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Abstract This paper presents a fast SPH (Smoothed

Particle Hydro-dynamics) simulation approach for gaseous

fluids. Unlike previous SPH gas simulators, which solve

the transparent air flow in a fixed simulation domain,

the proposed approach directly solves the visible gas

without involving the transparent air. By compensat-

ing the density and force calculation for the visible gas

particles, we completely avoid the need of computation-

al cost on ambient air particles in previous approaches.

This allows the computational resources to be exclu-

sively focused on the visible gas, leading to significant

performance improvement of SPH gas simulation. The

proposed approach is at least 10 times faster than the

standard SPH gas simulation strategy, and is able to re-

duce the total particle number by 25-400 times in large
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open scenes. The proposed approach also enables fast

SPH simulation of complex scenes involving liquid-gas

transition, such as boiling and evaporation. A parti-

cle splitting and merging scheme is proposed to handle

the degraded resolution in liquid-gas phase transition.

Various examples are provided to demonstrate the ef-

fectiveness and efficiency of the proposed approach.

Keywords smoothed particle hydrodynamics · gas

simulation · adaptive particle splitting and merging ·
phase transition

1 Introduction

The smoothed particle hydrodynamics (SPH) method

has become increasingly popular for simulating fluid

motion for a wide range of natural phenomena and

special effects. Yet, despite its popularity in liquid sim-

ulation, much less research has been reported in the

literature on SPH simulation of gaseous fluids. Liquid

is often considered to be incompressible in simulation,

though gas usually behaves far more compressible. The

time stepping condition in SPH methods requires much

smaller time step simulating highly incompressible flu-

ids than compressible fluids. This makes the SPH ap-

proach potentially more promising for gas simulation in

a performance perspective. However, SPH simulation of

gaseous fluids has not been sufficiently explored.

The challenge associated with fast SPH gas simula-

tion can be better understood by examining a simple

example, a plume of smoke rising in the air. Using a

standard SPH simulator, the air flow is simulated with-

in a fixed domain and the visible plume is represented

by a density field that flows with the transparent air.

The simulation domain is usually much larger in its

extent than the space occupied by the actual evolving
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plume; therefore the majority of the computational cost

is spent on simulating the invisible air. The computa-

tional cost required to compute the air flow in a large

simulation domain can be prohibitively high, making

these approaches difficult, if not impossible, to use in

simulating large, complex scenes with moving plumes,

e.g. a steam train moving through a field or plumes of

chimney smoke billowing in a village.

To address this issue, we propose a novel SPH scheme

for gaseous fluids in which computation is performed

only on the visible gaseous fluids, thus minimizing the

simulation cost on ambient air gas particles. The inter-

polation error for the gas density is compensated for by

estimating the average influence of the absent ambient

air particles. The missing interaction between the sim-

ulation particles and the absent ambient air particles is

also compensated for by a virtual pressure that is local-

ly determined based on the current fluid dynamics and

the atmosphere pressure. We demonstrate that such an

approach is able to minimize the unnecessary compu-

tation on ambient gas particles, while significantly im-

proving the runtime performance of SPH gas simula-

tion. The new method also enables fast SPH simulation

of complex scenes that involve liquid-gas phase transi-

tion. A robust particle splitting and merging strategy

is proposed for liquid-gas transition situations; we show

that phase transition phenomena can be efficiently cap-

tured in a unified SPH framework. We highlight the

performance benefits (up to two orders of magnitude)

of this approach on several large-scale phenomena as

shown in Figs. 5, 4, 6, and 7.

2 Previous Work

Recent SPH methods [20,22,27], have focused primari-

ly on liquid simulation. [29] proposed an SPH scheme to

create and preserve vortical details near moving objects

in gas simulation. However, they fill the whole simula-

tion domain with particles. In some hybrid methods,

SPH gas particles are generated in selected regions for

various reasons, e.g. to reduce the computational cost of

solving high-speed gas flow [11] and to help track the in-

terface and compute gas-liquid interaction [6]. Nonethe-

less, the entire gas domain needs to be simulated by

the grid-based simulator in these hybrid approaches to

achieve high-accuracy simulation results.

SPH simulation generally simulates the entire do-

main because particle deficiencies lead to the erroneous

interpolation of particle properties, such as density and

pressure. To overcome this degradation of accuracy at

rigid boundaries, SPH simulations often add solid parti-

cles, both to avoid particle penetration and to improve

density computation of the liquid [19,8,5]. For water-

air boundaries, ambient air particles have been added

through a serialized sampling process to improve the

density and surface tension calculation of the liquid [16,

25]. Compared to the interaction between water parti-

cles, the force between air and water is largely negligible

and is not included in their liquid-simulation model.

