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Abstract—We present a novel trajectory computation algo-
rithm to smooth jerky collision-free paths computed by sample-
based motion planners. Our approach uses cubic B-splines to
generate G2 or curvature continuous trajectories. The algorithm
performs local spline refinement to compute smooth, collision-free
paths in narrow passages and satisfy velocity and acceleration
constraints. We also present a fast and reliable algorithm for
collision checking between robot and the environment along
the B-spline trajectories. We highlight the performance of our
algorithm on complex benchmarks, including path computation
for rigid and articulated models in tight spaces and cluttered
environments.

I. INTRODUCTION

Sample-based planning algorithms such as probabilistic
roadmaps (PRMs) [9] or rapidly-exploring random trees
(RRTs) [11, 12] are frequently used to compute collision-free
paths for physical robots and virtual agents. These algorithms
generate samples using randomized techniques and attempt
to connect nearby samples using local planning methods.
The final paths are represented as piecewise linear paths in
the configuration space, where the vertices correspond to the
samples. Overall, sample-based planners are able to compute
collision-free paths for high DOF robots, and can also handle
cluttered environments or narrow passages.

In many applications, including virtual prototyping [5],
protein folding [22], computer animation [25], and physical
robotic systems [19, 26, 27], it is important that the paths
are not only collision-free, but also satisfy other constraints
in terms of smoothness and solution quality. There is con-
siderable work on computation of smooth paths in mobile
robotics, because nonsmooth motions can cause slippage and
overactuation.

It is well known that sample-based planners can sometime
generate jerky, unnatural paths that may contain unnecessary
turns or the velocities at the vertices may change arbitrarily [7,
9, 12, 28]. Furthermore, these issues become more significant
when the free space of the robot has narrow passages [15,
29] and the search space for path computation becomes more
constrained.

Many techniques have been proposed in the literature to
generate smooth paths. At a broad level they can be classified
into shortcut methods [7, 8, 9, 11] or optimization-based
approaches [1, 2, 19, 20, 28]. Current shortcut methods replace
jerky or unnatural portions of a path with shorter linear
or curved segments. The curve segments may correspond

Fig. 1. Left: a jerky, piecewise linear collision-free path for a wiper for
maintainability of the windscreen wiper motion. Right: a curvature-continuous
collision-free path computed by our spline-based shortcut algorithm.

to parabolic arcs, Bézier curves or Dubins curves. These
linear shortcut methods tend to be fast and simple, and can
produce high quality paths in many cases [6]. However,
current formulations may not provide enough flexibility in
terms of generating higher order smoothness or handling
narrow passages. Furthermore, exact checking for collisions
along curved or higher-order trajectories can be relatively
expensive. On the other hand, optimization-based methods
tend to improve the quality of paths based on formulating
the problem as an optimal control problem or as the elastic
problem from Differential Geometry. Some of the commonly
used solutions are based on gradient based methods, which
tend to compute minimum-energy paths, or elastic bands
or elastic strip planning that model the path using a mass-
spring system. One of the challenges with optimization-based
methods is to reliably compute collision-free paths, when there
are a large number of obstacles or narrow passages.

Main Results: In this paper, we present a fast and simple
algorithm to smooth the paths generated using sample-based
planing by using spline interpolation. Our algorithm randomly
selects a sequence of points along the original piecewise linear
path and constructs a cubic B-spline in the configuration space
that interpolates these points. We use the exponential map
to construct smooth rotational motion in SO(3) and thereby
handle translational as rotational motion in a uniform way. The
cubic spline formulation provides sufficient flexibility in terms
of providing higher order smoothness, i.e. compute almost G2

(second-order geometric or curvature-continuous) trajectories.
Moreover, we use local spline refinement to satisfy velocity
and acceleration constraints. We initially present the algorithm
for rigid bodies and later extend it to high-DOF articulated
models.

A key challenge in terms of using higher-order trajectories
for the robot is performing fast and reliable collision detection



with the obstacles. We present a novel collision-checking al-
gorithm that uses tight motion bounds on the translational and
rotational motions along the B-spline trajectories to perform
fast collision checks using conservative advancement [23].
The overall approach is reliable, guaranteed to not miss any
collisions and is significantly faster than prior exact algorithms
based on continuous collision detection.

