Motion Planning & Physically-based Modeling
Using GPUs

Ming C. Lin
University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/voronoi/planner
http://gamma.cs.unc.edu/PIVOT
http://gamma.cs.unc.edu/PD
http://gamma.cs.unc.edu/CULLIDE
http://gamma.cs.unc.edu/ICE

&

Organization

* Motion Planning

Organization

* Motion Planning
* Proximity Queries

 Phyiscally-based Simulation

Motion Planning

Given the initial and goal configurations, the geometric
description of the robot/agent and the environment,
find a viable path if one exists.

Applications Two Classes of Planning Algorithms

Assembly Planning * Criticality-based
Car Painting — Complete

Waste Cleaning — Computational expensive

— Difficult to implement

Character animation .
* Random Sampling

Virtual human or artificial life Probablistically complete
Molecular docking — Simple to implement

Surgical Planning — Fast in practice for most scenarios
— Performance degrading

Virtual prototyping
Pipe layout

GVD: Maximally Clear Points Planning Based on GVD & MAT

Points with the largest distance values to nearby obstacles O’Dunlaing, Sharir and Yap [1983]

Canny and Donald [1987]

Latombe [1991]

Choset, Burdick, et al. [1994-1999]
Vleugels and Overmars [1996,1997]
Guibas, Holleman and Kavraki [1999]
Wilmarth, Amato and Stiller [1999]

Basic Ideas Outline

» Use of rasterization graphics hardware for real-time motion s . . .
planning in dynamic environments Review: COIllplltlllg GVD with Graphlcs

A , . — A Hardware
» Discrete GVD of any primitive types and approximate

distance function with bounded errors

Motion Planning with GVD
» Simple and “implementation-friendly” acceleration
techniques for Voronoi-based robot motion planning
— Construct Voro

Implementation & Results

Summary

Establish milestones

Voronoi Diacram Accelerated Computation of GVD
L= [Hoff et al. SIGGRAPH’99]

Given a collection of geometric primitives, it is a Compute a discrete Voronoi diagram by ‘
subdivision of space into cells such that all points in a cell rendering a three dimensional distance ;

are closer to one primitive than to any other mesh for each Voronoi site.

The polygonal mesh is a bounded-error
approximation of a distance functions btw
a site and a 2D planar grid of points.

Each site is assigned a unique color &
distance mesh rendered in that color.

For each sample point, the graphics sys
computes the closest site and the distance
to that site using polygon scan-conversion
and the Z-buffer depth compar

The Distance Functions for 2D Primitives

Evaluate distance at each pixel for all sites
Accelerate using graphics hardware

Point Triangle

3D Distance Functions

Point Line segment Triangle

/.../ . /

w

1 sheet of a Elliptical cone
hyperboloid

3D Voronoi Diagrams

Graphics hardware can
generate one 2D slice at a
‘ time

Point sites

Outline

Review: Computing GVD with Graphics
Hardware

Motion Planning with GVD
Implementation & Results

Summary

Basic Approaches Voronoi Boundary

" o . . * For each voxel in discrete GVD, associate a color corresponding
* Depth Buffer — providing distance function to an object ID and a distance value to this obstacle.

and distance gradient (finite difference)

To extract the boundary, use continuation method similar to iso-

 Color Buffer — building Voronoi graphs

e Combination of Both

— Compute weighted Voronoi graphs
— Voronoi vertices used for milestones
— Weighted edges used for selecting paths

— Distance values for quick rejection

Constructing Voronoi Roadmap e R.oadmz}p/Graph i
Dynamic Environments

Identify Voronoi vertices

Extract Voronoi boundary

Build Voronoi graph

Select path based on edge weights

Incrementally construct Voronoi roadmap

local planner (PFF) betv
quick collision rejection test & exact CD

Outline Planning Using Voronoi Diagrams

Computing GVD with Graphics Hardware Use the Voronoi graphs to find the near optimal path
(in terms of both path length and clearance to nearby

Motion Planning with GVD ostacles)

Implementation & Results The graphs are updated on the fly using GPU

Use the potential field approach to orient the robot
Summary

Applicable to both static and dynamic environments

[Hoff, et al, ICRA’00]

Real-time Motion Planning : Static Scene Real-time Motion Planning : Dynamic Scene

Plan motion of piano (anow Distance buffer of floorplan Plan motion of music stand Distance buffer of floor-plan
through 100K triangle model used as potential field around moving furniture used as potential field