However, for gas simulation, the interaction between

the visible plume and the surrounding ambient air is

important and cannot be ignored.

Adaptive SPH simulations have previously used the

split-and-merge technique for SPH particles. In [3,28,

14] SPH particles were bisected into different levels and

particles at the same level were merged on demand.

These methods achieve good results in liquid simula-

tion, but require serialized adaptive sampling to main-

tain a uniform particle distribution and improve sta-

bility. More recently [26] proposed a two-scale parti-

cle scheme extending the processable density ratio, and

[23] blended different levels of particles to achieve a s-

moother transition during splitting and merging. Their

methods involve blending of different levels of particles

and relaxing the clustered particles after splitting dur-

ing a certain time period. This leads to better stability,

but comes at an extra computational cost in the split-

ting process. Although these adaptive approaches ad-

just particle sizes to reduce the number of ambient air

particles being simulated, the simulation cost still re-

mains untenably high for very large simulation domain-

s. Our approach is considerably faster than the previous

methods that simulate ambient air particles, because

it focuses the computing resources only on the visible

gaseous fluids and estimating the average influence of

the surrounding air. Such estimation is performed by

compensating for the lost gas density and interaction

forces that would be exerted by the unsimulated ambi-

ent air particles.

There are other works that are also partially related

to our approach. [13] and [15] achieved large-scale liquid

simulation with Lagrangian method. In [4], sparse par-

ticles were allowed in a vortex-based simulation scheme.

[7] also tried to achieve similar goal of sparse represen-

tation using vortex sheet to represent smoke. Virtual

particles for interface handling are also used in work-

s involving solid simulation, such as in [21]. In [17,1]

optimization methods are used to reduce simulation er-

rors. In [12] the velocity field is decomposed and only a

small part of it is simulated using high resolution grid,

achieving faster simulation. Recently [18] proposed a u-

nified representation focusing on simulating all types of

fluids, in which constrains and weak cohesive forces are

used to maintain particle density in cases of particle

deficiency, however they involved neither long-ranged
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Table 1 Definition of symbols in gas simulation.

Symbol Meaning
ρ̄i uncorrected density of particle i
ρi corrected density of particle i
ρ0 rest density of particle i
mj mass of particle j

W (r, h) smoothing kernel function
∇Wij short for ∇iW (ri − rj , h)
ri, rj position of the i-th, j-th particle
V0 intermediate variable
pi pressure of particle i
Ti temperature of particle i
ni local normal vector at the particle i

Pa, Cd user defined strength factors
Cb, Dc, Dr user defined coefficients for buoyancy

CN user defined threshold value

movement of smoke in large scenes nor phase transition

in the work.

3 Fast SPH Gas Simulation

In gas simulation, standard SPH simulators (as shown

in Fig. 1(a)) fill the entire simulation domain with am-

bient air particles. This is impractical for large or un-

bounded scenes, where large numbers of particles are

needed to fill the simulation domain. Yet simply remov-

ing some of these particles causes particle deficiency.

This is not an issue for free-surface liquids (liquid-air

systems), where air particles are usually ignored with-

out consequence, since the liquid and air densities d-

iffer so greatly. Atmospheric forces are negligible com-

pared to the liquid particle interaction, and the missing

air particles do not cause noticeable errors in calcula-

tion. These particle deficiencies do, however, pose se-

rious problems for gaseous simulation with SPH. The

forces between the plume and the surrounding air are

not negligible as in liquid simulations, but are crucial in

determining the movement of simulated gas particles.

In order to achieve high-fidelity visual effects with-

out filling the entire space with ambient air particles,

we must compensate for the accuracy degradation from

particle deficiency. Particle deficiency has two main ef-

fects on accuracy: (1) erroneous density calculation of

SPH particles and (2) missing interaction forces from

the ambient air particles.

Following the same work flow as the standard SPH

method, we derive below a fast SPH scheme (illustrat-

ed in Fig. 1(b)) which only simulates the visible gas

and does not model the surrounding ambient air. We

have developed appropriate compensation formulations

for both gas-density and particle-force calculations. In-

stead of using a secondary density field to represent the

distribution of the visible gas plume, we use the SPH

gas particles to directly represent the visible gas; this

is also convenient for phase transformation of particles

in liquid-gas phase transitions.

