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FastV: From-point Visibility Culling on Complex Models

Abstract1

We present an efficient technique to compute the potentiallyvisi-2

ble set (PVS) of triangles in a complex 3D scene from a viewpoint.3

The algorithm computes a conservative PVS at object space accu-4

racy. Our approach traces a high number of small, volumetricfrusta5

and computes blockers for each frustum using simple intersection6

tests. In practice, the algorithm can compute the PVS of CAD7

and scanned models composed of millions of triangles at interac-8

tive rates on a multi-core PC. We also use the visibility algorithm to9

accurately compute the reflection paths from a point sound source.10

The resulting sound propagation algorithm is10− 20X faster than11

prior accurate geometric acoustic methods.12

1 Introduction13

Visibility computation is a widely-studied problem in computer14

graphics and related areas. Given a scene, the goal is to determine15

the set of primitives visible from a single point (i.e. from-point vis-16

ibility), or from any point within a given region (i.e. from-region17

visibility). At a broad level, these algorithms can be classified into18

object space and image space algorithms. The object space algo-19

rithms operate at object-precision and use the raw primitives for20

visibility computations. The image space algorithms resolve visi-21

bility based on a discretized representation of the objectsand the22

accuracy typically corresponds to the resolution of the final image.23

These algorithms are able to exploit the capabilities of rasterization24

hardware and can render large, complex scenes composed of tens25

of millions of triangles at interactive rates using currentGPUs.26

In this paper, we primarily focus on from-point, object space con-27

servative visibility, whose goal is to compute a superset ofvisi-28

ble geometric primitives. Such algorithms are useful for walk-29

throughs, shadow generation, global illumination and occlusion30

computations. Another application for object space visibility al-31

gorithms is accurate computation of reflection paths for acoustic32

simulation or sound rendering. Given a point sound source, 3D33

models of the environment with material data, and the receiver’s34

position, geometric acoustic (GA) methods perform multiple levels35

of reflections from the obstacles in the scene to compute the im-36

pulse response (IR). Sample-based propagation algorithms, such as37

stochastic ray-tracing for GA can result in statistical errors or in-38

accurate IRs [Funkhouser et al. 2003; Lenhert 1993]. As a result,39

we need to use object space visibility techniques, such as beam40

tracing [Funkhouser et al. 1998; Laine et al. 2009], to accurately41

compute the propagation paths. However, current object space visi-42

bility algorithms work well on simple scenes with tens of thousands43

of triangles or with large convex occluders. There is a general be-44

lief that it is hard to design fast and practical object spacevisibility45

algorithms for complex 3D models [Ghali 2001].46

Main Results: We present a novel algorithm (FastV) for conser-47

vative, from-point visibility computation. Our approach is general48

and computes a potentially visible set (PVS) of scene triangles from49

a given view point. The main idea is to trace a high number of 4-50

sided volumetric frusta and compute efficiently simple connected51

blockers within each frustum. We use the blockers to computea52

far plane and cull away the non-visible primitives, as described in53

Section 3.54

Our guiding principle is to opt for simplicity in the choice of dif-55

ferent parts of the algorithm, including frustum tracing, frustum-56

intersection tests, blocker and depth computations. The main con-57

tribution of the paper is primarily in combining known algorithms58

(or their extensions) for these parts. Overall, FastV is thefirst prac-59

Figure 1: Fast Acoustic Simulation: We used FastV for accurate
computation of reflection paths in this Cathedral model with76.2K
triangles. Our propagation algorithm performs three orders of re-
flections from the source (S) and compute the IR at the receiver (R)
in less than 10 seconds. To the best of our knowledge, ours is the
first efficient and accurate propagation algorithm to handlemodels
of this complexity.

