 1329 45.6
Buddha 1 15,536 55x128x55 35.7 5.5
Buddha 2 67,240 | 222x512x222 1634 48.8
Buddha 3 1,087,474 55x128x55 1588 1.17
Skel. Hand 654,666 79x106x127 602 0.07
Elbow Pipe 5,306 96x59x77 6.95 1.10
Elbow Pipe 5,306 128x79x103 10.8 3.87
Elbow Pipe 5,306 | 192x119x155 20.4 5.59
Elbow Pipe 5,306 | 256x159x207 33.1 8.24
Elbow Pipe 5,306 | 512x318x414 127 69.3
Bunny 69,451 64x63x50 77.4 0.12
Bunny 69,451 | 128x126x100 238 0.982
Bunny 69,451 | 256x253x200 794 2.51
Head 21,764 31x41x50 13.3 0.09
Head 21,764 79x106x127 57.8 0.22
Primer Anvil 4,340 128x73x112 8.99 0.61
Shell Charge 4,460 | 126x128x126 33.0 10.9

Table 1: Timings for some models at various resolutions.
The Buddha model is shown at three different levels of detail.
Model: Name of the model. Tris: Number of triangles in
the model. Resolution: Number of voxels along each dimen-
sion. T(INx): Time to compute the neighbor direction field.
T(SMA): Time to extract the -SMA. All timings are in sec-
onds on a 2Ghz Pentium 4 with an nVidia geForce 4 graphics
card.

in the red, green, and blue channels of the color buffer. Both
the directions and distances are linearly interpolated across
each triangle of the distance mesh, which is a source of error
that grows with the size of the triangles. The distance mesh
is designed to adjust the size of the triangles to keep the
error within acceptable bounds.

We encode the gradient vector at each vertex of the dis-
tance mesh. It is important to keep in mind that each trian-
gle is part of a distance mesh associated both to a geometric
primitive and a slice of the volume. The slice corresponds
to a z-value in the volume, but the z-coordinates of the
rendered triangles correspond to distances from the slice to
the primitive. The colors, likewise, correspond to directions
from points on the slice to the primitive. Henceforth, when
we refer to a given triangle of a distance mesh, we imply the
projection of the triangle onto the specified slice.

Each direction vector is of unit length, with the z, y, and
z components represented by the red, green, and blue color
components respectively. As the components are interpo-
lated across the triangle, the magnitude differs from unit
length, so that the vectors must be normalized after being
read back and before computing a dot product to test the
separation angle. The direction differs from the true direc-
tion. Consider a vertex which we can assume to be located
at the origin, and a particular slice located at some depth z.
Let p1, p2, and p3 be the vertices of a mesh triangle that
has been projected into the plane of the slice. Then a point
in the triangle can be expressed as a sum E t;p:; with ¢; cho-
sen so that > ¢; = 1 (that is, in barycentric coordinates).
The true unit vector pointing towards the vertex is
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Figure 8: A torus and its 6-SMA. 2000 triangles. The grid
resolution is 127x128x42.

Figure 9: The “primer anvil’ for a shotgun shell. 4,340
triangles, SMA computed at 128x73x112 resolution. (a) The
model. (b) The §-SMA. The seams and boundary curves of
the 0-SMA are shown.

while the estimated vector is

_ S tips
3> tapill’

where p = p/||p||. Then the error in the direction is given
by the angle cos™ (v - ¥). We do not have a good bound
on this expression other than to say that it is bounded by
the largest angle subtended by the triangle from the point
of view of the primitive. We also note that, for triangles,
which are treated as primitives separately from their edges
and vertices, there is no interpolation error because the di-
rection vector is constant. Thus, for a voxel inside a convex
polyhedron, the only source of error in direction is the fact
that each component of the vector can only be expressed
with 8 bits of precision in the color buffer.

An alternative approach is to encode the full vector from
each point on the slice to the given primitive, rather than
a unit-length direction vector. This approach raised con-
cerns with discretization error. However, with the advent
of floating-point color buffers, that objection may not be a
concern in the future.

6.2 Benchmark Models

We applied our algorithm to polygonal models of various
sizes, ranging from 2,000 triangles to more than 1 million.

v =



Figure 10: Shotgun shell “charge” with 4460 triangles. The
grid resolution is 126x128x126. (a) The model. (b) Cross
section, showing different sheets in different shades.

Some of the models were triangulations of scanned data, and
others were CAD models. In general, scanned models have
triangles with good aspect ratios and uniformly distributed
over its boundary. However, many of these models have
a high genus. On the other hand, the CAD models tend
to have many sharp edges and uneven or high-aspect-ratio
triangles.

In our analysis, X has been a solid with a polyhedral
boundary. Our models are polygonal, and some of them do
not bound solids. The definition of the medial axis extends
naturally to such cases, and to solids for which we wish to
analyze the exterior as well as the interior. For models that
do have a well-defined interior, our implementation has an
option to compute the medial axis for the interior only. As
an optimization, when only the interior medial axis is being
computed, distance meshes for convex vertices and edges are
not rendered during distance field computation.

6.3 Performance

In our tests (Table 6.1), the bulk of the computation time
is taken by the computation of distance fields. Comparing
running times for different resolutions shows an increase that
is more than linear but less than cubic in the number of
voxels along one dimension.

Except where otherwise specified, the separation angle
0 = 60°, and the 0-SMAs have been smoothed. The res-
olution is specified in terms of the dimensions of the scene.
The relative dimensions of the volume were determined by
slightly enlarging a tight bounding box for the model. Then
the number of voxels along the longest dimension could be
chosen, which governed the number of voxels along the other
dimensions. All the voxels are cubical, as the dimensions of
the bounding box were adjusted to be an integral number
of voxels in each direction.

7. COMPARISON WITH OTHER
APPROACHES

There are by now a large array of approaches for com-
puting as well as simplifying the medial axis. Performance
comparisons between them are difficult, because they make
different assumptions about the input, and generate differ-
ent kinds of medial axis approximations as output.

The two main features of our approach are, first, that it
computes the -SMA and not the entire medial axis, and,
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Figure 11: Buddha model with 1,087,474 triangles. The grid
resolution is 55x128x55.

second, that we use a fast algorithm based on uniform spatial
subdivision to compute the distance field and its gradient.
As a result, we are able to compute good approximations of
the 6-SMA for complex models in a few minutes.

Tracing algorithms [11, 23, 24] are much more time con-
suming and have only been applied to models consisting of a
few hundred triangles. The adaptive subdivision algorithms
of [30] and [16] computed the generalized Voronoi diagram,
rather than the medial axis. Their methods were only ap-
plied to models with up to a few hundred polygons. Our
algorithm with adaptive subdivision is similar in approach
to that of [30], though we use much faster sub-algorithms
for distance computation.

The surface sampling approaches such as those of [6], [1],
and [13], take point samples on the surface as input, rather
than the boundary features of a polyhedron. The accuracy
and topology of the resulting medial axis varies considerably
based on the sampling criterion used to generate the point
samples. This makes it difficult to compare the approaches.
Amenta et al. [1] report times of roughly six minutes for
models of around 30, 000 points, and Dey et al. [13] process
around 122,000 points in a little over five minutes.

8. CONCLUSION

We have presented a medial axis approximation, the 6-
SMA, based on the idea of the separation angle for a point
on the medial axis. The criterion characterizing the -SMA
is easy to understand and analyze, and it results in a more
stable structure than Blum’s medial axis. In practice, it is
able to detect and capture most of the sharp features of the
original model. We have presented a formal characterization
of the simplification of 9-SMA as a function of 6.



Figure 12: Skeleton hand with 654,666 triangles. The grid
resolution is 79x106x127. No smoothing was performed.

We have described two algorithms for fast approximating
the -SMA. One, using a uniform grid, is well-suited for im-
plementation using the parallel features of modern graphics
hardware. We have highlighted its performance on a num-
ber of complex benchmarks. The other algorithm uses an
octree decomposition, in order to reduce the memory ex-
pense and make the time efficiency more output-dependent.
Both algorithms fit into a consistent framework; both pro-
duce approximations that remain within a specified distance
of some part of the full medial axis. We have analyzed the
approximation errors produced by our algorithm.

There are a number of areas of future work. The key
to our use of graphics hardware is that the direction vec-
tor field, stored as RGB triples, is associated to the scalar
distance field, represented as depth values. This approach
could be applied more generally to other pairs of associated
vector and scalar fields. The use of graphics hardware for
general computing purposes is currently an active area of re-
search. We would like to compute the -SMA of solids with
curved boundaries as well as procedural models. Moreover,
we would like to use -SMA for different applications includ-
ing mesh generation and shape analysis.
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Figure 13: Elbow pipe, at varying resolutions. (a) The
model. Figures (b), (c) and (d), correspond to 128, 256, and
512, voxels along the longest side, respectively. The gap visi-
ble in (b) and (c) shows where the interior of the pipe model
is separated by a surface into two compartments. The gap is
not visible in (d) only because the angle of the scene is slightly
different. The #-SMA is not smoothed.