(a) (b)

Fig. 1 (a) The standard approach fills the simulation domain
with ambient air particles (blue). (b) Our approach removes
these ambient air particles and instead adds compensation
forces to the gas particles (red).

3.1 Gas density correction

Assuming the ambient air particles are included in the

SPH simulation, the following relations hold for a given

particle i:

ρi =
∑
j

mjWij +
∑
j′

mj′Wij′ (1)

0 =
∑
j

mj

ρj
∇Wij +

∑
j′

mj′

ρj′
∇Wij′ (2)

where the index j refers to the SPH particles of inter-

est, the index j′ refers to the ambient air particles, ρs
denotes the density of particle s, ms denotes the mass

of particle s, and ∇Wst = ∇sW (rs − rt, h) is the gra-
dient of the smoothing kernel function with support h.

We use the standard smoothing kernel functions as in

[20]. Eqn. (1) and Eqn. (2) both come from the stan-

dard SPH formulation, where Eqn. (1) is the density

interpolation and Eqn. (2) is a first-order identity that

holds exactly for ideal particle distributions.

If the ambient air particles are simply removed from

the simulation, the second term in Eqns. (1) and (2) will

disappear, leading to erroneous results. To correct this

error, it is assumed that a virtual “average” particle k

can be placed nearby to satisfy Eqns. (1) and (2), i.e.:

ρi =
∑
j

mjWij +mkWik (3)

0 =
∑
j

mj

ρ̄j
∇Wij +

mk

ρk
∇Wik (4)

In Eqns. (3) and (4) the effect of ambient air particles

surrounding the particle i is compensated for by a vir-

tual “average” particle k paired with it. We use ρ̄i =
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jmjWij to denote the uncorrected density value, i.e.

the density interpolation following Eqn. (1) without the

second term. To determine the properties of the virtual

particle k, it is first assumed that densities in adjacen-

t particles change gradually in the gas simulation; the

density of particle k is then considered to be the same

as the interpolated density of particle i, i.e. ρk = ρi.

Then the distance from any virtual particle k to its

paired real particle i is set as a fixed value, which will

be discussed later. Eqn. (4) contains two vector-valued

functions that cancel each other. The first term in Eqn.

(4) can be computed directly and is known for a given

particle i. On the right-hand side of Eqn. (4), the di-

rection of the second term must be in line with the first

term. Therefore, we only need to consider the norms of

the two terms in Eqn. (4), which can be rewritten as:

mk = V0ρk = V0ρi (5)

where V0 =
|−
∑

j

mj
ρ̄j
∇Wij |

|∇Wik| can be predetermined for

particle i.

Substituting Eqn. (5) into Eqn. (3), the corrected

density of particle i can be computed as:

ρi =
ρ̄i

1− V0Wik
(6)

Eqn. (6) corrects the density of the SPH particles in the

absence of surrounding ambient air particles. However,

for a more accurate evaluation, the densities of adja-

cent particles in Eqn. (4) should also use the corrected

value ρj instead of the uncorrected one ρ̄j . This leads

to the following formulae, whose detailed proof is given

in Appendix A:

mk = V0ρ̄i (7)

ρi = ρ̄i(1 + V0Wik) (8)

In the above calculation, the distance from a virtual

particle k to its paired real particle i is heuristically set

as a fixed value δh, where δ ∈ [0.4, 0.7] usually brings

more plausible results in our experiments. There may

be other methods that allow this distance to vary, but

we have found simply fixing the distance produces suf-

ficiently good results for the SPH gas simulation.

3.2 Particle force compensation

After removing the ambient air particles from the sim-

ulation, the interaction forces between the simulation

particles and the ambient air particles must also be

compensated for. The missing interaction forces are re-

sponsible for three physical effects: the local force bal-

ance, the atmospheric pressure and the local gas vis-

cosity. Each of these physical effects requires that an

appropriate compensation be made.

The virtual particles generated for the gas density

correction can be used to compensate the local force

balance. Following the standard SPH formulation, the

pressure force for a given particle i is:

Fp,i = −
∑
j

mj

ρj

pi + pj
2
∇Wij (9)

where ps is the gas pressure calculated at particle s.

Using the paired virtual particle k, an extra term is

added to Eqn. (9):

F̃p,i = −
∑
j

mj

ρj

pi + pj
2
∇Wij +

mk

ρk

pi + pk
2
∇Wik (10)

Here the interpolated density uses the corrected density

computed from Eqn. (8), and the pressure is computed

from the ideal gas state function:

p = κ(ρ− ρ0) (11)

where κ is the gas constant, and ρ0 is the gas density

at rest.

