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Abstract

We present a novel trajectory computation algorithm to smooth
piecewise linear collision-free trajectories computed by sample-
based motion planners. Our approach uses cubic B-splines to gen-
erate trajectories which are C2 almost everywhere, except on a few
isolated points. The algorithm performs local spline refinement to
compute smooth, collision-free trajectories and it works well even
in environments with narrow passages. We also present a fast and
reliable algorithm for collision checking between robot and the en-
vironment along the B-spline trajectories. We highlight the perfor-
mance of our algorithm on complex benchmarks, including path
computation for rigid and articulated models in cluttered environ-
ments.

1 Introduction

Sample-based planning algorithms such as probabilistic roadmaps
(PRMs) [Kavraki et al. 1996] or rapidly-exploring random trees
(RRTs) [Kuffner and LaValle 2000; LaValle 2006] are frequently
used to compute collision-free paths for physical robots and vir-
tual agents. These algorithms generate samples using randomized
techniques and attempt to connect nearby samples using local plan-
ning methods. The final paths are represented as piecewise linear
paths in the configuration space, where the vertices correspond to
the samples. Overall, sample-based planners are able to compute
collision-free paths for high DOF robots, and can also handle clut-
tered environments or narrow passages.

In many applications, including computer animation [Yamane et al.
2004] and physical robotic systems [Yang and Sukkarieh 2010], it
is important that the paths are not only collision-free, but also sat-
isfy other constraints in terms of smoothness and solution quality.
There is considerable work on computation of smooth paths in mo-
bile robotics, because non-smooth motions can cause slippage and
over-actuation, and are difficult for PID controllers to track, and
thus difficult for the robot’s actuator to execute. In CAD and virtual
prototyping, path smoothing algorithms are also considered impor-
tant, as they are used to model accurate physical interaction [Chang
1995].

It is well known that sample-based planners can sometimes gen-
erate jerky, unnatural paths that may contain unnecessary turns, or
that the velocities at the vertices may change arbitrarily [Hauser and
Ng-Thow-Hing 2010; Kavraki et al. 1996; LaValle 2006]. Further-
more, these issues become more significant when the free space of
the robot has narrow passages [Pan et al. 2010; Zhang et al. 2008] as
the search space for path computation becomes more constrained.

Many techniques have been proposed in the literature to generate
smooth paths. At a broad level, they can be classified into shortcut
methods [Hauser and Ng-Thow-Hing 2010; Kallmann et al. 2003;
Kavraki et al. 1996; Kuffner and LaValle 2000] or optimization-
based approaches [Ratliff et al. 2009; Lengagne et al. 2011, submit-
ted]. Current shortcut methods replace jerky or unnatural portions
of a path with shorter linear or curved segments. The curve seg-
ments may correspond to parabolic arcs, Bézier curves or Dubins
curves. These linear shortcut methods tend to be fast and simple,
and can produce high quality paths in many cases [Geraerts and

Figure 1: The comparison between trajectories computed for the
maintainability of a windscreen wiper. Left: a jerky, piecewise lin-
ear collision-free path for the wiper. Right: a smooth collision-free
path computed by our spline-based shortcut algorithm.

Overmars 2007]. However, current formulations may not provide
enough flexibility in terms of generating higher order smoothness
or handling narrow passages. Furthermore, exact checking for col-
lisions along curved or higher-order trajectories can be relatively
expensive. On the other hand, optimization-based methods tend to
improve the quality of paths based on formulating the problem as
an optimal control problem or as an elastic problem from differen-
tial geometry. Some of the commonly used solutions are based on
gradient-based methods, which tend to compute minimum-energy
paths, or the elastic band or elastic strip planning that models
the path using a mass-spring system. One of the challenges with
optimization-based methods is to reliably compute collision-free
paths when there are a large number of obstacles or narrow pas-
sages. Moreover, optimization-based methods are usually off-line
methods because of their low speeds.

Ideally, we need a smoothing algorithm which can generate high
quality trajectories suitable for the actuator to execute and is also
efficient enough so that the robot can generate a feasible trajectory
as quickly as possible.

Main Results: In this paper, we present a fast and simple algo-
rithm to smooth the paths generated using sample-based planning
by using spline interpolation. Our algorithm randomly selects a
sequence of points along the original piecewise linear path and
constructs a cubic B-spline in the configuration space that inter-
polates or approximates these points. We use the exponential map
to construct smooth rotational motion in SO(3) and thereby han-
dle translational and rotational motion in a uniform way. The cubic
spline formulation provides sufficient flexibility in terms of provid-
ing higher order smoothness, i.e., computing trajectories that are
almost C2 except on a few isolated points. Moreover, we use local
spline refinement to satisfy velocity and acceleration constraints.
We initially present the algorithm for rigid bodies and later extend
it to high-DOF articulated models.

A key challenge in terms of using higher-order trajectories for the
robot is performing fast and reliable collision detection with the
obstacles. We present a novel collision-checking algorithm that
uses tight motion bounds on the translational and rotational motions
along the B-spline trajectories to perform fast collision checks us-
ing conservative advancement techniques [Tang et al. 2011]. The
overall approach is reliable, guaranteed to not miss any collisions
and is significantly faster than prior continuous collision detec-
tion algorithms based on checking discrete samples on the trajec-



tory. The conservative advancement based collision checking algo-
rithm for spline trajectories has already been implemented in FCL
package [Pan et al. 2012], available at https://kforge.ros.org/
projects/fcl/.

The overall smoothing algorithm is general and the cubic B-spline
formulation offers sufficient flexibility and degrees-of-freedom to
handle tight configuration spaces with narrow passages. We high-
light its performance on many high-DOF complex CAD bench-
marks used in virtual prototyping applications. The overall run-
time performance is comparable to prior linear shortcut algorithms,
though our formulation results in smoother trajectories and can also
satisfy velocity and acceleration constraints.

The modified algorithm is an extension of the approach described
in [Pan et al. 2011]. The main improvements of this paper over [Pan
et al. 2011] include: 1) We modify the algorithm so that it generates
C2 B-spline almost everywhere, as the C2 continuity is desired by
most physical robots. 2) We present an improved motion bound
formulation, which can provide tighter bounds and thereby improve
the overall performance of the smoothing algorithm. 3) We describe
the details on how to compute the motion bound for rigid body and
articulated bodies, for different motion trajectories. 4) We also add
experiments on PR2 robot to show our method’s performance on
real robots.

The rest of paper is organized as follows. We survey related work
in Section 2. We introduce the notation and present our spline
motion representation in Section 3. We present the basic spline-
based smoothing and local refinement algorithm in Section 4. In
Section 5, we describe an efficient collision checking algorithm
for spline trajectories. We highlight the performance on different
benchmarks for rigid and articulated bodies in Section 6. More
analysis about our algorithm is provided in Section 7.

2 Related Work

In this section, we briefly review prior work on generating smooth
motions and about performing collision checking for trajectories.

2.1 Smooth Motion Generation

Smooth motion generation is a topic of interest in computer ani-
mation and robotics. For computer animation, the goal is to gen-
erate natural avatar motion, which should necessarily be smooth.
For robotics, the robot cannot change velocity instantaneously be-
cause of the motor’s limited output power, which requires motion to
have continuous velocity and/or acceleration. Besides the smooth-
ness requirement, a valid motion must satisfy some additional con-
straints, including the collision-free constraint and the bounded ve-
locity/acceleration constraint. The collision-free constraint makes
sure that the robot does not collide with obstacles; the bounded ve-
locity/acceleration constraint is usually justified for the reason of
safety and servo stability.

Optimization is one common technique to generate smooth motions
and various methods have been developed. Global numerical opti-
mization methods such as gradient-based methods are employed to
compute the optimal trajectory, where the optimality criteria may be
defined based on execution time, total torque, energy consumption
of the overall robot [Lee et al. 2005; Lengagne et al. 2011, submit-
ted], and are subject to the joint limits, velocity and acceleration
constraints. However, numerical optimization methods require an-
alytical formulation of constraints. Due to the difficulty of formu-
lating the collision-free constraints between non-convex geometric
models, other techniques such as potential fields, distance fields,
or velocity dampers are used for collision avoidance [Brock and

Khatib 2002; Toussaint et al. 2007; Ratliff et al. 2009]. The trajec-
tory optimization methods are often computationally intensive due
to the high dimension of the optimization problem and the large
number of constraints. Furthermore, they may suffer from local
minima issues and are sensitive to numerical precisions of gradient
and/or Hessian matrix.

Shortcut techniques are widely used in robotics and computer ani-
mation as light-weight methods to generate smooth motions. They
use heuristics to iteratively replace jerky or unnatural portions of a
path with shorter linear or parabolic segments [Kavraki et al. 1996;
Hauser and Ng-Thow-Hing 2010; Kallmann et al. 2003; Yang and
Sukkarieh 2010]. Simple velocity and acceleration constraints are
further imposed over these parabolic segments [Hauser and Ng-
Thow-Hing 2010]. In practice, these methods can produce short
paths quickly, though they usually cannot achieve optimality or
even local optimality. Due to their simplicity and efficiency, short-
cut algorithms have been widely used to improve the quality of
paths computed by randomized planners [Geraerts and Overmars
2007] or used as a preprocess for optimization methods.

Another disadvantage shared by previous optimization-based meth-
ods and shortcut methods is that they formulate motion as a curve
in Euclidean configuration spaces. In other words, they assume that
the robot only consists of joints with a single degree of freedom,
such as prismatic joints and revolute joints with joint limits. How-
ever, the Euclidean configuration space cannot well describe the
movement of universal joints or rigid bodies in 3D space. For exam-
ple, we can decompose the motion of a universal joint into rotations
around three axes and then perform smoothing in the 3D configu-
ration space. However, the smooth motion in the 3D configuration
space may not map to the smooth motion in workspace because the
linear interpolation of the Euler angles does not provide a linear in-
terpolation of the orientations [Shoemake 1985; Fang et al. 1998].
Moreover, Euler angle also suffers from the loss of one degree of
freedom in some cases (the so-called gimbal lock effect). To han-
dle such disadvantages, many other representations are proposed to
provide more convenient representations for smooth motions, such
as quaternion curves [Shoemake 1985; Kim et al. 1995] and screw
motions [Nielson 2004; Powell and Rossignac 2008].