The overall smoothing algorithm is general and the cubic
B-spline formulation offers sufficient flexibility and degrees-
of-freedom to handle tight configuration spaces with narrow
passages. We highlight its performance on many high-DOF
complex CAD benchmarks used in virtual prototyping ap-
plications. The overall runtime performance is comparable
to prior linear shortcut algorithms, though our formulation
results in smoother trajectories and can also satisfy velocity
and acceleration constraints.

The rest of paper is organized as follows. We introduce
the notation and present our spline motion representation in
Sec II. We present the basic spline-based smoothing and local
refinement algorithm in Section III. In Section IV, we describe
an efficient collision checking algorithm for spline trajectories.
We highlight the performance on different benchmarks for
rigid and articulated bodies in Section V.

II. REPRESENTATION FOR MOTIONS

In this section, we introduce our notation and present the
underlying spline representation used to compute the trajecto-
ries.

A. Notation

Let C denote the d-dimensional configuration space and let
Cfree denote the subset of configurations that are collision-
free. A configuration within C is denoted as x. Its superscripts
denote DOF or joint indexing (e.g. xk is the value for k-
th joint) and subscripts denote configuration indexing among
multiple samples (e.g. xk is the k-th sample in the configura-
tion space).

A trajectory u(t), 0 ≤ t ≤ T , represents a curve in the
configuration space. u(t) is collision free if all the config-
urations on u(t) belong to Cfree. u(t) is considered to be
(physically) feasible if it is collision free and satisfies other
constraints. We use the well known definition of geometric
continuity from approximation theory [4] to define smooth
trajectories. Specifically, two curves meet at a common end
point with Gn continuity, if there exists a reparameterization of
the curves that meets at the same point with Cn continuity. In
our case, we are interested in computing curvature-continuous
trajectories, and ensure that our curve fitting and modification
algorithms generate G2 curves [4, 26]. In addition, we also
impose constraints on the maximum velocity and acceleration
along each curve, based on the following bounds:

1) Velocity u′(t) is bounded by a given limit |u′(t)| ≤
vmax,

2) Acceleration u′′(t) is bounded by a given limit |u′′(t)| ≤
amax.

B. Spline Representation for Motion

Given an initial collision free piecewise linear trajectory
u(t), parameterized over the interval [0, T ] with n vertices
{x1, ...,xn} computed by sample-based motion planning algo-
rithms, our objective is to improve the smoothness of the input
trajectory while satisfying various constraints. In the literature,
many curved formulations including screw motion [14, 18],
parabolic curves [7] and Bézier curves [17, 26] have been used
to compute smooth trajectories. In our formulation, we use cu-
bic B-splines to represent the trajectory of rigid or articulated
robots. B-splines are well studied in approximation theory and
correspond to a spline function that has minimal support with
respect to a given degree, smoothness and domain partition.
The B-splines are specified based on knot values, control
points or de Boor points [4]. Moreover, they are evaluated in a
recursive manner using the well-known Cox-de Boor recursion
formula. In practice, B-splines provide sufficient flexibility to
compute a curvature-continuous trajectory and to perform local
refinement by adjusting the control points or knots. Moreover,
the degree of B-spline curve is independent with the number
of control points, which makes our method more flexible to
control long trajectories, as compared to Bezier curve based
methods [17, 26].

We first describe the motion representation for a rigid body.
For articulated models, we represent them as composed of
multiple rigid bodies. The motion of a rigid body u(t) consists
of two parts: translation T(t) and rotation R(t). Translation
motion T(t) is a curve in R3, so it can be naturally formulated
as a 3D cubic B-spline. However, there are more issues in
terms of representing the motion of the rotation component
R(t). The rotational motion is in fact a curve in SO(3)
and a cubic B-spline in R3 may not be able to represent
it well. One method is to represent the rotation by Euler
angles (α, β, γ). However, Euler angles can not formalize
some rotational motions due to some intrinsic singularities
and it can be difficult to generate motion with smooth angular
velocity.

In robotics and computer animation, many applications
represent rotational motion as quaternions that are singularity-
free [10, 14, 21, 24]. Other techniques tend to use the recursive
formulation of B-splines, i.e. based on de Boor algorithm [4],
for quaternion curves [21, 24]. However, the spline constructed
by these approaches may not have a closed formulation
and collision-checking along such trajectories can be rather
expensive, as described in Section IV.