The atmospheric pressure pushes the gas towards

its inner direction; to simulate this effect, we introduce

a normal force. First, the local normal vector at the

particle i is computed as:

ni =
∑
j

mj

ρj
∇Wij (12)

The normal vector defined above is identical to the first

term in Eqn. (2). For those internal simulation parti-

cles whose neighborhoods do not contain any ambient

air particles, the second term in Eqn. (2) is zero, and

therefore the norms of their normal vectors are zero or

approximately zero, depending on the particle distri-

bution. For those simulation particles that are adjacent

to the missing ambient air particles, the second term in

Eqn. (2) is non-zero, and therefore the norms of their

normal vectors are non-zero as defined by the first term.

Based on this analysis, the atmospheric pressure force

is defined as:

F̃′p,i = Pani = Pa
∑
j

mj

ρj
∇Wij (13)

where Pa is a user-defined strength coefficient reflect-

ing the ambient air pressure. The pressure force defined

above automatically ensures that the atmospheric pres-

sure is added only to the particles on the gas boundary,

since the inner gas particles have zero norms for their

normal vectors.

To account for the effect of the local gas viscosity, we

introduce a damping effect proportional to the particle

velocity as follows:

ãdamp,i = −Cdvi (14)

where adamp,i is the acceleration of the i-th particle due

to the damping force, Cd is the damping coefficient,
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and vi denotes the velocity of particle i. This damping

force is applied only if the norm of the particle normal

exceeds a given threshold value, i.e. |ni| > CN . This is

to ensure that the damping effect is only added to those

boundary particles with neighborhood deficiency.

3.3 Buoyancy and boundary treatment

The buoyancy force is related to the temperature of

SPH gas particles. Similarly to [2], the temperature of

each gas particle is evolved as:

dTi
dt

=
∑
j

mj

ρiρj
Dc(Ti − Tj)

(ri − rj) · ∇Wij

(ri − rj)2 + γ2
(15)

where Ts is the temperature of particle s, Dc is the ther-

mal conductivity, and γ2 � 1 is a small positive number

to avoid computational singularity. For those particles

with |ni| > CN , a radiation term is also applied to sim-

ulate the heat transfer to the missing particles:

dTi
dt

= −Ti/Dr (16)

where Dr denotes the radiation half time, lower value

of Dr leads to faster cooling of the corresponding par-

ticles. Then the buoyancy of the gas particle is set to

be proportional to the temperature, i.e.

ãb,i = CbTib (17)

where ãb,i is the acceleration of the i-th particle due to

the buoyancy force, Cb is the buoyancy coefficient and

b is a unit vector pointing to the buoyancy direction.

In this work, the rigid boundaries are represent-

ed with boundary particles. The positions of bound-

ary particles are not affected by gas particles, but they

participate in all SPH calculations in the same way as

normal simulation particles, as in [27].

4 Phase Transition between Liquid and Gas

Using the proposed fast SPH scheme for gas simula-

tion, it becomes possible to develop an efficient and

unified SPH scheme for complex scenes that involve

liquid-gas phase transition. The density of liquid is of-

ten 1000 times higher than the gas density. When the

phase transition occurs, this high density ratio causes a

drop in simulation resolution and robustness, and ulti-

mately loss of visual plausibility. To prevent this loss of

plausibility, this situation requires a proper particle s-

plitting and merging strategy, which is explained in the

following sections.

4.1 Keeping simulation resolution in phase transition

Due to the large density ratio between liquid and gas

phases, the effective volume of an SPH particle will be

significantly larger in the gas phase if it is directly va-

porized from the liquid phase. This leads to degraded

simulation resolution. To overcome this problem, we

split the involved liquid particles before transferring

them into the gas phase. To be truthful to the under-

lying physics, the change of local mass distribution due

to this refinement process must be minimized, and the

global mass and momentum conservation should be p-

reserved. We propose a pattern-based splitting scheme

originated from [10] to achieve this goal.

(a) (b)

Fig. 2 2D examples of particle splitting. Based on a prede-
fined pattern, e.g. the hexagon pattern shown in (a) and the
square pattern shown in (b), the mother particle (the red n-
ode) is split into a set of evenly distributed daughter particles
(the blue nodes). The distance between the mother particle
and the daughter particles is ε. The smoothing radius of the
daughter particles is αh, where h denotes the smoothing ra-
dius of the mother particle.