tical method for visibility culling in complex 3D models dueto the60

following reasons:61

1. Generality: Our approach is applicable to all triangulated62

models and does not assume any large objects or occluders. The63

algorithm proceeds automatically and is not susceptible todegen-64

eracies or robustness issues.65

2. Efficiency: We present fast algorithms based on Plücker co-66

ordinates to perform the intersection tests. We use hierarchies along67

with SIMD and multi-core capabilities to accelerate the computa-68

tions. In practice, our algorithm can trace101 − 200K frusta per69

second on a single 2.93 Ghz Xeon Core on complex models with70

millions of triangles.71

3. Conservative: Our algorithm computes a conservative su-72

perset of the visible triangles at object-precision. As thefrustum73

size is decreased, the algorithm computes a tighter PVS. We have74

applied the algorithm to complex CAD and scanned models with75

millions of triangles and simple dynamic scenes. In practice, we76

can compute conservative PVS, which is within a factor of5−25%77

of the exact visible set, in a fraction of a second on a 16-corePC78

(as described in Section 5).79

Accurate Sound Propagation:We use our PVS computation algo-80

rithm to accurately compute the reflection paths from a pointsound81

source to a receiver, as described in Section 4. We use a two phase82

algorithm that first computes image-sources for scene primitives in83

the PVS computed for primary (or secondary) sources. This isfol-84

lowed by finding valid reflection paths to compute actual contribu-85

tions at the receiver. We have applied our algorithm to complex86

models with tens of thousands of triangles. In practice, we observe87

a performance improvement of up to20X over prior accurate prop-88

agation methods that use beam tracing.89

2 Previous Work90

The problem of visibility has been extensively studied in computer91

graphics, computational geometry, acoustic simulation and related92

areas for more than four decades. We refer the readers to excellent93

recent surveys [Durand 1999; Cohen-Or et al. 2003]. Due to space94

limitations, we only give a brief overview of some object space and95

sampling-based methods.96
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Object space visibility computations: There is extensive work on97

