
Eurographics Symposium on Rendering (2007)
Jan Kautz and Sumanta Pattanaik (Editors)

Ray Tracing Dynamic Scenes using Selective Restructuring

Sung-Eui Yoon1 Sean Curtis2 Dinesh Manocha2

1Lawrence Livermore National Laboratory 2University of North Carolina at Chapel Hill
Project URL: http://gamma.cs.unc.edu/SR

Abstract
We present a novel algorithm to selectively restructure bounding volume hierarchies (BVHs) for ray tracing dynamic
scenes. We derive two new metrics to evaluate the culling efficiency and restructuring benefit of any BVH. Based
on these metrics, we perform selective restructuring operations that efficiently reconstruct small portions of a BVH
instead of the entire BVH. Our approach is general and applicable to complex and dynamic scenes, including topo-
logical changes. We use the selective restructuring algorithm to improve the performance of ray tracing dynamic
scenes that consist of hundreds of thousands of triangles. In our benchmarks, we observe up to an order of magnitude
improvement over prior BVH-based ray tracing algorithms.

1. Introduction

Ray tracing has been widely researched due to its ability to
generate realistic images. However, the performance of cur-
rent ray tracing algorithms is considerably slower than GPU-
based rasterization algorithms, especially on dynamic scenes.
In this paper we address the problem of efficient computation
of bounding volume hierarchies (BVHs) of dynamic scenes
for faster ray tracing.

BVHs have been widely used as an acceleration data struc-
ture for ray tracing [RW80, KK86], visibility, and proxim-
ity computations [LM03, TKH∗05]. A BVH is a hierarchy of
bounding volumes (BVs) such that the BV at each internal
node encloses the geometric primitives and the BVs associated
with its descendants. BVHs are constructed in such a manner
as to maximize culling efficiency. Ideally, we would like to
compute BVHs with high culling efficiency so that they result
in fewer false positives in terms of intersection tests. Recently,
BVHs have been used for interactive ray tracing of dynamic
models [WBS07, LYTM06, CSE06, LAM03b].

Many dynamic scenes consist of one or more moving ob-
jects that may undergo non-rigid or deformable motion. These
include changes in the topology due to explosions, cutting,
tearing or fracture. Such scenarios arise frequently in gam-
ing, simulation, computer animation, and other applications.
In these dynamic environments, a BVH computed for the pre-
vious frame may not provide high culling efficiency for the
current frame and needs to be updated or recomputed.

At a broad level, there are two kinds of approaches to re-
compute the BVH [TKH∗05, OCSG07, LYTM06]. The first
set of algorithms restructure the BVHs by either reconstruct-
ing the entire BVH or a subset of the BVH. This is achieved

by recursively partitioning an input set of primitives of a node
into multiple disjoint sets of primitives of child nodes such
that the BVs associated with child nodes have higher culling
efficiency. Although this method can compute BVHs with
high culling efficiency, the complexity of these hierarchy con-
struction algorithms on a node with k primitives is typically
O(k logk). Since this method has super-linear time complex-
ity, it can be slow for large dynamic models consisting of sev-
eral hundreds of thousands or more triangles.

The second set of methods refit the extents of the BV of
each node such that the BV tightly encloses its associated
primitives. This involves no re-partitioning of primitives and
the BVH can be updated in linear time by traversing the BVH
in a bottom-up manner. However, the culling efficiency of the
refit BVH may degrade after a few frames (e.g. on scenes with
explosions); therefore, the refit BVH may result in too many
false positives in terms of intersection tests.

Main Results: We present a novel algorithm to selectively
restructure a BVH for ray tracing dynamic scenes. Our ap-
proach detects small subsets of the BVH that have low culling
efficiency and restructures only those subsets. The rest of the
BVH is updated using the linear time refitting algorithm. In or-
der to robustly identify the subsets of the BVH, we introduce
two metrics:
• Culling efficiency metric: This metric probabilistically es-

timates the culling efficiency of a BVH or a sub-BVH in
terms of the number of ray intersection tests performed dur-
ing the BVH traversal. This metric is based on surface-area
heuristic (SAH) [GS87].

• Restructuring benefit metric: This metric is a probabilis-
tic model that estimates the benefit of restructuring a subset
of the BVH in terms of improved culling efficiency.