As shown in Fig.2, the mother particle (denoted by

the red node) is split into a set of daughter particles (de-

noted by the blue nodes), which are evenly distributed

around the original position. Depending on the simula-

tion need (to be explained in Section §4.2), a daughter

particle can also be placed at the centre, i.e. the position

of the mother particle. The distance from the mother

particle to each daughter particle is denoted by a scalar

parameter ε. As in [10,3], we allow variable smoothing

lengths in the simulation. Thus, another scalar param-

eter α is introduced to denote the change of smooth-

ing radius, i.e. hnew = αhorigin. Finally, the mass ra-

tio between the daughter particles and the mother par-

ticle is denoted by a vector λ = [λ1, ..., λM ]T , where

i = 1, 2, · · · ,M denotes the daughter particles and M

denotes the number of daughter particles. Thus, the

mass of each daughter particle is mi = λimN , where N

denotes the mother particle and mN is the mass of the

mother particle.
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It is proved in [10] that, given the values α and ε,

the refinement error can be written in terms of λ as

E[α, ε](λ) =
m2
N

hdN
(C̄ − 2λT b̄ + λT Āλ) (18)

where each Āij = 1
αd

∫
Ω
Wi(r, 1)Wj(r, 1)dr, each b̄j =∫

Ω
WN (r, 1)Wj(r, 1)dr, C̄ =

∫
Ω
W 2
N (r, 1)dr, and d is

the simulation dimension. Wi(r, 1) = W (r − ri, 1) de-

notes the smoothing kernel function at the i-th particle

position ri with the unit kernel radius.

Therefore, given the refinement parameters (ε, α),

the optimal values for λ∗ can be obtained by minimiz-

ing the error E[α, ε] with the constraint of
∑M
j=1 λj = 1.

Note that in a given pattern, for each choice of (ε, α),

the coefficients C̄, b̄, Ā can be calculated numerically,

which allows for the pre-computation of the best λ∗.

This process can also be reversed, and the correspond-

ing (ε, α) can be found from a desired λ∗ pattern. For

a certain pattern, at the precomputation stage we need

to calculate corresponding values of (E, λ) from (ε, α)

pairs and save them into a two-dimension chart. This

provides the necessary information to determine better

patterns that give a good balance between refinement

error and mass distribution.

4.2 Boiling and evaporation

Liquid can transform into gas through boiling or vapor-

izing. The former is a vibrant process occurring at the

boiling point, and the latter is a quiet process taking

place slowly at lower temperatures. The pattern-based

splitting scheme in §4.1 provides a natural way to mod-

el these two different phenomena. For boiling we choose

a splitting pattern that does not place a daughter par-

ticle at the center. Patterns without a central node usu-

ally divide the mass of the original particle evenly into

new particles, especially when the pattern is symmet-

ric. Typically we use a regular icosahedron pattern with

(ε, α) = (0.3, 0.9), but other patterns can also be cho-

sen when necessary. After splitting, the new particles

are transferred into the gas phase, experiencing density

drop and volume expansion in the boiling phenome-

na. The smoothing radius of these gas particles is also

enlarged in this process, matching their expansion in

effective volume. For the relatively slower vaporization,

we choose a splitting pattern with a daughter particle

in the center. In these types of patterns, the majority

mass of the original particle remains in the new parti-

cle at the center. For example, in a cubic pattern with

(ε, α) = (0.4, 0.9) and with a relatively low refinement

error, the mass of the new particle is λi = 0.992 for

the particle at the center and is λi = 0.001 for others.

After particle splitting, the center particle remains in

the liquid phase and the other particles are transformed

into the gaseous phase. The smoothing radius of these

transformed particles is also re-adjusted.

The above patterns are chosen with balanced con-

sideration. The cubic pattern, for example, provides

a moderate phase transition rate between liquid and

air, with only a small fraction of liquid mass turned

into gas phase in each splitting, and keeps the effec-

tive volume of the gas particles similar to that of the

liquid particles. For the boiling process the regular i-

cosahedron pattern provides a good balance between

simulation efficiency (i.e. avoiding particle number ex-

plosion) and resolution. These patterns also provide a

relatively small refinement error under the above mass

distribution. There may be better patterns, however the

symmetric and easy-to-compute property of these pat-

terns make the calculation both in precomputation and

actual simulation significantly easier and faster. The

effect of refinement error related to different patterns

and corresponding (ε, α) values, and the effectiveness

of this method comparing to original distribution are

thoroughly analyzed and validated in [10].

