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FastV: From-point Visibility Culling on Complex Models

Abstract

We present an efficient technique to compute the potentiddiy
ble set (PVS) of triangles in a complex 3D scene from a viempoi
The algorithm computes a conservative PVS at object spane ac
racy. Our approach traces a high number of small, volumistrita
and computes blockers for each frustum using simple intéose
tests. In practice, the algorithm can compute the PVS of CAD
and scanned models composed of millions of triangles atdote
tive rates on a multi-core PC. We also use the visibility dihm to
accurately compute the reflection paths from a point sounccso
The resulting sound propagation algorithm (s— 20X faster than
prior accurate geometric acoustic methods.

1 Introduction

Visibility computation is a widely-studied problem in cootpr
graphics and related areas. Given a scene, the goal is toriiete
the set of primitives visible from a single point (i.e. frgmoint vis-
ibility), or from any point within a given region (i.e. fromegion
visibility). At a broad level, these algorithms can be cifisd into
object space and image space algorithms. The object spgme al
rithms operate at object-precision and use the raw prigstifor
visibility computations. The image space algorithms resalisi- *
bility based on a discretized representation of the objeatsthe *
accuracy typically corresponds to the resolution of thel fmage. ,
These algorithms are able to exploit the capabilities deramation
hardware and can render large, complex scenes composeasof te
of millions of triangles at interactive rates using curr&mRUs. o

In this paper, we primarily focus on from-point, object spaon-
servative visibility, whose goal is to compute a supersevisf
ble geometric primitives. Such algorithms are useful folkwa
throughs, shadow generation, global illumination and w&ioh
computations. Another application for object space Viigjbal-
gorithms is accurate computation of reflection paths foruato ,
simulation or sound rendering. Given a point sound sourEe, 3
models of the environment with material data, and the recsiv 2
position, geometric acoustic (GA) methods perform mudtiphels 7
of reflections from the obstacles in the scene to computenthe i+
pulse response (IR). Sample-based propagation algorigunok as s
stochastic ray-tracing for GA can result in statisticabesror in- 7
accurate IRs [Funkhouser et al. 2003; Lenhert 1993]. As a@tres
we need to use object space visibility techniques, such asbes
tracing [Funkhouser et al. 1998; Laine et al. 2009], to aamly 7
compute the propagation paths. However, current objecesyai-
bility algorithms work well on simple scenes with tens oftisands
of triangles or with large convex occluders. There is a gairtse-
lief that it is hard to design fast and practical object spasibility

algorithms for complex 3D models [Ghali 2001].
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Main Results: We present a novel algorithm (FastV) for consegs
vative, from-point visibility computation. Our approachdeneral
and computes a potentially visible set (PVS) of scene ttesfgom 4
a given view point. The main idea is to trace a high number of 4-
sided volumetric frusta and compute efficiently simple cmtad
blockers within each frustum. We use the blockers to compute
far plane and cull away the non-visible primitives, as diestt in -
Section 3.

91
Our guiding principle is to opt for simplicity in the choicé dif- o
ferent parts of the algorithm, including frustum tracingystum- s
intersection tests, blocker and depth computations. Tha owa- o
tribution of the paper is primarily in combining known algibms s
(or their extensions) for these parts. Overall, FastV iditiseprac- s

Figure 1: Fast Acoustic Simulation We used FastV for accurate
computation of reflection paths in this Cathedral model witt2 K
triangles. Our propagation algorithm performs three ordef re-
flections from the source (S) and compute the IR at the recg®je

in less than 10 seconds. To the best of our knowledge, oung is t
first efficient and accurate propagation algorithm to handfiedels

of this complexity.

tical method for visibility culling in complex 3D models dte the
following reasons:

1. Generality: Our approach is applicable to all triangulated
models and does not assume any large objects or occludees. Th
algorithm proceeds automatically and is not susceptibletpen-
eracies or robustness issues.