There are also some other smoothing techniques besides the cate-
gories of optimization and shortcut. Kanehara et al. [Kanehara et al.
2007] modified the grid-based A* results and generate collision-
free paths with clothoidal curvature. Some recent work attempts to
construct high-quality roadmaps that can generate smooth trajecto-
ries or near-optimal paths directly [Nieuwenhuisen and Overmars
2004; Jaillet and Simeon 2008; Karaman and Frazzoli 2011; Mar-
ble and Bekris 2011]. The basic idea is adding edges or cycles that
are critical for the quality of the resulting trajectory. These methods
are usually less efficient than the shortcut methods.

2.2 Collision Checking for Trajectories

Before the shortcut algorithm replaces one portion of the trajectory
with a shorter segment, it needs to check whether the new trajec-
tory is collision-free. The collision checking of a continuous tra-
jectory is also useful in many applications of robotics, such as the
local planning in motion planning [LaValle 2006]. A simple, in-
exact method for trajectory collision checking is to discretize the
curve to a small resolution and test each sample for collision. If
the resolution is small, the checking process will be slow; but if the
resolution is large, the checking method may miss some collisions.
While adaptive sampling strategies and predictive methods can be
used to alleviate this problem [LaValle 2006], they can be relatively
slow. In order to provide a rigorous guarantee, continuous colli-
sion detection (CCD) techniques have been proposed [Redon et al.



2004], which compute the first time of contact between two moving
objects along a continuous path. CCD is typically performed by us-
ing bounding volume hierarchies (BVH). The BVH used for CCD
computations provides a conservative bound for the swept volume
of an object generated during the given time interval. Many CCD
algorithms have been proposed to handle various types of motions,
including the deformation between two meshes [Govindaraju et al.
2005] and arbitrary in-between rigid motions [Redon et al. 2004].
Another popular framework for CCD is conservative advancement
(CA), which incrementally advances objects by a time step while
avoiding collision. In order to determine the conservative time step,
it needs to compute the minimal separation distance between the
objects and uses it to estimate conservative motion bounds. Tang
et al. [Tang et al. 2011] present algorithms to compute the mo-
tion bound for screw motion. Conservative advancement algorithm
can be applied to non-convex models based on BVHs [Tang et al.
2011] and can be further extended to articulated models [Zhang
et al. 2007].

3 Representation for Motions

In this section, we introduce our notations and present the underly-
ing spline representation used to compute the trajectories.

3.1 Notations

Let C denote the d-dimensional configuration space and let Cfree

denote the subset of configurations that are collision-free. A con-
figuration within C is denoted as q. Its superscripts denote DOF or
joint indexing (e.g., qk is the value for k-th joint) and subscripts
denote configuration indexing among multiple samples (e.g., ql is
the l-th sample in the configuration space).

A trajectory q(t), 0 ≤ t ≤ T , represents a curve in the configu-
ration space. q(t) is collision-free if all the configurations on q(t)
belong to Cfree. q(t) is considered to be (physically) feasible if it
is collision-free and satisfies other problem-specific constraints.

We use the well known definitions of r-th order parametric conti-
nuity (i.e., Cr) and r-th order geometric continuity (i.e., Gr) from
approximation theory [Farin 1993] to define smooth trajectories.
Specifically, two curves meet at a common end point with Cr con-
tinuity, if they have the same r-th order derivative at the common
point. And two curves meet at a common end point with Gr con-
tinuity, if there exists a reparameterization of the curves that meets
at the same point with Cr continuity. In our case, we are inter-
ested in computing C2 continuous trajectories, and ensuring that
our curve fitting and modification algorithms generate almost C2
curves. Here the almost C2 curves means it is C2 almost everywhere
except on a few isolated points, which can be C1 or G2. We prefer
such a robot trajectory because C1 continuity guarantees the feasi-
bility of motion, as joint velocities cannot change instantaneously,
while the C2 continuity guarantees the smoothness of joint’s accel-
eration or torque, which can reduce mechanical oscillations of the
robot [Froissart and Mechler 1993]. Finally, note that our smooth-
ness criterion is more suitable for robot motion than the G2 criterion
used in some previous works, such as [Yang and Sukkarieh 2010],
because they only need G2 on each point on the curve, which may
even not be C1.

Similar to [Hauser and Ng-Thow-Hing 2010], we also impose addi-
tional constraints on the maximum velocity and acceleration along
each curve, based on the following bounds:

1. Velocity q′(t) is bounded by a given limit |q′(t)| ≤ vmax,

2. Acceleration q′′(t) is bounded by a given limit |q′′(t)| ≤
amax,

where the absolute value and inequality are taken element-wise.

3.2 Spline Representation for Trajectories

In this section, we give an overview of our representation of
the trajectories using B-splines. We represent the piecewise lin-
ear collision-free trajectory computed by a sample-based plan-
ner as q0(t). We assume that this trajectory is parameterized
over the interval [0, T ] and has n vertices {q1, ...,qn}. Our
goal is to smoothen this trajectory and ensure that the resulting
trajectory is collision-free and satisfies various problem-specific
constraints. In the literature, many curved formulations includ-
ing screw motion [Nielson 2004; Powell and Rossignac 2008],
parabolic curves [Hauser and Ng-Thow-Hing 2010], and Bézier
curves [Pettre et al. 2002; Yang and Sukkarieh 2010], have been
used to compute smooth trajectories. In our formulation, we use
cubic B-splines to represent the trajectory of rigid or articulated
robots. One advantage of using B-spline polynomials as the repre-
sentation for motion is its consistency with results in neuroscience
[Krebs et al. 1998], where human motion trajectory is observed to
be best described as a summation of bell-shaped basis functions.

B-splines are well studied in approximation theory and correspond
to a spline function that has minimal support with respect to a given
degree, smoothness and domain partition. The B-splines are spec-
ified based on knot values, control points or de Boor points [Farin
1993]. Moreover, they are evaluated in a recursive manner using
the well-known Cox-de Boor recursion formula. In practice, B-
splines provide sufficient flexibility to compute a C2 trajectory and
to perform local refinement by adjusting the control points or knots.
Moreover, the degree of B-spline curve is independent from the
number of control points, which makes our method more flexible
in its control of long trajectories as compared to Bézier curve based
methods [Pettre et al. 2002; Yang and Sukkarieh 2010].

3.2.1 Spline Motion Representation for Rigid Bodies

We first describe the motion and trajectory for a rigid body. The
trajectory of a rigid body, q(t), consists of two parts: translation
T(t) and rotation R(t). Translation motion T(t) is a curve inR3,
so it can be naturally formulated as a 3D cubic B-spline. However,
many issues arise in terms of representing the motion of the rota-
tional component R(t). The rotational motion is in fact a curve in
SO(3), and we cannot represent R(t) using a B-spline curve inR3.
One method is to represent the rotation by Euler angles (α, β, γ),
which turns the rotational motion into a curve in R3 configuration
space. However, Euler angles cannot formalize some rotational mo-
tions due to some intrinsic singularities, and it can be difficult to
generate motion with smooth angular velocity.

In robotics and computer animation, many applications represent
rotational motion as quaternions that are singularity-free [Kim et al.
1995; Nielson 2004; Shoemake 1985]. Other techniques tend to use
the recursive formulation of B-splines, i.e., applying the de Boor
algorithm [Farin 1993] to generate quaternion curves [Shoemake
1985]. However, the spline constructed by these approaches may
not have a closed formulation and the collision checking along such
trajectories can be rather expensive, as described in Section 5.

We represent the rotational motion based on exponential map [Mur-
ray et al. 1994]. This representation is relatively simple and can
be also used to generate continuous trajectories. The exponen-
tial map exp(·) is a continuous map between R3 and SO(3):
exp(uθ) = (cos θ,u sin θ), where q = (cos θ,u sin θ) is a quater-
nion with unit vector u as the rotation axis and θ as the rotation
angle. The inverse of the exponential map is called the logarithmic
map log(·). Given the underlying constraints, we first construct a



cubic B-spline w(t) in R3, and then use the exponential map to
map it back onto SO(3). We define the mapping result

exp(w(t)) : R3 → SO(3) (1)

as the cubic B-spline curve in SO(3).

It is easy to prove that the exponential map transforms a B-spline
curve inR3 to a B-spline curve in SO(3). Let w1(t) and w2(s) be

two joined curves with Cr continuity, i.e., dkw1(t)

dtk = dkw2(s)

dsk , for

k = 0, 1, ..., r. Then it is easy to prove that dkew1(t)

dtk = dkew2(s)

dsk ,
for k = 0, 1, ..., r, according to the derivative property of matrix
exponential [Najfeld and Havel 1995]

d

dt
eX(t) =

Z 1

0

eαX(t) dX(t)

dt
e(1−α)X(t)dα, (2)

where X(t) is a square matrix function. Therefore, the Cr curve
w(t) is mapped to a Cr curve in SO(3).

Overall, we formulate the motion of rigid body by translation spline
T(t) and rotation spline R(t) = exp(w(t)), where T(t) and w(t)

are both cubic B-spline in R3. We denote f
t0,...,tm−2
d0,...,dm

(t) as the
cubic B-spline

mX
i=0

dibi(t), (3)

where {di}mi=0 are m+1 de Boor control points, {ti}m−2
i=0 are m−1

knots, {bi(t)}mi=0 are m+1 basis functions, and t0 ≤ t ≤ tm−2. f
is a uniform B-spline if {ti}m−2

i=0 correspond to uniform knot spac-
ing. We also denote spline function as f(t) for convenience.