Voronoi-Based Sampling 3D Benchmark (I)

Use hardware accelerated computation of
generalized Voronoi diagram (GVD) for
PRM with Voronoi-based sampling

Classify narrow passages to select different
sampling strategies

Quick collision rejection tests using
hardware computed distance functions

25 to 1000% speedup over uniform sampling
on preliminary benchmarks

[Pisula, et al, WAFR’00]

3D Benchmark (II) Voronoi-Based Hybrid Planner

» Use Voronoi Graphs as the estimated path
 Use the curvature of the path to orient the robot

* When a collision occur, use random sampling to
correct the estimated path

[Foskey et al, IROS’01]
Model Courtesy of J-P Laumond at LAAS, Toulouse

Articulated Robots:
Crane Complex

GVG: 138.7s

Query: 334.7s

Model courtesy Jean-Paul Laumond

Collaborating Agents

Constraint-Based Motion Planning

* Transform a motion planning problem into a
constraint-based dynamic simulation

Use hardware accelerated computation of
distance fields for potential functions and
quick collision rejection

Applicable to both dynamic and static
environments with moving obstacles and
multiple collaborative agents

[Garber & Lin’02]

Virtual Protoyping

Outline
Review: Computing GVD with Graphics
Hardware
Motion Planning with GVD
Implementation & Results

Summary

Organization

* Proximity Queries

Summary
Techniques to exploit graphics hardware for real-time
motion planning of a rigid robot in 3D
Simple and easy to implement
Applicable to both static and dynamic environments
Extended to Voronoi-based sampling for PRM
Core of the Voronoi-based hybrid-planner

Central to Constrained Motion Planning

Proximity Queries

Geometric reasoning of spatial relationships among
objects (in a dynamic environment)

ok €9

Collision Detection Contact Points & Normals

Closest Points & Separation Distance Penetration Depth

Applications

Dynamic simulation — contact force calculation
Haptic Rendering -- restoring force computation
Computer Animation — motion control
Motion Planning — distance computation
Rapid Prototyping — tolerance verification
Virtual Environments -- interactive manipulation
Simulation-Based Design — interference detection
i alysis — testing & validation
aining — contact analysis and handling

Related Work

* Proximity query algorithms
— Exact, object-space
— Approximate, image-space

« Distance fields

Our Approach

CPU

Approximation

[Hoff, Zaferakis, Lin & Manocha, I3D01]

Exact, Object-Space Algorithms

Static
Rigid
Objects

decompositi

Gilbert88 , Lin90,
Cameron97, Ehmann00

Hierarchical data structures |

6, Hubbard93,
Quinlan94

10

Exact, Object-Space Algorithms

Deformable
Objects

Known surface Specialized geometry (cloth)
motion trajectories

Snyder93 Baraff92, Baraff98

Distance Fields

Distance fields give distance to nearest object from any poir
Fast marching method Sethian96
Generalized Voronoi diagrams Hoff99
Adaptively-sampled distance fields Frisken00
Distance fields for penetration computation Fisher01

3 point objects Distance field

Approximate, Image-Space Algorithms

Algorithms simplified and accelerated using graphics hardware:

sibility:
— Intersections:
CSG:
Robot motion-planning:
Voronoi diagrams:

Advantages:

Simplicity
Bound
Linear com
Robustness

Sutherland74, Catmull75

Rossignac92, Myskowski95, Baciu98
Goldfeather86, Rossignac90, Stewart00
Lengyel90, Hoff00

Hoff99

Distance Fields

Voronoi diagram computation using graphics hardware (Hoff99)

Render polygonal mesh
approximations of object
stance fields

Depth buffer
Result after compositing
distance fields usi
minimum depth tes

11

Our Goal Our Hybrid Approach

Proximity query algorithm with the following properties:

Performs all proximity queries

Handles non-convex primitives

Requires no precomputation or complex data structures
Fast and efficient

Robust

Portable

Coarse object-space Image-space
Bounded error

geometric localization proximity queries
No previous algorithm found, even in 2D! Balance load by varying localization coarseness and error bound

|Hoff, Zaferakis, Lin & Manocha, 13D01]

Geometric Localization Image-Space Proximity Queries

 Intersections
) —> (» Distance field and gradients

Contact points and normals
Potential Intersections Potential Closest Points Closest points
Separation distance and direction