In evaporation, a liquid particle could be split sever-

al times. It is possible to pre-compute different splitting

schemes with different (ε, α) values for each split, mak-

ing the mass of the new gas particles similar to each

other. However, after several splits, the mass of the liq-

uid particle reduces and the splitting error discussed in

§4.1 becomes gradually larger. To overcome this prob-

lem, we split liquid particles only up to a threshold

number of splits. Once a liquid particle reaches this s-

plitting threshold, we merge the particle with adjacent

similar liquid particles if possible.

Specifically, for each candidate particle M , we com-

pute its inertia matrix as

IM =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (19)

where Ixx =
∑
jmj((yj − yM )2 + (zj − zM )2), Iyy =∑

jmj((xj − xM )2 + (zj − zM )2), Izz =
∑
jmj((xj −

xM )2 + (yj − yM )2), Ixy =
∑
jmj(xj − xM )(yj − yM ),

Iyz =
∑
jmj(yj−yM )(zj−zM ), and Ixz =

∑
jmj(xj−

xM )(zj − zM ). Here, the summation is performed over

the neighborhood of the candidate particle M defined

by its smoothing radius. Then, following [9], we define

the mass decentration as:

ηM = |( trace(IM )

3
)3 − det(IM )| (20)

The smaller the ηM value is, the mass distribution with-

in the neighborhood of particle M is more similar to

a uniform sphere. The mass decentration ηM vanishes
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when the mass distribution around the candidate par-

ticle M is an ideal sphere. In our implementation, the

particle with the smallest mass dencentration is merged

with its neighborhood. The merged particle, denoted by

M ′, has the total mass of the entire neighborhood be-

fore merging, and it is placed at the same position as

M . After merging, the merged particle M ′ is split a-

gain into several particles of proper size, following the

splitting algorithm described in §4.1. As shown in Fig.

3, this merge-split process ensures the quality of SPH

particles during merging and splitting operations.

(a) (b) (c)

Fig. 3 (a) The candidate particle M to be merged with it-
s neighborhood. (b) A larger particle M ′ is generated after
merging. (c) Then the large particle M ′ is split into a set of
daughter particles with desired size and distribution.

It is noted that, right after the splitting or merging

process, partially “overlapping” daughter particles can

temporarily appear. However the new particle position,

mass, etc. are carefully pre-computed so that particle

interactions in the new distribution are maintained al-

most the same as before even in the case of partial over-

lapping. Thus stable simulation can be achieved with-

out additional calculation like some other methods, e.g.

Poisson disc sampling.

5 Implementation

In the standard SPH algorithm, the motion of a particle

i is determined by

ρi =
∑
j

mjWij (21)

ai =
dvi
dt

=
1

ρi
Fp,i +

1

ρi
Fv,i + g (22)

where Fp,i denotes the pressure force, Fv,i the viscosity

force, g the gravity acceleration, ai the acceleration of

particle i, vi the velocity of particle i, and t the time

variable. Our approach first compensates for the density

of each particle using Eqn. (8). Then the local pressure

balance and the atmospheric pressure are combined to

form the pressure force term, i.e.

Fp,i = F̃p,i + F̃′p,i (23)

where F̃p,i and F̃′p,i are defined in Eqns. (10) and (13).

The damping and buoyancy accelerations defined in

Eqns. (14) and (17) are also added to the right-hand

side of Eqn. (22). The complete equation of our ap-

proach is:

ai =
1

ρi
(F̃p,i + F̃′p,i) +

1

ρi
Fv,i + g + ãdamp,i + ãb,i (24)

To obtain more visual variance of the simulated

gas, it is possible to artificially adjust the atmospheric

pressure F̃′p,i according to the particle’s normal vec-

tor. Specifically, F̃′p,i is multiplied by a constant factor

β ∈ [0, 1] if the norm of its normal vector is less than

a given threshold |ni| < CN , where near-zero β values

will offer more visual variation.

If desired one can also add artificial vortex to the

simulation, such as Lagrangian vortex methods adopt-

ed in [24,18]. Specifically, the vortex carried by each

particle is evolved by the following equation:

Dωi
dt

= ωi · ∇v + β(ni × g) (25)

where ωi is vortex carried by the i-th particle, β is a

user-defined constant used to control the overall strength

of the effect. Then a particle is driven by an extra force

due to the neighbors:

Fvort,i =
∑
j

(ωj × (ri − rj))Wij (26)

The above vortex method adds more visual variance to

the result with about 15% increase in computational

cost.