3.2.2 Spline Motion Representation for an Articulated Model

Given an articulated model A, composed of m rigid links A1, ...,
Am with no closed loops, we use a directed acyclic graph to repre-
sent the link structure of A. Each node in the graph denotes a link
and each edge corresponds to the joint connecting two links. Many
links may share the same parent link, but each individual link has
only one parent. For the sake of simplicity, we assume that the in-
dex of the parent of link i is i − 1. Such notation can be easily
modified when a parent has multiple child links.

For a given link Ai, let {i} denote its associated local frame, and
let {0} denote the global frame. We denote the orientation and
translation of {i} relative to {j} as jRi(t) and jTi(t) respectively,
where j < i. We define the articulated bodyA performing Cr or Gr

spline motion when j−1Rj(t) and j−1Tj(t) are Cr or Gr splines
in SO(3) and R3, respectively, for all j = 1, 2, ..., m. Here the
definition of spline for j−1Rj(t) is the same as in rigid body mo-
tion. In other words, for articulated body spline motion, we require
each link to perform rigid body spline motion in its parent link’s
local frame.

It is easy to see our definition of spline motion is consistent with the
spline motion in the configuration space when each joint of the ar-
ticulated model is of a single degree-of-freedom, such as prismatic
joints and revolute joints. However, when there exist joints of larger
degree-of-freedom, such as universal joints, our representation can
provide more reasonable results.

4 Shortcut Smoothing based on Cubic B-
Splines

In this section, we introduce our smoothing algorithm based on cu-
bic B-splines. Our formulation can use B-splines of any degree.

Algorithm 1: Spline-based Shortcut Algorithm
Input : Trajectory q0(t)|0≤t≤T , iteration count N
Output: A smooth and collision-free trajectory s(t)
begin

Fit q0(t) with a smooth but collision-free trajectory q(t);
for i = 1 to N do

Randomly choose q(t)|ta≤t≤tb
from the input trajectory;

Construct a cubic B-spline s(t) interpolating m + 1
points on q(t)|ta≤t≤tb

;
Perform spline collision checking (SCD) for s(t);
success = Resolve the colliding segments in s(t) based
on spline modification;
Ts ← runtime of s(t);
if success and Ts < tb − ta then

Refine s(t) locally to satisfy velocity and
acceleration constraints;
∆← tb − ta − Ts;
q(t)← q(t)|0≤t≤ta + s(t) + q(t)|tb−∆≤t≤T−∆;

end

We use cubic B-spline because it provides a good balance between
smoothness constraints, spline refinement, cost of collision check-
ing and oscillations that can be caused by high degree curves. Our
algorithm utilizes the information from the original piecewise lin-
ear path that needs to be smoothed. Furthermore, our approach is
general and applicable to all environments, composed of a few or a
high number of obstacles. The output of the smoothing algorithm
is a collision-free path that is C2 almost everywhere except on some
discrete points with only C1 or G2 continuity.

4.1 Algorithm Overview

The overall smoothing algorithm is shown in Algorithm 1. Given an
input piecewise linear trajectory q0(t), t ∈ [0, T ], we first fit it with
a smooth spline curve q(t) using spline interpolation, as shown in
Figure 2(a). q(t) can approximate q0(t) with arbitrarily precision,
if enough points are sampled along q0(t). Therefore, we always
can find q(t) which is collision-free and smooth. However, q(t)
may still be jerky. Next, we shortcut it in an iterative manner. At
each iteration, we randomly choose a portion q(t)|ta≤t≤tb

from the
input trajectory and construct a smoother B-spline trajectory s(t)
that interpolates the end points and some intermediate points (refer
to Section 4.2 and Figure 2(b),2(c)). We then use spline collision
detection (SCD) technique (refer to Section 5) to check whether ev-
ery configuration along the trajectory s(t) is collision-free. If there
is a collision between the robot and obstacles along that trajectory,
we resolve the collisions by using a recursive method that modifies
the spline curve as discussed in Section 4.3. Once a collision-free
trajectory is computed, we further perform local refinement (refer
to Section 4.4) to satisfy the constraints corresponding to velocity
and acceleration bounds.

4.2 Spline Interpolation

Spline interpolation is used to transform a piecewise linear curve
q0(t) to a smooth spline q(t) and to perform spline shortcut oper-
ations. The spline interpolation algorithm is similar in both cases,
the only difference is the boundary conditions.

4.2.1 Transform q0(t) to q(t)

When transforming from q0(t) to q(t), we first sample m+1 points
along piecewise linear trajectory q0(t) at t = t0, ..., tm, and make



(a) (b)

(c)

Figure 2: Overview of the spline shortcut scheme: (a) shows the
transform q0(t) to q(t) as described in Section 4.2.1; (b)(c) shows
the spline shortcut described in Section 4.2.2. (b) uses the linear
trajectory

−−−−−−−→
q(ta)q(tb) as the guidance trajectory while (c) uses part

of the spline trajectory q(t)|ta≤t≤tb
as the guidance trajectory.

sure that the two end points are included in the samples. To make
sure that q(t) is collision-free, q(t) must not deviate from q0(t)
too much. The parameter m is chosen automatically in an itera-
tive manner. It is initialized as the number of vertices in q0(t). If
the resulting q(t) is in-collision, we repeatedly double m until a
collision-free q(t) is obtained. The resulting m can be very large
in some cases, e.g., when the original jerk trajectory is very close
to an obstacle. However, in practice, we find that it is usually 3 to 5
times the number of vertices in q0(t). q0(t) may be the result from
motion planner and does not have timing information. In this case,
the initial parameterization is according to chord length so that the
samples are distributed uniformly along the entire path. Next, we
reparameterize the curve according to chord length and the joints’
velocity limit:

ui − ui−1 = max
k

R ti

ti−1
qk

0(t)dt

vk
max

, (4)

where u0 = 0. That is, we decide the timing information ui to
make sure that the motor can finish the motion with the maximum
speed. Finally, the interpolation scheme computes a cubic B-spline
q(u)|u0≤u≤um that interpolates the sampled points, i.e., q(ui) =
q0(ti), ∀i ∈ {0, 1, ..., m}.

According to [Farin 1993], the C2-smooth interpolating cubic spline
can be constructed by solving a linear system:

Ād̄ = r̄, (5)

where Ā =

0BBBB@
β0 γ0

α1 β1 γ1

. . .
αm−1 βm−1 γm−1

αm βm

1CCCCA
is a (m + 1) × (m + 1) tridiagonal coefficient matrix, r̄ =
[r0 r1 · · · rm−1 rm]T is a (m+1)×d matrix related with sampled

points and d̄ = [d0 d1 · · ·dm−1 dm]T is a (m+1)×d matrix for
unknown de Boor control points.

The matrices Ā and b̄ are determined by the parameterization of the
curve and its boundary condition. Here we use the natural boundary
condition, i.e., d2

du2 q
˛̨
u0

= d2

du2 q
˛̨
um

= 0. As a result, we have the
following setting for the linear system [Farin 1993]:

αk =
∆2

k

∆k−2 + ∆k−1 + ∆k
, 1 ≤ k ≤ m− 1;

βk =
∆k(∆k−2 + ∆k−1)

∆k−2 + ∆k−1 + ∆k
+

∆k−1(∆k + ∆k+1)

∆k−1 + ∆k + ∆k+1
, 1 ≤ k ≤ m− 1;

γk =
∆2

k−1

∆k−1 + ∆k + ∆k+1
, 1 ≤ k ≤ m− 1;

αm = −∆m−1; β0 = ∆0 + 2∆1; βm = ∆m−2 + 2∆m−1; γ0 = −∆0;

rk = (∆k−1 + ∆k)q(tk), 1 ≤ k ≤ m− 2;

r0 = (∆0 + ∆1)q(t0); rm = (∆m−2 + ∆m−1)q(tm),
(6)

where ∆i = ui+1 − ui, 0 ≤ i ≤ m − 1, is the time step between
two sample points and ∆−1 = ∆m = 0.

The solution to the linear system is represented as {dk}mk=0. Along
with two additional points d−1 = q0(t0) and dm+1 = q0(tm),
these points constitute the de Boor control point set for the interpo-
lating spline f t0,...,tm

d−1,...,dm,dm+1
(t) that is used to represent the tra-

jectory.

For the translational motion, f(t) is exactly the spline curve that
we need in 3D. For rotational motion, spline f(t) corresponds to
w(t) in Equation 1, and we need to transform it into a spline in
SO(3) via exponential mapping. The combination of translation
and rotation curves constitutes the motion spline curve q(t).

4.2.2 Spline Shortcut

When performing the spline shortcut, we first randomly sample two
points on q(t) at ta and tb. Then we sample m + 1 points along a
guidance trajectory g(t) at t = t0, ..., tm, where t0 = ta, tm = tb.
The guidance trajectory g(t) can be a linear trajectory

−−−−−−−→
q(ta)q(tb)

(Figure 2(b)) or the spline portion q(t)|ta≤t≤tb
(Figure 2(c)). We

randomly choose one type of guidance trajectory for the shortcut
operation. When shortcut iteration starts, we choose the linear tra-
jectory with a higher probability because it can provide a more effi-
cient shortcut; we gradually increase the probability to apply spline
shortcut because it has a higher potential to give a successful and
smooth shortcut. The velocities at the two end-points are given
as q′(t−a ) and q′(t+b ), which can be computed from the trajectory
segments adjacent to q(t)|ta≤t≤tb

and are used to guarantee C1
continuity on the boundaries of resulting spline. Then the interpo-
lation scheme computes a cubic B-spline s(u)|u0≤u≤u0 that inter-
polates the sampled points, i.e., s(ui) = g(ti), ∀i ∈ {0, 1, ..., m},
s′(u0) = q′(t0) and s′(um) = q′(tm). The parameterization of
the shortcut portion s(u) is determined according to the velocity
limit and the Euclidean distance between adjacent samples, which
is an estimate of the chord length after the shortcut:

ui − ui−1 = max
k

|gk(ti)− gk(ti−1)|
vk

max

≤ ti − ti−1. (7)

The matrices Ā and b̄ for the resulting linear system are almost the



same as the one in Section 4.2.1 except a few terms:

αm = 0; β0 = βm = 1; γ0 = 0;

rk = (∆k−1 + ∆k)g(tk), 1 ≤ k ≤ m− 2;

r0 = q(t0) + ∆0q
′(t0)/3; rm = q(tm)−∆m−1q

′(tm)/3,
(8)

where ∆i = ui+1 − ui, 0 ≤ i ≤ m − 1, is the time step be-
tween two sample points and ∆−1 = ∆m = 0. The difference
is caused by the usage of C1 boundary condition. From the solu-
tions of the linear system and two additional points d−1 = q(t0)
and dm+1 = q(tm), we can compute a shortcut motion portion
s(u), which is then validated using the spline collision checking
routine (Section 5). If it is collision-free, then it is merged with
q(t)|0≤t≤ta and q(t)|tb≤t≤T to get a shortcut trajectory. Other-
wise, it needs an additional modification step to resolve collision
when possible (Section 4.3).