*Reduces the number of pixels processed per image-space query Penetration depth and direction

*Vary max depth in hierarchy to balance CPU/graphics loads

12

Intersections

1D O D

Boundary-boundary ~ Boundary-volume Volume-volume

Draw A Draw B

Overwritten Pixels

Image-Space Proximity Queries

 Intersections

« Distance field and gradients

Contact points and normals
Closest points

Separation distance and direction
Penetration depth and direction

Distance Field and Gradients

Draw polygon to encode
negative sign in a buffer

Central difference to
compute gradient at a pixel

Contact Points and Normals

Close contact points as intersection
of enlarged boundary

Normals from gradient
of distance field

13

Closest Points

Find closest point on object A to object B

Closest Points

Compute distance field of B in A’s localized region

Closest Points

Localize region on A containing the closest point

Closest Points

)

» Render boundary of A to find set of potential closest points

* Check distances at each point to find the closest

14

Separation Distance and Direction Penetration Depth

Distance at closest point = min separation distance Minimum translational distance needed to separate objects
Gradient at closest point = separating axis direction

Penetration Depth and Direction for a
Point

Putting it all together...

Collision response between 2 deformable objects

Compute penetration depth and
direction for A’s boundary points
that intersect B’s interior

Localize Potential Intersections

Tighten Localized Region

Find Penetrating Points

Compute Distance Field

16

Compute Penetration Depth and
Direction

Use Proximity Info for Collision Response

Repeat Process for Other Object

Separation Forces from Penetration
Depth

17

Demonstrations

* Simulation test cases:
— Rigid and deformable objects
— Different contact scenarios

» Collision response in 2 simulation strategies:

— Non-penetration constraint, backtracking
— Unconstrained, penalty-based

* In each demo:
— No precomputation
— Interactive frame rat
— Bounding-box intersection localization
— Pentium IIT 800, nVidia GeForce25

BUMPER CARS

» Convex, rigid objects
» Less frequent contact
* Non-penetration constraint, backtracking

¢ Non-co rigid objects
» Frequent simultaneous close contacts

* Unconstrained, penalty-based

Non-conves objects
Frequent interlocking contacts

* Unconstrained, penalty-|

18

» Non-convex, deformable objects Resolving extreme penetration

Non-convex, rigid ol S .
i . » Continuous contact
s frequent interlocking contacts .
* Unconstrained, penalty-based

Unconstrained, penalty-based

Performance

Performance timings for dynamics simulations. The number of objects, number of line
segments, and the average total time in milliseconds to run proximity queries on all
objects in the scene per frame is reported. Timing data was gathered from three
machines: a Pentium-Ill 933MHz desktop with a 64Mb GeForce2, a SGI 300MHz
R12000 with InfiniteReality2 graphics, and a Pentium-Ill 750Mhz laptop with ATI

Rage Pro LT graphics.

Effects of Changes in Error Tolerance

Effects of Error Tolerance Performance of Wavy
InfiniteReality2 ATI Rage Pro LT

Coom | omo | oms

The effect on performance when changing the distance error tolerance d. We used
proximity queries on the wavy demo with no collision response. The error determines
the number of pixels used in the image-based operations. Systems with low graphics
performance are more directly affected by the choice of d (see ATI Rage Pro LT);
however, as the error is increased there is less dependence on graphics performance
and the faster laptop CPU overtakes the InfiniteReality2 system.

19

Recent Results: Extension to 3D Real-time queries: Deformable models
Non-convex, comple: D
deformable objects

~20000 polygons each
cylinder

Continuous contact

Unconstrained, penalty-
based

Intersection region in
blue

Distance field gradients
in red and green

3D distance field Egprescomputition

3D intersections 0 , Manocha’02] Resolving extreme penetration

NURBS T SO MOdeIS [Seeger et al.’00]

Sample Slices from the Visible ~ SURFdriver Surface NCAT Phantom
Non-convex, complex 3D Human CT Data Set Reconstruction Program (anterior view)
deformable objects [

Real-time queries: Deformable models

~20000 polygons each
cylinder

Continuous contact

Unconstrained, penalty-
based

Intersection region in

blue .
Distance field gradients ‘
in red and green

No pre-computation

[Hoff, Zaferakis, Lin, Manocha’02] Resolving extreme penetration

Body Liver ~ Stomach Spleen Kidneys

4D NURBS Respiratory Model Proximity Queries between Organs

Anterior View Left Lateral View Anterior View Right Lateral View
Motion Analysis of the Diaphragm, Heart, Liver, Spleen, and Stomach . .
[Seeger et al.’00]