We represent the rotation motion based on exponential
maps [13]. This representation is relatively simple and can be
also used to generate curvature-continuous trajectories. The
exponential map exp(·) is a continuous map between R3 and
SO(3): exp(uθ) = (cos θ,u sin θ), where q = (cos θ,u sin θ)
is a quaternion with u as the rotation axis and θ as the rotation
angle. The inverse of exponential map is called the logarithmic
map log(·). Given the underlying constraints, we first construct
cubic B-spline w(t) in R3, and then use the exponential map



Algorithm 1: Spline-based Shortcut Algorithm
Input : Trajectory u(t)|0≤t≤T , iteration count N
Output: A smooth and collision-free trajectory s(t)
begin

for i = 1 to N do
Randomly choose u(t)|ta≤t≤tb from the input
trajectory;
Construct a cubic B-spline s(t) interpolating
m+ 1 points on u(t)|ta≤t≤tb ;
Perform spline collision checking (SCD) for s(t);
Resolve the colliding segments in s(t) based on
spline modification;
Refine s(t) locally to satisfy velocity and
acceleration constraints;

end

to map it back onto SO(3). The resulting map

exp(w(t)) : R3 → SO(3) (1)

is a cubic B-spline curve in SO(3) that is C2 continuous.
Overall, we formulate the motion of rigid body by trans-

lation spline T(t) and rotation spline R(t) = exp(w(t)),
where T(t) and w(t) are both cubic B-spline in R3. We
denote f

t0,...,tm−2

d0,...,dm
(t) as the cubic B-spline

∑m
i=0 dibi(t),

where {di}mi=0 are m + 1 de Boor control points, {ti}m−2
i=0

are m − 1 knots, {bi(t)}mi=0 are m + 1 basis functions, and
t0 ≤ t ≤ tm−2. f is uniform B-spline if {ti}m−2

i=0 correspond
to uniform knot spacing. We also denote spline function as
f(t) for convenience.

III. SHORTCUT SMOOTHING BASED ON CUBIC B-SPLINES

In this section, we introduce our smoothing algorithm based
on cubic B-splines. Our formulation can use B-splines of
any degree. However, the cubic B-splines provide a good
balance between smoothness constraints, spline refinement,
cost of collision checking and oscillations that can be caused
by high degree curves. Our algorithm utilizes the information
from the original piecewise linear path that needs to be
smoothed. Furthermore, our approach is general and applicable
to all environments, composed of a few or a high number of
obstacles. The output of the smoothing algorithm is a collision-
free path that is C2 almost everywhere except on some discrete
points with only G2 continuity.

A. Algorithm Overview

The overall smoothing algorithm is shown in Algorithm 1.
Given an input trajectory u(t), t ∈ [0, T ], we iteratively
smooth it. At each iteration, we randomly choose a por-
tion u(t)|ta≤t≤tb from the input trajectory and construct a
smoother B-spline trajectory s(t) that interpolates the end
points and some intermediate points (refer to Section III-B).
We then use spline collision detection (SCD) technique (refer
to Section IV) to check whether every configuration along the
trajectory s(t) is collision-free. If there is a collision between

the robot and obstacles along that trajectory, we resolve the
collisions by using a recursive method that modifies the spline
curve as discussed in Section III-C. Once a collision-free
trajectory is computed, we further perform local refinement
(refer to Section III-D) to satisfy the constraints corresponding
to velocity and acceleration bounds.

B. Spline Interpolation

We first sample m + 1 points along u(t) at t = t0, ..., tm,
where t0 = ta, tm = tb. The velocities at the two end-points
are given as u(t−a )′ and u′(t+b ), which can be computed from
the trajectory segments adjacent to u(ta, tb) and are used
to guarantee C1 continuity on the boundaries of resulting
spline. We use an interpolation scheme, i.e. compute a cubic
B-spline s(t)|ta≤t≤tb that interpolates the sampled points,
i.e. s(ti) = u(ti),∀i ∈ {0, 1, ...,m}, s′(t0) = u′(t0) and
s′(tm) = u′(tm).

According to [4], the C2-smooth interpolatory cubic spline
can be constructed by solving a linear system:

Ãd̃ = r̃

Ã =


1
α1 β1 γ1

. . .
αm−1 βm−1 γm−1

1



d̃ =


d0

d1

...
dm−1

dm

 and r̃ =


r0

r1

...
rm−1

rm

 ,

(2)

where d̃ is the vector of unknown variables for the de Boor
control points; the parameters αk, βk, γk are function of the
knot values {ti}mi=0; rk’s are computed based on {u(ti)}mi=0,
u′(t0) and u′(t1). For uniform cubic B-spline, αk = 1, βk =
4, γk = 1, rk = 6u(tk), for 1 ≤ k ≤ m − 2; αk = 3

2 , βk =
7
2 , γk = 3

2 , rk = u′(tk), for k = 0 or m − 1. r0 and rm
are used to impose C1 smoothness at interval boundaries. A
similar linear system can also be computed for non-uniform
B-splines [4].