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

Figure 1: Exploding dragon benchmark: Three images are
shown from a dynamic simulation of a bunny breaking a
dragon. This scene consists of 252K triangles and undergoes
drastic topological changes. We use our algorithm to selec-
tively restructure an axis-aligned bounding box (AABB) tree
during each frame. Our ray tracing algorithm based on selec-
tive restructuring is able to achieve 65%–1000% performance
improvement over prior ray tracing algorithms that are based
on AABB-trees.

We present simple and efficient algorithms to compute these
metrics. Our selective restructuring algorithm traverses the
BVH in a top-down manner and performs incremental restruc-
turing operations based on these metrics.

We demonstrate the benefits of selective restructuring for
ray tracing dynamic scenes. We use an optimization approach
that reduces the total frame time, including BVH restructuring
operations and ray intersection tests during BVH traversal. We
have tested the performance of our algorithm on a wide range
of benchmarks, consisting of tens or hundreds of thousands
of triangles and varying levels of dynamic behavior. In prac-
tice, selective restructuring takes a small fraction of the over-
all frame time and can significantly improve the culling ef-
ficiency of the BVH. We also compare the performance with
prior BVH-based ray tracing algorithms and observe up to one
order of magnitude performance improvement on our bench-
marks.

As compared to prior BVH-based ray tracing algorithms,
our approach offers the following benefits:

1. Generality: Our algorithm works with various types of
BVHs and arbitrary deformation including topological
changes. Furthermore, our algorithm can be combined with
other hierarchy construction methods.

2. Formal models: Our approach is based on two probabilis-
tic metrics that quantify the culling efficiency and restruc-
turing benefit of BVHs. As a result, our dynamic BVH re-
structuring algorithm works well on different kinds of dy-
namic models.

3. Complex models: The overhead of performing our selec-
tive restructuring operation is relatively small. Also, our
BVH restructuring algorithm scales well to large dynamic
models.

4. Faster ray tracing: Our ray tracing algorithm can offer
significant performance improvement over prior dynamic
BVH-based approaches.

Figure 2: BART benchmark: This figure shows three im-
ages from the well known BART benchmark with 16K triangles
([LAAM01]). We use our selective restructuring algorithm to
recompute the AABB-tree for ray tracing this model. We com-
pare our algorithm with four prior approaches and observe
11−2700% performance improvement on this benchmark.

Organization: The rest of the paper is organized as follows:
Sec. 2 gives a brief summary of prior work on hierarchy up-
date methods and ray tracing dynamic scenes. We give an
overview of our approach and describe the basic restructuring
operation in Sec. 3. We present our two metrics in Sec. 4 and
use them to formulate the selective BVH restructuring algo-
rithm for ray tracing in Sec. 5. We highlight the performance
on different benchmarks in Sec. 6. Finally, we analyze the per-
formance of our algorithm in Sec. 7.

2. Related work

In this section we give a brief overview of prior work on BVHs
as well as the refitting and restructuring algorithms for ray
tracing dynamic scenes.

2.1. Bounding Volume Hierarchies

There are different types of BVs. Some of the commonly
used BV types include simple shapes such as spheres
[Hub93, BO04] and axis-aligned bounding boxes (AABBs)
[vdB97], or tight fitting BVs such as oriented bounding
boxes (OBBs) [GLM96], spherical shells [KPLM98] and dis-
cretely oriented polytopes (k-DOPs) [KHM∗98], etc. Many
hybrid combinations that use more than one BV in a hierar-
chy or combine them with spatial partitioning methods have
also been proposed [LGLM99, SM04] Many top-down and
bottom-up techniques have been proposed to construct these
BVHs [LM03, TKH∗05].

2.2. Hierarchies for Dynamic Scenes

The problem of building good hierarchies for dynamic
datasets has been addressed in computer graphics, computa-
tional geometry, and database literature. An excellent recent
survey is given in [Sam06]. These include specialized hierar-
chies like parametric R-tree and TPR-tree for time parametric
rectangles or fieldtrees for objects undergoing relatively little
motion. Most of the algorithms in computer graphics or inter-
active applications use simple BVs such as spheres or AABBs
and recompute the BVH. The simplest algorithms update or
refit each BV and take linear time in the number of nodes in
the tree [LAM06]. Many specialized refitting algorithms have

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

also been presented for bounded deformations [JP04], morph-
ing objects [LAM03a], and kinetic data structures [ZW06].