®

Figure 14: Bunny. 69,451 triangles, 128x126x100. (a) The
bunny in wireframe, with the medial axis. (b) The 6-SMA.
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Abstract

We present an efficient algorithm to approximate the swept
volume (SV) of a complex polyhedron along a given trajec-
tory. Given the boundary description of the polyhedron and
a path specified as a parametric curve, our algorithm enu-
merates a superset of the boundary surfaces of SV. It consists
of ruled and developable surface primitives, and the SV cor-
responds to the outer boundary of their arrangement. We ap-
proximate this boundary by using a five-stage pipeline. This
includes computing a bounded-error approximation of each
surface primitive, computing unsigned distance fields on a
uniform grid, classifying all grid points using fast marching
front propagation, iso-surface reconstruction, and topologi-
cal refinement. We also present a novel and fast algorithm
for computing the signed distance of surface primitives as
well as a number of techniques based on surface culling, fast
marching level-set methods and rasterization hardware to
improve the performance of the overall algorithm. We ana-
lyze different sources of error in our approximation algorithm
and highlight its performance on complex models composed
of thousands of polygons. In practice, it is able to com-
pute a bounded-error approximation in tens of seconds for
models composed of thousands of polygons sweeping along
a complex trajectory.

Keywords: Computational geometry, Virtual environ-
ments and prototypes, Blends, sweeps, offsets & deforma-
tions, Geometric and topological representations

1

Swept volume (SV) is the volume generated by sweeping
a solid or a collection of surfaces in space along a smooth
trajectory. The problem of SV computation arises in differ-
ent applications, including NC machining verification [Black-
more et al. 1997; Boussac and Crosnier 1996], geometric
modeling [Conkey and Joy 2000; Madrigal and Joy 1999],
robot workspace analysis [Abrams and Allen 1995; Abdel-
Malek and Yeh 1997a], collision detection [Kieffer and Litvin
1990; Xavier 1997], maintainability study [Law et al. 1998],
ergonomic design [Abdel-Malek et al. 2002b], motion plan-
ning [Schwarzer et al. 2002], etc. A more extensive list of
potential applications of SV can be found at [Abdel-Malek
et al. 2002a).

The SV computation problem has been studied in differ-
ent disciplines for more than four decades. This includes el-
egant work based on envelope theory, singularity theory, Lie
groups, sweep differential equations on the characterization
of the problem. As a result, the mathematical formulation
of SV computation is relatively well-understood.

In many applications, the main goal of SV computation
is to identify and extract the boundary of the SV, in par-
ticularly its outermost boundary. Most of the algorithms
for computation of the boundary of SV are based, either
explicitly or implicitly, on the following framework:
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1. Find all the boundary primitives that contribute to the
outermost boundary of SV.

. Compute an arrangement of the boundary primitives by
performing intersection and trimming computations.

Traverse the arrangement and extract the outer bound-
ary. Here, the outer boundary of an arrangement is de-
fined as the boundary of a cell, which is reachable from
infinity following some continuous path, in the arrange-
ment.

Most of the mathematical work has mainly dealt with
characterizing the boundary primitives, given some assump-
tions on the sweeping path. There is a considerable amount
of research in computational geometry on the combinatorial
complexity of computing arrangements as well as on surface-
surface intersection computations in geometric and solid
modeling. However, the underlying combinatorial and alge-
braic complexity of exact SV computation is very high. Fur-
thermore, the implementations of any algorithms for com-
puting intersections and arrangements need to deal with ac-
curacy and robustness issues. As a result, no practical algo-
rithms are known for exact computation of the SV for any
arbitrary polyhedron sweeping along a given smooth path.

Given the underlying complexity of exact SV computa-
tion, most of the earlier work has focussed on approximate
techniques. Different algorithms can be characterized based
on whether they are limited to 2D objects, or they only
compute an image-space projection or visualization of the
SV from a given viewpoint, or compute a relatively coarse
discretization of the boundary primitives followed by union
computation of different configurations of the polyhedra
along the trajectory. These algorithms are either slow for
practical applications, or suffer from robustness problems,
or compute a rather coarse approximation of the SV.

Main Results We present an efficient algorithm to approxi-
mate the outermost boundary of SV’s of complex polyhedral
models along a given trajectory. The algorithm initially enu-
merates a superset of the boundary primitives of SV, which
consists of ruled and developable surfaces [Weld and Leu
1990]. The ruled surface is generated by considering each
edge in the original model as a ruling line and the trajectory
as a directrix curve. The developable surface is obtained by
applying the envelope theory to moving triangles. Given a
formulation of the boundary elements, our algorithm com-
putes an approximation to the resulting arrangement using
a five-stage pipeline. Firstly, it computes a bounded-error
polygonal approximation of each surface primitive. Sec-
ondly, it samples the surface primitives by computing un-
signed, directed distance fields along the vertices of a grid.
Next it classifies the grid points to be either inside or out-
side of the surfaces to obtain the signed distance field using a
novel algorithm based on marching front propagation. This
is followed by iso-surface reconstruction. Finally, the algo-
rithm performs topological refinement, taking into account



some of the characterizations of the SV computation. We
also present a number of acceleration techniques based on
culling of surface primitives, use of interpolation-based ras-
terization hardware for fast computation of distance field,
and a variation of fast marching level-set method for classi-
fication of grid points.

Our algorithm computes a bounded-error approximation
of the SV and we analyze all sources of error. We have
implemented this algorithm on a commodity-based PC with
nVidia GeForce 4 graphics card, and benchmarked its perfor-
mance on complex benchmarks. The underlying polyhedral
models consist of thousands of triangles and are sweeping
along a complex trajectory corresponding to a parametric
curve. The computation of SV takes a few tens of seconds
on a 2.4GHz Pentium IV processor.

As compared to earlier approaches, the main advantages
of our technique include:

e Generality: The algorithm can handle general 2-
manifold polyhedral models, and makes no assumptions
about the sweep path.

Complex Models: The algorithm is directly applica-
ble to complex models composed of a high number of
features. Given a trajectory and a bound on the ap-
proximation error, the overall complexity increases as
a linear function of the input size.

Efficiency: The use of culling techniques and algorithms
for signed distance field computation significantly im-
prove the running time of the algorithm.

Simplicity: The algorithm is relatively simple to imple-
ment and does not suffer from robustness problems or
degeneracies.

Good SV Approximation: Our preliminary application
of the algorithm to different benchmarks indicates that
it can compute a good, bounded-error approximation
of the boundary.

Organization The rest of our paper is organized as follows.
In Section 2, we briefly review the earlier work on SV com-
putation. Section 3 provides the overview of our approach
to SV computation. In Section 4, we present an algorithm
to compute the boundary surface primitives of SV. Section
5 describes our approximation algorithm to compute the ar-
rangement of the surface primitives using sampling and re-
construction. We analyze the performance of our algorithm
in Section 6 and describe its implementation and perfor-
mance in Section 7. In Section 8, we compare our algorithm
with other earlier approaches.

2 Previous Work

In this section, we give a brief survey of the work related to
SV computation, arrangements, and iso-surface reconstruc-
tion based on distance fields.

2.1 Swept Volume Computation

SV has been studied quite extensively over the years. We list
some of the crucial development in the history of SV research
here, but refer the readers to see [Abdel-Malek et al. 2002a]
for more thorough survey of SV-related work.
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Methodology The mathematical formulation of the SV
problem has been investigated using singularity theory (or
Jacobian rank deficiency method) [Abdel-Malek and Yeh
1997c; Abdel-Malek and Yeh 1997b; Abdel-Malek and Oth-
man 1999], Sweep Differential Equation (SDE) [Blackmore
and Leu 1990; Blackmore et al. 1997], Minkowski sums [El-
ber and Kim 1999], envelope theory [Martin and Stephen-
son 1990; Weld and Leu 1990], implicit modeling [Schroeder
et al. 1994], and kinematics [Jittler and Wagner 1996].
Moreover, most of this work deals with the SV of generic,
free form objects.

Polyhedral Approximation Given the complexity of com-
puting the exact SV, few algorithms have been developed to
provide a polyhedral approximation of SV. In 2D, [Lee et al.
2002; Ahn et al. 1993] study an approximation of the gen-
eral sweep for curved objects, and they have been applied
to font design. In 3D, [Weld and Leu 1990] describe a ge-
ometric representation of SV for compact n-manifolds with
application to polyhedral objects. [Schroeder et al. 1994] use
discretized representations and iso-surface reconstruction to
approximate SV, [Abrams and Allen 1995; Raab 1999] com-
pute the arrangement of swept polyhedral surfaces based on
their coarse approximation, [Baek et al. 2000] study a simple
rotational sweep of exact SV. However, these 3D algorithms
are either restricted to simple geometric primitives [Raab
1999] or simple sweep trajectory [Baek et al. 2000], or suffer
from accuracy [Schroeder et al. 1994] and robustness prob-
lems [Abrams and Allen 1995].

Visualization Many algorithms have been proposed to vi-
sualize the boundary of the SV using the rasterization hard-
ware. These algorithms use the Z-buffer hardware to com-
pute a 2D projection of the surface from a given viewpoint
and not the actual boundary of the 3D SV. [Van Hook 1986;
Huang and Oliver 1994; Hui 1994; Wang and Wang 1986]
utilizes rasterization hardware to simulate NC machining
display, [Conkey and Joy 2000] uses the Jacobian rank defi-
ciency method to visualize a SV of trivariate tensor-product
B-spline solids, and [Winter and Chen 2002] studies the SV
computation of a 2D image.