6 Result

The performance gain for the proposed approach will

depend on the size of the simulation domain, in that

larger domains require more ambient air particles to fill

the entire space. Our approach is most efficient dealing

with scenes that have smoke plumes evolving across a

large empty space with open boundaries, which we’ll

demonstrate in the examples. For rendering, the fluid

particles are directly rendered, which is convenient for

liquid-gas phase transition, and it can easily cope with

long-range movement of gaseous fluids in very large

scenes. Post-processing rendering techniques, similar to

those in [18], can also be adopted to enhance diffusion

effects, which we use in the steam train example.

To demonstrate the effectiveness and speed up of

our approach, a boiling example is presented in Fig. 4.

At the center of the scene, the water is boiled in a small

pan producing vapor. In Fig. 4(a), using our approach

described in §3 and §4, the vapor phase is successful-

ly simulated, showing plausible movement and shape.
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Fig. 5 Evaporation. A misty fog rises from an outdoor bath. The simulation includes about 407,000 particles in total, which
is approximately 25 times faster than filling the scene using an estimated 9.9 million ambient air particles with standard
approach.

(a) (b) (c) (d)

Fig. 4 Boiling. (a) Our approach. Using only about 9,000
vapor particles in total, the simulation runs at 67.3 steps per
second. (b) Standard approach with ambient air particles.
640,000 ambient air particles are required to fill the empty
space, reducing the simulation speed to 7.4 steps per second.
(c) Removing the correction and compensation from (a), the
simulation speed is comparable with that in (a) at 84.6 steps
per second, however the vapor does not hold its shape, s-
cattering and becoming thin. (d) An implementation of the
two-scale particle simulation method. Up to 305,000 parti-
cles are generated in the boundary region of the method. The
simulation speed is 4.9 steps per second.

The simulation uses only about 9,000 vapor particles in

total, plus about 40,000 liquid particles, and with arti-

ficial vortex added the simulation runs at 67.3 steps per

second on a Nvidia GeForce GTX 780 GPU. The ren-

dering volume grid is 160 × 120 × 400. The simulation

can run stably at 2 steps per frame (step size 1/60s).

For comparison, a vapor plume with the same resolu-

tion, but simulated using fully-filled ambient air parti-

cles, is shown in Fig. 4(b). In this case, no correction

or compensation is needed, but this small, simple scene

requires about 640,000 ambient air particles to fill the

empty space, reducing the simulation speed to 7.4 steps

per second. In Fig. 4(c), we demonstrate what happens

when we remove the the correction and compensation

from the case shown in Fig. 4(a). The erroneous cal-

culation causes the vapor phase to scatter and become

thin. The simulation speed is comparable with (a) at

84.6 steps per second.

Previous SPH methods using adaptive-sampling have

mainly dealt with liquid simulation; it is not straight-

forward to extend previous methods to GPU-based gas

simulation without adjustment. We tested the method

of [Solenthaler and Gross 2011] on the above example.

The vapor particles are used to define the active re-

gion, and the low-resolution simulation in their method

is carried on by a simulation of half resolution. The re-

sult is shown in Fig. 4(d). Their method still needs to

fill the entire simulation domain with ambient air parti-

cles, and a large amount of particles are also needed in

the boundary region. In total, the low-resolution simu-

lation contains about 88,000 particles (including liquid

particles), and up to 305,000 “boundary particles” are

added into the simulation around the vapor particles;

the simulation speed is 4.9 steps per second. This speed

is slower than the standard algorithm, possibly because

the splitting and relaxing algorithm for the generation

of “boundary particles” are not as well parallelizable

on GPU as other parts of the implementation, and be-

cause the number of “boundary particles” needed does

not give much performance improvement space in gas

simulations.

Fig. 6 shows a steam train running across open ter-

rain and passing through a tunnel in a light-yellow hill.

We simulate the smoke rising from its smokestack in a

200× 420× 1920 region measured by volume data grid

size in rendering. If the standard approach were used,

the example would have required an estimated 119.3

million ambient air particles in order to fill the simu-

lation space. In this case the artificial vortex is added.

With our approach only 433,000 gas particles are used

in total, and the simulation is able to run at 17.0 steps

per second, achieving more than 200 times speed up.