The restructuring algorithms reconstruct the entire BVH or
a subset of the BVH at each frame [TKH∗05]. However, prior
algorithms can be slow in practice on large dynamic models
with hundreds of thousands of primitives. Many techniques
have been proposed to improve the performance of the en-
tire tree construction algorithms [WK06, HMS06, PGSS06],
detect the quality degradation of BVHs and mesh clusters
[Sam06, LAM06, CH04], or perform dynamic restructuring
for fracturing objects [OCSG07].

2.3. Ray Tracing and Intersection Computations

Spatial partitioning and BVHs have been widely used to
accelerate ray tracing and intersection computations. Inter-
active ray tracing of dynamic scenes has received consid-
erable attention in the last few years [LAAM01, WBS03].
These include algorithms that combine BVHs with spatial
partitioning hierarchies [GFW∗06, HHS06, WMS06, WK06]
or use a combination of refitting or reconstruction algo-
rithms [WBS07, LYTM06]. We compare our method with
prior BVH-based ray tracing methods in Section 6.

3. Overview

In this section we give an overview of our approach and intro-
duce the notation used in the paper. Our algorithm takes input
dynamic scenes as polygon soup models and does not assume
any particular deformations on the input scenes.

Bounding Volume Hierarchies: Each node in a BVH has a
bounding volume (BV), which can be used for ray intersec-
tion queries. The leaf nodes of a BVH contain primitives (e.g.,
triangles) contained in the BV of the node. Ideally, we would
like to compute a tight fitting BV for each internal node that
encloses all the primitives within its descendant nodes. Our al-
gorithm does not make any assumptions about the type of BV.
However, we assume that the BVH represents a layered hi-
erarchy [GNRZ02], where a BV at an internal node encloses
the BVs of its child nodes. For simplicity, we assume a bi-
nary BVH. However, our algorithm can be easily extended to
n-ary BVHs. Also, our approach does not make any assump-
tions about the specific construction algorithm used to parti-
tion the primitives belonging to the entire BVH or a subset of
the BVH.

Notation: For the rest of the paper, we use the symbol n to
denote a node and BV(n) to denote the BV associated with
a node n. The term sub-BVH(n) denotes the subtree that is
rooted at n and includes all the descendants of n. We use the
symbol n̂ to denote a node that is obtained after applying our
restructuring operation to sub-BVH(n). Let Le f t(n), Right(n),
and Parent(n) denote the left child, right child, and parent
node of n, respectively, and nRoot be the root node of the BVH.
The symbol |n|tri denotes the number of triangles contained in
sub-BVH(n).

3.1. BVH Restructuring

The simplest algorithms for dynamic BVHs are based on
BV refitting. These are simple to implement and quite fast
due to their linear time complexity. Moreover, refitting al-

Figure 3: Performance of Different Methods: The left graph
shows the relative total rendering time of ray tracing break-
ing bunny and dragon models consisting of 252K triangles
during 80 frames (Fig. 1). Our selective restructuring al-
gorithm shows more than one order of magnitude improve-
ment over "BV-refitting only" method and 6 times improve-
ment over complete BVH restructuring method optimized with
surface-area heuristic (SAH). This performance improvement
is achieved by selectively restructuring sub-BVHs only when
we can improve the overall performance of ray tracing. The
right graphs show the number of intersection tests at each
frame; the inset in the right graph shows zoomed view of the
graph. Our method shows more than 20 times improvement
over "BV-refitting only" method.

gorithms based on AABB trees can be an order of magni-
tude faster than complete reconstruction algorithms for AABB
trees [TKH∗05, vdB97]. In practice, complete reconstruction
algorithms can take many seconds on models with 100K −
500K triangles.

At the same time, BVHs updated by using BV refitting
methods can have poor culling efficiency. One such example is
shown in Fig. 3, which shows the number of intersection tests
per frame performed during ray tracing a dynamic scene with
breaking objects as shown in Fig. 1. The number of intersec-
tion tests on the dynamic BVH computed using the refitting
algorithm is two orders of magnitude higher, as compared to
that on the dynamic BVH computed using complete recon-
struction.

In order to overcome these performance issues, we present
a selective BVH restructuring algorithm that only restructures
small subsets of the BVH that have low culling efficiency. This
is demonstrated in Fig. 3, where the culling efficiency of the
dynamic BVH computed by our algorithm is comparable to
that of the complete reconstruction algorithm. Moreover, the
time spent in restructuring operations by our selective BVH
restructuring algorithm is a fraction of that spent by the com-
plete reconstruction algorithm.