2.2 Arrangement Computation

Given a finite collection of geometric objects in RY, their ar-
rangement is the decomposition of R? into connected open
cells [Halperin 1997]. The arrangement computation prob-
lem is ubiquitous by nature and arises in a number of ap-
plications. A survey of different algorithms and complexity
bounds for arrangements computations is given in [Halperin
1997].

Complexity It is well known that the worst case combi-
natorial complexity of an arrangement of n surfaces in R?
is O(n?) [Halperin 1997], and there are such arrangements
having 8(n%) complexity, thus this bound is tight. In this
analysis, each surface is assumed to have a bounded alge-
braic degree, and needs to be decomposed into monotonic
patches as well.

Algorithms There are quite a few known algorithms to
compute an arrangement using both deterministic algo-
rithms and randomized algorithms. This includes an output-
sensitive algorithm to compute an arrangement of surfaces



(a) Trajectory

(b) Surfaces

(c) HSV(T)

Figure 1: Complexity of SV Computation. (a) shows a sweeping trajectory of a cubic polynomial curve for a X-Wing model. In
(b), each surface primitive comprising in OSV (L") (total 3793 surface primitives) is color-coded differently. (c) shows SV (I'),

an outer boundary of the surface elements.

in 3-space and has O(n\q(n)log(n) + Vlog(n)) time com-
plexity, where V' is the combinatorial complexity of the ver-
tical decomposition, q is a constant depending on the degree
of the surfaces, and Aq(n) is the maximum length of (n,q)
Davenport-Schinzel sequences [de Berg et al. 1996].

Implementation Issues Some of the major issues in the im-
plementation of arrangement computation algorithms are ac-
curacy and robustness problems. It is quite hard to enu-
merate all degenerate configurations, especially when the
primitives are non-linear surfaces. [Raab 1999] enumerate
15 different possible degenerate cases for an arrangement of
polyhedral surfaces. Moreover, [Raab 1999] proposed a con-
trolled perturbation scheme, and applied it to polyhedral SV
approximation. However, it can take a considerable amount
of time for models composed of few hundred triangles. These
problems get more severe when we are dealing with curved
primitives.

2.3 Distance Field Computation and Iso-Surface
Reconstruction

Recently, distance fields have been increasingly used in vol-
umetric shape representation [Gibson 1998; Frisken et al.
2000], proximity computations based on rasterization hard-
ware [Hoff et al. 2001], path planning [Kimmel et al. 1998],
surface metamorphosis [Cohen-Or et al. 1998], and SV com-
putation [Schroeder et al. 1994].

Grid-based iso-surface reconstruction has been extensively
studied beginning from the seminal work of the Marching
Cubes algorithm [Lorensen and Cline 1987], and has been ex-
tended to its variants such as the Enhanced Marching Cubes
(EMC) [Kobbelt et al. 2001] or the dual contouring method
[Ju et al. 2002]. [Wood et al. 2000] have used surface wave-
front propagation techniques to extract semi-regular meshes
from volumes.

3 Overview

In this section, we characterize the mathematical formula-
tion of computing the SV of general polyhedral models and
also give an overview of our approximation scheme.
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3.1 Notation

We use bold-faced letters to distinguish a vector (e.g. p(t))
from a scalar value (e.g. time t). f,v,e respectively denotes
a face, a vertex, and an edge of a polyhedron. We use fF to
denote the kth face of a polyhedron T'.

3.2 Problem Formulation

Let T, also known as a generator, be a polyhedron in R>.
Let the sweep trajectory 7(t) be a tuple of (¥(t), R(t)),
where ¥ (t) is a time-varying, differentiable vector in R* and
R(t) is a time-varying, orthonormal matrix in SO(3). Here,
both W(t) and R(t) depend on a single variable, the time
t € 0, 1]. Furthermore, ¥(0) corresponds to the origin, and
R(0) to the identity matrix. Then, consider the following
sweep equation of I'(¢):
T'(t)=%()+ R(t)T (1)
In our paper, the SV of the generator I'" along the trajectory
7(t) is defined as:
SV(T) = {UT(@) [te[0,1]} 2)
Notice that our SV equation is allowed with only rigid mo-
tions (i.e., translation and rotation), even though, in general,
7(t) can be any isotopy mapping [Weld and Leu 1990].
Our goal is to compute the boundary of SV(TI"), SV (I'),
without internal voids. More formally, consider an arrange-
ment A and a cell C in A, which is reachable from infinity
following some continuous path. Let us further define the
outer boundary of A as the boundary of C. Then, we want to
compute the outer boundary' of A induced by the surface
elements in SV(I'). We use the following theorems [Weld
and Leu 1990] to characterize the boundary of SV:

THEOREM 3.1 If during the sweep I'(t;) NI'(t;) = ¢ for
t; # t;, then SV(T) = {Up_, SV(fL)| n is the number of

faces in T }.

THEOREM 3.2 SV(fF) consists of:

IThroughout the paper, we interchangeably use the outer
boundary of A and the outer boundary of SV(T) to describe
oSV (T).
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Figure 2: Our Swept Volume Computation Pipeline

e Faces in f{(o) and flf(l)

e Ruled surfaces using the edges of f{(t) as a ruling line
along the directrix T

e Developable surfaces as an envelope of f{(t) along T.

Therefore, computing the boundary of SV (I') boils down
to computing ruled and developable surface primitives, and
finally computing the outer boundary of their arrangement.

3.3 Approximation Algorithm

Our goal is to compute the outermost boundary, 9SV (T')
where the complexity of T' is relatively high, e.g. thou-
sands of triangles. The major difficulty of the computation
lies in the arrangement computation, as its computational
and combinatorial complexity can be super-quadratic and
its implementation is rather non-trivial due to the accuracy
and robustness problems. Given the complexity of surface-
surface intersection problem, it is very hard to robustly com-
pute all the intersections between thousands of ruled and de-
velopable surface primitives within a reasonable time. For
example, in Fig. 1, in order to exactly compute the SV of the
X-Wing model consisting of 2496 triangles, we need to com-
pute an arrangement of 3793 surfaces including calculating
their intersection curves of as high as degree nine. Thus, in-
stead of computing dSV (T'") exactly, we approximate it using
an implicit modeling technique based on discretized repre-
sentations and iso-surface-based reconstruction methods.

The main idea of our approximation approach is to com-
pute the polyhedral approximation of ruled and developable
surface primitives, generate their signed distance field, and
reconstruct the outer boundary of the arrangement of the
discretized surfaces. To accelerate this pipeline, we prune
redundant surfaces in SV (ff), and perform fast distance
field computation. As a result, the basic steps of our algo-
rithm are as follows:

1. Given an error threshold of Hausdorff distance €, we
formulate the ruled and developable surfaces for each
SV (fF), and compute a triangular approximation that
is within the surface deviation error threshold. A sub-
set of the primitives SV (ff) that do not contribute to
the final boundary, SV (T") can be pruned away using
sufficient criteria described in Sec. 4.3.

We compute the directed unsigned distance fields for
each SV (fL) on a uniform 3D grid, using interpolation-
based rasterization hardware.

We use a variant of the fast marching level set method
to classify all the grid points whether they are inside or
outside with respect to SV (I"). This gives us a signed
distance field.
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4. Perform the iso-surface extraction on the resulting
signed distance field to reconstruct the outermost
boundary, SV (T')

Perform a topological check to see if the reconstructed
approximation has more than one component. If yes,
we refine the spatial grid and perform the steps 2-5
again.

The above pipeline is illustrated in Fig. 2.

4 Surface Generation

In this section, we present techniques to compute the can-
didate surface primitives that contribute to the boundary of
SV and compute a bounded error triangulation of each prim-
itive. We also present new techniques to cull away surface
primitives that do not compute the outer boundary of SV.

4.1 Boundary Surfaces

As shown in Thm. 3.1 in Sec. 3.2, the boundary of SV is
obtained by computing the SV’s of individual faces, SV (f ),
in I', and computing their union. Moreover, Thm. 3.2 states
that, besides the trivial surfaces of ff at initial and final
positions during sweep (i.e., I'(0) and I'(1) in Eq. 1), there
are only two types of surfaces that belong to fr: ruled and
developable surfaces (also see Fig. 3).

4.1.1 Ruled Surface Primitives

A ruled surface is generated by sweeping a ruling line along
a directrix curve. The surface x(u, v) has the following form:

(3)

Here, b(u) is a directrix and §(u) is the direction of a ruling
line. When we sweep fr along the trajectory 7(t), each
edge e in ff generates a ruled surface x(u,v). We denote
the endpoints of an edge e by po and p1. By substituting
po and pi1 for T' in Eq. 1, we generate two curves, bo(u)
and bi(u). Then, in Eq. 3, b(u) becomes bo(u), and d(u)
becomes b1 (u) — bo(u).

x(u,v) = b(u) + vd(u)

4.1.2 Developable Surface Primitives

When a plane moves continuously along a trajectory 7(t),
its envelope generates a developable surface. Intuitively, a
developable surface is a surface which can be made of a piece
of paper [Pottmann and Wallner 2001]. Thus, a developable
surface is locally isometric to a plane, and its Gaussian cur-
vature at regular points is zero. Furthermore, a developable
surface is a subset of a ruled surface.
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Figure 3: Boundary Surfaces of the SV of a Triangle. (a) shows a trajectory for the helical sweep of a yellow triangle. (b),
(c), and (d) show ruled surfaces generated by the sweep, and (e) shows a developable surfaces by the sweep. (f) shows the final

boundary surface of the sweep.