We can also change the boundary conditions of the linear system
to achieve G2 continuity instead, which is useful when we want to
reduce mechanical oscillations of the robot. According to Derose
and Barsky’s work [DeRose and Barsky 1988; Barsky and DeRose
1989], two curves q(t), t ∈ [t0, t1] and s(u), u ∈ [u0, u1] meet
with G2 continuity at q(t1) = s(u0) if and only if there exist real
numbers η1 > 0 and η2 ∈ R so that

d

dt
s
˛̨
u0

= η1
d

dt
q
˛̨
t1

,

d2

dt2
s
˛̨
u0

= η2
1

d2

dt2
q
˛̨
t1

+ η2
d

dt
q
˛̨
t1

.

(9)

In other words, the two curves should have common tangent direc-
tions and curvature vectors at the shared boundary point. Notice
that when η1 = 1 and η2 = 0, we have the condition for C2 conti-
nuity.

For cubic B-spline in Equation 5, the G2 boundary condition can be
formalized as

3

∆0
(d0 − d−1) = η1q

′(t−a )

6

∆2
0

(d−1 − 2d0 + d1) = η2
1q

′′(t−a ) + η2q
′(t−a )

3

∆m−1
(dm+1 − dm) = η3q

′(t+b )

6

∆2
m−1

(dm+1 − 2dm + dm−1) = η2
3q

′′(t+b ) + η4q
′(t+b ).

(10)

As a result, to achieve an interpolated spline with G2 continuity,
we only need to construct a new algebraic system by replacing the
C1 boundary condition in Equation 5 with the new G2 boundary
condition. Unlike the original linear system, the new system is (1)
nonlinear due to η2

1 and η2
3 terms, and (2) overdetermined, because

originally we have 2d degrees of freedom on the boundary and now
we provide 4d− 4 constraints, where d, as mentioned before, is the
dimension of configuration space. To solve this problem, we use an
approximation scheme instead of the interpolation scheme [Farin
1993], i.e., we try to find a curve s(u) which is close to the given
points. Based on Equation 3, we can formulate it as an optimization
problem:

maximize
d0,...dm,η1,...,η4

mX
i=0

‖q(ti)−
m+1X
k=−1

dkbk(ui)‖2

subject to Equation 10,

(11)

where ui is the correspondence of ti in the parameterization of
curve s(u).

t0

t1

t2

t3

t0

t1

t2

t3

t'1

t'2

Figure 3: For cubic B-spline f t0,...,t3(t), t ∈ [t0, t3], a collision
happens during the interval [t1, t2]. We recursively add new knots
within the interval and refine the spline f t1,t′1,t′2,t2(t), t ∈ [t1, t2]
(shown on the right). The splines defined in the intervals [t0, t1]
and [t2, t3] are unchanged based on this local refinement scheme.
The modified spline is collision-free in [t0, t3].

We can solve this non-linear optimization using non-linear solvers.
However, an EM-alike method is also possible: we first fix ηi and
compute di using a linear optimization, next we fix di and solve ηi.
This process repeats for several times or until the solution does not
improve. For initialization, we use η1 = η3 = 1 and η2 = η4 = 0.

Notice that the G2 interpolation is much simpler for articulated
models made up with 1-DOF joints (i.e., d = 1 for all joints) be-
cause G2 is equivalent to C1 in this case (i.e., we can set η1 = η3 =
1 to solve di and then solve the corresponding η2 and η4 to satisfy
the G2 constraint).

Here we apply spline interpolation schemes for both translational
motion in R3 and rotational motion in SO(3). In R3, the spline
interpolation produces a path p which minimizes the L2 energy:R
‖p′′‖2dt, i.e., the variational principle [Farin 1993; Kim et al.

1995]. However, the spline in SO(3) does not necessarily have
such a property. In this sense, the exponential map does not pre-
serve the optimality similar to splines in R3. In principle, it may
be possible to compute a spline in SO(3) that satisfies variational
principles (i.e., minimizes the torque energy). However, the com-
putation may involve non-linear optimization, which can be expen-
sive [Barr et al. 1992].

4.3 Recursive Spline Modification to Resolve Collision

After s(t) is computed, we check whether all the configurations be-
longing to s(t) are collision-free. The collision checking algorithm
is presented in Section 5. If a collision is found, we resolve it by
modifying the spline curve. As shown in Figure 3, our solution is
based on the locality of spline curves. Suppose that the collision be-
tween the B-spline curve and the obstacles corresponds to a param-
eter that lies within the interval [ti, tj ]; our goal is to keep the other
portions of the B-spline unchanged, as they represent collision-free
portions of the spline. Therefore, we only sample more parameter
values within [ti, tj ] and use them to pull the spline near the original
piecewise linear curve q(t), which is collision-free. The modified
spline will still be almost C2 if we use the C1 or G2 boundary con-
ditions as before, though there will be two more isolated C1 or G2

points between ti and tj .

The above procedure can be applied recursively whenever a colli-
sion is detected within any sub-interval. However, we only use this
recursive formulation two or three times. If the collision is not re-
solved after a few recursive steps, the algorithm returns failure for
the current shortcut attempt. If the algorithm is unable to compute
a collision-free path, it changes the number of sample points along
q(t) and repeats the process.



For the other collision-free spline intervals, we keep them un-
changed. However, the original spline has been divided into several
parts. We still need the spline representation for each part in the
local optimization step in Section 4.4. Therefore, we use the spline
subdivision technique [Farin 1993] to compute the m + 3 new de
Boor points d̃−1, ..., d̃m+1 for each spline that is defined on the
collision-free intervals. The final output is an almost C2 collision-
free trajectory.

4.4 Satisfying Velocity and Acceleration Constraints

The modified trajectory s(t) also needs to satisfy other constraints,
e.g., velocity constraints and acceleration constraints, as defined in
Section 3.1. It is possible to satisfy these constraints by formulat-
ing an optimization problem for the control points di, as was shown
in recent work [Lee et al. 2005; Lengagne et al. 2011, submitted].
However, as we have already taken into account the velocity lim-
its when determining the parameterization of the trajectory (refer to
Section 4.2.1), usually a small adjustment is sufficient to make the
spline satisfy these additional constraints. Therefore, to avoid suf-
fering the performance penalties of the heavy-weight optimization
framework, we use a simple control point adjustment technique.

Our solution exploits the properties of B-splines. It iteratively ad-
justs the de Boor control points successively so that the resulting
spline curve can satisfy these constraints. For convenience, here we
assume that the spline is a uniform B-spline; similar formulation
can be derived for non-uniform splines.

We first discuss how to constrain the velocity bound. For a uniform
cubic B-spline f

t0,...,tm−2
d0,...,dm

(t), the derivatives at the i-th knot, and
the midpoint between i-th knot and i + 1-th knot are:

f ′(ti) =
di+2 − di

2∆

f ′(
ti + ti+1

2
) =

di+3 + 5di+2 − 5di+1 − di

8∆
,

(12)

where ∆ = ti+1 − ti.

We define the limit velocity v̄ as the velocity at time t̄ when f ′′(t̄) =
0, i.e., it is the maximum/minimum velocity in one interval [ta, tb].
The limit velocity within the interval [ti, ti+1] is:

v̄[ti, ti+1] =
1

2∆
(di+2 − di +

(di+2 − 2di+1 + di)
2

−di+3 + 3di+2 − 3di+1 + di
)

= f ′(ti) +
1

8

(4f ′(
ti+ti+1

2
)− f ′(ti+1)− 3f ′(ti))

2

2f ′(
ti+ti+1

2
)− 2f ′(ti+1)− f ′(ti)

.

(13)
From this equation, we can find that v̄[ti, ti+1] is uniquely deter-
mined by the velocity at the beginning, ending, and middle knots
of the interval [ti, ti+1]. As a result, if we can bound the magni-
tudes of {f ′(ti)}m−2

i=0 and {f ′( ti+ti+1
2

)}m−3
i=0 , we can control the

magnitude of velocity of spline f ′(t), for all t ∈ [t0, tm−2].

Therefore, we check the bounds on f ′(ti) and f ′(
ti+ti+1

2
) for i

from 1 to m − 3. If |f ′(ti)| or |f ′( ti+ti+1
2

)| is larger than vmax,
we reduce the corresponding di+2 to λdi+2 with 0 < λ < 1.
We repeat this procedure several times until the limit velocity v̄ is
constrained within the given velocity bound. Notice that the itera-
tion will not influence f ′(t0) and f ′(tm−2) at the boundaries of the
spline.