In order to perform restructuring operations, our algorithm
uses two metrics, as mentioned in Sec. 1. These metrics eval-
uate the culling efficiency of a given sub-BVH as well as
the restructuring benefit, which measures the improvement
in culling efficiency due to selective restructuring. Next, we
introduce the basic restructuring operation used by our algo-
rithm.

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

Figure 4: Basic restructuring operation: Our algorithm se-
lects a node pair (n1, n2), whose BVs overlap consider-
ably (show on the left). Our restructuring operations takes
the union of primitives contained in sub-BVH(n1) and sub-
BVH(n2), re-partitions the primitives into two new nodes, n̂1
and n̂2, and recursively process the sub-BVHs of the new
nodes. The complexity of this operation is O(klogk), where
k = |n1|tri + |n2|tri. This is in contrast with other restructuring
algorithms where k = |nA|tri, where nA is the lowest common
ancestor of n1 and n2.

3.2. Selective Restructuring Operation

Our algorithm performs selective restructuring operations in
an incremental manner. Each operation evaluates a pair of
nodes in the BVH, say (n1, n2), shown in Fig. 4. These can
be any two nodes of the BVH, as long as one of them is not
an ancestor of another. Let nA be the lowest common ancestor
of both of these nodes. Our algorithm computes the extent of
overlap between BV(n1) and BV(n2). If there is a high degree
of overlap between these BVs, this node pair is a good candi-
date for restructuring operation. This is based on the fact that
a high degree of overlap between the BVs can lead to poor
culling efficiency.

In order to perform the restructuring operation, we use our
metrics to estimate the culling efficiency and restructuring
benefit of sub-BVH(n1) and sub-BVH(n2), before and after
the restructuring operation. Based on these metrics, our algo-
rithm determines whether this pair is a good candidate for per-
forming the restructuring operation. If so, we take the union
of all the primitives in sub-BVH(n1) and sub-BVH(n2) and
re-partition the primitives in that union into new nodes n̂1 and
n̂2, as shown in Fig. 4. Therefore, the BVs of new nodes would
have considerably less overlap.

The major advantage of our selective restructuring opera-
tion is that it is localized and only a small number of the prim-
itives are re-partitioned or re-grouped during this operation.
For example, if we restructure a single node and its sub-tree to
minimize the overlap between BV(n1) and BV(n2), that node
would be the common ancestor of n1 and n2 (i.e. nA). Since
the number of primitives associated with sub-BVH(n1) and
sub-BVH (n2) can be much lower as compared to that with
sub-BVH (nA), the cost of our selective restructuring opera-
tion is lower than that of reconstructing only a single node of
the BVH.

4. BVH Metrics

In this section we introduce two novel metrics that are used to
perform selective restructuring. First, we present our culling
efficiency metric that measures the expected number of inter-
section tests performed during ray tracing. Next, we present
the restructuring benefit metric, which estimates the improve-
ment in culling efficiency due to the restructuring operation
described in Section 3.2. These metrics are applicable to all
BVHs.

4.1. Cost Model for Intersection Queries

An intersection query is the basic geometric operations per-
formed during BVH traversal. In ray tracing there are two
types of intersection tests: ray-BV and ray-primitive tests. The
traversal algorithm starts from the root node and performs
these intersection tests in a recursive manner. If there is an
intersection with a node, it recursively checks for intersection
with its children. Otherwise, it terminates. At the leaf nodes,
the algorithm performs intersection tests with the primitives
(e.g., triangles).

We define the probabilistic cost model of intersection
query, CM-IQ, of a node n. CM-IQ measures the expected
number of intersection tests performed during an intersection
query that starts at sub-BVH(n), given that there is an inter-
section with BV (n). We relate this model with the culling effi-
ciency of sub-BVH(n). A higher value of CM-IQ implies low
culling efficiency of the sub-BVH.

4.1.1. CM-IQ Derivation

Let C(n) denote the value of CM-IQ associated with sub-
BVH(n). Also, let P(n) denote the probability that a node n
will be accessed during an intersection query. Then, by the
definition of intersection query described above, we can de-
fine C(n) in a recursive manner as:

C(n) =

|n|tri ∗Clea f , if n is a leaf node
1+P(Le f t(n))∗C(Le f t(n))+

P(Right(n))∗C(Right(n)), otherwise,
(1)

where Clea f is the relative cost of performing an intersection
test with a primitive (e.g. a triangle) compared to the cost of an
intersection test with a BV. We include Clea f to consider the
costs of intersection tests with primitives and BVs in one met-
ric. Later, we will describe a simple method to automatically
compute Clea f .