The solution to the linear system is represented as {dk}mk=0.
Along with two additional points d−1 = u(t0) and dm+1 =
u(tm), these points constitute the de Boor control point sets
for the interpolatory spline f t0,...,tmd−1,...,dm,dm+1

(t) that is used to
represent the trajectories.

For the translational motion, f(t) is exactly the spline curve
that we need in 3D. For rotational motion, spline f(t) corre-
sponds to w(t) in Equation 1, and we need to transform it into
a spline in SO(3) via exponential mapping. The combination
of translation and rotation curves constitutes the motion spline
curve s(t).

We can also change the boundary conditions of Equation 2
to achieve G2 continuity instead. According to [3], two curves
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Fig. 2. For cubic B-spline f t0,...,t3 (t), t ∈ [t0, t3], a collision happens
during the interval [t1, t2]. We recursively add new knots within the interval
and refine the spline f t1,t

′
1,t
′
2,t2 (t), t ∈ [t1, t2] (shown on the right). The

splines defined in the intervals [t0, t1] and [t2, t3] are unchanged based on
this local refinement scheme. The modified spline is collision-free in [t0, t3].

q(s), s ∈ [0, 1] and r(t), t ∈ [0, 1] meet with G2 continuity at
q(1) = r(0) if and only if there exist real numbers η1 and η2

so that

r′(0) = η1q
′(1) (3)

r′′(0) = η2
1q
′′(1) + η2q

′(1). (4)

In other words, the two curves should have common unit
tangent and curvature vectors at the shared boundary point.
Notice that when η1 = 1 and η2 = 0, we have the condition
for C2 continuity.

For cubic B-spline in Equation 2, the G2 boundary condition
can be formalized as

1

2
(d1 − d−1) = η1u

′(t−a )

d−1 − 2d0 + d1 = η2
1u
′′(t−a ) + η2u

′(t−a )

1

2
(dm−2 − dm) = η3u

′(t+b )

dm − 2dm−1 + dm−2 = η2
3u
′′(t+b ) + η4u

′(t+b ).

(5)

As a result, to achieve an interpolated spline with G2 con-
tinuity, we only need to construct a new algebraic system
by replacing the C1 boundary condition in Equation 2 with
the new G2 boundary condition. Unlike the original linear
system, the new system is (1) nonlinear due to η2

1 and η2
3

terms; (2) under-determined with two additional degrees of
freedom. To solve the system, we use additional constraints,
such as maximizing η1 and η3 (i.e. try to be a C2 spline if
possible) or use velocity/acceleration constraints. Finally we
solve a quadratic optimization problem to obtain all the control
points.

C. Recursive Spline Modification to Resolve Collision

After s(t) is computed, we check whether all the config-
urations belonging to s(t) are collision free. The collision
checking algorithm is presented in Section IV. If a collision
is found, we resolve it by modifying the spline curve. As
shown in Fig 2, our solution is based on the locality of spline
curves. Suppose that the collision between the B-spline curve
and the obstacles corresponds to a parameter that lies within
the interval [ti, tj ], our goal is to keep the other portions of the
B-spline unchanged, as they represent collision-free portions
of the spline. Therefore, we only sample more parameter
values within [ti, tj ] and use them to pull the spline near the

original piecewise linear curve u(t), which is collision-free.
The modified spline segment may no longer be C2, but we
refine it using the boundary condition in Equation 5 so that
the new spline is guaranteed to be G2.

The above procedure can be applied recursively whenever
a collision is detected within any sub-interval. However, we
only use this recursive formulation two or three times. If
the collision is not resolved after a few recursive steps, the
algorithm returns failure for the current shortcut attempt. If
the algorithm is unable to compute a collision-free path, it
changes the number of sample points along u(t) and repeats
the process. This is similar to generating new samples for
sample-based planning and use them to compute a collision-
free piecewise trajectory.

For the other collision-free spline intervals, we keep them
unchanged. However, the original spline has been divided into
several parts. We still need the spline representation for each
part in the local optimization step in Section III-D. Therefore,
we use the spline subdivision technique [4] to compute the
m+ 3 new de Boor points d̃−1, ..., d̃m+1 for each spline that
is defined on the collision-free intervals. The final output is a
G2 collision-free trajectory.