Let us parametrically represent a moving plane p(u,v,t)

' ()

where g(t) is the origin of p(u,v,t), and r1(¢) and r2(t) are
two linearly independent vectors spanning p(u,v,t). Then,
using the envelope theory, by solving det(J(p(u,v,t))) = 0
for u and substituting the result for p(u,v,t) = 0, we get
the developable surface d(t,v) as [Weld and Leu 1990]:

p(u,v,t) = q(t) + ur(t) + vra(t)

d(t,v) = b(t)+vd(t), where ©)
_ q'(t) - 7a(t) X ra(!)
o) = 4t =) T ) X ra(t)
_ r3(t) - ra(t) X ra(t)
0 = ralt) =) ) X e )

This derivation is valid only if r1(t) - 71(t) x r2(t) # O.
Otherwise, we can derive a similar equation in terms of u
and t by getting rid of v in Eq. 4.

In the SV computation, sweeping fi also generates a de-
velopable surface. Let us assume that I' is triangulated,
and denote any two edges of ff by e; and ez. Then, the
direction vectors of e; and ez become r1(t) and r2(t) in
Eq. 5. However, since Eq. 5 is derived from a plane,
not from a triangle, the developable surface obtained from
Eq. 5 needs to be clipped against the parametric domain
of {fu = 0,0 < v <1} {0 < v < 1,v = 0}, and
{u>0,v>0,u+v=1} for all ¢.

4.2 Bounded Error Triangulation

Once we have generated parametric representations for ruled
and developable surface primitives, the next step is to com-
pute a triangular approximation within a user-provided error
deviation e. There are many known algorithms for trian-
gulating a rational parametric surface using either uniform
[Kumar and Manocha 1995] or adaptive tessellation [Velho
et al. 1999; Chung and Field 2000]. Since developable sur-
faces have zero Gaussian curvature, the uniform tessellation
serves the purpose well; however, depending on the sweep
trajectory 7(t), the ruled surface can have regions of high
curvature. In this case, the uniform tessellation tend to
oversample the surface, so that the adaptive tessellation is
more suitable. Notice that, depending on the chosen type of
the trajectory 7, the ruled and developable surfaces can be
well-known rational parametric surfaces or general paramet-
ric surfaces including trigonometric terms. However, since
we can always perform a flat-ness test for smooth surface
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patches on the ruled and developable surfaces, we use a sim-
ple recursive algorithm like [Chung and Field 2000] to handle
the general parametric surfaces as long as they are smooth
surfaces.

On the other hand, taking advantage of the nature of
line geometry in ruled surfaces, one can also devise a vari-
ational interpolatory subdivision scheme for ruled surfaces
[Pottmann and Wallner 2001]. Here, one recursively subdi-
vides a ruled surface by minimizing an discrete energy func-
tional that is represented in terms of an discrete approxima-
tion of mean curvatures at points on the surface.

4.3 Culling Surface Primitive

In principle, assuming that the input model IT" is triangu-
lated, each SV (ff) generates three ruled surface primitives,
one developable surface, and fi’s at the initial and final po-
sitions of 7(t). Therefore, the triangle counts of the ruled
and developable surfaces significantly affect the performance
of the pipeline presented in Fig. 2. Consequently, we want to
identify portions of surface primitives that do not contribute
to OSV(I'), and prune them away accordingly. We use a
variation of a technique presented in [Abrams and Allen
2000] to cull away redundant ruled surface primitives, and
also provide a novel method for developable surface primi-
tives.

Figure 4: Surface Culling. (a) A reflex edge e, is not needed
to generate a ruled surface along the trajectory T, because
the surface will be subsequently subsumed by the SV of its
adjacent faces, SV (fi) or SV (fm). (b) A convex edge e.
does not need to produce a ruled surface when it is swept
inside of its adjacent faces (fi and fn) along T, because it
will be subsumed by SV (fi) or SV (fm). (c) A developable
surface d does not need to be created when it exists inside its
generator triangle. This is checked by the angle between the
normal ny and the difference vector d(t + At,v) — d(t,v)
between successive time-steps.

In order to prune ruled surface primitives, we perform the
following operation. First of all, a reflex edge e, in IT" is not



used to generate a ruled surface at all, since the surface will
be always subsumed by the SV of the adjacent faces of e,
(also see Fig. 4-(a)). The same reasoning is applied to a
coplanar edge, whose adjacent faces are coplanar. Further-
more, if a convez edge e. instantaneously moves inward f
and fL at time ¢, where fI and fL are the adjacent faces
of e, then e, can stop generating a ruled surface at that
time, since that portion will be also subsumed by SV (fF) or
SV (fE) (also see Fig. 4-(b)). This test can be easily worked
out by checking the velocity vectors 7/(¢) at the endpoints
of e, against the face normals of fI and fr.

We also present a novel culling scheme for developable sur-
face primitives. The main idea is that we generate a devel-
opable surface d T (t,v) only if its boundary can be exposed

outside of its generating face f . Since a developable surface
d T (t,v) is locally convex [de Carmo 1976] and fi is always
tangent to df{ (t,v), df{ (t,v) locally lies inside or outside

of fF depending on the face normal n; of ff. More specifi-
cally, since we perform uniform tessellation of a developable
surface using some fixed time step At, we approximate the
locality with A¢. Then, we compute two points df{ (t,v) and

df{ (t + At,v) from Eq. 5, and check the angle between the
difference vector df;f (t+At,v) fdf{ (t,v) and the plane nor-

mal n; of fr. If it is less than 90 degrees, fr is used during
time ¢, otherwise it is pruned away (also see Fig. 4-(c)).

5 Sampling and Reconstruction

Once we have computed all the surface primitives of SV,
we approximate the outer boundary of SV by sampling the
surfaces and reconstructing the outer boundary of their ar-
rangement. In this section, we describe the sampling and
reconstruction pipeline (see Fig. 2). We compute an un-
signed distance field with respect to the surface primitives
on a discrete spatial grid. A signed distance field is obtained
by propagating a front around the boundary of the swept
volume using a fast marching method. An iso-surface ex-
traction from this signed distance field provides us with an
initial approximation to the outer boundary. We perform a
topological connectedness test on this approximation. If the
test fails, we refine the spatial grid, recompute the distance
field, and repeat the pipeline.

5.1 Distance Field Representation

Given all the surface primitives of SV, we first discretize the
3D space occupied by the primitives. As a discrete repre-
sentation of the 3D space, we choose signed distance fields
with respect to the surface primitives, and attempt to com-
pute them efficiently using graphics hardware. This discrete
representation is used later in iso-surface extraction.

We sample the distance values at the discrete points of
a 3D spatial grid, and use an enhanced representation of
the discrete distance field. Here, the distance value at each
grid point means the closest distance to one of the surface
primitives. However, in our scheme, instead of simply us-
ing a scalar distance value for each grid point, we store di-
rected distances along six principal directions corresponding
to z—, =+, y—, y+, z— and z+ axes. Our goal is to eval-
uate the directed distance function at the grid points of a
3D uniform grid. We would like to use an approach that
maps well to SIMD-like capabilities of rasterization hard-
ware. Current graphics processors have the capability to
evaluate the distance function in parallel for each pixel on
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the plane. Graphics hardware-based fast techniques have
been used for distance field evaluation [Hoff et al. 1999].

X

Figure 5: Directed distance field: This figure shows how a
slice of the directed distance field of a primitive (blue tri-
angle) is computed. The primitive is rendered under ortho-
graphic projection with the slice (black rectangle) set as the
image plane. The Z-buffer holds the directed distance values.
The grey triangle is the projection of the primitive onto the
slice.

We employ a modified approach, and also use graphics
hardware to generate the directed distance fields as follows:

1. Our algorithm computes the directed distance along a
given direction by sweeping a plane along that direc-
tion. This plane corresponds to a slice of the directed
distance field and is perpendicular to the direction of

sweep.

. Our algorithm computes the directed distance field one
slice at a time. So the problem is reduced to defining
the directed distance function of a primitive over a pla-
nar 2D slice. The main idea of our approach is that
in order to obtain an approximation to the primitive’s
directed distance function, we simply render the primi-
tive under orthographic projection with the slice as the
image plane (see Fig. 5).

At each step, the slice is moved by a distance equal to
the size of the grid cell. The planes corresponding to
two consecutive slices are used to define a slab.

For each slab, we precompute the set of surface primi-
tives that it intersects with.

‘We use orthographic projection to sample and rasterize
the surfaces. The above slab is set as the near and
far clipping planes. We render the surface primitives
associated with the slab. Each pixel in the frame buffer
corresponds to a point in the current slice and the depth
buffer holds the value of the distance at that point.

We readback the depth buffer and store the directed
distance values. Distances with absolute values larger
than grid edge length are irrelevant since they are not
used during isosurface extraction.

Our algorithm computes only an unsigned directed distance
field. However, the isosurface extraction algorithm requires
a signed distance field; i.e., a distinction needs to be made
between inside and outside.

5.2 Fast Marching Front Propagation

We perform an inside/outside classification at each grid
point to obtain a signed distance field. Conventionally,



points that lie outside the boundary of the SV have a posi-
tive sign while those inside have a negative sign. Our surface
primitives are in general not closed. As a result, we cannot
define an inside/outside classification with respect to the in-
dividual surface primitives. We need to define a classification
with respect to the boundary of the SV. However, this clas-
sification problem is non-trivial because we do not know the
boundary of the SV.