2. Efficiency: We present fast algorithms based oiidRer co-
ordinates to perform the intersection tests. We use hieies@long
with SIMD and multi-core capabilities to accelerate the paia-
tions. In practice, our algorithm can trat@l — 200K frusta per
second on a single 2.93 Ghz Xeon Core on complex models with
millions of triangles.

3. Conservative: Our algorithm computes a conservative su-
perset of the visible triangles at object-precision. As fitustum
size is decreased, the algorithm computes a tighter PVS.a¥e h
applied the algorithm to complex CAD and scanned models with
millions of triangles and simple dynamic scenes. In pragtige
can compute conservative PVS, which is within a factds ef25%
of the exact visible set, in a fraction of a second on a 16-&ge
(as described in Section 5).

Accurate Sound Propagation:We use our PVS computation algo-
rithm to accurately compute the reflection paths from a psonind
source to a receiver, as described in Section 4. We use a tageph
algorithm that first computes image-sources for scene fiviesiin
the PVS computed for primary (or secondary) sources. THid-s
lowed by finding valid reflection paths to compute actual dobot
tions at the receiver. We have applied our algorithm to cempl
models with tens of thousands of triangles. In practice, haeove

a performance improvement of up26X over prior accurate prop-
agation methods that use beam tracing.

2 Previous Work

The problem of visibility has been extensively studied impaiter
graphics, computational geometry, acoustic simulatiah retated
areas for more than four decades. We refer the readers tesice
recent surveys [Durand 1999; Cohen-Or et al. 2003]. Duedoep
limitations, we only give a brief overview of some object spand
sampling-based methods.
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Object space visibility computations There is extensive work on
object-precision algorithms, including methods for hiddwirrface
removal [Ghali 2001] and exact visibility computation fr@anpoint
using beam tracing [Heckbert and Hanrahan 1984; Funkhouser
et al. 1998; Overbeck et al. 2007] orieker coordinates [Niren-
stein 2003]. Many exact algorithms have also been proposed f
region-based visibility [Durand 1999; Duguet and Dreta®002;
Nirenstein 2003; Bittner and Wonka 2005]. There is consider
able literature on conservative visibility computatioram a single
viewpoint [Bittner et al. 1998; Coorg and Teller 1997; Hudsb al.
1997; Luebke and Georges 1995] or from a region [Koltun et al.
2000; Leyvand et al. 2003; Teller 1992]. Some of these dlgms
have been designed for special types of models, e.g. actunigd
models represented as cells and portals, 2.5D urban madelses
with large convex occluders, etc. Itis also possible togrenfcon-
servative rasterization [Akenine-dller and Aila 2005] on current
GPUs to compute an object-precision PVS from a point.

Image space or sample-based visibility computations These
methods either make use of rasterization hardware or ragtisty
techniques to compute a set of visible primitives [CohereQal. | |
2003]. Most of these methods tend to be either approximate or
aggressive [Nirenstein and Blake 2004; Wonka et al. 200&it- C
rent GPUs provide support for performing occlusion quef@s s
from-point visibility and are used for real-time displayamplex 1e4
3D models on commodity GPUs [Klosowski and Silva 2000; Mat-
tausch et al. 2008]. 166

167

3 FastV: Visibility Computation

In this section, we present our conservative visibility patation 7o
algorithm. The inputs to our algorithm are: a view pomtg $2),

a set of scene primitived1), and a viewing frustumd), with an
apex atv. Our goal is to compute a subset of primitivesC II

such that every primitive € II, which is hit by some ray € ®

is included in the computed subset The subsetr is called the
potentially visible set (PVS). The smallest such PVS is tteos "
exactly visible primitives €..ac:). The subsetr computed by our'”
algorithm is conservative, i.eqx O Tezact. FOr the rest of the'”
paper, we assume that the primitives are triangles, thoughlgo- "
rithm can be modified to handle other primitives. We also amstu’
that the connectivity information between the scene tiiesiip pre- ™
computed. We exploit this connectivity for efficient comgtion; ***
however our approach is also applicable to polygon soup taotte
order to perform fast intersection tests, we store the sgemétives

in a bounding volume hierarchy (BVH) of axis-alignhed boumgli'**
boxes (AABBs). This hierarchy is updated for dynamic scenes i:z