Fig. 5 shows an outdoor bath using a rendering vol-

ume grid of 260 × 260 × 400, where the water is evap-

orating and producing a misty fog. The gas phase has

a rest density that is 1/1000 of the liquid phase. Fill-

ing this scene would need 9.9 million ambient air parti-

cles besides liquid particles. With our approach, up to

329,000 particles are used to simulate the vapor plus

about 78,000 liquid particles, achieving approximately

25 times speed up. The simulation runs at 13.9 steps

per second.
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Fig. 6 Steam train running across an open terrain through a tunnel in a light-yellow hill. The smoke rising from its smokestack
is simulated with up to 433,000 gas particles using our approach. If ambient air particles were used, this example would have
required an estimated 119.3 million ambient air particles in order to fill the simulation space. Our approach achieves more
than 200 times speed up on this scene.

Fig. 7 Plumes rising from an ancient city towards a magic attractor located above the center building. Up to 1.3 million
particles are used with our approach, saving computational cost on more than 600 million ambient air particles. More than
400 times speed up is achieved in this scene.

Fig. 7 shows an ancient city, from which a number of

plumes are rising into the sky towards a magic attractor

located above the center building. The plumes then con-

verge and mix around the magic attractor. Based on the

proposed approach, up to 1.3 million particles are used

in this example and the simulation runs at 3.0 steps

per second. The rendering volume grid of this example

reaches 1320×560×1240. If the standard approach were

used, the example would have required more than 600

million ambient air particles in order to fill the simula-

tion space. For such a large scene it would be too costly

for normal GPUs to simulate ambient air particles, and

our approach brings more than 400 times speed up to

its simulation.

7 Conclusion

We have developed a novel fast SPH simulation ap-

proach for gaseous fluids. The proposed approach is

able to completely avoid simulating ambient air par-

ticles, bringing significant performance benefit (up to

two orders of magnitude) to SPH gas simulation, espe-

cially for large open scenes. Liquid-gas phase transition

phenomena, such as boiling and evaporation, can al-

so be efficiently captured following the fast simulation

approach.

Unlike grid-based solvers, the SPH schemes do not

have built-in diffusion, and it is difficult to handle the

diffusion effect using the proposed approach. Although

it can be partially alleviated by rendering, this is an in-

trinsic limitation related to single-phase SPH gas sim-

ulation, and using multi-fluid models can be a possi-

ble research direction in the future. Removing ambient

air particles also makes it difficult to analyze the mo-

mentum conservation property. Although little disobe-

dience of momentum conservation is visually observed

for the overall gas movement, the global momentum

conservation is not accurately ensured in the proposed

approach. Theoretically this could lead to error accu-

mulation, making the simulation possibly biased from

the natural movement in very long simulations. Though

the interactions between particles due to pressure is re-

produced in our approach, the immediate viscous in-

teractions between simulated particles and ambient air

particles are not fully recovered, losing vortical motion-

s to some degree. This can be partially compensated

by adding artificial vortex, however additional compen-
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sation mechanisms can be desirable. In reality, in rel-

atively narrow spaces sometimes it is possible for the

unseen air to “carry over” interactions between sepa-

rated parts of visible gas through propulsion, viscosity

or other mechanisms. However, since these ambient air

particles are removed in our approach, these indirec-

t interactions are no longer captured; our approach is

thus less effective for simulating narrow surroundings.
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Appendix A: Derivation of Eqns. (7-8)

This appendix shows the detailed derivations of Eqn. (7) and
Eqn. (8). Since densities in adjacent particles are assumed
to change gradually in the gas simulations, we can further
consider that for a particle i, the densities of its neighboring
particles ρi,j are corrected with the same proportion as itself
and in a similar form as Eqn. (6):

ρi,j =
ρ̄i,j

1− VWik

(27)

Here we want to determine the value of the scalar V , which
for a given particle i does not vary with adjacent particle j.
Using the form in Eqn. (27), Eqn. (4) can be rewritten as

0 = (1− VWik)
∑
j

mj

ρ̄j
∇Wij +

mk

ρi
∇Wik (28)

Utilizing V0 in Eqn. (5), the above equation can be further
rewritten as:

mk = (1− VWik)V0ρi (29)

Note that it has been assumed in the first place that the final
correction form should be in the form of Eqn. (27), which is
equivalent to requiring mk = V ρi. Comparing this with Eqn.
(29), the following equation can be obtained:

(1− VWik)V0 = V (30)

Solving Eqn. (30) yields

V =
V0

1 + V0Wik

(31)

Substituting Eqn. (31) into Eqn. (27) and Eqn. (29) leads to
Eqns. (7-8).