Modeling the Heart Structures Proximity Queries using Graphics H/'W

; ; Performs all proximity queries
Handles general non-convex & deformable
primitives

Heart exterior

Requires no pre-computation or complex

Contact hierarchical data structures

computations)
between Inner Fast and efficient

chambers

21

Some Observations

Appropriate for most of applications where
numerical accuracy is not the key

Running time related to the rendering time

Error bound provides smooth dial between
performance and level of approximation
Varying the max depth in the hierarchical
localization allows balancing load between
CPU and graphics

Motivation

» Contact Handling in Rigid Body Simulation
— Penalty-based method for contact resolution

— Time stepping in general simulation framework

Definition

* Penetration Depth (PD)
— Minimum translational distance to separate two intersecting
objects

Motivation

* Penalty-based Method

22

Motivation

* Time stepping method
— Estimate the time of collision (TOC)

PD Applications

Rigid body dynamic simulation

Robot motion planning for autonomous agents and
animated characters

Haptic rendering

Tolerance verification for CAD models

Motivation

Time stepping method using PD
1. Compute the penetration depth

2. Estimate the TOC by interpolation in time domain

Previous Work

» Convex polytopes
— [Cameron ’86 ’97], [Dobkin et al. *93], [Agarwal et al. *00],
[Bergen *01], [Kim et al. *02]

 Local solutions for deformable models
— [Susan and Lin ’01], [Hoff et al. 01]

¢ No solutions existed for non-convex models

23

Overview

Preliminaries

— Minkowski sum-based Framework
Basic PD Algorithm: A Hybrid Approach
Acceleration Techniques

— Object Space Culling

— Hierarchical Refinement

— Image Space Culling

Application to Rigid Body Dynamic Simulation

Preliminaries

* Local solutions might not have any relevance to a
global solution

<— Global PD solution

<— Local PD solutions

Overview

* Preliminaries
—Minkowski sum-based Framework

Preliminaries

* Minkowski sum and PD

-P®-Q={p-q|peP,qeQ}
— PD := minimum distance between OQ_P and the surface of P

®-Q

24

Preliminaries

* Minkowski sum and PD

-P®-Q={p-q|peP,qeQ
— PD := minimum distance between Oy, and the surface of P

®-Q

Overview

 Basic PD Algorithm: A Hybrid Approach

Preliminaries

» Decomposition property of Minkowski sum
—IfP=P,UP,, then P®Q=(P,®Q) U (P, ®Q)

» Computing Minkowski sum
— Convex: O(n log(n))
» where n is the number of features
— Non-Convex: O(n°) computational complexity
* In theory, use the convolution or the decomposition
property
* In practice, very hard to implement

PD Algorithm : A Hybrid Approach

cP®EQ=P,©2QuU (P, ®Q)

— where P=P, UP,

25

PD Algorithm : A Hybrid Approach

PEQ=P,®QuU (P, ®Q)
— where P=P, UP,
* Precomputation: Decomposition

PD Algorithm : A Hybrid Approach

cP®Q=P,®QuU (P, ®Q)
— whereP=P, UP,

* Precomputation: Decomposition

* Runtime:
— Object Space: Pairwise Minkowski sum computation
— Image Space: Union by graphics hardware

[Kim, Otaduy, Lin & Manocha, SCA’01]

PD Algorithm : A Hybrid Approach

cPOEQ=P,®QuU (P, ®Q)
— where P=P, UP,
* Precomputation: Decomposition

* Runtime:
— Object Space: Pairwise Minkowski sum computation

PD Computation Pipeline

Precomputation

Run-time PD Query

Pairwise -
Minkowski Sum
(Object Space)

[Kim, Otaduy, Lin & Manocha, SCA’02]

26

Convex Surface Decomposition Pairwise Minkowski Sum

. .
1‘."!”;

* Algorithms

— Convex hull property of convex Minkowski sum
/ * P®Q = ConvHull{v;+v;| v; € V}, v; € Vo }, where P and

2P = Q are convex polytopes

] *~ ' 4
* [Ehmann and Lin *01] — Topological sweep on Gauss map [Guibas *87]