182
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3.1 Overview

188

We trace pyramidal or volumetric beams from the viewpoimioP **°
beam tracing algorithms perform expensive exact inteimeend **
clipping computations of the beam against the trianglestand ***
to computer...c:. Our goal is to avoid these expensive clippin§
computations, and rather perform simple intersectiors testom-

pute the PVS. Moreover, it is hard to combine two or more nem-
overlapping occluders (i.e. occluder fusion) using objguace

techniques. This is shown in Figure 2, where objde¢tis occluded 194
by the combination ol; and V.. As a result, prior conservatives
object space techniques are primarily limited to scenek laige 19
occluders. 197

We overcome these limitations by tracing a high number of riéj
atively small frusta and computing the PVS of each frustudein
pendently. This makes it easy to parallelize our tracingtdtigm on
multi-core processors. We present very fast and simpleiggos _
to perform the intersection tests. In order to compute th& RY _
each frustum, we try to computeodockerthat is composed of con-

nected triangles (see Figure 3). The blockers are computedeo 2o
fly and need not correspond to a convex set or a solid objeberaos

201
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Figure 2: Overview: We divide the view-frustum with an apex
at v, into many small frusta. Each frustum is traced through the
scene and its far plane is updated when it is blocked by a aiade
blocker. For example, frustutfis is blocked by primitives of object
V4 but frustumF; has no blockers. The objects and V> are part

of the PVS and they block fruste to Fs.

they are objects that are homomorphism to a disk. Given &étoc
for a frustum, we update the far plane associated with thiatdm.

Frustum Tracing: We use a simple four-sided frustum, which is
represented as a convex combination of four corner rayssitée

ing at the apex. Each frustum has a near plane, four sidegland
afar plane. The near plane and the four side planes of a frusta
fixed and the far plane is parallel to the near plane. The defpth
the far plane from the view point is updated as the algoritom-<
putes a new blocker for a frustum. Our algorithm sub-divides
into smaller frusta using uniform or adaptive subdivisionl @om-
putes a PVS for each frustum. Eventually, we take the union of
these different PVSs to compute a PVS dar

Algorithm : The algorithm computes the PVS for each frustum in-
dependently. We initialize the far plane associated wighfthstum
to be at infinity and update its value if any connected blodker
found. The algorithm traverses the BVH to efficiently congptite
triangles that potentially intersect with a given frustuive perform
fast Plicker intersection tests between the frustum and a tridngle
determine if the frustum is completely inside, completelyside,
or partially intersecting the triangle. If the frustum isripally in-
tersecting, we reuse theileker test from the frustum-triangle in-
tersection step to quickly find the edges that intersect rilrgtdm
(see Section 3.2). We perform frustum-triangle intersectiith
the neighboring triangles that are incident to these edyésre-
peat this step of finding edges that intersect with the frastund
perform intersection tests with the triangles incidenti® ¢dge till
the frustum is completely blocked by some set of triangldsa |
blocker is found (see Section 3.3), we update the far plapthds
the frustum. Any triangles beyond the far plane of the frosare
discarded from the PVS. If there is no blocker associated thi¢
frustum, then all the triangles overlapping with the frustbelong
to the PVS.

3.2 Frustum Blocker Computation

We define a blocker for a frustum as a set of connected triangle
such that every ray inside the frustum hits some trianglbeérfitus-
tum blocker (see Figure 3(a)). When we intersect a frustuth avi
triangle, the frustum could partially intersect the trilngin such

a case, we walk to the neighboring triangles based on thexsied-
tion and try to find a blocker for the frustum (see Figure 3). We
compute all the edges of the triangle that intersect witHrigtum.

For every intersecting edge, we walk to the neighboringngie in-
cident to the edge and perform the frustum-triangle intgise test
with the neighbor triangle.