D. Satisfying Velocity and Acceleration Constraints

The modified trajectory s(t) also needs to satisfy other con-
straints, e.g. velocity constraints and acceleration constraints,
as defined in Section II-A. In our approach, we consider them
as soft constraints.

Our solution depends on the properties of B-spline which
iteratively adjusts the de Boor control points successively to
refine the set of control points so that the resulting spline curve
can satisfy these constraints. For convenience, from now on
we assume the spline is a uniform B-spline and the similar
formulation can be derived for non-uniform splines.

We first discuss how to constrain the velocity bound. For
a uniform cubic B-spline f

t0,...,tm−2

d0,...,dm
(t), the derivatives at the

i-th knot, and the midpoint between i-th knot and i+1-th knot
are:

f ′(ti) =
di+2 − di

2A

f ′(
ti + ti+1

2
) =

di+3 + 5di+2 − 5di+1 − di
8A

,

where A = ti+1 − ti.
We define the limit velocity as the velocity at time t̃

when f ′′(t̃) = 0. The limit velocity Ṽ will be the max-
imum/minimum velocity on one interval [ta, tb]. The limit
velocity within the interval [ti, ti+1] is:

Ṽ[ti, ti+1] =
1

2A
(di+2 − di +

(di+2 − 2di+1 + di)
2

−di+3 + 3di+2 − 3di+1 + di
)

= f ′(ti) +
1

8

(4f ′( ti+ti+1

2 )− f ′(ti+1)− 3f ′(ti))
2

2f ′( ti+ti+1

2 )− 2f ′(ti+1)− f ′(ti)
.

From this equation, we can find that Ṽ[ti, ti+1] is uniquely
determined by the velocity at the beginning, ending, and
middle knots of the interval [ti, ti+1]. As a result, if we can



bound the magnitudes of {f ′(ti)}m−2
i=0 and {f ′( ti+ti+1

2 )}m−3
i=0 ,

we can control the magnitude of velocity of spline f ′(t), for
all t ∈ [t0, tm−2].

Therefore, we check the bounds on f ′(ti) and f ′( ti+ti+1

2 )

for i from 1 to m− 3. If |f ′(ti)| or |f ′( ti+ti+1

2 )| is larger than
vmax, we reduce the corresponding di+2 to λdi+2 with 0 <
λ < 1. We repeat this procedure several times until the limit
velocity Ṽ is constrained within the given velocity bound.
Notice that the iteration will not influence f ′(t0) and f ′(tm−2)
at the boundaries of the spline.

The bound on the acceleration is relatively simple to
satisfy, because the acceleration of the entire cubic spline
is a linear function. The acceleration at the i-th knot is
f ′′(ti) = di+2−2di+1+di

A2 . We only need to adjust {di}m−3
i=3

to make sure the acceleration is bounded by amax. Whenever
the de Boor control points are adjusted, we need to perform
continuous collision query to ensure that the modified spline
is also collision-free.

Overall, our spline fitting and refinement schemes tend to
maintain second order geometric continuity and ensure that the
computed trajectories are curvature-continuous. As a result,
if our algorithm is able to compute a collision-free path, it
satisfies the following properties:

Theorem 1: (Trajectory Smoothness Theorem) The trajec-
tory in C, composed by multiple cubic B-splines, is G2

continuous.

IV. EXACT COLLISION DETECTION

Collision checking is an integral component of any smooth-
ing algorithm. Many optimization-based smoothing algorithms
can’t guarantee computation of collision-free paths, especially
when the environment has a high number of obstacles or tight
narrow passages. In case of shortcut algorithms, the choice
of smoothing function is also restricted by the complexity of
performing reliable collision checking along the trajectory.

The simplest algorithms for collision checking compute
discrete samples along a path or trajectory and check them
for collisions. However, the resulting techniques can miss
collisions due to poor sampling, In contrast, continuous col-
lision detection (CCD) methods check for collisions between
a robot and obstacles when the robot moves along a given
motion curve f(t). This can overcome the inaccuracy or the
tunneling problem of discrete collision detection. However,
prior CCD algorithms are mainly limited to linear trajectories
in configuration space, or screw motion or parabolic arcs
[23, 30] and no fast methods are known for CCD along
arbitrary spline trajectories.