object-precision algorithms, including methods for hidden surface98

removal [Ghali 2001] and exact visibility computation froma point99

using beam tracing [Heckbert and Hanrahan 1984; Funkhouser100

et al. 1998; Overbeck et al. 2007] or Plücker coordinates [Niren-101

stein 2003]. Many exact algorithms have also been proposed for102

region-based visibility [Durand 1999; Duguet and Drettakis 2002;103

Nirenstein 2003; Bittner and Wonka 2005]. There is consider-104

able literature on conservative visibility computations from a single105

viewpoint [Bittner et al. 1998; Coorg and Teller 1997; Hudson et al.106

1997; Luebke and Georges 1995] or from a region [Koltun et al.107

2000; Leyvand et al. 2003; Teller 1992]. Some of these algorithms108

have been designed for special types of models, e.g. architectural109

models represented as cells and portals, 2.5D urban models,scenes110

with large convex occluders, etc. It is also possible to perform con-111

servative rasterization [Akenine-M̈oller and Aila 2005] on current112

GPUs to compute an object-precision PVS from a point.113

Image space or sample-based visibility computations: These114

methods either make use of rasterization hardware or ray-shooting115

techniques to compute a set of visible primitives [Cohen-Oret al.116

2003]. Most of these methods tend to be either approximate or117

aggressive [Nirenstein and Blake 2004; Wonka et al. 2006]. Cur-118

rent GPUs provide support for performing occlusion queriesfor119

from-point visibility and are used for real-time display ofcomplex120

3D models on commodity GPUs [Klosowski and Silva 2000; Mat-121

tausch et al. 2008].122

3 FastV: Visibility Computation123

In this section, we present our conservative visibility computation124

algorithm. The inputs to our algorithm are: a view point (v ∈ ℜ3),125

a set of scene primitives (Π), and a viewing frustum (Φ), with an126

apex atv. Our goal is to compute a subset of primitivesπ ⊆ Π127

such that every primitivep ∈ Π, which is hit by some rayr ∈ Φ128

is included in the computed subsetπ. The subsetπ is called the129

potentially visible set (PVS). The smallest such PVS is the set of130

exactly visible primitives (πexact). The subsetπ computed by our131

algorithm is conservative, i.e.,π ⊇ πexact. For the rest of the132

paper, we assume that the primitives are triangles, though our algo-133

rithm can be modified to handle other primitives. We also assume134

that the connectivity information between the scene triangles is pre-135

computed. We exploit this connectivity for efficient computation;136

however our approach is also applicable to polygon soup models. In137

order to perform fast intersection tests, we store the sceneprimitives138

in a bounding volume hierarchy (BVH) of axis-aligned bounding139

boxes (AABBs). This hierarchy is updated for dynamic scenes.140

3.1 Overview141

We trace pyramidal or volumetric beams from the viewpoint. Prior142

beam tracing algorithms perform expensive exact intersection and143

clipping computations of the beam against the triangles andtend144

to computeπexact. Our goal is to avoid these expensive clipping145

computations, and rather perform simple intersection tests to com-146

pute the PVS. Moreover, it is hard to combine two or more non-147

overlapping occluders (i.e. occluder fusion) using objectspace148

techniques. This is shown in Figure 2, where objectH1 is occluded149

by the combination ofV1 andV2. As a result, prior conservative150

object space techniques are primarily limited to scenes with large151

occluders.152

We overcome these limitations by tracing a high number of rel-153

atively small frusta and computing the PVS of each frustum inde-154

pendently. This makes it easy to parallelize our tracing algorithm on155

multi-core processors. We present very fast and simple algorithms156

to perform the intersection tests. In order to compute the PVS for157

each frustum, we try to compute ablockerthat is composed of con-158

nected triangles (see Figure 3). The blockers are computed on the159

fly and need not correspond to a convex set or a solid object; rather160

Figure 2: Overview: We divide the view-frustum with an apex
at v, into many small frusta. Each frustum is traced through the
scene and its far plane is updated when it is blocked by a connected
blocker. For example, frustumF5 is blocked by primitives of object
V2 but frustumF1 has no blockers. The objectsV1 andV2 are part
of the PVS and they block frustaF2 to F5.

they are objects that are homomorphism to a disk. Given a blocker161

for a frustum, we update the far plane associated with that frustum.162

Frustum Tracing : We use a simple four-sided frustum, which is163

represented as a convex combination of four corner rays intersect-164

ing at the apex. Each frustum has a near plane, four side planes, and165

a far plane. The near plane and the four side planes of a frustum are166

fixed and the far plane is parallel to the near plane. The depthof167

the far plane from the view point is updated as the algorithm com-168

putes a new blocker for a frustum. Our algorithm sub-dividesΦ169

into smaller frusta using uniform or adaptive subdivision and com-170

putes a PVS for each frustum. Eventually, we take the union of171

these different PVSs to compute a PVS forΦ.172

Algorithm : The algorithm computes the PVS for each frustum in-173

dependently. We initialize the far plane associated with the frustum174

to be at infinity and update its value if any connected blockeris175

found. The algorithm traverses the BVH to efficiently compute the176

triangles that potentially intersect with a given frustum.We perform177

fast Pl̈ucker intersection tests between the frustum and a triangleto178

determine if the frustum is completely inside, completely outside,179

or partially intersecting the triangle. If the frustum is partially in-180

tersecting, we reuse the Plücker test from the frustum-triangle in-181

tersection step to quickly find the edges that intersect the frustum182

(see Section 3.2). We perform frustum-triangle intersection with183

the neighboring triangles that are incident to these edges.We re-184

peat this step of finding edges that intersect with the frustum and185

perform intersection tests with the triangles incident to the edge till186

the frustum is completely blocked by some set of triangles. If a187

blocker is found (see Section 3.3), we update the far plane depth of188

the frustum. Any triangles beyond the far plane of the frustum are189

discarded from the PVS. If there is no blocker associated with the190

frustum, then all the triangles overlapping with the frustum belong191

to the PVS.192

3.2 Frustum Blocker Computation193

We define a blocker for a frustum as a set of connected triangles194

such that every ray inside the frustum hits some triangle in the frus-195

tum blocker (see Figure 3(a)). When we intersect a frustum with a196

triangle, the frustum could partially intersect the triangle. In such197

a case, we walk to the neighboring triangles based on that intersec-198

tion and try to find a blocker for the frustum (see Figure 3). We199

compute all the edges of the triangle that intersect with thefrustum.200

For every intersecting edge, we walk to the neighboring triangle in-201

cident to the edge and perform the frustum-triangle intersection test202

with the neighbor triangle.203

The intersection and walking steps are repeated until one ofthe204

following conditions is satisfied:205
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(a) (b) (c) (d)