» Decompose an object into a collection of convex surface
patches

N . . — Incremental surface expansion [Rossignac ’92
» Compute the convex hull of each surface patch ° ° Pe [&]

Closest Point Query Closet Point Query

Goal ¢ Main Idea

—Incrementally expand the current front of the boundary

—Given a collection of convex Minkowski sums,
compute the shortest distance from the origin to the
surface of their union

— An exact solution is computationally expensive =
Approximation using graphics hardware

27

Closest Point Query

Render front faces, and open up a window where
z-value is less than the current front

Render back faces w/ z-greater-than test
Repeat the above m times, where m := # of obj’s

Overview

* Acceleration Techniques
—Object Space Culling
—Hierarchical Refinement
—Image Space Culling

Closest Point Query

Render front faces, and open up a window where
z-value is less than the current front

Render back faces w/ z-greater-than test
Repeat the above m times, where m := # of obj’s

Motivation

* PD is shallow in practice

» Convex decomposition has O(n) convex pieces in
practice
— Culling strategy is suitable and very effective

28

Object Space Culling

* Basic Idea

— If we know the upper bound on PD, upp, we do not need to
compute the Mink. sum of pairs whose Euclidean dist is more
than Upp

Object Space Culling

» Basic Idea

— If we know the upper bound on PD, up, we do not need to
compute the Mink. sum of pairs whose Euclidean dist is more
than Upp

Object Space Culling

* Basic Idea

— If we know the upper bound on PD, Upp, we do not need to
compute the Mink. sum of pairs whose Euclidean dist is more
than Upp

Image Space Culling

» Rendering only once for the Minkowski sums
containing the origin

* Refine the upper bound for every view frustum

* View frustum culling

29

Hierarchical Culling

e BVH Construction (Ehmann and Lin ’01)

 Hierarchical Culling

@
,0\,0‘0

Hierarchical Refinement

Precomputation

Run-time PD Query

- Pairwise
Cullin) . . =)

Refine the current PD estimate, and
go to the next level of BVH

Hierarchical Culling

* BVH Construction (Ehmann and Lin *01)

* Hierarchical Culling

PD Benchmarks

Touching Tori Interlocked Tori Interlocked Grates Touching Alphabets

-
0.3sec (4 hr) 3.7sec(4hr) 1.9sec (177 hr) 0.4 sec (7 min)

» With Accel. (Without Accel.)

30

PD Benchmarks

Implementation

* SWIFT++ [Ehmann and Lin

« QHULL

* OpenGL for closest point query

Hierarchical Culling Example

0.219 sec 0.220 sec

.
Implementation
void DrawUnionOfConvex(ConvexObj *ConvexObjs, int NumConvexObjs)

{
glClearDepth(0);
glClearStencil(0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);

glEnable(GL_STENCIL_TEST)

for (int i <NumConvexOb]
for (int ; j<NumConvexOl

glDepthMask(0);

glColorMask(0,0,0,0);
glDepthFunc(GL_LESS);
glStencilFunc(GL_ALWAYS,1,1);
glStencilOp(Gl EP,GL_REPLACE,GL_KEEP);
ConvexObjs[j].DrawFrontFaces();

glDepthMask(1);

glColorMask(1,1,1,1);
glDepthFunc(GL_GREATER);
glStencilFunc(GL_EQUAL,0,1);
glStencilOp(GL_ZERO,GL_KEEP,GL_KEEP);
ConvexObjs[j].DrawBackFaces();

31

Accuracy of PD computation
* Our algorithm computes an upper bound to PD

* Image space computation determines the tightness of
the upper bound
— Pixel resolution
— Z-buffer precision

* In practice, with 256x256 pixel resolution, the
algorithm rapidly converges to the PD

Application to Rigid Body Simulation

* Interpenetration is often unavoidable in numerical
simulations

* Need for a consistent and accurate measure of PD

* Penalty-based Method
—F=(k-d)n
e d: PD, n: PD direction, k:stiffness

Overview

» Application to Rigid Body Dynamic Simulation

Application to Rigid Body Simulation

» Time Stepping Method
— Estimate the time of collision (TOC)
* s: separation dist before interpenetration
* d: PD, n: PD dir after interpenetration
* v relative velocity of closest features
* v4: relative velocity of PD features

32

Application to Rigid Body Simulation

—X(t) : 1D distance function between closest features
and PD features projected to PD direction