The intersection and walking steps are repeated until ortheof
following conditions is satisfied:
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locker

@

Figure 3: Frustum Blocker Computation: (a) Example of a
blocker with connected triangles. (b)-(c) Intersectiorm aflalking:
Identify intersecting edges (el, e2, e3, and e4) and walkd@t-
jacent triangles (denoted by arrows from edge to the triapg(d)
Abort frustum blocker computation if a free-edge or a sikiber
edge is found.

a All triangles incident to every intersecting edge foundiuiy

False
Intersection

) %
L - .__._’._- __
A B
4
©

Figure 4: Conservative PlLicker Tests (a) All four corner rays

of the frustumF; have the same orientation as seen along every
directed edge of the triangld BC. Thus,F} is completely-inside
ABC. (b) Intersection between a frustum and a triangle can be
conservative F; will be classified as partially intersecting. (c) Dif-
ferent cases of frustum-edge intersectioRsdoes not intersect the
edgeAB, F; intersectsAB. Fj is falsely classified as intersecting

(b)

the frustum blocker step have been processed. This implies AB by the test.

that we have found a blocker.

b A free-edgei.e. an edge with only one incident triangle, or
asilhouette edgd.e. an edge with incident triangle facing in
opposite directions as seen from the viewpoint, interseitks
the frustum. In this case, we conclude that the current set of
intersecting triangles does not constitute a blocker.

Note that our termination condition (b) for blocker compgiaa is
conservative. It is possible that there may exist a frustiooker
with a silhouette edge, but we need to perform additionalmom
tations to identify such blockers [Navazo et al. 2003; L&666].
In this case, we opt for simplicity, and rather search for satier
blocker defined by a possibly different set of triangles. @rsub-
divide the frustum and the current object will become a béwdkr
a smaller sub-frustum.

If we terminate the traversal test due to condition (a), weeha
successfully found a frustum blocker. All triangles in thestum
blocker are marked visible and the far plane depth assakveit&
the the frustum is updated. Note that the depth of the faeptdithe 27
frustum is chosen such that all triangles in the frustumido&e in 2®
front of the far plane. If we terminate due to condition (bjan the 2%
algorithm can’t guarantee the existence of a frustum blockdl 2%
triangles processed during step are still marked visibtethmei far
plane depth is not updated.

261
262
263
3.3 Frustum Intersection Tests 264

265

A key component of the algorithm is performing the intergect 266

tests of the scene primitives with a frustum. The algorithamerses 267

the BVH and performs intersection tests between a frustuttes ,

AABBs associated with the BVH. We use the technique propoged
by Reshetov et al. [2005] to perform fast intersection tbetaeen

a frustum and an AABB. For every leaf node of the hierarchy ye
perform the intersection test with the frustum and triatg)lassoci- .,

ated with that leaf node. In order to perform the intersectést ef-
ficiently, we represent the corner rays of a frustum and trented , ,
edges of the triangle usingiRlker coordinates [Shoemake 199%%15
The orientation of a ray as seen along the edges of a triangtrgs ,
the intersection status of the ray with the triangle (seeféig(a)). ,,,
Similarly, the orientation of four corner rays of the frustas seen,,,
along the edges of a triangle governs the intersectionssti#tthe , .
frustum with the triangle. We can determine with objectgs®n
accuracy whether the frustum lies completely inside thengle, .
completely outside the triangle, or partially intersetts triangle ,,
[Chandak et al. 2008]. .

In practice, the Ricker test is conservative and it can wrongly clas-
sify a frustum to be partially intersecting a triangle evitheé frus- 2ss
tum is completely outside the triangle (as shown in Figuta).4(
This can affect the correctness of our algorithm as we man@hyo 2ss
classify an object as a blocker due to these conservatieesittion
tests. We add a post-processing phase after each block@utaims,
tion to identify such cases.

273
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Figure 5: Updating Far Plane Depth (a) Frustum lies completely
inside triangleT. The depth of the far plane is set to the maximum
of d; andd.. (b) TrianglesT; and T} constitute the blocker. We
compute the far plane depths of each triangle and use themami
value.