The bound on the acceleration is relatively simple to satisfy, be-
cause the acceleration of the entire cubic spline is a linear function.
The acceleration at the i-th knot is f ′′(ti) =

di+2−2di+1+di

∆2 . We

only need to adjust {di}m−3
i=3 to make sure that the acceleration is

bounded by amax. We perform the adjustment in a greedy manner:
if f ′′(ti) is not bounded by amax, we perform a local search around
the current value of di+1 and find a suitable new di+1. Such ad-
justment will influence the accelerations at adjacent time points and
therefore we need to repeat such adjustment several rounds. When-
ever the de Boor control points are adjusted, we need to perform
a continuous collision query to ensure that the modified spline is
also collision-free. If the modified spline trajectory is collision-
free, we use these adjusted control points. Otherwise, we perform
the adjustment step again using a smaller λ (we use 0.5λ in our ex-
periments). If the modified spline still collides with the obstacles,
we discard the adjustment step and use the earlier path. Overall,
our algorithm is designed to ensure computation of a collision-free
path (i.e., a hard constraint). On the other hand, we treat velocity
and acceleration as soft constraints.

Overall, our spline fitting and refinement schemes tend to maintain
second-order continuity and ensure that the computed trajectories
are almost C2. As a result, if our algorithm is able to compute a
collision-free path, it would correspond to an almost C2 collision-
free trajectory.

5 Exact Collision Detection

Collision checking is an integral component of any planning and
smoothing algorithm. Many prior optimization-based smooth-
ing algorithms cannot provide guarantees about collision-free path
computation, especially when the environment has a high num-
ber of obstacles or narrow passages, because they usually approxi-
mate obstacles using potential fields or distance fields [Ratliff et al.
2009]. At the same time, many shortcut algorithms tend to use
rather simple or restricted smoothing functions so that they can eas-
ily perform collision checking. Our goal is to develop efficient al-
gorithms that can be used for exact collision checking with spline-
based smoothing functions.

The simplest algorithms for collision checking compute discrete
samples along a path or trajectory and check them for collisions.
The formal definitions for each discrete collision query (DCD) and
the trajectory collision checking based on DCD (TDCD) are as fol-
lows:

Definition Given two objectsA and B, the discrete collision query
returns a yes/no answer about whether the two objects are in colli-
sion or not, i.e., whether

A ∩ B 6= ∅.

Given motions for the two objects A(t) and B(t), where t ∈ [0, 1],
the trajectory collision checking based on DCD generate n samples
A(t1), A(t2), ..., A(tn), B(t1), B(t2), ..., and B(tn) along the
path and returns a yes/no answer about whether the two objects are
in collision within interval [0, 1], i.e., whether

∃i ∈ {1, 2, ..., n},A(ti) ∩ B(ti) 6= ∅.

If a collision occurs, it also returns an approximate time of first
contact (TOC):

tocTDCD = min{ti : A(ti) ∩ B(ti) 6= ∅}.

However, the resulting techniques can miss collisions due to poor
sampling. Moreover, it cannot provide high precision TOC, which
is useful in many applications like planning and grasping. In con-
trast, continuous collision detection (CCD) methods check for col-
lisions between a robot and obstacles when the robot moves along
a given motion curve f(t). This can overcome the inaccuracy or



the collision missing problem of discrete collision detection. The
formal definition for a CCD query is as follows:

Definition Given two objects A and B as well as their motions
A(t) and B(t), where t ∈ [0, 1], the continuous collision query re-
turns a yes/no answer about whether the two objects are in collision
within interval [0, 1], i.e., whether

∃t ∈ [0, 1],A(t) ∩ B(t) 6= ∅.

If a collision occurs, it also returns the first time of contact:

tocCCD = inf{t : A(t) ∩ B(t) 6= ∅}.

However, prior CCD algorithms are mainly limited to linear defor-
mation [Govindaraju et al. 2005] or linear/screw/parabolic trajecto-
ries in the configuration space [Tang et al. 2011; Zhang et al. 2007],
and no fast methods are known for CCD along arbitrary spline tra-
jectories. We also define the motion bound in a new way, which can
provide tighter motion bound estimation compared to those used in
previous work.

5.1 Efficient Spline Collision Detection Algorithm

Our SCD (spline collision detection) algorithm is based on conser-
vative advancement (CA) [Zhang et al. 2006; Tang et al. 2011; Pan
et al. 2011]. Figure 4 shows an overview of the CA method. Sup-
pose we are given two convex objectsA and B ,whereA is moving
and B is fixed. Denote A(t) as A at time t ∈ [0, 1]. The basic
idea of CA is to incrementally advanceA by a small time step ∆tk

toward B while avoiding collision. In order to perform this step, we
need to compute the minimal separation distance between A and
B. Let d(A(t),B) represent the distance and n be the direction of
the closest vector. Then an upper bound µ on the motion of A(t)
projected onto the direction n is estimated. Finally the advancing
length at the step k is calculated by:

∆tk =
d(A(t),B)

µ
. (14)

A advances by ∆tk each step until d(A(t),B) is small enough. If
τ =

P
k ∆tk is equal to 1, the given path is collision-free. Other-

wise, τ is the first time of contact.

The CA technique can also be used to handle CCD between two
moving objects A(t) and B(t). One way is to compute the rela-
tional motion between the two objects and then apply the original
CA. However, this method is difficult to apply for articulated bod-
ies. Another way is to estimate the motion bounds µA and µB for
two objects respectively, and the advancing length computation is
updated as

∆tk =
d(A(t),B(t))

µA + µB
. (15)

We apply the CA method to B-spline trajectories. Algorithm 2
shows the overall algorithm SCD. Let us assume thatA’s trajectory
is a B-spline with m − 2 segments f

t0,...,tm−2
d0,...,dm

(t). Our algorithm
performs collision checking for each segment iteratively.

The main challenge in terms of applying CA continuous collision
detection is to find a tight motion bound µ for the given motion
trajectory. Tang et al. [Tang et al. 2011] present the motion bounds
for linear and screw motion in the configuration space. In our case,
we need to find an appropriate motion bound for the spline motion.
Its translation part T(t) is a B-spline in R3; its rotation part R(t)
is represented as w(t) using the exponential map, which is also a
B-spline inR3.

Algorithm 2: Spline Continuous Collision Detection
Input : Two objects A and B; A’s spline motion function

f
t0,...,tm−2
d0,...,dm

(t)
Output: collision-free or the first collision time τ
begin

t← 0
// Repeat CCD for each spline segment
for i = 1 to m− 2 do

while t ≤ ti do
Compute current distance d(A(t),B)
Estimate the motion bound µ

Compute conservative advancement ∆t = d(A(t),B)
µ

t← t + ∆t
Check collision between A(t) and B
if collision then

return τ = t

return collision-free
end

5.2 Motion Bound Definition

As mentioned above, motion bound µ is an upper bound on the mo-
tion of A(t) projected onto the direction n. Previous work [Zhang
et al. 2006; Tang et al. 2011; Pan et al. 2011] define the motion
bound as

µ = max
pi∈A

Z 1

0

|ṗi(t) · n|dt, (16)

where pi is the i-th point on the rigid bodyA. However, this defini-
tion itself only gives an approximated bound. For example, if object
A is moving away from a static object B, an ideal motion bound
definition should give result less or equal to zero (i.e., collision will
not happen during the time step), then the CA iteration can stop and
returns collision-free immediately. However, the bound definition
in Equation 16 will still give a positive motion bound, which may
result in many more CA iterations, especially when the speed of A
is high.

To avoid the above disadvantage, we define the motion bound in a
tighter manner: it is the maximum distance along the direction n
that one object moves toward the other objects:

µ = max
τ∈[0,1]

max
pi∈A

Z τ

0

ṗi(t) · ndt. (17)

Notice that if A moves away from B, then ṗi(t) · n < 0 for all
t ∈ [0, 1] and therefore µ = 0 ≤ 0. Moreover, if A moves towards
B within time interval [0, t0] and then moves away from B within
[t0, 1], then the motion bound should be the distance A has moved
at time t0, which is exactly what is returned by our new motion
bound definition: µ = maxpi∈A

R t0
0

ṗi(t) · ndt. If B also moves,
Equation 17 can also be used to compute B’s motion bound, but the
projection direction should be −n instead.

Using the new motion bound definition, we can give a tighter mo-
tion bound for a rigid body or an articulated body. In Appendix B,
we give the details about how to obtain a better motion bound us-
ing the new definition for a rigid body performing linear or screw
motion. In Appendix C, we further show how to apply the same
technique to improve the motion bound of articulated bodies.

Computing the motion bound directly based on Equation 16 or
Equation 17 is slow, because we need to compute the bound for
each point on the object and then select the maximum one. More-
over, it cannot be applied to non-convex objects. To solve these



difficulties, we use the swept sphere volume (SSV) hierarchy tech-
nique to accelerate motion bound computation and extend it to non-
convex objects [Tang et al. 2011]. As a preprocess, we compute the
SSV hierarchy for both objects. At runtime, we apply CA to the
nodes in the SSV hierarchy in an iterative manner. Similar to the
convex case in Equation 14 or Equation 15, we require the closest
distance between SSVs and the motion bound for SSVs. The dis-
tance is obtained as a byproduct of the SSV algorithm and we need
to estimate a tight motion bound for each SSV node α, which is
denoted as µα.

5.3 Motion Bound for Cubic B-Splines

To apply the CA technique for the spline motion, the main challenge
is to compute a tight motion bound for the moving object A. The
proofs of the following theorems are shown in Appendix D.

We first assume A is convex and the following theorem calculates
its motion bound:

Theorem 1 Suppose pi is a point on the convex object A and ri

is its local coordinate respect to the origin of A’s local frame. A
moves according to spline motion pi(t) = T(t) + R(t)ri. Then
the spline motion bound µ with respect to the closest direction n is
given by

µ ≤ 2 max
i

(|ri · n|+ ‖ri‖+ ‖ri × n‖)min(1, max
t∈[0,1]

‖w′(t)‖)

+
1

6
(Aτ̃3 + Bτ̃2 + Cτ̃),

(18)
where w(t) is the preimage of R(t) under exponential map; A, B,
C are constants depending on T(t) and τ̃ = argmaxτ∈[0,1] Aτ3+

Bτ2 + Cτ .