A. Efficient Spline Collision Detection Algorithm

Our SCD (spline collision detection) algorithm is based
on conservative advancement (CA) [23]. Fig. 3 shows an
overview of CA method. Suppose we are given two convex
objects A and B ,where A is moving and B is fixed. Denote
A(t) as A at time t ∈ [0, 1]. The basic idea of CA is to
incrementally advance A by a small time step ∆tk toward
B while avoiding collision. In order to perform this step, we

Algorithm 2: Spline Continuous Collision Detection
Input : Two objects A and B; A’s spline motion

function f
t0,...,tm−2

d0,...,dm
(t)

Output: collision-free or the first collision time τ
begin

t← 0
// Repeat CCD for each spline segment

for i = 1 to m− 2 do
while t ≤ ti do

Compute current distance d(A(t),B)
Estimate the motion bound µ
Compute conservative advancement
∆t = d(A(t),B)

µ
t← t+ ∆t
Check collision between A(t) and B
if collision then

return τ = t

return collision-free
end

need to compute the minimal separation distance between A
and B. Let d(A(t),B) represent the distance and n be the
direction of the closest vector. Then an upper bound µ on the
motion of A(t) projected onto the direction n is estimated.
More specifically, a motion bound µ for the moving object
A within [t, t + ∆t] with respect to the given direction n is
defined as an upper bound to 1

∆t maxp∈A
∫ t+∆t

t
|p′(s) ·n|ds.

Finally, the advancing length at the step k is calculated by:

∆tk =
d(A(t),B)

µ
.

A advances by ∆tk each step until d(A(t),B) is small enough.
If τ =

∑
k ∆tk is equal to 1, the given path is collision-free.

Otherwise, τ is the first time of contact.
We apply the CA method to B-spline trajectories. Algo-

rithm 2 shows the overall algorithm SCD. Lets assume A’s
trajectory is a B-spline with m − 2 segments f

t0,...,tm−2

d0,...,dm
(t).

Our algorithm performs collision checking for each segment
iteratively.

The main challenge in terms of applying CA continuous
collision detection is to find a tight motion bound µ for the
given motion trajectory. Tang et al. [23] present the motion
bounds for linear and screw motion in C-space. In our case,
we need to find an appropriate motion bound for the spline
motion. Its translation part T(t) is a B-spline in R3; its
rotation part R(t) is represented as w(t) using exponential
map, which is also a B-spline in R3.

B. Motion Bound for Cubic B-Splines

Our goal is to compute a tight motion bound for the moving
object A. We first present a theorem of computing the motion
bound for a point p on the moving object A whose detailed
proof is in [16]:
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Fig. 3. Continuous collision detection between A(t) and B. A(t) is a spline
motion. p is a point on A. p’s motion function is p(t) and v(t) = p′(t)
is the velocity. d is the closest distance between two objects and n is the
direction of closest distance. τ = ∆t1 +∆t2 is the first time of contact. ∆t1
and ∆t2 correspond to the advancements during two successive steps.

Theorem 2: Suppose p is a point on the rigid body with
local coordinate r with respect to the origin. p moves accord-
ing to spline motion function p(t) = T(t) + R(t)r. Within
[t, t + ∆t], a motion bound µp for p with respect to the
direction n is given as:

µp = A ·W1 +B
W1

W2
+W3,

where A = |r · n| + 2|r × n| + 2|r|, B = |r × n| + 8|r|,
W1 = maxs∈[t,1] |w′(s)|, W2 = maxs∈[t,1] |w(s)| and W3 =
maxs∈[t,1] |T′(s)|.

We extend the spline motion bound to non-convex objects
by using the swept sphere volume (SSV) hierarchy technique
in [23]. SSV is one type of bounding volume for collision
acceleration, which has a sphere radius parameter r and several
medial axis parameters {ci}ni=1, where n can be 1, 2 or 3.
Given a SSV, any point p in that SSV can be represented as
p = rk+g({ci}), where k is a unit vector and g(·) is a linear
function of {ci}. Ultimately, we have following result about
motion bound for the entire SSV:

Theorem 3: The motion bound for one SSV along the B-
spline trajectory is given as

µα =(5r + max
k
|ck · n|+ 2 max

k
|ck × n|+ 2 max

k
|ck|)W1

+ (9r + max
k
|ck × n|+ 8 max

k
|ck|)

W1

W2
+W3,

where the symbols are of the same meaning as in Theorem 2.
Given a complex non-convex object, we represent it using a

hierarchy of SSVs and compute the motion bound for the non-
convex object along that trajectory. We then use the hierarchy
to compute the conservative time step. Eventually, we can
test whether the robot traversing along a B-spline trajectory
collides with any obstacle.