In order to solve the inside and outside classification
problem, we present a variant of the fast marching level
set method [Sethian 1996] to propagate a front around the
boundary of the swept volume. Level-set methods are nu-
merical techniques for computing the position of propagating
fronts. Topological changes are naturally captured in this
setting. We perform the front propagation on the discrete
spatial grid (see Fig. 6). We use the unsigned directed dis-
tance field generated in Sec. 5.1 for front propagation. The
front consists of a set of grid points. We can initialize the
front to be a set of grid points corresponding to any surface
bounding the SV. One choice for the initial front is the set
of grid points that lie along the boundary of the spatial grid.
Our front propagation method ensures that the front visits
exactly those grid points that lie outside the swept volume.

We tag grid points as Known, Trial, or Far depending on
whether the grid point has already been visited, is currently
being visited, or is yet to be visited by the front, respec-
tively. Each grid point also has a flag whose value can be
Inside or Outside. Initially all grid points are assigned a flag,
Inside. All grid points except the initial front are tagged as
Far. Grid points on the initial front are tagged as Trial.
During one step of front propagation, we perform a number
of operations. These include:

1. We arbitrarily pick a Trial grid point belonging to the
front and remove it from the front. Let this point be
denoted as P. We set its tag to be Known.

Consider a neighboring grid point @ of P. If point @
is tagged as Known, we do not update it. With respect
to P, point @ lies along one of the six principal direc-
tions. We check if the directed distance of P along that
direction is larger than the length of edge connecting
P and Q. If that is the case, we are guaranteed that
point @ lies outside the boundary of the SV. Therefore
we propagate the front to point @) by adding @ to the
front. In addition, the flag for point @ is set to Outside.

The pseudo-code is shown in Alg. 5.1. The front propaga-
tion continues in this manner until the front has visited all
grid points outside the SV. At this time, front propagation
terminates. In this manner, we obtain an inside/outside clas-
sification for each grid point. We combine this inside/outside
classification with the unsigned distance field computed in
Sec. 5.1 to obtain a signed distance field. All six directed
distances at a grid point always have the same sign.

5.3

We estimate the outer boundary of open surfaces by per-
forming an isosurface extraction from the signed distance
field generated using the approach described in Sec. 5.1 and
Sec. 5.2. We use the Extended Marching Cubes (EMC)
algorithm [Kobbelt et al. 2001] to perform the isosurface
extraction. This algorithm can detect sharp features and
sample them in order to reduce the aliasing artifacts. The
output of the isosurface extraction is a polygonal mesh. This
is our initial approximation to the outer boundary.

Isosurface Extraction

while front is nonempty
Extract a trial point P from the front
P.tag = KNOWN
for each neighbor @ of P,
if Q.tag ! = Known then
d = Direction from P to @
if Directed Distance(P,d) > Edge_Length(P,Q) then
Q.flag = Outside
if Q.tag == Far then
Add @ to the Front
Q.tag = Trial
endif
endif
endif
endfor
endwhile
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ALGORITHM 5.1: Fast Marching Method

In order to perform isosurface extraction, we need to know
which edges of a cube of the spatial grid are intersected by
the isosurface. An edge of a cube is intersecting if the two
endpoints of the edge have different inside/outside classifi-
cation. For each intersecting edge of a cube, the directed
distances of the endpoints of the edge give us the position of
the intersection point (see Fig. 7). The advantage of using
directed distance is that it provides us with exact surface
samples. The standard Marching Cubes algorithm can pro-
duce aliasing artifacts in the vicinity of sharp features. The
Extended Marching Cubes algorithm uses a tangent element
approximation to reduce aliasing artifacts and provide bet-
ter reconstruction in the presence of sharp features. Thus we
have a better approximation to the exact, outer boundary.

We only use the directed distance of the grid point which
is Outside. The directed distance of the grid point which is
Inside may result in incorrect intersection points (see Fig.
7).

5.4 Topological Refinement

The underlying topology induced by our SV approximation
algorithm can be different from the topology of the exact
SV. This mainly results from the sampling and reconstruc-
tion steps in our computational pipeline. However, our al-
gorithm attempts to maintain some of the topological prop-
erties of SV, i.e. closed and connected boundary. According
to our sweep equation in Eq. 1, the SV that we generate for
a polyhedron can be a non-manifold. However, its bound-
ary always provides a closed, water-tight surface, since the
generator is a closed set. Moreover, the structure always
generates one connected component.

To ensure a single connected component in our SV al-
gorithm, we perform a topological check by traversing the
generated polygonal mesh to detect the occurrence of such
a case (see Fig. 8) . We arbitrarily pick a vertex from the
mesh. We mark this vertex and recurse on each of the un-
marked neighboring vertices. At the end of this traversal, if
any unmarked vertices remain, it implies that the mesh has
more than one component. In that case, we refine the spatial
grid, recompute the distance field at a higher resolution, and
perform the reconstruction again. We use EMC algorithm
for the iso-surface reconstruction. This algorithm always
generates a closed polygonal mesh structure. Therefore, our
SV algorithm can guarantee closed, connected surface struc-
tures.
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Figure 6: Fast Marching Method. A fast marching level
set method is used to propagate a front (pink dotted curve)
around the surface primitives of SV (solid blue curves). All
the grid points visited by the front (grey circles) lie outside
the outer boundary while the remaining grid points (green
circles) lie inside the outer boundary. During front propa-
gation, a grid point P can update its neighboring grid point
Q if the directed distance from P to Q is greater than the
length of the edge connecting P and Q

6 Analysis of Swept Volume Algorithm

In this section, we analyze the performance of our SV algo-
rithm, and also discuss the sources of errors in the algorithm.

6.1 Performance Analysis

Our SV algorithm has the following computational complex-
ity:

Surface Generation The computational cost of the surface
generation is mainly determined by the surface tessellation
process, and its complexity is sensitive to the output; i.e.
O(M), where M is the number of triangles generated by
the tessellation. Let us denote N. as the total number of
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Figure 7: Iso-Surface Extraction: Figure on the left shows
the reconstructed surface (purple) for two surface primitives
(blue and red). We use the directed distance (show in brown,)
to compute intersection points (i0 and i1). The grey and
green circles respectively indicate grid points that lie Outside
and Inside the outer boundary. Figure on the right shows
that the directed distance of a Inside grid point (Point B)
may result in incorrect intersection points (12 and i3). We
only use the directed distance of Outside grid points for re-
construction.
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Figure 8: Topological Refinement. We ensure that our SV
approzrimation is a single connected component by perform-
ing topological refinement. We perform a topological check
to see if our approximation has more than one component.
In that case, we refine the spatial grid and perform the re-
construction again.

convex edges of the input polyhedra I', and Ny as the total
number of faces of I'. Assuming that I is triangulated, in
the worst case, 3NN ruled surfaces and Ny developable sur-
faces are generated. Let us further denote M!(e, ) as the
number of triangles generated by a ruled surface i, which
depends on the given surface deviation error € and the tra-
jectory 7, and denote M J]c (e, 7) as the number of triangles by

a developable surface j. Let M = max>"¢ (M (e, 7)) and
N :

M} = max;’, (Mj(e,7)). Then, M = 3N.MS + N;M}.

Typically, in our experiments, M and M}" correspond to a

few hundred triangles.

Distance Field Generation Let D be the maximum dimen-
sion of the bounding box enclosing the surface primitives of
SV. Then, let K = D/e, where € is the given surface devi-
ation error. We use a K x K x K uniform spatial grid for
generating the distance field, front propagation and isosur-
face extraction to restrict the reconstruction error within e
(see Sec. 6.2 for more detail). As stated earlier, we compute
the distance field using graphics hardware. We can measure
the time complexity of the distance field generation in terms
of number of primitives sent to the graphics hardware. A
primitive p; gets rendered n,, times where NN is the number
of primitives and n,, is the number of slabs it occupies. Also
the size of the spatial grid contributes to the time complex-
ity. So the total time complexity is O(K?>) + O(Zﬁil Np, )-
Typically, np, is a small constant for most primitives. So the
time to generate directed distance fields is typically linear in
number of primitives.

Fast Marching Front Propagation Front propagation takes
time proportional to the size of the spatial grid; i.e., O(K?®)

Isosurface Extraction Isosurface extraction takes time pro-
portional to the size of the spatial grid; i.e., O(K?®)

Total Complexity The total computational complexity of
our SV algorithm is O(M + K* + "N n,,).

6.2 Error Analysis

Our SV algorithm is an approximation scheme. There are
three main sources of the errors that govern the accuracy of
the result of our algorithm; tessellation errors by approxi-
mating surface primitives, sampling errors from generating
3D grids of distance fields, and iso-surface reconstruction
errors from the EMC.



Tessellation Errors We use adaptive tessellation to trian-
gulate ruled surfaces, and uniform tessellation to triangu-
late developable surfaces. These methods can triangulate
the surface primitives within an error threshold €, which is
essentially the Hausdorff distance between the original sur-
faces and approximated ones.

Sampling Errors The accuracy of the distance field is de-
pendent on the implementation. We compute it using graph-
ics hardware and its accuracy is determined by the number
of bits of precision in the Z-buffer, typically 24 or 32 bits in
current hardware.