Figure 3: Frustum Blocker Computation: (a) Example of a
blocker with connected triangles. (b)-(c) Intersection and Walking:
Identify intersecting edges (e1, e2, e3, and e4) and walk to the ad-
jacent triangles (denoted by arrows from edge to the triangle). (d)
Abort frustum blocker computation if a free-edge or a silhouette-
edge is found.

a All triangles incident to every intersecting edge found during206

the frustum blocker step have been processed. This implies207

that we have found a blocker.208

b A free-edge, i.e. an edge with only one incident triangle, or209

a silhouette edge, i.e. an edge with incident triangle facing in210

opposite directions as seen from the viewpoint, intersectswith211

the frustum. In this case, we conclude that the current set of212

intersecting triangles does not constitute a blocker.213

Note that our termination condition (b) for blocker computation is214

conservative. It is possible that there may exist a frustum blocker215

with a silhouette edge, but we need to perform additional compu-216

tations to identify such blockers [Navazo et al. 2003; Laine2006].217

In this case, we opt for simplicity, and rather search for some other218

blocker defined by a possibly different set of triangles. Or we sub-219

divide the frustum and the current object will become a blocker for220

a smaller sub-frustum.221

If we terminate the traversal test due to condition (a), we have222

successfully found a frustum blocker. All triangles in the frustum223

blocker are marked visible and the far plane depth associated with224

the the frustum is updated. Note that the depth of the far plane of the225

frustum is chosen such that all triangles in the frustum blocker lie in226

front of the far plane. If we terminate due to condition (b), than the227

algorithm can’t guarantee the existence of a frustum blocker. All228

triangles processed during step are still marked visible but the far229

plane depth is not updated.230

3.3 Frustum Intersection Tests231

A key component of the algorithm is performing the intersection232

tests of the scene primitives with a frustum. The algorithm traverses233

the BVH and performs intersection tests between a frustum and the234

AABBs associated with the BVH. We use the technique proposed235

by Reshetov et al. [2005] to perform fast intersection testsbetween236

a frustum and an AABB. For every leaf node of the hierarchy we237

perform the intersection test with the frustum and triangle(s) associ-238

ated with that leaf node. In order to perform the intersection test ef-239

ficiently, we represent the corner rays of a frustum and the oriented240

edges of the triangle using Plücker coordinates [Shoemake 1998].241

The orientation of a ray as seen along the edges of a triangle governs242

the intersection status of the ray with the triangle (see Figure 4(a)).243

Similarly, the orientation of four corner rays of the frustum as seen244

along the edges of a triangle governs the intersection status of the245

frustum with the triangle. We can determine with object-precision246

accuracy whether the frustum lies completely inside the triangle,247

completely outside the triangle, or partially intersects the triangle248

[Chandak et al. 2008].249

In practice, the Pl̈ucker test is conservative and it can wrongly clas-250

sify a frustum to be partially intersecting a triangle even if the frus-251

tum is completely outside the triangle (as shown in Figure 4(b).252

This can affect the correctness of our algorithm as we may wrongly253

classify an object as a blocker due to these conservative intersection254

tests. We add a post-processing phase after each blocker computa-255

tion to identify such cases.256

(a) (b) (c)

Figure 4: Conservative Pl̈ucker Tests: (a) All four corner rays
of the frustumF1 have the same orientation as seen along every
directed edge of the triangleABC. Thus,F1 is completely-inside
ABC. (b) Intersection between a frustum and a triangle can be
conservative.F2 will be classified as partially intersecting. (c) Dif-
ferent cases of frustum-edge intersections:F1 does not intersect the
edgeAB, F2 intersectsAB. F3 is falsely classified as intersecting
AB by the test.

(a) (b)

Figure 5: Updating Far Plane Depth: (a) Frustum lies completely
inside triangleT1. The depth of the far plane is set to the maximum
of d1 andd2. (b) TrianglesT1 andT ′

1 constitute the blocker. We
compute the far plane depths of each triangle and use the maximum
value.