Frustum-Edge Intersection When a frustum partially intersects
with a triangle, we can quickly determine which edges of tite t
angle intersect the frustum. We reuse thédRer test between the
frustum and the triangle to find the edges of the triangle iat
tersect the frustum. As shown in Figure 4(c), a frustum Beets
with an edge if all four corner rays of the frustum do not hawe t
same orientation as seen along an edge. This test may falasly
sify an edge as intersecting even if the frustum does notsett¢
the edge, as shown in Figure 4(c) and thereby make our digorit
conservative. This test is also used in Section 3.3 to compset
of triangles that may block the frustum completely.

Far Plane Depth Update The far plane associated with a frustum
is updated whenever a blocker is found. The blocker may €orre
spond to a single triangle or multiple triangles. If a frustlies
completely inside a triangle, the triangle blocks the fuast We,
therefore, mark the triangle as visible and update the defpthe

far plane of the frustum as shown in Figure 5(a). The frustuteri
sects the triangle at points; andh2, andd, andd. are the pro-
jected distances d#h; | and|V'h2| along the near plane normal.
We set the far plane depth of the frustum as the maximum of the
projected distances. In other cases, the blocker may be asedp
of multiple triangles. We update the far plane depth of thistirm

as shown in Figure 5(b). We compute the far plane depth fayeve
triangle in the frustum blocker, assuming the frustum is plately
inside the triangle. In Figure 5(hy,andd’ are the far plane depths
for trianglesTy and Ty, respectively, of the frustum blocker. The
far plane depth of the frustum is set to the maximum of far @lan
depths computed for the triangles in the frustum blockeickvis

d’ in this case.

3.4 Frustum Subdivision

Our algorithm implicitly assumes that the size of connedtiedk-
ers is larger that the cross-section of the frusta. The sistl-
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gorithm subdivides a frustum in a uniform manner. This appho

is simpler to implement and also simpler to parallelize orrent
multi-core and many-core architectures, in terms of loaarmz
ing. However, many complex models (e.g. CAD models) have a
non-uniform distribution of primitives in 3D. In that casémay

be more useful to perform adaptive subdivision of the frudta
that case, we use the AD-FRUSTUM representation [Chandalk et
2008], which uses a quadtree data structure. We use thavfollo
ing criteria to perform subdivision. If the PVS associateithva
frustum is large, we recursively compute the PVS associattd
each sub-frustum. Whenever the algorithm only computesra pa
tial blocker of connected triangles using the intersectasts, we
estimate its cross-section area and use that area to cothpigeb-
frusta. There are other known techniques to estimate the-dis
bution of primitives [Wonka et al. 2006] and they can be used t
guide the subdivision. As compared to uniform subdivisiaxeap-
tive techniques reduce the total number of frusta tracedios
computation. Moreover, we use spatial coherence to recuee t
number of intersection tests between the parent and clisdar

4 Geometric Sound Propagation

In this section, we describe our sound propagation algaritBiven

a point sound source, the CAD model of the scene with material
properties (i.e. the acoustic space), and the receivetigmsthe
goal is to compute the impulse response (IR) of the acouséces
Later the IRs are convolved with the audio signal to repredhe
sound. We use our PVS computation algorithm described doove
fastimage-source computation that only takes into accspaxtular
reflections [Allen and Berkley 1979; Funkhouser et al. 20G8ne 3
et al. 2009]. In practice, this approach is only accuratehigh
frequency sources. 351
352

Each image source radiates in free space and considers:lse;zojaj
sources generated by mirroring the location of the inputamaver
each boundary element in the environment. For each segondar
source, the specular reflection path can be computed byrpéng
repeated intersections of a line segment from the sourcitiqros™
to the position of the receiver. In order to accurately cotagll
propagation paths, the algorithm creates image-soureesridary >’
sources) for every polygon in the scene. This step is regdate **
all the secondary sources upto some user specifiedik(sayders *°
of reflection. Clearly, the number of image sources@f&v***), *°
whereN is the number of triangles in the scene. This can becci@e