Reconstruction Errors If € is the size of the grid cell, we
are guaranteed that each point on our reconstructed outer
boundary lies within a distance € of some point on the ex-
act envelope. The approximation theory guarantees that a
piecewise linear interpolant to a smooth surface converges
with order 0(62) where € measures the sampling density. In
our case, € is the size of the grid cell. In the presence of
sharp features, however, the convergence rate drops to O(e).
However, the Extended Marching Cubes algorithm improves
the local convergence rate by performing a tangent element
approximation. This convergence rate is valid only in cells
that have at most one sharp feature.

7 Implementation and Performance

In this section, we describe the implementation of our SV
algorithm and highlight its performance on different bench-
marks.

7.1

To implement our SV algorithm, we used C++ program-
ming language with the GNU g++ compiler under Linux
operating system. For the choice of GUI implementation,
GLUT, OpenGL, Inventor and Qt were used.

We used a public computational geometry library, CGAL,
to perform an efficient traversal on the two-manifold poly-
hedral surfaces. Moreover, CGAL offers quite flexible data
structures based on the usage of templates and STL pro-
gramming, and also provide accurate evaluation of geomet-
ric predicates such as orientation test, cross product, dot
product, etc [Fabri et al. 1996]. We took advantage of these
benefits to implement the generation of surface primitives
of SV. In particular, the Polyhedron_8 class of CGAL was
extensively used.

In order to compute the distances fields quickly and ef-
ficiently, we used nVidia’s GeForce 4 GPU, which has 24
bit precision of accuracy in Z-buffer. With the availability
of new GPU’s such as ATI’s Radeon9700, we can further
improve this accuracy by using their floating point compu-
tational capability in the graphics pipeline.

Implementation

7.2 Performance

We benchmarked our SV algorithm by using different models
of varying complexities and with different sweeping trajec-
tories. The complexity of our benchmarking models varies
from 1,524 to 10,352 triangles. The model complexities are
summarized from the second to the fifth column in Table 1.
Furthermore, they consist of sharp edges and surface trian-
gles with high aspect ratio. The sweeping paths that we
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chose are helical sweep (X-Wing and Swing-Clamps), trans-
lations using cubic rational functions (Input Clutch), and
sinusoidal translations and rotations (the rest of the mod-
els). Therefore, most of our benchmarks perform sweep
along very general trajectories. For the grid resolution in
our benchmarks, we use the grid resolution K = 128 for all
the models.

We performed timing analysis on a PC with Intel Xeon
2.4 GHz processor, 2GB of memory and nVidia GeForce 4
graphics card. The time spent during each stage in our SV
computational pipeline is shown in different columns of Ta-
ble 1. As the table shows, most of the time, typically more
than 80% of the total computational time, is spent in the
distance field generation stage of the pipeline. We observed
that the distance field computation time was mainly spent
on the readbacks between the framebuffer and main memory.
Thus, as we increase the grid size K, the total computational
time will increase linearly, since we perform the readbacks
O(K) times. We measured performance of our SV computa-
tion pipeline on the hammer benchmark at a grid resolution
of K = 256. The distance field computation, front propa-
gation and isosurface reconstruction took 41.4 s, 12.6 s and
8.9 s respectively.

In Fig. 9, we illustrate the results of the SV of the
benchmarking models computed by our SV algorithms. In
the figure, each row shows the generator polyhedral model
T', sweeping path 7, and the resulting SV approximation
9SV(T'), respectively. All the rendered images in Fig. 9 are
flat-shaded.

8 Comparison with Other Approaches

In this section, we compare the performance of our algo-
rithm with earlier approximation schemes to estimate the
boundary SV.

The algorithms presented in [Abrams and Allen 1995;
Raab 1999] use a similar surface primitive generation and
tessellation technique to enumerate the surface primitives of
SV. However, they do not exploit the fact that developable
surfaces can be precisely represented as a parametric sur-
face using the envelope theory as provided in Eq. 5. As a
result, we are able to derive better error bounds with our
approximation scheme. More importantly, these algorithms
perform exact computation of arrangements of polyhedral
surfaces. This computation is prone to accuracy and de-
generate cases [Abrams and Allen 1995] and the latter has
been addressed in [Raab 1999] based on perturbation meth-
ods. However, their applications to complex models with
long sweeping trajectories has been limited. Moreover, exact
arrangement computation based on perturbation methods
appears to take considerable amount of time. Compared to
these approaches, our algorithm is less susceptible to robust-
ness problems, provides a good error bound, and is readily
extendible to complex models. However, exact computa-
tion of arrangements can produce a better approximation of
sharp features on the boundary of the SV.

The algorithm described in [Schroeder et al. 1994] sam-
ples the sweeping trajectory and reduces the SV computa-
tion to computing the union of polyhedra corresponding to
the discrete instances along the trajectory. It computes the
union by generating distance-field based samples followed
by an iso-surface reconstruction algorithm. Their formula-
tion based on sampling the trajectory can at times lead to
a coarse approximation of the SV. In particular, they need
to use very high sampling rates along the sweeping path,
otherwise iso-surface reconstruction may generate spikes or



Model Combinatorial Complexity Computational Performance (seconds)
T [ # of Surf | # of Surf Tri [ 9SV(T') | Surf Gen [ Dist Field [ Front Prop [ Tsosurface | Tot
X-wing 2496 3931 770K 307K 3.208 36.15 1.69 3.12 44.1
Air Cylinder 2280 1152 234K 249K 1.966 16.0 1.65 1.55 21.16
Swing Clamps 1524 1049 212K 126K 1.492 15.7 1.73 1.33 20.2
Hammer 1692 1390 281K 198K 1.822 16.1 1.59 1.97 21.4
Input Clutch 2116 1175 239K 129K 1.789 16.2 1.61 1.39 20.9
Pipe 10352 15554 803K 247K 4.038 59.2 1.61 2.48 67.2
Pivoting Arms 2158 1718 347K 162K 2.138 214 1.60 1.64 26.7

Table 1: Model Complexities of SV Benchmarks. The first column shows the model names of the benchmarks. From the second
to the fifth column, each column respectively shows the triangle count of the generator T, the number of ruled and developable
surfaces, the total number of triangles in the tessellated ruled and developable surfaces, and the triangle count of the boundary
of OSV(T') computed by our algorithm. From the sixzth to the tenth column, each column respectively illustrates the timing
for the surface primitive generation, distance field generation, inside/outside classification using fast marching propagation,
iso-surface extraction using the EMC, and the total computation. We have chosen a grid resolution of K = 128 for all the

benchmarks.

Ity Ity Itt) Ity Ity

(a) SV approximation
computed by SLL94

(b) Our approximation

Figure 10: Comparison With Other Approach in 2D. In (a),
the SV algorithm approzimates the blue line that is obtained
by the discrete instances of the generator I'(t) along the tra-
jectory T. Therefore, there can be many spiky features on
the approzimated SV surface. In (b), our SV algorithm ap-
prozimates the blue line that is an outer boundary of the red
lines, representing ruled and developable surfaces in 3D. The
result is a more smooth surface.

other high frequency features on the final approximation.
For example, as shown Fig. 10-(a), the algorithm presented
in [Schroeder et al. 1994] attempts to approximate an inher-
ently spiky surface (thick blue line) as a result of discrete
sampling on the trajectory, whereas our algorithm approxi-
mates a rather smooth surface which is an outer boundary
(thick blue line) of ruled and developable surfaces (red line)
as shown in Fig. 10-(b).

Overall, our approach generates a better error-bounded
approximation as compared to [Schroeder et al. 1994] and
results in a better convergence rate. Furthermore, the fast
computation of directed distance fields using rasterization
hardware considerable improves its running time.

9 Summary and Future Work

We present an efficient, fast algorithm to approximate SV
of complex polyhedral models using the distance fields, fast
marching propagation method, and iso-surface reconstruc-
tion. The algorithm has been benchmarked on a number of
complex models with different sweep paths.

There are several areas for future work. We would like
to look at adaptive subdivision schemes for better recon-
struction [Varadhan et al. 2003]. The performance of our
algorithm can be further improved by investigating more op-
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timizations. These include more efficient surface generation
based on incremental computations on sweeping path, possi-
bility of using programmable graphics hardware to simulate
the fast marching method, etc. We would like to further
investigate the application of our SV algorithm to the areas
such as collision detection, robot workspace analysis, and
computer-aided geometric design. Finally, we will like to ex-
tend this algorithm to solids bounded by curved surfaces.
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Generator

Trajectory

Viewl of SV  View2 of SV

Figure 9: SV Benchmarks. In each column, from left to right, each figure shows a generator model, sweeping trajectory, and
two views of the resulting SV approximation reconstructed by our SV algorithm, respectively. In each row, each figure shows

different benchmarking model, from top to bottom, X-Wing, Air Cylinder, Swing Clamps, Hammer, Input Clutch, Pipe, and
Pivoting Arms, respectively.
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Computer Vision using Graphics Hardware
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Computer Vision on
Graphics Hardware

Marc Pollefeys

University of North Carolina at
Chapel Hill

-
-

__-*j'iu

: 3

|

(@)

SIGGRAFE

2003

@

SIGGRAFE

Computer Vision

Computer Graphics
Models — Images

Computer Vision
Images —» Models

But both require lots of image manipulation

2003

(@)

SIGGRAFE

Computer Vision

e Shape from X

— Stereo, Motion, Shading, ...
e Tracking

e Segmentation
e Recognition

2003

Computer Vision

(©)
Hardware?