—x(0)=s, x(T)=d
—dx/dt(0) = vgen, dx/dt(T) = vgen

—Compute the roots of x(t) =0

Rigid Body Simulation Demo

Rigid Body Simulation Demo

Example 1
Average complexity: 250 triangles
60 Convex Pieces / Object

Example 2
Average complexity: 250 triangles
200 letters and alphabets

Summary

* First practical PD algorithm using a hybrid approach

* Acceleration techniques:
— Object space culling
— Image space culling
— Hierarchical refinement

» Application to rigid body simulation

33

Proximity Queries

* Object-Space Methods
nsiderable pre-processing for hierarchy construction
— Difficult to achieve real-time performance on complex
deformable and/or breaking models

* Image-Space Techniques
— Primitive rasterization «> sorting in screen-space

— Applicable to interference tests

Goals

¢ Interactive Performance

* Complex objects
— Large number of objects
— High primitive count
— Non-convex objects
— Open and closed objects

* Non-Rigid Motion

— Deformable bodies
— Changing topology

Problems with Image-Based Methods

* Closed models

» Frame buffer readbacks — slow
— NVIDIA GeForce 4, Dell Precision Workstation
with 1Kx1K depth buffer taking 50ms

Overview

* Potentially Colliding Set (PCS) computation
» Exact collision tests on the final PCS

Sub-object
Level Exact Tests
Pruning

Object Level
Pruning

GPU based PCS
computation

34

Potentially Colliding Set (PCS)

* A PCS consists of the set of objects that can
potentially collide with each other

Comparison

* Object Level Pruning < Broad Phase

* Sub-object Level Prunning <» Narrow Phase

Sub-object
Level Exact Tests
Pruning

Object Level
Pruning

s
H ;
Sweep & Prune Spatial partition
Bucketing, etc BVH, etc.

Potentially Colliding Set (PCS)

Visibility Computations

Lemma 1: An object O does not collide with a set of
objects S if O is fully visible with respect to S

— Utilize visibility for PCS computation

35

Collision Detection using Visibility

Object O—

Computations

PCS Pruning

Fully Visible

PCS Pruning

Lemma 2: Given n objects O;,0,,...,0,, an object O;
does not belong to PCS if it does not collide with
01,-,0:.1,0441,--+,05

— Prune objects that do not collide

PCS Pruning

36

PCS Pruning

PCS Computation: First Pass

Render

0, 0O, ...

PCS Computation

» Each object tested against all objects but itself
* Naive algorithm is O(n?)
* Linear time algorithm

— Uses two pass rendering approach

— Conservative solution

PCS Computation: First Pass

Render

0,

37

PCS Computation: First Pass

Render

0, O,

PCS Computation: First Pass

Render

PCS Computation: First Pass

PCS Computation: Second Pass

Render

38

PCS Computation: Second Pass

Render

(@)

n

PCS Computation: Second Pass

Render

PCS Computation: Second Pass

Render
e

On—l On

N

PCS Computation: Second Pass

39

PCS Computation

Fully Visible Fully Visible
0, 0, ... 0@ 0., ... O, O,

1

Sub-Object Level: Overlap Localization

» Each object is composed of sub-objects

» We are given n objects Oy,...,0,
» Compute sub-objects of each object O, that overlap

with sub-objects of other objects

PCS Computation

Sub-Object Level: Overlap Localization

e QOur solution

— Test if each sub-object of O overlaps with sub-objects of
0,,..0,
— Test if each sub-object of O; overlaps with sub-objects of

* Linear time algorithm
» Extend the two pass approach

40

Sub-Object Level: Overlap Localization

PCS

e

.0,.,0

n-1

_
Sub-objects

Sub-Object Overlap Localization: First Pass

Render sub-objects

Rendered
sub-objects

Sub-Object Overlap Localization: First Pass

Render sub-objects

Sub-Object Overlap Localization: First Pass

Render sub-objects

Rendered
sub-objects

41

Sub-Object Overlap Localization: First Pass

Render sub-objects

0, 0, ... O,

%/_/

Rendered
sub-objects

Sub-Object Overlap Localization: First Pass

Render sub-objects

0, 0, ... O

Rendered
sub-objects

Sub-Object Overlap Localization: First Pass

Render sub-objects

Rendered
sub-objects

Sub-Object Overlap Localization: First Pass

Render sub-objects

Rendered
sub-objects

42

Sub-Object Overlap Localization: First Pass

Rendered
sub-objects

Sub-Object Level Overlap Localization

&
— . .