We then extend the spline motion bound to non-convex objects
by using the swept sphere volume hierarchy technique. SSV is
one type of bounding volume for collision acceleration, which has
a sphere radius parameter r and several medial axis parameters
{ci}ni=1, where n can be 1, 2 or 3. Given a SSV, any point p in
that SSV can be represented as p = rk + g({ci}), where k is a
unit vector and g(·) is a linear function of {ci}. Ultimately, we
have the following motion bound result for the SSV:

Theorem 2 The spline motion bound for one SSV α is given as

µα = 2(3r + max
k
|ck · n|+ max

k
|ck × n|max

k
‖ck‖)

·min(1, max
t∈[0,1]

‖w′(t)‖) +
1

6
(Aτ̃3 + Bτ̃2 + Cτ̃),

(19)

where the symbols are of the same meaning as in Theorem 1.

Given a complex non-convex object, we represent it using a hierar-
chy of SSVs and compute the motion bound for the non-convex ob-
ject along that trajectory. We then use the hierarchy to compute the
conservative time step. Eventually, we can test whether the robot
traversing along a B-spline trajectory collides with any obstacle.

Finally, we can also compute the spline motion bound for articu-
lated bodies. Suppose the spline motion for articulated models is
as defined in Section 3.2.2. Using our new motion bound definition
and the technique described in [Zhang et al. 2007] and assuming
that all the links are convex objects, we have

Theorem 3 The spline motion bound for the i-th link of the articu-

p

n
d

v

t1 t2

p(t)
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Figure 4: Continuous collision detection between A(t) and B.
A(t) is a spline motion. p is a point on A. p’s motion function
is p(t) and v(t) = p′(t) is the velocity. d is the closest distance
between two objects and n is the direction of closest distance. τ =
∆t1 + ∆t2 is the first time of contact. ∆t1 and ∆t2 correspond to
the advancements during two successive steps.

lated model is

µi ≤ n · ( max
t∈[0,1]

0T1(t)− 0T1(0)) + max
t∈[0,1]

‖0w′
1(t)‖

iX
j=1

‖j−1Lj‖µ

+

iX
j=2

`
max

t∈[0,1]
‖j−1T′

j(t)‖+ max
t∈[0,1]

‖j−1w′
j(t)‖

iX
k=j

‖k−1Lk‖µ
´
,

(20)
where j−1wj is the preimage of j−1Rj under the exponential map
and jLi denotes the vector from the origin of frame {i} to that
of frame {j}. ‖j−1Lj‖µ is the motion bound for j−1Lj and when
j = i we have ‖i−1Li‖µ = maxp∈Ai ‖i−1ri‖ where i−1ri is each
point p’s local coordinate in frame {i− 1}.

We can also extend the above bound to articulated models contain-
ing non-convex objects using the swept sphere volume hierarchy
technique and we have

Theorem 4 The spline motion bound for SSV node α of the i-th
link of the articulated model is

µi
α ≤ n · ( max

t∈[0,1]

0T1(t)− 0T1(0)) + max
t∈[0,1]

‖0w′
1(t)‖

iX
j=1

‖j−1Lj‖µ

+

iX
j=2

`
max

t∈[0,1]
‖j−1T′

j(t)‖+ max
t∈[0,1]

‖j−1w′
j(t)‖

iX
k=j

‖k−1Lk‖µ
´
,

(21)
where ‖i−1Li‖µ = r + maxk ‖ck‖ and other symbols are of the
same meaning as in Theorem 3. r and ck are the parameters of the
SSV.

6 Results

In this section, we highlight the performance of our spline-based
smoothing algorithm on different benchmarks with cluttered envi-
ronments. We show results on both rigid bodies and articulated
robots.

6.1 Rigid Robots

The results of five different benchmarks on rigid robots are shown
in Figures 5, 6, and 7. Table 1 summarizes the geometric complex-
ity and DOFs for each benchmark. Among the five benchmarks,



only the piano benchmark does not have narrow passages. The rest
of the benchmarks are challenging for sample-based motion plan-
ners and smoothing algorithms. We use a variant of a sample-based
motion planner [Pan et al. 2010] to compute an initial piecewise lin-
ear trajectory and apply our B-spline smoothing algorithms to these
trajectories.

For each benchmark, we compare the initial piecewise linear tra-
jectory, the smoothed trajectory computed using linear shortcut
smoothing algorithm [Yamane et al. 2004], and the smoothed tra-
jectory computed using our spline-based algorithm. In particular,
we visualize these trajectories for the local coordinate origin of each
rigid robot (Figures. 5, 6, and 7). As compared to the linear shortcut
algorithm, our spline-based smoothing algorithm computes almost
C2 trajectories. Moreover, for the gear benchmark (Figure 5), we
show the swept volume of the robot generated using the trajectories
computed by different algorithms.

For the piano benchmark (Figure 6), we also visualize the rotation
curves using quaternions. In this case, the distance to the sphere
is the angle and the direction of the sphere center is the axis. The
curve corresponding to the rotational motion, generated by the orig-
inal sample-based planner, is not smooth. The linear shortcut algo-
rithm results in a lot of corners, while our spline-based smoothing
algorithm results in a smooth trajectory.

We show the timing results in Table 2. For each benchmark,
we generate 50 trajectories using the randomized motion planner.
Then, all methods perform 500 shortcut operations on different tra-
jectories. Such process is performed 10 times for each method with
different random seed setting and we measure the average timing
for each method on different benchmarks. For each shortcut oper-
ation in the linear shortcut and the spline shortcut, we check col-
lisions by using 30N|tb−ta|

T
discrete samples, where N, tb, ta, T

are introduced in Algorithm 1. We notice that the computational
overhead of our spline-based shortcut algorithm over the linear
shortcut method is rather small. Since the discrete collision check-
ing algorithm is not reliable, we use our SCD algorithm and in-
tegrate it with the spline shortcut framework. The conservative
advancement-based SCD algorithm is significantly faster than prior
methods used, which follows from the efficiency of the conservative
advancement method. The overall smoothing algorithm with SCD
is comparable to (or faster than) prior methods. Notice that the
result indicates that to check the collision state for one spline seg-
ment, it is faster to use one SCD operation than to perform multiple
DCD checkings on multiple samples along the curve. However, a
single DCD operation is still faster than a single SCD operation.
We also compare the SCD algorithm when using the original mo-
tion bound in our previous work [Pan et al. 2011] and when using
the more compact motion bound presented in this paper. We find
that the new motion bound can provide 6%-10% acceleration on
our benchmarks.

6.2 Articulated Models

We now apply our spline-based smoothing method to articulated
robots. Figure 8 shows a 40-DOF hyper-redundant (HRR) articu-
lated robot with free rotation joints. The goal is to compute a path
such that the robot goes through a hole to access the brackets of
a bridge and perform an inspection. We use a variant of sample-
based planner to compute an initial path and apply our spline-based
algorithm to smooth the trajectory. Figure 8 shows the intermedi-
ate configurations on the trajectory of the robot. As compared to
the linear shortcut method, our method can compute a shorter and
smoother trajectory.

We also implement our spline-based smoothing algorithm for the
PR2 robot from Willow Garage on different benchmarks, as shown

Figure 5: Results for the gear benchmark. From left to right are
results computed by planner, the linear shortcut and our B-spline
smoothing algorithm. The first row shows the trajectories traversed
by the origin of the robot; the second row shows a zoomed view of
the trajectories within the orange box in the first row; the third row
shows the swept volumes for the trajectories computed by different
methods. We use green circles to show the narrow passages in the
configuration space. Our smoothing algorithm computes a F2 tra-
jectory for most of the path, though it can be C0 in very cluttered
areas.

in Figure 9. For each benchmark, we generate 50 trajectories using
the randomized motion planner in Robot Operating System (ROS)
and then filter them using our B-spline smoothing algorithm or us-
ing the default trajectory filter in ROS. The default trajectory filter
in ROS depends on the cubic spline, which models each segment of
the linear trajectory as a cubic spline and therefore cannot provide
any guarantee for the continuity of the trajectory nodes. To com-
pare the qualities of the trajectories generated using the two differ-
ent smoothing techniques, we use three criteria: (1) the length of the
trajectories; (2) the maximum torque generated when executing the
smoothed trajectories; (3) the integration of absolute torque when
executing the smoothed trajectories. The comparison results are
shown in Table 3. From the results, we can see that the smoothed
trajectories given by the B-spline smoothing algorithm can be a bit
longer than the smoothing results provided by ROS’s default filter.
While the maximum torque is about the same, the overall torque
along the trajectory is much lower with our new method.

6.3 Time of Contact

Compared to performing discrete collision detection on multiple
samples in the trajectory, the spline continuous collision detection
provides more accurate time of contact (TOC), which is useful for
many applications, like planning and grasping. We compare the
TOC convergence speeds of SCD and TDCD, as shown in Fig-
ure 10. To reduce the error under 1%, TDCD requires about 100
samples. To obtain comparable precision with SCD, it requires
more than 100,000 samples, which will be much slower than SCD.

7 Analysis and Comparisons

There is extensive work on path smoothing in robotics, control and
related areas, as highlighted in Section 1. We use cubic B-spline
for trajectory computation as it provides sufficient degrees of free-
dom to compute almost C2 trajectories and handle cluttered envi-
ronments. Furthermore, we are able to perform fast and reliable
continuous collision checking. None of the prior methods provide
all these features or capabilities. Most of the prior shortcut algo-



Piano Gear Wiper CarSeat AlphaPuzzle Bridge
#DOF 6 3 6 6 6 40
#face 952 7,188 26,766 245,127 2,088 31,718

Table 1: Geometric complexity of our benchmarks.

Piano Gear Wiper CarSeat AlphaPuzzle Bridge
Linear shortcut 59.9 8.53 24.1 20.0 10.5 163
Spline shortcut + TDCD 43.5 9.78 33.1 51.4 15.8 185
Spline shortcut + SCD in [Pan et al. 2011] 24.5 5.45 4.69 28.3 17.2 87.8
Spline shortcut + SCD 22.9 5.10 4.32 26.2 15.3 80.7

Table 2: Timing of shortcut algorithms in seconds. The first two rows correspond to algorithms that perform discrete collision checking and
tend to use a high number of discrete samples. The third row uses the original spline collision detection (SCD) in [Pan et al. 2011]. The last
row corresponds to the improved SCD algorithm presented in Section 5.