expensive for complex models.
363

364
We use our PVS computation algorithm to accelerate the compu
tation for complex scenes. We use a two stage algorithm. dnsth
first stage, we use our conservative visibility culling altgon and se7
compute all the secondary image sources up to the specifiedsorss
of reflection. Since we overestimate the set of visibilifarigles, se
we use the second stage to perform a validation step. Forrghesfi
stage, we use a variant of Laine et al.’s [2009] algorithm amigt s7:
compute the secondary image-sources for the triangleaitbatis- 37
ible from the source. Specifically, we shoot primary frustarf the 37
sound source. For every primary frustum we compute its PV&S. W
then reflect the primary frustum against all visible triaaggto cre-
ate secondary frusta, which is similar to creating imagerees for
visible triangles. This step is repeated for secondarytdruptok
orders of reflection. In second stage, we construct patims fhe
listener to the sound source for all the frusta which reaehlit:
tener. As our approach is conservative, we have to ensur¢hiba
path is a valid path. To validate the path, we intersect eagmsnt
of the path with the scene geometry and if an intersectionuad
the path is discarded.

s/ °sd

Sc
[

Tc

(d)

Figure 6: Geometric sound propagation: Comparison Given a
sound source, S, and triangl&s, Ty, T. and Ty the image source
method (see 6a) creates image-sources of S against alltprasin
the scene. Beam tracing algorithms [Funkhouser et al. 1998¢
6b) compute image-sources for only exactly visible triangly,
andT. in this case. Accelerated beam tracing [Laine et al. 2009]
approach computes image-sources for all triangles indidetteam
volume (see 6¢), i.€T}, T, Ty, andT. in this case. Our algorithm
(see 6d) computes image-sources for triand@lgsl., andTy in the
PVS by our FastV algorithms.

5 Results

In this section, we present our results on from-point coreter
visibility (Section 5.1) and accurate geometric sound pgation
(Section 5.2). Our results were generated on a 16-coret@tbl
X7350@2.93 GHz. We used SSE instructions to accelerattufrus
intersection tests and use OpenMP to parallelize on meltptes.

5.1 Visibility Results

We demonstrate our results on computing from-point objpats
conservative PVS on a variety of models ranging from simpbe-m
els (like soda hall, armadillo, blade) to complex modelsx(foower
plant and thai statue) to a dynamic model (flamenco animpation
These models are shown in Figure 7. Our results are sumrdanize
Table 1. We are not aware of any prior method that can compate t
exact visible set on these complex models. Therefore, wepatem
an approximation t@rc,.c:. by shooting frusta atK x 4K resolu-
tion and compute the PVS for that resolution. ¥éS-ratiorefers
to: (size of PVS) / (size Ofrezact), and is a measure of how con-
servative is the answer. In all benchmarks, we are able tguaten

a conservative approximation to the PVS at interactivesratethe
multi-core PC. The frame sequences used for generatingigeer
results are shown in accompanying video. Further, we shaiv th
our approach converges well 16...+ as we shoot higher number
of frusta (see Figure 8). Detailed results on convergencedoh
model are provided in the Appendix.

— ad

Figure 7: Benchmarks: Left to right: (a) Armadillo (345K trian-
gles). (b) Blade (1.8M triangles). (c) Thai Statue (10M migées).
(d) Soda Hall (1.5M triangles). (e) PowerPlant (12M triarg). (f)
Flamenco (dynamic scene)
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Model PVS | PVS | Time 208
Name Tris Type Ratio | Size | (ms) 204
Armadillo | 345K scan 1.16 | 98K 208
Blade 1.8M scan 1.05 | 190K | 179 206
Thai 10M scan 1.06 | 210K | 132 37
SodaHall 1.5M cad 122 | 21K 30 208
PowerPlant| 12M cad 125 | 15K | 259 399
Flamenco | 40K | dynamic| 1.11 7K 31 400

Table 1: Main Results: Our results on from-point conservative vi$-
ibility for models of varying complexities. All the timingre com- *
puted on a 16-core 64-bit Intel X7350@2.93 GHz. The algmltﬁ
first performs view frustum culling and uses FastV only farloc
sion culling. The PVS ratio provides a measure of how coradime
is the computed answer with respect to occlusion culling.