SIGGRAPH 2003
e Many attempts, special purpose
e Never really successful:
— Small market (no games!)
— Outpaced when ready...
(Moore’s law is too fast)

e So, let’s take advantage of CG
£ — Expensive stuff in CV is image operations
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) )

Computer Vision Some simple things...

e Low-level vision e image warping
—-Image filtering, edge detection, ... e image filtering

e Mid-level vision e Background segmentation
- Stereo, ... e Erosion dilation

e High-level vision
- Recognition, ...

Image warping @ Image warping @

e Plane rectification e Radial distortion correction

also usefull for stereo rectification, plane-sweep, ...

g 8
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Image filtering ﬁ

¢ Box filter build in for texture anti-
aliasing

e Multi-texturing allows more complex
linear filters (in single pass)

e Separable filters

: &)
Background segmentation msgp. 2003

e Computer Sum-of-Square-Differences

] il
. -« © ©)
Erosion/dilation ( result (

A5
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@)
Stereo (

¢ Identify corresponding pixels
—-compute depth, image warping, etc...

@)
Stereo (

e Sum-of-square differences
—identify similar pixels

e Aggregation
- take neighbors into account

e Multi-resolution

e Shiftable windows
—deal with occlusion boundaries

Sum-of-Square-Difference ﬁ Aggregate ﬁ

¢ Use same pixel-shaders as for
background differencing

(I'(2,y) — I(z,y))?

store in alpha channel

PN

e Smoothness assumption

- Neighboring pixels are probably at
similar depth

- Allows to disambiguate correspondences
e Aggregate SSD scores over window

— Multi-texturing... (slow)

- Use hardware mip-map generation

2v+1 2u+1

) 1 .
.]"l_.-.] —— Z Z J
Q‘ o 4 =2u p=2u m
ar .. . ; .
‘ﬂ— Bi-linear texture filter (add 2x2)
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)

Multi-l‘eSOh.ltion SIGG_R_A!;'_ 2003

e Combine precision of small windows
with robustness of large windows

Multi-resolution

e Use multiple mip-map levels
e Yields pyramid-shaped kernel

)

SIGGRAPH 2003

SIGGRAPH 2003

(1x1+2x2
+4x4+8x8)

(1x1+2x2
+4x4+8x8
+16x16)

Estimation)

,. g g Shape of a kernel
2.. for summing up 6 levels
TR e a0 o Render in single pass using multiple
ﬁexture units
Pl LN
<=5
@ Results (Stereo Depth @

SIGGRAPH 2003

I i Fterthethine gty Ak
iﬂ Live'results (2 cameras), Nov 2002
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Performance (Depth

@

SIGGRAPH 2003

Multi-view stereo

(@)

SIGGRAPH 2003

estimation)
Output | Search Time Img. ReadBa | Disp. Calc. _
size range Update |[ck (M/sec) e Plane sweep
(ms) | (hz) -’ sy e Multi-baseline
5122 20 71.4 |14 5.8x2 6.0 58.9
(VGA)
50 182 |5.50 65.6
100 366 |2.73 68.3
2562 20 20 50 1.6x2 1.5 53.1
50 49.9 |20 |(QVGA) 60.0
% 100 99.1 10.1 63.2 g;‘
[ L i
PEL_ LN Two input images, GeForce 4 Pii (N

Hardware Acceleration

SIGGRAPH 2003

Sample Re-Projections

near

SIGGRAPH 2003
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SIGGRAPH

Hardware Acceleration

e Minimum Requirements
—Two texture units + Pixel Shader

e Simple Implementation

For each depth plane ({
Accumulate SD
Compare and select

2003

# of Depth
/> Planes

N x K passes

SIGGRAPH

Novel view synthesis

2003

} \
#of | t
P
= @)
Conclusion (

¢ Graphics hardware offers huge
potential for computer vision

e Few bottlenecks remaining
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Scientific Computations using Graphics
Hardware

Peter Schroder
California Institute of Technology
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SPARSE MATRIX SOLVERS
ON THE GPU: CONJUGATE
GRADIENTS AND MULTIGRID

Jeffrey Bolz lan Farmer

Eitan Grinspun Peter Schroder

Caltech

MuLTI-RES MODELING GROUP

NEwW HARDWARE FEATURES

Latest generation graphics HW
floating point throughout
programmability
high resource limits

dependent texturing
many registers
many instructions

MuLTI-RES MODELING GROUP

WHY USE THE GPU?

Semiconductor trends
cost

wires vs. compute N N
Stanford streaming supercomputer

=1 _Posgible -]
s

Parallelism
many functional units
graphics is prime example

MuLTI-RES MODELING GROUP

How T0 EXPLOIT?

Harvesting this power
what application suitable?
what abstractions useful?

History
massively parallel SIMD machines
media processing

MuLTI-RES MODELING GROUP
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STREAMING MODEL MAPPING THE PROGRAM

input

What is the right record How does a program execute?

stream

abstraction? “render” a rectangle e

indices and all

Purce“, et al. 2002 globals Kernel memory as texture associated data)

data Struct.ures fragment program

streams -3 textures Kemel many pixels provide "mfnyl (s
algorithms -3 parallelism

kernels - fragment write to texture : |

0es to
record >

programs stream close the loop o-buffe texture

MuLTI-RES MODELING GROUP 5 MuLTI-RES MODELING GROUP

Texture Fragment

OUR PROGRAM SPARSE MATRICES

Kernels for scientific computing Ubiquitous in numerical computing
sparse matrix solvers discretization of PDEs: animation
not high arithmetic intensity... finite elements, difference, volumes
but... we need them everywhere optimization, editing, etc., etc.
unstructured: conjugate gradients

. Example here:
structured: multigrid processing of surfaces

Lessons to learn here... 2-manifold triangle meshes

MuLTI-RES MODELING GROUP 7 MuLTI-RES MODELING GROUP
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GEOMETRIC FLoOW

Canonical non-linear problem

mean curvature flow o
curvature normal
3,x,(t) == A, (t)H, (1)ii,(¢) :

implicit time discretization

a, = —AAt(cot(er,) +cot(f3,))

a;, =44 — Z/,EN“'(JU

MuLTI-RES MODELING GROUP

CONJUGATE GRADIENTS

High level code while(S,, < €25,)
inner loop
matrix-vector

multiply
sum-reduction

scalar-vector
\Y\VA\D)

MuLTI-RES MODELING GROUP

NON-LINEAR PROBLEMS

Basic structure
solver for SPD systems
conjugate gradients
other variants if not SPD
recompute matrix entries on GPU
minimize CPU to GPU traffic
control structure on CPU

MuLTI-RES MODELING GROUP
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Aj - off-diagonal
matrix elements

Illlll
R - pointers

to segments

MuLTI-RES MODELING GROUP

ApPPLY TO ALL PIXELS

Two extremes T ] | |

one row at a time
setup overhead

all rows at once
limited by worst row

middle ground

organize “batches” of work
what size? how to organize?

MuLTI-RES MODELING GROUP

MATRIX VECTOR PRODUCT

X~ vector elements

a;x, + Za,, X

JEN() ) - pointers to x;

R - pointers to segments

N ) A, - off-diagonal matrix elements
A, - diagonal matrix elements

MuLTI-RES MODELING GROUP 14

WHAT SIZE BATCHES?

We choose fixed size rectangles
fragment pipe is quantized

Area
(pixels)

simple experiments reveal best size
performance model
area, diagonal, wasted frags

MuLTI-RES MODELING GROUP

125



PACKING (GREEDY)

[s]3]3]s2]u2[ ol o o fofo a8 s s8] 7] 7] 7|7 7 7 f7 s 7|7 ]6]5]5]4]

non-zero entries
per row

still some zero
padding required
each batch
bound to an

appropriate
fragment program All this setup done
once only at the

beginning of time.
Depends only on
mesh connectivity

MuLTI-RES MODELING GROUP

SURFACE SMOOTHING

MuLTI-RES MODELING GROUP

RECOMPUTING MATRIX

Matrix entries depend on surface
must “render” into matrix
two additional indirection textures

previous and next ’

a; = —AAt(cot(a;) +cot(B,))
a; = 4‘4!' _z,‘g.\"mair’

MuLTI-RES MODELING GROUP

REsuLTs (NV30@500MHz)

37k elements

matrix multiply
33 instructions
1/100" of a second

reduction
7 instructions/fragment/pass
1/1900™ of a second

CG solve in 1/20t of a second

MuLTI-RES MODELING GROUP
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RESULTS

How efficient?
lots of indirection
33 instructions for 13 (average) flops
bandwidth limited
fat texture fetches are slow
not the ideal example for GPU...
small op/fetch ratio

MuLTI-RES MODELING GROUP

REGULAR GRIDS

PDEs again
this time variables on “pixel grid”
e.g.: Navier-Stokes
V-u=0

paa—u =—(u-V)u+vV’u+pb

after discretization:
solve Poisson eq.
at each time step

Vip=V-u

MuLTI-RES MODELING GROUP

So

FAR..