In order to compute CM-IQ for each node, we need to
compute the probability, P(n), that a node n is accessed
given that its parent node Parent(n) is accessed during
the intersection query. This probability formulation is well
known in ray tracing literature as the surface-area heuristic
(SAH) [GS87, MB90, Hav00, WH06] and is defined as:

P(n) =
Area(n)

Area(Parent(n))
, (2)

where Area(n) is the surface-area of the BV of the node n. For
more general intersection queries between the BVs, we could
also use the volume-based formulation proposed in [YM06].

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

Figure 5: Accuracy of CM-IQ metric: This graph shows
values of our CM-IQ metric based on surface-area heuristic
(SAH) and the number of ray intersection tests observed dur-
ing ray tracing of N-body simulation shown in Fig. 8. Although
the intersection tests are measured from a certain view point,
there is strong correlation (0.85) between them. This indicates
a high degree of accuracy of our CM-IQ metric.

Please note that our CM-IQ measures the expected number
of intersection tests given that a ray intersects with BV(nRoot),
the BV of the root node of a BVH. To estimate the total num-
ber of intersection tests performed during ray tracing at an en-
tire frame, we need to multiply the CM-IQ value by the num-
ber of such rays intersecting BV(nRoot). Since we do not know
the number of such rays at a frame, we estimate it with that of
the previous frame. For the sake of simplicity, we choose to
omit this factor in the derivations for the rest of the paper.

Cost Value Decomposition Property: Suppose that the BV
of a node n can be decomposed into two virtual disjoint child
nodes a and b, i.e., BV (a)∩BV (b) = ∅. Then, the following
equation holds, based on conditional probability:

C(n) = C(a∪b) =
Area(a)

Area(n)
C(a)+

Area(b)

Area(n)
C(b). (3)

We use this property to explain a derivation of our restructur-
ing benefit metric later.

Evaluating CM-IQ: The simplest method to evaluate CM-IQ
is to recursively apply Eq. (1) to sub-BVH(n). This method
assumes that all the nodes of the sub-BVH rooted at node n
will be accessed during ray-BV intersection queries. However,
many of the descendant nodes may not be accessed due to var-
ious geometric factors (e.g., visibility) during a frame. In order
to efficiently take this property into account, we use frame-to-
frame coherence to estimate which nodes would be accessed
in the current frame based on the nodes that were accessed
during the previous frame. Eventually, we evaluate our metric
only on those nodes. We associate a time-stamp variable with
each node of the BVH and update the variable for the nodes
that are accessed. We have empirically verified the accuracy
of CM-IQ metric by computing a linear correlation between
values of CM-IQ computed by our algorithm and the number
of intersection tests observed during ray tracing. We observe
a high linear correlation ranging from 0.7 to 0.9 in our bench-
marks. This is illustrated in a correlation graph shown in Fig.
5.

4.2. Restructuring Benefit Model

We now present our restructuring benefit model for ray in-
tersection query, which predicts the expected improvement in

Figure 6: Classification of Overlapping Regions: This fig-
ure illustrates the overlapping regions between the BVs of two
nodes, n and n̂. Note that nc, n−, and n+ are regions that be-
long to both BV (n) and BV (n̂), only BV (n), and only BV (n̂),
respectively.

culling efficiency during restructuring operations. We define
restructuring benefit model of intersection queries, RM-IQ,
to estimate the benefit of performing the restructuring opera-
tion on sub-BVH (n1) and sub-BVH (n2), given a node pair,
(n1,n2). The restructuring operation would compute a new
node pair (n̂1, n̂2). The benefit is computed in terms of im-
proved culling efficiency, i.e., reduction in the number of in-
tersection tests. Let R(n1, n̂1,n2) represent the expected reduc-
tion in the number of intersection tests due to the new node,
n̂1, and its sub-BVH. In the same manner, our restructuring
algorithm also computes R(n2, n̂2,n1).

4.2.1. RM-IQ Formulation

Let ∆C(n1, n̂1,n2) represent the difference, C(n1)−C(n̂1), in
the expected number of intersection tests before and after re-
structuring. This is based on the condition that the rebuilt node
n̂1 is accessed during the traversal.