405
406

407

5.2 Geometric Sound Propagation Results 08

We present our results on accurate geometric sound propagat a0
section. Table 2 summarizes our results. We perform geameir
sound propagation on models of varying complexity from 488 { ,
angles to 212K triangles. We used three benchmarks presentg,
accelerated beam tracing (ABT) algorithm [Laine et al. 200% ,,
also used two additional complex benchmarks Witk and212K
triangles. We are not aware of any implementation of aceugab-
metric propagation that can handle models of such complexit

415
416
417
418

Model Tris Time | Speed Up 410
(msec)| (ABT)

Simple Room | 438 10 10.1 420

Regular Room| 1190 58 22.2 2

Complex Room| 5635 | 406 118 2

Sibenik 78.2K | 4500 —

Trade Show | 212K | 13600 - -

Table 2: Accurate sound propagation: We highlight the perfor-
mance of sound propagation algorithms on four benchmarks.
observel0 — 20 speedup on the simple model. 428

429

430
6 Comparison and Analysis a2

432
In this section we analyze our algorithm and compare it withrp s
techniques. The accuracy of our algorithm is governed bydoe- 4
racy of the intersection tests, which exploit the IEEE flogtpoint 4s
hardware. Our approach is robust and general, and not poaret

degeneracies.
437

Conservative approach: We compute a conservative PVS for ews
ery frustum. This follows from our basic approach to comphte 49
blockers and far planes for each frustum. In practice, opragch o

can be overly conservative in some cases. The underlyirgkétos:
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Figure 8: PVS ratio vs. #Frusta: As the number of frusta increassg,
the PVS computed by our answer converges.tQ..:. This graph s,
shows the rate of convergence for different benchmarks.CRi2 ,ss
models have a higher ratio as compared to scanned models.

computation algorithm is conservative. Moreover, we daa'h-
sider the case when the union of two or more objects can serve a
a blocker. This is shown in Fig. 2) with two disjoint occludgv’
andV%. Instead of using more sophisticated algorithms for blocke
computation, we found it cheaper to subdivide the frustuim $ob-
frusta and compute blockers for them. As a result, we can roake
approach less conservative by using more frusta and the RYS (
converges well tore.q.: (see Figure 8).

Model connectivity and triangle soup models:Our algorithm ex-
ploits the connectivity information in the model to comptke
blockers, which are formed using connected triangles. dfdbn-
nectivity information is not available, then the algoritiwauld sub-
divide the frustum such that each blocker would consist df one
triangle.

6.1 Visibility Computations

Our approach performs volumetric tracing, which is simitelbeam
tracing. However, we don't perform exact clipping operatido
compute an exact representation of the visible surfaceheRate
only estimate the triangles belonging to the PVS by ideimgy
the blockers for each frustum. None of the triangles in trenec
are subdivided. Beam tracing algorithms can also be aatekbr
by using spatial data structures [Funkhouser et al. 1998rlt@ck
et al. 2007; Laine et al. 2009], but they have mostly beeniegpl
to scenes with large occluders (e.g. architectural modiig)rac-
tice, beam tracing can be considerably more expensive tivaamo
proach. On the other hand, the PVS computed by our algorithm
tends to be more conservative than that computed by beaimgrac

Most of the prior object space conservative visibility ol algo-
rithms are designed for scenes with large occluders [Bitthel.
1998; Coorg and Teller 1997; Hudson et al. 1997; Luebke and
Georges 1995]. These algorithms can work well on speciasyp
of models, e.g. architectural models represented usirlg aatl
portals or urban scenes. In contrast, our approach is mdiy
signed for general 3D models and doesn’t make any assumption
about large occluders.

It is possible to perform conservative rasterization usiogent
GPUs [Akenine-Mller and Aila 2005]. However, it has the over-
head of rendering additional triangles and CPU-GPU comoauni
tion latency. It may be possible to accelerate conservediseriza-
tion by using hierarchical methods [Mattausch et al. 2008F re-
sulting approach could be faster than FastV in some casesydyu
compute a more conservative PVS. This could result in a slowe
sound propagation algorithm.