Unstructured matrices

irregular triangle meshes
also tet meshes
main issue is layout of matrix

Structured matrices

much nicer layout
example: fluids, image processing

MuLTI-RES MODELING GROUP

POISSON EQUATION

Appears all over the place
easy to discretize on regular grid

matrix multiply is
stencil application

FD Laplace stencil:

VZ‘Y:., = X:—l.f + Xi+l./’
+X, ., +X, 4X,

ij+ ij

MuLTI-RES MODELING GROUP
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SOLVER MULTIGRID (BASIC)

Use iterative matrix solver Principles
just need application of stencil lower frequency error resolved on
easy: just like filtering coarser grid
incorporate geometry (Jacobian) implementation needs:
variable coefficients interpolation (coarse--:fine)

But..., very ill-conditioned projection (fine--coarse)

use multigrid to counteract relaxation
Jacobi iterations

MuLTI-RES MODELING GROUP ) MuLTI-RES MODELING GROUP

V-CYCLE COMPUTATIONS

Fine to coarse to fine cycle Lots of stencil applications
project residual, relax, interpolate matrix multiply: 3x3 stencil

correction vector projection: 3x3 stencil
Projection Interpolation Interpolation interpolation: 2X2 (!)

= floor op in indexing...

1/4 1/4

Vi [’] =1/4 z‘,g‘r‘;,_ly Vo H_(i +d)/ ZJ]
face edge vertex

1/4 1/4 1/2 1/2 1

MULTI-RES MODELING GROUP 27 MULTI-RES MODELING GROUP
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DETAILS

Boundaries
Dirichlet boundaries
boundary variables are fixed
Neumann boundaries
out of bounds access clamped to O
gradient and divergence operators
one sided differences at boundary

MuLTI-RES MODELING GROUP

COARSER MATRICES

Operator at coarser level
needed for relaxation at all levels

triple matrix product

= e=1 T
.
Effectlvely
Stencil composmon

MuLTI-RES MODELING GROUP

TEXTURE LAYOUT

Storage for matrices and DOFs
variables in one texture
matrices in 9(=3x3) textures
all textures packed

exploit 4 channels v
domain decomp. g% ._JIZW
padded boundary

MuLTI-RES MODELING GROUP

STENCIL COMPOSITION

Triple matrix product...
work out terms and map to stencils
exploit local support of stencils
straightforward but t-e-d-i-o-u-s
A4[1=1/4 Y S S AL 2iwe]

e,ge{-1,0,1}

25 0)S'[e+ g —2d] A [2i+e]

ge{-1,0,1}7

store S in texture S’ with a O boundary

MuLTI-RES MODELING GROUP

129



MORE DETAILS

What is variable?
only matrix entries (stencils) vary
all other operators hard wired
still general solution!
debugging
oh, joy...
obstacles resolved at coarsest level

MuLTI-RES MODELING GROUP

REsuLTS (NV30@500MHZz)

257x257 grid
matrix multiply - 27 instructions

1/8ooth of asecond =

interpolation 10 instr.|—
projection 19 instr. ————
Overall performance M

257x257 at go fps! AR

MuLTI-RES MODELING GROUP

FLoOW EXAMPLE

Putting it all together
here: fixed velocity in and out

tracer particles for visualization
simple advection in evolving flow

MuLTI-RES MODELING GROUP

PROBLEMS

Bleeding edge...
PBuffer overhead is killing us

managing layout in a buffer by
hand... OUCH

scalar versus vector problems
give us rectangular texture border

MuLTI-RES MODELING GROUP
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ENHANCEMENTS

Small/large changes?
global registers for reductions

texture fetch with offset

scatter (displacement mapping?!)

rasterization order undefined
scatter w/ undefined order still useful

scientific computing compiler

MuLTI-RES MODELING GROUP

CONCLUSION

Where are we now?

performance not up to expectations
still a good streaming processor
most kernels run at 1-2GFlops/s
SSE on Py still very competitive
should beat CPUs in about a year
better languages! Brook? C*?

MuLTI-RES MODELING GROUP
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Implementing a GPU-Efficient FFT

Matthias M Wloka
NVIDIA
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ZVIDIA.

Implementing a GPU-Efficient FFT

<

Matthias Wloka

What is a FFT?

;
< Fourier transform o ‘

< Transform function
from time- to frequency-

domain
SHH = | ht) et at I

< Inverse Fourier transform

o h(t) =] H(f) e2mitt of o8

sin(t)

FTsin(f)
o

05 1 15 2 25 3 35 4 45

fi2

NVIDIA Corporation <
RVIDIA.
Discrete Forms for Series of Samples Solving Fourier Transforms
- Discrete Fourier transform < As matrix equation:
SH, = k=OzN-1 h, e2mikniN oH, = k=DZN'1 W™ h,
2H=W-h
< Inverse discrete Fourier transform = O(N?) operations
2 he=1N "=OZN-1 H, e2mikniN . )
< Recursive (Fast Fourier Transform):
oF, = j=OzN.1 e2mijkiN f]
=F,°+ WKF,°
-~ O(N log N) operations
< (N log N) op <
BVIDIA. RVIDIA.
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Fast Fourier Transform Implementations

< [Numerical Recipes in C]
- Loop over elements for bit-reversal :
- Loop log N times to recombine M M M M

neighbors LTIl = I ITT1]

- Weights are computed iteratively

[ITTTTTIT-
< Fastest Fourier Transform in the West
- http://fftw.org

- Optimized for current CPU
architectures

- Adapts itself to current CPU cache
sizes <
BVIDIA.

GPU FFT Feasibility

< 4k FFT requires
- ~5* 4k log 4k Flops = ~170 MFlops
- 4k * 8 bytes = 32k bytes data

-~ Compute times for
- 3.0 GHz CPU: 170MFlops @ ~12GFlops/s = ~14.2 ms
- 0.5 GHz GPU: 170MFlops @ ~32GFlops/s = ~5.3 ms

< Data transfer times:
- Download: 32k @ 2.0 GB/s =0.016 ms

O Upload: 32k @ 0.18 GB/s = 0.176 ms <
#VIDIA.

Scenarios

< Only use 3.0 GHz CPU:
-1 FFT every ~14.2 ms

< Only use 0.5 GHz GPU:
- CPU sends data, waits, gets data from GPU
-1 FFT every ~5.5 ms

< Use CPU and GPU simultaneously:
- CPU sends 3 FFTs, computes 1 FFT, reads 3 FFTs
-~ 4 FFTs every ~16.5 ms
21 FFT every ~4.1 ms @i"_
BVIDIA.

Scenarios
< Only use 3.0 GHz CPU:
- Baseline

< Only use 0.5 GHz GPU:
o~2.5X speed-up over baseline

< Use CPU and GPU simultaneously:
2~3.5X speed-up over baseline

<

AVIDIA.
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FFT Algorithm Overview

Mapping Data-Structures to GPU

Pass 0: Bit Reversal

Pass 1: combine 1-neighbors

Pass log N: combine N/2-neighbors

<

BVIDIA.

[ITTTTT="TTTTTT] 1D texture (from AGP)

¥y Vv ¥y ¥y Yy ¥
[ITTTIT—TTITTIT]

[TT] 1D float texture (render target)

1D float texture (render target)

[TTTITIT=TITITT] 1D floattexture (render target)

[ITTTTT = TTTTTT] 1D float texture (render target
and to be read back via AGP)

<

RBVIDIA.

GPU Algorithm Overview

GPU Algorithm Overview (cont.)

-~ Download FFT data to GPU as a 1D texture
- 4k by 1 texels big

<" Render quad into float texture render-target
< Quad is 4k pixels wide and 1 pixel high
- Somewhat niggly to get texture coordinates right

- Bit-Reversal done as:
- Pass address of pixel as texture coordinate
- Fragment(addr) = tex(bitreversal(addr))
- Bitreversal() is simply texture look-up @::%_',

BVIDIA.

< Log N combination passes

- Fragment(addr) = wO0(addr) * tex(addr)
+ w1(addr) * tex(neighbor(addr))

- wo0(), w1(), and neighbor() are textures
- Different for every pass
- Pre-computed

< Read final render-target back into CPU

<

RBVIDIA.
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Red Flags for GPU Performance

<1+ log N passes
- Even though all data stays on GPU (good)
- Even though per-vertex computations trivial (good)
< Lots of API calls for CPU to instruct GPU what to do
< GPU has to finish each pass before next one starts

< Only 1D textures
- GPUs highly optimized for 2D textures

< Only scalar computations
- Not quite true, because data is complex

Collapsing to Single Pass

> Combine all fragment shaders into one
- Make wo(), w1(), and neighbor() 2D textures:
- F(pass, addr)
- Let shader-compiler deal with the rest

@—‘-,;_ @:’;'
sl A e BVIDIA. BVIDIA.
Converting to 2D Textures Use Vector Operations
< After pass-collapse: w0(), w1(), and neighbor() < Store 2 complex numbers per texture
already 2D - (t0.r, t0.g) is first number
- (t0.b, t0.a) is second number
< Fold FFT-data/render-targets:
- Use 64x64 instead of 4096x1 < Store 4 complex numbers in 2 textures
- Complicates address computations for 2D w0(), w1(), < (t0.r, t0.g, t0.b, t0.a) are real parts
and neighbor() 2 (t1.r, t1.g, t1.b, t1.a) are imaginary parts
- Make wo0(), w1(), and neighbor() 3D textures 2 Code is more symmetric
(64x64x12) .
- But more temporaries are used
<~ Compute multiple FFTs simultaneously < <
-+ 4096 4096x1 FFTs in one 4096x4096 texture Jﬂ\fll