Then, we represent R(n1, n̂1,n2) as:

R(n1, n̂1,n2) = ∆C(n1, n̂1,n2)P(n̂1). (4)

Our goal is to estimate this term without explicitly computing
n̂1 and its sub-BVH (n̂1). We cannot exactly compute P(n̂1), as
it requires actually performing the restructuring operation and
computing n̂1. Instead, we simply use the probability, P(n1),
as an approximation for P(n̂1).

4.2.2. Derivation of ∆C(n1, n̂1,n2)

In order to estimate ∆C(n1, n̂1,n2), we need to estimate C(n̂1),
which in turns depends on BV(n̂1). To do that, let us decom-
pose BV(n1) ∪ BV(n̂1) into three regions: nc

1, n−1 , and n+
1

that belong to both BV (n1) and BV (n̂1), only to BV (n1), and
only to BV (n̂1), respectively (see Fig. 6). The superscripts c,
−, and + indicate the areas that are common, deleted, and
added, respectively, after restructuring the node n to n̂. Intu-
itively speaking, the culling efficiency after restructuring will
be improved as the region of n−1 increases and the regions of
n+

1 decreases.

Given the decomposition of BV(n1) ∪ BV(n̂1), we derive
the following equation, obtained by expanding our cost model
based on cost value decomposition property introduced in Sec-

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

tion 4.1.1:

C(n1)−C(n̂1) =C(nc
1∪n−1)−C(nc

1∪n+
1)

=
Area(nc

1)

Area(nc
1 +n−1)

C(nc
1)+

Area(n−1)

Area(nc
1 +n−1)

C(n−1)

−
Area(nc

1)

Area(nc
1 +n+

1)
C(nc

1)−
Area(n+

1)

Area(nc
1 +n+

1)
C(n+

1).

(5)

It follows that ∆C(n1, n̂1,n2) increases as the region corre-
sponding to n−1 increases and n+

1 decreases. However, the
region corresponding to n−1 mainly depends on the overlap
region between BV(n1) and BV(n2). Moreover, we do not
know these regions exactly without explicitly computing n̂1
and BV(n̂1). We present a simple and efficient approximation
method to compute ∆C(n1, n̂1,n2) without actually comput-
ing n̂1. The main observation behind our approximation is the
property that the overlap region between two BVs is likely to
be reduced after a restructuring operation.

4.3. Approximation of ∆C(n1, n̂1,n2)

In order to approximate the difference, ∆C(n1, n̂1,n2), we
make the following three assumptions:

• Complete Removal of BV Overlap: The improvement in
culling efficiency after restructuring will increase as re-
gion n−1 increases and region n+

1 decreases according to
Eq. (5). If there is considerable overlap between BV(n1)
and BV(n2), that overlap can be reduced by restructuring
the two nodes and all the primitives contained in sub-BVH
(n1) and sub-BVH(n2). Therefore, it is likely that the re-
gion n−1 would increase when the overlap between BV(n1)
and BV(n2) is higher. We assume that any reasonable recon-
struction method will reduce most of the overlapping region
by restructuring primitives associated with two overlapping
nodes. Particularly, we assume that the entire overlapping
region will be eliminated. For example, if we use AABB as
BVs, half of the surface areas of faces of the overlapping
region, except for faces parallel to the dividing plane, will
be reduced from Area(n1). Let Area(nr

1) denote the extent
of such a reduced area.

• Ignoring n+
1 : We assume that the reconstruction algorithm

will construct new BVs such that they minimize this region.
Therefore, we do not take the region of n+

1 into account
during our approximation. The BV example shown in Fig.
4 also does not introduce n+

1 nor n+
2 after restructuring.

• Linear Approximation: In order to approximate the dif-
ferences in the culling efficiency shown in Eq. (5), we need
to compute C(nc

1). We assume that the geometric primitives
are uniformly distributed in BV (n1). Then, we linearly ap-
proximate C(nc

1) based on the ratio of surface areas of re-
gion of nc

1 to that of BV (n1). Therefore, C(nc
1) can be ap-

proximated as Area(nc
1)

Area(n1)
C(n1).