Itis hard to make a direct comparison with image space aphesa
because of their accuracy. In practice, image space agpsac
can exploit the rasterization hardware or fast ray-tratéegniques
[Reshetov et al. 2005] and would be faster than FastV. M@aeov
image space approaches also perform occluder fusion arria s
cases may compute a smaller set of visible primitives that\fa
However, the main issue with the image space approachesvs de
ing any tight bounds on the accuracy of the result. This i-hig
lighted in the appendix, where we used ray tracing to appraie
the visible primitives. In complex models like the powerglave
need a sampling resolution of at le@K x 32K to compute a
good approximation of the visible primitives. At lower résgtions,
the visible set computed by the algorithm doesn’t seem tuerge
well.

6.2 Sound Propagation Algorithm

Most accurate geometric acoustic methods can be descisbedia
ants of the image-source method. Figure 6 compares diffaen
curate geometric sound propagation methods. The mairreliite
between these methods is in terms of which image-sourcegs the
choose to compute [Funkhouser et al. 1998; Laine et al. 2009;
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Schidder and Lentz 2006; Antonacci et al. 2008]. Av@image sis
source method computes image sources against all triaimgthe s
scene for a sound source (Figure 6(a)) [Allen and Berkley9197»
Beam tracing methods compute the image-sources for exastly sa:
ble triangles from a source (Figure 6(b)) and this methogiad sz
recursively. Recent methods based on beam tracing, likelerecsz
ated beam tracing [Laine et al. 2009], compute image-ssui@e sz
every triangle inside the beam volume (Figure 6(c)). Oureagh, s
shown in Figure 6(d), finds the conservative PVS from a soanck sz
compute image-sources for the triangles in the consep/&Ws. s
As aresult, for a given model our approach considers morgémaes
sources as compared to exact beam tracing. It is an efficoent 62
promise between the expensive step to compute exacthe/isib swo
angles in beam tracing vs. computing additional imageessim ss
accelerated beam tracing. We obselre- 20X speedups over priofs,
accurate methods. Recently, Chandak et al. [2008] alsoadzggt sss
tive frustum tracing for geometric sound propagation. Hesve .,
that algorithm performs discrete clipping and intersectiests at s
the boundary of the frustum and therefore, it is hard to @egivy s
good bounds on the accuracy of impulse responses. 537

538
6.3 Limitations 539

540
Our approach has some limitations. Since we don’t perform H¢
cluder fusion, the PVS computed by our algorithm can be gvey]
conservative sometimes. If the scene has no big occludermay ,,
need to trace a large number of frusta. Our intersectios &g
fast, but the conservative nature of the blocker computatam re-
sultin a larger PVS. The model and its hierarchy are stor@ddim .,
memory, and therefore our approach is limited to in-core exeimd547
Our algorithm is easy to parallelize and works quite wellt isu
still slower than image space approaches that perform eaheay .,

tracing or use GPU rasterization capabilities. 550

551
7 Conclusions and Future Work 552
553
We present a fast and simple visibility culling algorithmdasgs.
demonstrate its performance on complex models. The afgorig

555

general and works well on complex 3D models. To the best of gur

knowledge, this is the first from-point object space visipialgo-
rithm that can handle complex 3D models with millions ofrigées
at almost interactive rates.

557
558
559
There are many avenues for future work. We will like to impéerh sso
the algorithm on a many-core GPU or upcoming Larrabee proegs
sor to further exploit the high parallel performance of thesm- ss
modity processors. This could provide capability to desigore o,
accurate rendering algorithms based on object-precisiihility ses
computations on complex models (e.g. shadow generatiorg. W
can use temporal coherence between successive framesatbng,,
adaptive subdivision to further improve the runtime perfance.
We will also like to evaluate the trade-offs in terms of usingre
sophisticated blocker computations algorithms [Navazd.&003;
Laine 2006]. In terms of sound propagation, our approachbean,
extended to compute edge diffraction based on uniform ;hebr
diffraction (UTD). o
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