Frustum-Edge Intersection: When a frustum partially intersects257

with a triangle, we can quickly determine which edges of the tri-258

angle intersect the frustum. We reuse the Plücker test between the259

frustum and the triangle to find the edges of the triangle thatin-260

tersect the frustum. As shown in Figure 4(c), a frustum intersects261

with an edge if all four corner rays of the frustum do not have the262

same orientation as seen along an edge. This test may falselyclas-263

sify an edge as intersecting even if the frustum does not intersect264

the edge, as shown in Figure 4(c) and thereby make our algorithm265

conservative. This test is also used in Section 3.3 to compute a set266

of triangles that may block the frustum completely.267

Far Plane Depth Update: The far plane associated with a frustum268

is updated whenever a blocker is found. The blocker may corre-269

spond to a single triangle or multiple triangles. If a frustum lies270

completely inside a triangle, the triangle blocks the frustum. We,271

therefore, mark the triangle as visible and update the depthof the272

far plane of the frustum as shown in Figure 5(a). The frustum inter-273

sects the triangle at pointsh1 andh2, andd1 andd2 are the pro-274

jected distances of|V h1| and|V h2| along the near plane normal.275

We set the far plane depth of the frustum as the maximum of the276

projected distances. In other cases, the blocker may be composed277

of multiple triangles. We update the far plane depth of the frustum278

as shown in Figure 5(b). We compute the far plane depth for every279

triangle in the frustum blocker, assuming the frustum is completely280

inside the triangle. In Figure 5(b),d andd′ are the far plane depths281

for trianglesT1 andT ′

1, respectively, of the frustum blocker. The282

far plane depth of the frustum is set to the maximum of far plane283

depths computed for the triangles in the frustum blocker, which is284

d′ in this case.285

3.4 Frustum Subdivision286

Our algorithm implicitly assumes that the size of connectedblock-287

ers is larger that the cross-section of the frusta. The simplest al-288
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gorithm subdivides a frustum in a uniform manner. This approach289