V. RESULTS

In this section, we highlight the performance of our spline-
based smoothing algorithm on different benchmarks with
cluttered environments. We show both results on rigid robots
and a 40-DOF articulated robot.

Piano Gear Wiper CarSeat AlphaPuzzle Bridge
#DOF 6 3 6 6 6 40
#face 952 7,188 26,766 245,127 2,088 31,718

TABLE I
GEOMETRIC COMPLEXITY OF OUR BENCHMARKS.

A. Rigid Robots

The results of five different benchmarks on rigid robots are
shown in Figs. 4, 5, and 6. Table I summarizes the geometric
complexity and DOFs for each benchmark. Among the five
benchmarks, only the piano benchmark doesn’t have narrow
passages. The rest of the benchmarks are challenging for
sample-based motion planners and smoothing algorithms. We
use a variant of sample-based motion planner [15] to compute
an initial piecewise linear trajectory and apply our B-spline
smoothing algorithms to these trajectories.

For each benchmark, we compare the initial piecewise-
linear trajectory, new trajectory computed using linear short-
cut smoothing algorithm [25] and the new trajectory us-
ing our spline-based algorithm. In particular, we visualize
these trajectories for the local coordinate origin of each
rigid robot (Figs. 4, 5, and 6). As compared to the lin-
ear shortcut algorithm, our spline-based smoothing algorithm
computes curvature-continuous trajectories. Moreover, for the
gear benchmark (Fig 4), we show the swept volume of the
robot generated using the trajectories computed by different
algorithms.

For the piano benchmark (Fig 5), we also visualize the
rotation curves using quaternions. In this case, the distance
to the sphere is the angle and the direction of the sphere
center is the axis. The curve corresponding to the rotational
motion, generated by the original sample-based planner, is not
smooth. The linear shortcut algorithm results in a lot of corners
and our spline-based smoothing algorithm results in a smooth
trajectory.

We show the timing results in Table II. All methods perform
500 shortcut operations on different benchmarks. For each
shortcut operation in linear shortcut and spline shortcut, we
check collisions by using 30N |tb−ta|T discrete samples, where
N, tb, ta, T are introduced in Algorithm 1. We notice that the
computational overhead of our spline-based shortcut algorithm
over the linear shortcut method is rather small. Since the
discrete collision checking algorithm is not reliable, we use our
SCD algorithm and integrate it with the spline shortcut frame-
work. The conservative advancement based SCD algorithm is
significantly faster than prior methods used. This follows from
the inherent efficiency of conservative advancement method
over other CCD algorithms. The overall smoothing algorithm
with SCD is comparable (or faster) than prior methods.

B. Extension to Articulated Robots

We extend our spline-based smoothing method to articulated
robots. Consider a robot with n serial links. We perform the
spline interpolation for each link by treating it as a rigid robot.
Let Ti−1

i and Ri−1
i be the translation and rotation for the link

Li relative to its parent Li−1. Then the relative motion for the
link Li to its parent in S(3) can be represented by two splines



Piano Gear Wiper CarSeat AlphaPuzzle Bridge
Linear shortcut 59.92 8.533 24.06 19.98 10.533 163
Spline shortcut + Discrete collision detection 43.53 9.781 33.09 51.39 15.781 185
Spline shortcut + Spline collision detection 24.51 5.453 4.69 28.31 17.16 not implemented

TABLE II
TIMING OF SHORTCUT ALGORITHMS IN SECONDS. THE FIRST TWO ROWS PERFORM DISCRETE COLLISION CHECKING AND NEED TO CONSIDER A VERY

HIGH NUMBER OF SAMPLES. THE LAST ROW USES OUR NOVEL SPLINE COLLISION DETECTION (SCD) ALGORITHM AND IT WORKS WELL IN CLUTTERED
ENVIRONMENTS.

Fig. 4. Results for the gear benchmark. From left to right are results
computed by planner, linear shortcut and our spline smoothing algorithm. The
first row shows the trajectories traversed by the origin of the robot; the second
row shows a zoomed view of the trajectories within the orange box in the first
row; the third row shows the swept volumes for the trajectories computed by
different methods. We use green circles to show the narrow passages in the
configuration space. Our smoothing algorithm computes a F2 trajectory for
most of the path, though it can be C0 in very cluttered areas.