1

−0.6

−0.4

−0.2

Figure 6: Results for piano benchmark. From left to right, we show
the paths computed by the sample-based planner, linear shortcut
algorithm and our method, respectively. The first row shows the
trajectory traversed by the origin of the robot. The second row
visualizes the rotational motion of the robot obtained by different
methods. Each vector originating from the sphere center represents
a rotation with its magnitude for angular velocity and its direction
for rotation axis. Our method can compute smooth rotational mo-
tions.

rithms use linear shortcuts or parabolic curves [Hauser and Ng-
Thow-Hing 2010; Yamane et al. 2004], but cannot provide high
order smoothness. Furthermore, it is not clear whether these meth-
ods would work in narrow passages or cluttered environments. Re-
cently, a curvature-continuous trajectory computation algorithm has
been proposed [Yang and Sukkarieh 2010]. This approach uses
Bézier curves to construct G2 smooth, and the formulation appears
to be limited to a point robot navigating in a 2D or 3D workspace.

There are many optimization-based methods, such as
CHOMP [Ratliff et al. 2009], which have many useful prop-
erties and work well on robotic systems. Some of these methods
do not require collision-free piecewise linear trajectories and can
also model dynamics constraints. However, one challenge is to
compute collision-free trajectories when there are a high number
of obstacles or narrow passages.

Our spline continuous collision detection algorithm is the first re-
liable algorithm that can check for collisions along spline trajec-
tories. The resulting formulation based on conservative advance-
ment can also be applied to other trajectory formulations. Further-
more, our continuous collision detection algorithm is much faster

Figure 7: Rigid robot benchmarks: car seat and alpha puzzle.
From left to right, we show the results computed by a sample-based
planner, the smooth result computed using linear shortcut and the
smooth trajectory generated by our algorithm. We show the path in
the workspace traversed by the origin of the rigid robot.

than prior exact collision checking methods.

8 Conclusions and Future Work

We present a trajectory smoothing algorithm using cubic B-splines.
Our formulation can compute almost C2 trajectories and also works
well in cluttered environments. We also describe a fast and reliable
continuous collision detection algorithm along spline trajectories.

There are many avenues for future work. We would like to com-
bine our approach with gradient optimization techniques, such as
CHOMP [Ratliff et al. 2009], to perform path refinement on our
trajectories. It may be useful to extend our approach to take into
account kinematic and dynamics constraints and integrate the al-
gorithm with robotic systems. Moreover, we can also design fast
and reliable collision detection algorithms, similar to SCD, for
other trajectory formulations or optimization-based smoothing al-
gorithms. Finally, one main limitation of our method is that it can-
not achieve global optimality. An interesting topic is to combine our
method with critical cycle-based methods (e.g., [Marble and Bekris
2011]) in order to obtain provable bounds on (asymptotically) sub-
optimality.

A Index to MultiMedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.
org.



Figure 8: Results for the 40-DOF hyper-redundant articulated model. The left two sub-figures show the robot and the bridge inspection
scenario. In the right two sub-figures, we show the results computed by a sample-based planner and the smooth result computed by our
algorithm.

Figure 9: PR2 planning benchmarks: robot arms with different colors show the initial and goal configurations. The first three benchmarks
correspond to the same environment, but the robot’s arm is in different places: (a) moves the arm from under the desk(initial) to over the desk
(final); (b) moves the arm from under the desk to another position under the desk and (c) moves the arm from inside the box to outside the
box. In the rightmost benchmark, the robot tries to move the arm from under a shelf to above it.

Extension Type Description
1 Video Demo for rigid robots in Section 6.1

B Improved Motion Bound for Linear and
Screw Motion

Here we use our new definition in Equation 17 to give tighter mo-
tion bounds for linear and screw motions.

B.1 Motion Bound for Linear Motion

For linear motion, we assume the object rotates around a given point
o fixed along its local frame in a constant angular velocity ω while
the local frame originated at o translates in a constant velocity v.
As a result, for a given point p on the object, its velocity is ṗ(t) =
v + ω × r(t) where r(t) = p(t)− o(t) is the curve of the point’s
local coordinate. We have r(t) = R(t)r(0) = eω̂tR0r where R0

is the object’s initial orientation and r is point’s coordinate in its
local frame.

Now suppose the projection direction is n and {pi} are points be-
longing to the object. According to Equation 17, the motion bound
can be computed as:

µ = max
τ∈[0,1]

max
i

Z τ

0

(ṗi(t) · n)dt

= max
τ∈[0,1]

max
i

Z τ

0

(v + ω × ri(t)) · n)dt

≤ max
τ∈[0,1]

`
(v · n)τ +

Z τ

0

max
i

˛̨
(ω × ri(t)) · n

˛̨
dt
´
.

(22)

Recall R(t) = eω̂tR0, then we have˛̨
(ω × ri(t)) · n

˛̨
=
˛̨`

ω × eω̂t(ri(0)× ω

‖ω‖ )
´
· n
˛̨

=
˛̨`

R(t)(ω × n)
´
· (ri(0)× ω

‖ω‖ )
˛̨

= ‖ω × n‖‖ ω

‖ω‖ ×R0ri‖.

(23)

The final result for the motion bound is

µ ≤ max
`
0,v · n + ‖ω × n‖max

i
‖ ω

‖ω‖ ×R0ri‖
´
. (24)

Suppose r, ck are parameters of SSV α and let c⊥i = R0(ci−o)×
ω
‖ω‖ , then the motion bound for the SSV is

µα ≤ max
τ∈[0,1]

`
(v · n)τ +

Z τ

0

‚‚n× ω‖(r + max
i
‖c⊥i ‖)dt

´
= max

τ∈[0,1]

`
(v · n) + ‖n× ω‖(r + max

i
‖c⊥i ‖)

´
τ

= max
`
0,v · n + ‖n× ω‖(r + max

i
‖c⊥i ‖)

´
.

(25)

B.2 Motion Bound for Screw Motion

The screw motion is of the form p(t) = a + eω̂t(p(0) − a) + vt
where p(0) = R0p + T0 is the initial position and translation
v = v ω

‖ω‖ is along the rotation axis. a is the reference point of
the screw motion. Then the velocity for screw motion is ṗ(t) =

ω×
`
eω̂t(p(0)−a)

´
+v = ω×

“
eω̂t
`
(p(0)−a)× ω

‖ω‖

´”
+v, where



Linear Trajectory (Randomized Planner) Cubic Spline Trajectory (ROS) Cubic B-spline Trajectory (Section 4)
length max. torque overall torque length max. torque overall torque length max. torque overall torque

PR2 benchmark (a) 7.18 41.32 2944 5.99 42.9 499 6.08 42.6 177.6
PR2 benchmark (b) 5.70 37.53 2271 4.46 37.1 332 4.46 36.7 130.6
PR2 benchmark (c) 8.79 47.65 4755 6.89 47.7 845 7.04 47.6 291.8
PR2 benchmark (d) 8.55 47.13 3707 6.77 47.3 626 6.94 47.2 230.6

Table 3: Comparison the qualities of linear trajectories generated by randomized motion planner, smoothed trajectories generated using
the default option in ROS and smoothed trajectories generated using our B-spline smoothing algorithm described in Section 4. While the
maximum torque is about the same, We observe considerable improvements in terms of the overall torque with our method.

(p(0)− a)× ω
‖ω‖ projects p(0)− a onto the plane perpendicular

to ω.

Now suppose the projection direction is n and {pi} are points be-
longing to the object. According to Equation 17, the motion bound
can be computed as:

µ = max
τ∈[0,1]

max
i

Z τ

0

(ṗi(t) · n)dt

= max
τ∈[0,1]

max
i

Z τ

0

„
ω ×

“
eω̂t`(pi(0)− a)× ω

‖ω‖
´”

+ v

«
· ndt

≤ max
τ∈[0,1]

 
(v · n)τ

+

Z τ

0

max
i

˛̨̨̨„
ω ×

“
eω̂t`(pi(0)− a)× ω

‖ω‖
´”«

· n
˛̨̨̨
dt

!
.

(26)
For the item within integration, we have˛̨̨̨„

ω ×
“
eω̂t`(pi(0)− a)× ω

‖ω‖
´”«

· n
˛̨̨̨

= ‖eω̂t(ω × n)‖‖(pi(0)− a)× ω

‖ω‖‖

= ‖ω × n‖‖(R0pi + T0 − a)× ω

‖ω‖‖,

(27)

and the final result for the motion bound is

µ ≤ max
`
0,v·n+‖ω×n‖max

i
‖(R0pi+T0−a)× ω

‖ω‖‖. (28)

Similarily, the motion bound for SSV α is

µα ≤ max
`
0,v · n + ‖ω × n‖

· (‖(T0 − a)× ω‖
‖ω‖ + r + max

i

‖R0ci × ω‖
‖ω‖ )

´
.

(29)

C Improved Motion Bound for Articulated
Body

We assume the articulated model is as described in Section 3.2.2
and jLi denotes the vector from the origin of frame {i} to that of
frame {j}. Suppose the motion of the j-th link is described by two
parts: the translational velocity j−1vj and the rotational velocity
j−1ωj , both respective to its parent link j − 1. The motion bound
for such a general motion is given in Equation 33, which can be
further improved given a specific type of motion.

Now we use linear motion as an example. For linear motion, we
have i−1vi and i−1ωi are constants. For the i-th joint, we have

max
p∈Ai

‖i−1Li(t)‖ = max
p∈Ai

‖i−1ri‖ ≡ ‖i−1Li(t)‖µ (30)

and for the j-th joint (j < i), we have

‖j−1Lj(t)‖ = ‖j−1Lj(0) + j−1vjt‖
≤ max(j−1Lj(0), j−1Lj(1)) ≡ ‖j−1Lj(t)‖µ.