is simpler to implement and also simpler to parallelize on current290

multi-core and many-core architectures, in terms of load balanc-291

ing. However, many complex models (e.g. CAD models) have a292

non-uniform distribution of primitives in 3D. In that case,it may293

be more useful to perform adaptive subdivision of the frusta. In294

that case, we use the AD-FRUSTUM representation [Chandak etal.295

2008], which uses a quadtree data structure. We use the follow-296

ing criteria to perform subdivision. If the PVS associated with a297

frustum is large, we recursively compute the PVS associatedwith298

each sub-frustum. Whenever the algorithm only computes a par-299

tial blocker of connected triangles using the intersectiontests, we300

estimate its cross-section area and use that area to computethe sub-301

frusta. There are other known techniques to estimate the distri-302

bution of primitives [Wonka et al. 2006] and they can be used to303

guide the subdivision. As compared to uniform subdivision,adap-304

tive techniques reduce the total number of frusta traced forPVS305

computation. Moreover, we use spatial coherence to reduce the306

number of intersection tests between the parent and child frusta.307

4 Geometric Sound Propagation308

In this section, we describe our sound propagation algorithm. Given309

a point sound source, the CAD model of the scene with material310

properties (i.e. the acoustic space), and the receiver position, the311

goal is to compute the impulse response (IR) of the acoustic space.312

Later the IRs are convolved with the audio signal to reproduce the313

sound. We use our PVS computation algorithm described abovefor314

fast image-source computation that only takes into accountspecular315

reflections [Allen and Berkley 1979; Funkhouser et al. 2003;Laine316

et al. 2009]. In practice, this approach is only accurate forhigh317

frequency sources.318

Each image source radiates in free space and considers secondary319

sources generated by mirroring the location of the input source over320

each boundary element in the environment. For each secondary321

source, the specular reflection path can be computed by performing322

repeated intersections of a line segment from the source position323

to the position of the receiver. In order to accurately compute all324

propagation paths, the algorithm creates image-sources (secondary325

sources) for every polygon in the scene. This step is repeated for326

all the secondary sources upto some user specified (sayk) orders327

of reflection. Clearly, the number of image sources areO(Nk+1),328

whereN is the number of triangles in the scene. This can become329

expensive for complex models.330

We use our PVS computation algorithm to accelerate the compu-331

tation for complex scenes. We use a two stage algorithm. In the332

first stage, we use our conservative visibility culling algorithm and333

compute all the secondary image sources up to the specified orders334

of reflection. Since we overestimate the set of visibility triangles,335

we use the second stage to perform a validation step. For the first336

stage, we use a variant of Laine et al.’s [2009] algorithm andonly337

compute the secondary image-sources for the triangles thatare vis-338

ible from the source. Specifically, we shoot primary frusta from the339

sound source. For every primary frustum we compute its PVS. We340

then reflect the primary frustum against all visible triangles to cre-341

ate secondary frusta, which is similar to creating image-sources for342

visible triangles. This step is repeated for secondary frusta uptok343

orders of reflection. In second stage, we construct paths from the344

listener to the sound source for all the frusta which reach the lis-345

tener. As our approach is conservative, we have to ensure that this346

path is a valid path. To validate the path, we intersect each segment347

of the path with the scene geometry and if an intersection is found348

the path is discarded.349

(a) (b) (c)

(d)

Figure 6: Geometric sound propagation: Comparison: Given a
sound source, S, and trianglesTa, Tb, Tc andTd the image source
method (see 6a) creates image-sources of S against all primitives in
the scene. Beam tracing algorithms [Funkhouser et al. 1998](see
6b) compute image-sources for only exactly visible triangles, Tb

andTc in this case. Accelerated beam tracing [Laine et al. 2009]
approach computes image-sources for all triangles inside the beam
volume (see 6c), i.e.,Tb, Tc, Td, andTe in this case. Our algorithm
(see 6d) computes image-sources for trianglesTb, Tc, andTd in the
PVS by our FastV algorithms.

5 Results350

In this section, we present our results on from-point conservative351

visibility (Section 5.1) and accurate geometric sound propagation352

(Section 5.2). Our results were generated on a 16-core 64-bit Intel353

X7350@2.93 GHz. We used SSE instructions to accelerate frustum354

intersection tests and use OpenMP to parallelize on multiple cores.355

5.1 Visibility Results356

We demonstrate our results on computing from-point object space357

conservative PVS on a variety of models ranging from simple mod-358

els (like soda hall, armadillo, blade) to complex models (like power359

plant and thai statue) to a dynamic model (flamenco animation).360

These models are shown in Figure 7. Our results are summarized in361

Table 1. We are not aware of any prior method that can compute the362

exact visible set on these complex models. Therefore, we compute363

an approximation toπexact. by shooting frusta at4K ×4K resolu-364

tion and compute the PVS for that resolution. ThePVS-ratiorefers365

to: (size of PVS) / (size ofπexact), and is a measure of how con-366

servative is the answer. In all benchmarks, we are able to compute367

a conservative approximation to the PVS at interactive rates on the368

multi-core PC. The frame sequences used for generating average369

results are shown in accompanying video. Further, we show that370

our approach converges well toπexact as we shoot higher number371

of frusta (see Figure 8). Detailed results on convergence for each372

model are provided in the Appendix.373

Figure 7: Benchmarks: Left to right: (a) Armadillo (345K trian-
gles). (b) Blade (1.8M triangles). (c) Thai Statue (10M triangles).
(d) Soda Hall (1.5M triangles). (e) PowerPlant (12M triangles). (f)
Flamenco (dynamic scene)
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Model PVS PVS Time
Name Tris Type Ratio Size (ms)
Armadillo 345K scan 1.16 98K 59
Blade 1.8M scan 1.05 190K 179
Thai 10M scan 1.06 210K 132
SodaHall 1.5M cad 1.22 2.1K 30
PowerPlant 12M cad 1.25 15K 259
Flamenco 40K dynamic 1.11 7K 31

Table 1: Main Results: Our results on from-point conservative vis-
ibility for models of varying complexities. All the timing were com-
puted on a 16-core 64-bit Intel X7350@2.93 GHz. The algorithm
first performs view frustum culling and uses FastV only for occlu-
sion culling. The PVS ratio provides a measure of how conservative
is the computed answer with respect to occlusion culling.