Sub-objects

Sub-Object Overlap Localization: Second Pass

Render sub-objects

Visibility Queries

* We require a query
— Tests if a primitive is fully visible or not
 Current hardware supports occlusion queries
— Test if a primitive is visible or not
* Our solution

— Change the sign of depth function

43

Visibility Queries

Depth function
GEQUAL LESS

Occlusion Query not
query supported

Examples - HP_Occlusion_test, NV_occlusion_query

Optimizations

* First use AABBs as object bounding volume
» Use orthographic views for pruning

* Prune using original objects

Bandwidth Analysis

» Read back only integer identifiers

— Independent of screen resolution

Implementation

e Dell Precision workstation
* Dell M50 Laptop

[Govindaraju, Redon, Lin, Manocha, GH’'03]

44

Test Models: Environment 1 Test Models: Environment 2

* 100 deforming * Deforming
cylinders
+ Total - 20K

2 @ « Each torus — 20K
triangles O@ triangles
C

torii

Test Model: Environment 3 Test Model: Environment 4

e 250K Dragon
4 * 35K Bunny

250K triangles

Bunny — 35K triangles

[Govindaraju, Redon, Lin, Manocha, GH’'03]

45

Collision Time

Live Demo of Environment 4

 Dell M50 laptop, 2.4GHz Pentium IV-M CPU,
NVIDIA Quadro4 700GoGL GPU, 1GB memory
running Windows XP

Performance

Number of
polygons
v/s
collision
time

Performance

Collision Time

Collision Time

Performance

Number of
objects v/s
collision
time

Screen
resolution
/iS
collision
time

46

Advantages

No coherence

No assumptions on motion of objects

Works on generic models

A fast pruning algorithm

No frame-buffer readbacks

Applicable to deformable & breaking models

Summary

* First collision detection using GPU
— Applicable to polygon soups, open boundary, etc.
— No assumptions on motion
— Allowing change of topology and dynamic geometry
— Unified approach for object & sub-object level culling
* Linear time PCS computation algorithm
* No frame buffer readbacks

Limitations

» No distance or penetration depth information
* Resolution limited accuracy
* No self-collision detection

Organization

* Physically-based Simulation

47

Visual Simulation of Ice Growth

Motivation

* “We built a particle system that produced the effect of
fingers of ice ... which was tricky, since the particles
didn’t do that automatically”

- Arnon Manor, Cinesite

Motivation

» Special Effects
* Computer Animation

A scene from X-Men 2

Our approach

* A method for modeling and simulating visually
complex structure of ice — both geometrically
and optically
— Physical Simulation using Phase Field Methods
— Simulation Acceleration using GPUs & Banded Opt.
— Controlling Complexity
— Post-Processing for Rendering

[Kim and Lin, SCA'03]

48

Phase Field Methods

* Temperature PDE

+
oy

GPU Acceleration

* Fields map easily to GPU

» Framework of [Harris et al. 2002]
— Fields sent as textures
— Fragment program runs PDE per texel
— ~100 lines of Cg!

(¢

oz p
00 ox

)+

Ice Morphology

dendritic isotropic

Performance

* Only unbanded currently possible
* No early exit yet on GPU

49

Real-Time Capture

[Kim and Lin, SCA'03]

Collaborators

Bill Baxter
Tim Culver
Mark Foskey
Maxim Garber
Naga Govindaraju
Kenny Hoff
John Keyser
Theodore Kim
Young Kim
Dinesh Manocha
Miguel Otaduy
Charles Pisula
Stephan Redon
Andrew Zaferakis

Future Work

Extension to motion planning of deformable
robots and other types of constraints

PD computation for rotational movement
using GPU

Continuous Collision Detection using GPUs

Physically-based modeling of paint media,
phase transition (melting, solidification, etc)

Acknowledgements

Stephen Ehmann
Stefan Gottschalk
Sarah Hoff
David Hsu
Eric Larsen
Jean-Claude Latombe

Jean-Paul Laumond

50

Acknowledgements

Army Research Office
DOE ASCI Program
Intel Corporation
National Institute of Health
National Science Foundation
Office of Naval Research
University of North Carolina at Chapel Hill

51