(31)

Therefore the motion bound for linear motion is:

µ ≤ 0v1 · n + ‖n× 0ω1‖
iX

j=1

‖j−1Lj‖µ

+

iX
j=2

`
‖j−1vj‖+ ‖j−1ωj‖

iX
k=j

‖k−1Lk‖µ
´
.

(32)

D Motion Bound for Spline Motion

Here we prove the theorems presented in Section 5.3.

D.1 Spline Motion Bound for Rigid Body

The velocity for spline motion is ṗ(t) = Ṫ(t) + (q(t)rq(t)−1)′,
where q(t) = (cos θ(t),u sin θ(t)) is the rotation quaternion and r
is the local coordinate. Then according to Equation 17, the motion
bound is

µ = max
τ∈[0,1]

max
i

Z τ

0

(ṗi(t) · n)dt

= max
τ∈[0,1]

Z τ

0

(Ṫ(t) · n)dt + max
i

Z τ

0

((q(t)riq(t)
−1)′ · n)dt.

(34)

We first compute the second term:Z τ

0

((q(t)riq(t)
−1)′ · n)dt

= n · (q(t)riq(t)
−1)
˛̨τ
0

= n · (ri cos 2θ + (u× ri) sin 2θ + u(u · ri)(1− cos 2θ))
˛̨τ
0

≤ (|ri · n|+ ‖ri‖)| cos 2θ(τ)− cos 2θ(0)|
+ ‖ri × n‖| sin 2θ(τ)− sin 2θ(0)|.

(35)

To further simplify the result, we need the following lemma

Lemma 5 If f(·) is continuous on [a, b], then

|f(b)− f(a)

b− a
| ≤ |f ′(c)| ≤ max

t∈[a,b]
|f ′(t)|, (36)

where c is one point in [a, b].
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(33)
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Figure 10: The comparison of TOC convergence speed between
SCD and TDCD on piano benchmark. The x-axis is the number of
DCD samples along the curve and the y-axis shows the difference
between TOCs obtained by TDCD and SCD. We sample four points
along the x axis: 100, 1, 000, 10, 000, 100, 000. (b) shows the
detail of (a) when the difference is small. TDCD needs more than
100,000 samples to reach the accuracy similar to that of SCD.

Moreover, as w = uθ, we have w′ = u′θ + uθ′. Multiply both
side by u, we have θ′ = w′ ·u−u′ ·u = w′ ·u because u ·u = 1
and thus u ·u′ = 0. Based on these properties, the second term can
be further represented as

Z τ

0

((q(t)riq(t)
−1)′ · n)dt

≤ (|ri · n|+ ‖ri‖)τ max
t∈[0,τ ]

2|θ′ sin 2θ|+ ‖ri × n‖τ max
t∈[0,τ ]

2|θ′ cos 2θ|

≤ (|ri · n|+ ‖ri‖)τ max
t∈[0,τ ]

2|w′ · u|+ ‖ri × n‖τ max
t∈[0,τ ]

2|w′ · u|

≤
`
2(|ri · n|+ ‖ri‖+ ‖ri × n‖) max

t∈[0,τ ]
‖w′‖

´
τ.

(37)
As w(t) is a cubic polynomial, then w′ is a quadratic polynomial
and therefore maxt∈[0,τ ] ‖w′‖ can be obtained by solving a cubic
equation, which can be computed efficiently by comparing the cu-
bic equation’s analytical solutions and the boundary values.

We can also apply | cos 2θ(τ) − cos 2θ(0)| ≤ 2 and | sin 2θ(τ) −
sin 2θ(0)| ≤ 2 in Equation 35 to obtain a (usually) looser bound

for the rotation Z τ

0

((q(t)riq(t)
−1)′ · n)dt

≤ 2(|ri · n|+ ‖ri‖+ ‖ri × n‖).
(38)

The bound is looser because even when there is no motion, i.e.,
w′(t) = 0, it will still give a positive bound.

Combine both Equation 37 and Equation 38, we can obtain a tight
bound for the second term asZ τ

0

((q(t)riq(t)
−1)′ · n)dt

≤ 2(|ri · n|+ ‖ri‖+ ‖ri × n‖)min(τ, max
t∈[0,τ ]

‖w′‖).
(39)

To estimate a bound for the first term, we need the explicit spline
form for the translational part. If we assume the spline is uniform,
then T(t) = d0

1−3t+3t2−t3

6
+d1

4−6t2+3t3

6
+d2

1+3t+3t2−3t3

6
+

d3
t3

6
, where dk are the control points for the current spline seg-

ment. The motion bound for the translation part isZ τ

0

T′(t) · ndt

=
1

6

`
τ3(3d1 − 3d2 + d3 − d0) · n

+ 3τ2(d0 − 2d1 + d2)n + 3τ(d2 − d0) · n
´

=
1

6
(Aτ3 + Bτ2 + Cτ).

(40)

Similar results can be obtained for the non-uniform spline.

By combining Equation 39 and Equation 40, we obtain the motion
bound for the spline motion:

µ ≤ max
τ∈[0,1]

`1
6
(Aτ3 + Bτ2 + Cτ) + 2max

i
(|ri · n|+ ‖ri‖

+ ‖ri × n‖)min(τ, max
t∈[0,τ ]

‖w′‖)
´

≤ 2max
i

(|ri · n|+ ‖ri‖+ ‖ri × n‖)min(1, max
t∈[0,1]

‖w′‖)

+
1

6
max

τ∈[0,1]
(Aτ3 + Bτ2 + Cτ).

(41)

The maximum value of (Aτ3+Bτ2+Cτ), when τ ∈ [0, 1] can be
reached at τ̃ , which can be 0, 1 or the root(s) of 3Aτ2+2Bτ +C =
0. Therefore the final form for motion bound is

µ ≤ 2max
i

(|ri · n|+ ‖ri‖+ ‖ri × n‖)min(1, max
t∈[0,1]

‖w′‖)

+
1

6
(Aτ̃3 + Bτ̃2 + Cτ̃),

(42)
and Theorem 1 is proved.

For each point within one SSV α, it can be represented as ri =
ri + k, where ri is a unit vector with radius r and k is a point
in the inner medial structure of SSV. For PSS k = c1; for LSS,
k = sc1 + (1− s)c2; for RSS k = sc1 + (1− s)c2 + t(c3− c1),
where s, t ∈ [0, 1] and ck, k = 1, 2, 3 are end points of α’s medial
structure. Then for points within α, we have |ri · n| = |(ri + k) ·
n| ≤ r+maxk |ck ·n|, |ri×n| = |(ri+k)×n| ≤ r+maxk |ck×
n| and ‖ri‖ = ‖ri+k‖ ≤ r+maxk ‖ck‖. By putting these results
into Equation 42, we can prove Theorem 2.



D.2 Spline Motion Bound for Articulated Model

For articulated models, similar to the rigid body case, we now as-
sume j−1Tj(t) and jwj(t) are cubic B-splines, where j−1T′

j(t) =
j−1vj(t) and j−1w′

j(t) = j−1ωj(t). Then using Equation 33, it
is easy to prove Theorem 3 and Theorem 4. Notice that, similar
to the rigid body case, maxt∈[0,1]

0T1(t), maxt∈[0,1] ‖j−1T′
j(t)‖

and maxt∈[0,1] ‖j−1w′
j(t)‖ can all be computed by solving a

quadratic or a cubic equation. However, the bound computation
for ‖j−1Lj(t)‖ (j < i) is different from that of linear motion in
Equation 31. Here we have

‖j−1Lj(t)‖ = ‖j−1Lj(0) + j−1Tj(t)‖
≤ max

t∈[0,1]
‖j−1Lj(0) + j−1Tj(t)‖.

(43)

Of course we can directly compute maxt∈[0,1] ‖j−1Lj(0) +
j−1Tj(t)‖ by solving a degree-5 polynomial equation because
j−1Tj(t) is a cubic spline polynomial. However, degree-5 poly-
nomials do not have analytic solutions, so we have to use numerical
methods. To avoid the numerical root finding, here we estimate
an upper bound for maxt∈[0,1] ‖j−1Lj(0) + j−1Tj(t)‖ based on
the convex hull property of the B-spline. Suppose d0,d1,d2,d3

are the four control points of the spline segment j−1Tj(t), then
j−1Tj(t) is completely within tetrahedron ∆d0,d1,d2,d3 , which is
convex. Therefore we have

max
t∈[0,1]

‖j−1Lj(0) + j−1Tj(t)‖ ≤ max
l∈{0,1,2,3}

‖j−1Lj(0) + dl‖

≡ ‖j−1Lj(t)‖µ.
(44)

Moreover, for a special case in which each joint of the articulated
model is of 1-DOF (i.e., either a prismatic joint or a revolute joint),
we can provide a better bound. For a prismatic joint, we have

j−1vj(t) = j−1lj
j−1s′j(t) (45)

and for a revolute joint we have

j−1ωj(t) = j−1uj
j−1θ′j(t), (46)

where unit vectors j−1lj and j−1uj are the translational axis and
the rotational axis, respectively. As a result, we can provide a
tighter bound for such special articulated body:

µ ≤ (n× 0u1)
`
‖0L1‖µ max

t∈[0,1]
|0θ′1(t)|+ ‖0L1‖µ max

t∈[0,1]
|0θ′1(t)|

´
+

iX
j=2

“
max

t∈[0,1]
|j−1s′j(t)|+ (‖n× 0u1‖ max

t∈[0,1]
|0θ′1(t)|

+

jX
k=2

max
t∈[0,1]

|k−1θ′k(t)|)‖j−1Lj‖µ
”
,

(47)
where maxt∈[0,1] |j−1θ′j(t)| and maxt∈[0,1] |j−1s′j(t)| can be
computed by solving a cubic equation. ‖j−1Lj(t)‖µ (j < i) can
also be estimated based on B-spline’s convex hull property.
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