5.2 Geometric Sound Propagation Results374

We present our results on accurate geometric sound propagation in375

section. Table 2 summarizes our results. We perform geometric376

sound propagation on models of varying complexity from 438 tri-377

angles to 212K triangles. We used three benchmarks presented in378

accelerated beam tracing (ABT) algorithm [Laine et al. 2009]. We379

also used two additional complex benchmarks with78K and212K380

triangles. We are not aware of any implementation of accurate geo-381

metric propagation that can handle models of such complexity.382

Model Tris Time Speed Up
(msec) (ABT)

Simple Room 438 10 10.1
Regular Room 1190 58 22.2
Complex Room 5635 406 11.8

Sibenik 78.2K 4500 –
Trade Show 212K 13600 –

Table 2: Accurate sound propagation: We highlight the perfor-
mance of sound propagation algorithms on four benchmarks. We
observe10 − 20 speedup on the simple model.

6 Comparison and Analysis383

In this section we analyze our algorithm and compare it with prior384

techniques. The accuracy of our algorithm is governed by theaccu-385

racy of the intersection tests, which exploit the IEEE floating-point386

hardware. Our approach is robust and general, and not prone to any387

degeneracies.388

Conservative approach:We compute a conservative PVS for ev-389

ery frustum. This follows from our basic approach to computethe390

blockers and far planes for each frustum. In practice, our approach391

can be overly conservative in some cases. The underlying blocker392
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Figure 8: PVS ratio vs. #Frusta: As the number of frusta increase,
the PVS computed by our answer converges toπexact. This graph
shows the rate of convergence for different benchmarks. TheCAD
models have a higher ratio as compared to scanned models.