1

−0.6

−0.4

−0.2

Fig. 5. Results for piano benchmark. From left to right, we show the
paths computed by the sample-based planner, linear shortcut algorithm and
our method, respectively. The first row shows the trajectory traversed by the
origin of the robot. The second row visualizes the rotation motion of the robot
obtained by different methods. Each vector originating from the sphere center
represents a rotation with its magnitude for angular velocity and its direction
for rotation axis. Our method can compute smooth rotational motions.

Ti−1
i (t) and exp(wi−1

i (t)). Given the initial piecewise path
for translation or rotation motion of a link, we construct cubic
B-splines by using the spline interpolation scheme described
in SectionIII-B. Note that in Section III-C, the matrix Ã in
the linear system is same for any link of the articulated robot,
because it solely depends on the chosen knots ti of the cubic
B-spline. So we can pre-compute the LU-decomposition of Ã
and then reuse it to compute the B-spline trajectory for each
link.

Fig. 6. Rigid robot benchmarks: car seat and alpha puzzle. From left to
right, we show the results computed by a sample-based planner, the smooth
result computed using linear shortcut and the smooth trajectory generated by
our algorithm. We show the path in the workspace traversed by the origin of
the rigid robot.

Fig. 7. Results for the 40-DOF hyper-redundant articulated model. The left
two subfigures show the robot and the bridge inspection scenario. In the right
three subfigures, we show the results computed by a sample-based planner
and the smooth result computed by our algorithm.

The exact spline collision checking (SCD) algorithm (Sec-
tion IV) can be also extended to articulated robots. The under-
lying conservative advancement technique works well as long
as the motion bounds can be estimated for articulated robots.
We compute the motion bound for each rigid component using
Theorem 3 and apply the technique used in [30] to estimate a
tight motion bound for the articulated robot.

Fig. 7 shows a 40-DOF hyper-redundant (HRR) articulated
robot with free rotation joints. The goal is to compute a
path such that the robot goes through a hole and brackets
of a bridge to perform the inspection. We use a variant of
sample-based planner to compute an initial path and apply our
spline-based algorithm to smooth the trajectory. Fig. 7 shows
the intermediate configurations on the trajectory of the robot.
As compared to the linear shortcut method, our method can
compute a shorter and smoother trajectory.

VI. ANALYSIS AND COMPARISONS

There is extensive work on path smoothing in robotics,
control and related areas, as highlighted in Section I. We
use cubic B-splines for trajectory computation as it provides
sufficient degrees of freedom to compute curvature-continuous
trajectories and handle cluttered environments. Furthermore,
we are able to perform fast and reliable continuous collision



checking. None of the prior methods provide all these features
or capabilities. Most of the prior shortcut algorithms use linear
shortcuts or parabolic curves [7, 25], but can’t provide high
order smoothness or curvature continuity. Furthermore, it is not
clear whether these methods would work in narrow passages
or cluttered environments. Recently, a curvature-continuous
trajectory computation algorithm has been proposed [26]. This
approach uses Bézier curves to construct G2 smooth, but the
formulation appears to be limited to a point robot navigating
in a 2D or 3D workspace.

There are many optimization-based methods, such as
CHOMP [19], which have many useful properties and work
well on robotic systems. Some of these methods, don’t even
need collision-free piecewise linear trajectories and can also
model dynamics constraints. However, one challenge is to
compute collision-free trajectories when there are a high
number of obstacles or narrow passages.

Our spline continuous collision detection algorithm is the
first reliable algorithm that can check for collisions along
spline trajectories. The resulting formulation based on con-
servative advancement can also be applied to other trajectory
formulations. Furthermore, our continuous collision detection
algorithm is much faster than prior exact collision checking
methods.

VII. CONCLUSIONS AND FUTURE WORK
We present a trajectory smoothing algorithm using cubic

B-splines. Our formulation can compute curvature-continuous
trajectories and also works well in cluttered environments. We
also describe a fast and reliable continuous collision detection
algorithm along spline trajectories.

There are many avenues for future work. We would like to
combine our approach with gradient optimization techniques,
such as CHOMP [19], to perform path refinement on our
trajectories. It may be useful to extend our approach to take
into account kinematic and dynamics constraints and integrate
the algorithm with robotic systems. Finally, we can also design
fast and reliable collision detection algorithms, similar to
SCD, for other trajectory formulations or optimization-based
smoothing algorithms.
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