computation algorithm is conservative. Moreover, we don’tcon-393

sider the case when the union of two or more objects can serve as394

a blocker. This is shown in Fig. 2) with two disjoint occluders,V1395

andV2. Instead of using more sophisticated algorithms for blocker396

computation, we found it cheaper to subdivide the frustum into sub-397

frusta and compute blockers for them. As a result, we can makeour398

approach less conservative by using more frusta and the PVS (π)399

converges well toπexact (see Figure 8).400

Model connectivity and triangle soup models:Our algorithm ex-401

ploits the connectivity information in the model to computethe402

blockers, which are formed using connected triangles. If the con-403

nectivity information is not available, then the algorithmwould sub-404

divide the frustum such that each blocker would consist of only one405

triangle.406

6.1 Visibility Computations407

Our approach performs volumetric tracing, which is similarto beam408

tracing. However, we don’t perform exact clipping operations to409

compute an exact representation of the visible surface. Rather we410

only estimate the triangles belonging to the PVS by identifying411

the blockers for each frustum. None of the triangles in the scene412

are subdivided. Beam tracing algorithms can also be accelerated413

by using spatial data structures [Funkhouser et al. 1998; Overbeck414

et al. 2007; Laine et al. 2009], but they have mostly been applied415

to scenes with large occluders (e.g. architectural models). In prac-416

tice, beam tracing can be considerably more expensive than our ap-417

proach. On the other hand, the PVS computed by our algorithm418

tends to be more conservative than that computed by beam tracing.419

Most of the prior object space conservative visibility culling algo-420

rithms are designed for scenes with large occluders [Bittner et al.421

1998; Coorg and Teller 1997; Hudson et al. 1997; Luebke and422

Georges 1995]. These algorithms can work well on special types423

of models, e.g. architectural models represented using cells and424

portals or urban scenes. In contrast, our approach is mainlyde-425

signed for general 3D models and doesn’t make any assumption426

about large occluders.427

It is possible to perform conservative rasterization usingcurrent428

GPUs [Akenine-M̈oller and Aila 2005]. However, it has the over-429

head of rendering additional triangles and CPU-GPU communica-430

tion latency. It may be possible to accelerate conservativerasteriza-431

tion by using hierarchical methods [Mattausch et al. 2008].The re-432

sulting approach could be faster than FastV in some cases, but may433

compute a more conservative PVS. This could result in a slower434

sound propagation algorithm.435

It is hard to make a direct comparison with image space approaches436

because of their accuracy. In practice, image space approaches437

can exploit the rasterization hardware or fast ray-tracingtechniques438

[Reshetov et al. 2005] and would be faster than FastV. Moreover,439

image space approaches also perform occluder fusion and in some440

cases may compute a smaller set of visible primitives than FastV.441

However, the main issue with the image space approaches is deriv-442

ing any tight bounds on the accuracy of the result. This is high-443

lighted in the appendix, where we used ray tracing to approximate444

the visible primitives. In complex models like the powerplant, we445

need a sampling resolution of at least32K × 32K to compute a446

good approximation of the visible primitives. At lower resolutions,447

the visible set computed by the algorithm doesn’t seem to converge448

well.449

6.2 Sound Propagation Algorithm450

Most accurate geometric acoustic methods can be described as vari-451

ants of the image-source method. Figure 6 compares different ac-452

curate geometric sound propagation methods. The main difference453

between these methods is in terms of which image-sources they454

choose to compute [Funkhouser et al. 1998; Laine et al. 2009;455
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Schr̈oder and Lentz 2006; Antonacci et al. 2008]. A naı̈ve image456

source method computes image sources against all trianglesin the457

scene for a sound source (Figure 6(a)) [Allen and Berkley 1979].458

Beam tracing methods compute the image-sources for exactlyvisi-459

ble triangles from a source (Figure 6(b)) and this method is applied460

recursively. Recent methods based on beam tracing, like acceler-461

ated beam tracing [Laine et al. 2009], compute image-sources for462

every triangle inside the beam volume (Figure 6(c)). Our approach,463

shown in Figure 6(d), finds the conservative PVS from a sourceand464

compute image-sources for the triangles in the conservative PVS.465

As a result, for a given model our approach considers more image-466

sources as compared to exact beam tracing. It is an efficient com-467

promise between the expensive step to compute exactly visible tri-468

angles in beam tracing vs. computing additional image-sources in469

accelerated beam tracing. We observe10−20X speedups over prior470

accurate methods. Recently, Chandak et al. [2008] also usedadap-471

tive frustum tracing for geometric sound propagation. However,472

that algorithm performs discrete clipping and intersection tests at473

the boundary of the frustum and therefore, it is hard to derive any474

good bounds on the accuracy of impulse responses.475

6.3 Limitations476

Our approach has some limitations. Since we don’t perform oc-477

cluder fusion, the PVS computed by our algorithm can be overly478

conservative sometimes. If the scene has no big occluders, we may479

need to trace a large number of frusta. Our intersection tests are480

fast, but the conservative nature of the blocker computation can re-481

sult in a larger PVS. The model and its hierarchy are stored inmain482

memory, and therefore our approach is limited to in-core models.483

Our algorithm is easy to parallelize and works quite well, but is484

still slower than image space approaches that perform coherent ray485

tracing or use GPU rasterization capabilities.486

7 Conclusions and Future Work487

We present a fast and simple visibility culling algorithm and488

demonstrate its performance on complex models. The algorithm is489

general and works well on complex 3D models. To the best of our490

knowledge, this is the first from-point object space visibility algo-491

rithm that can handle complex 3D models with millions of triangles492

at almost interactive rates.493

There are many avenues for future work. We will like to implement494

the algorithm on a many-core GPU or upcoming Larrabee proces-495

sor to further exploit the high parallel performance of these com-496

modity processors. This could provide capability to designmore497

accurate rendering algorithms based on object-precision visibility498

computations on complex models (e.g. shadow generation). We499

can use temporal coherence between successive frames alongwith500

adaptive subdivision to further improve the runtime performance.501

We will also like to evaluate the trade-offs in terms of usingmore502

sophisticated blocker computations algorithms [Navazo etal. 2003;503

Laine 2006]. In terms of sound propagation, our approach canbe504

extended to compute edge diffraction based on uniform theory of505

diffraction (UTD).506
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