Based on these assumptions, ∆C(n1, n̂1,n2) can be approxi-
mated as:

C(n1)−C(n̂1)≈C(n1)−C(nc
1)≈C(n1)−

Area(nc
1)

Area(n1)
C(n1)

≈C(n1)
Area(nr

1)

Area(n1)
.

(6)

To verify the accuracy of these approximations, we mea-
sured how much the observed cost values deviate from the ex-
pected cost values in terms of surface areas of BVs. 80% of ob-
served values are within 25% of the expected value. Moreover,
the standard deviations of ratios of those 80% observed values
to the expected values are within 0.08 across our benchmarks.
Therefore, the expected values are very close to the observed
values on average. However, in the other 20% observed val-
ues, our simple approximation can result in significant errors
depending on configurations. In the worst cases, the observed
values were two times bigger than the expected values.

Final RM-IQ: After substituting all the equations into our
RM-IQ formulation shown in Eq. (4), we obtain the follow-
ing approximation of our restructuring metric, RM-IQ:

R(n1, n̂1,n2) = C(n1)
Area(nr

1)

Area(n1)
P(n1). (7)

Our restructuring algorithm reconstructs two nodes, n1 and
n2, and their sub-BVHs only if R(n1, n̂1,n2) + R(n2, n̂2,n1)
is larger than the restructuring cost, frebuild(n1,n2), of
sub-BVH (n1) and sub-BVH (n2). The restructuring cost,
frebuild(n1,n2), can be computed based on the number of trian-
gles associated with those two sub-BVHs. Typically, the time
complexity of a reconstruction method is O(k logk). There-
fore, frebuild(n1,n2) = Crebuild ∗ (k logk), where k = (|n1|tri +
|n2|tri). Crebuild is a machine-dependent constant used in esti-
mating the cost of the reconstruction algorithm.

5. Ray Tracing with Selective Restructuring

In this section, we present our algorithm to efficiently restruc-
ture BVHs for ray tracing dynamic scenes. Also, we explain
how this selective restructuring algorithm is combined to per-
form ray tracing.

5.1. Overall Selective Restructuring Algorithm

The selective restructuring algorithm is performed at the be-
ginning of each frame. We first perform BV refitting by up-
dating the BVs in a bottom-up manner. However, these re-
fit BVs may have the low culling efficiency. To detect such
BVs, we evaluate the culling efficiency metric for each node
of the BVH. Next, we perform selective restructuring opera-
tions. Our algorithm traverses the BVH and detects sub-BVHs
whose culling efficiency can be improved by restructuring
them. The main goal of our restructuring algorithm is to min-
imize the frame time of ray tracing, which is a combination
of restructuring time and traversal time of a BVH. In order
to achieve this goal, our algorithm computes a set of node
pairs, which are candidates for our basic restructuring oper-
ations. Each pair, (n1, n2), is associated with two values: 1)
the restructuring cost of sub-BVH(n1) and sub-BVH(n2); and

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

2) the RM-IQ value shown in Eq. (7). Our overall algorithm
proceeds in two phases: hierarchical refinement phase and re-
structuring phase, as shown in Alg. 1. Next, we describe each
of them in more detail.

5.2. Hierarchical Refinement Phase

Our algorithm performs the basic restructuring operation de-
fined in Section 3.2. The algorithm starts with selecting two
nodes, whose BVs have a high degree of overlap. However, if
there are m different BV nodes in a BVH, a naive approach
would need to check O(m2) node pairs to detect all the over-
laps between the BVs. Instead, we traverse an input BVH in a
top-down manner and perform hierarchical culling to reduce
the number of pairs to be checked for overlap tests. The main
motivation of hierarchical culling arises from the following
property: if there is no overlap between the BVs of two nodes,
there is no overlap between BVs of their descendant nodes.

Refinement: We start with an initial pair with the two children
of nroot . We also maintain a queue of pair nodes called pair-
queue, which serves as a computation front during the top-
down BVH traversal. We initialize the queue with the initial
pair. The algorithm proceeds by extracting a pair, say (n1,n2)
from the pair-queue, and checking for overlap between the
BVs of the two nodes. Based on the overlap, we evaluate the
RM-IQ metric for each node and determine whether that pair
is a good candidate to perform our restructuring operation.

If there is no overlap between BV(n1) and BV(n2), it
is guaranteed that there is no overlap between the BVs of
any node in sub-BVH(n1) and the BVs of any node in
sub-BVH(n2). Therefore, we do not need to consider any
such pairs for the restructuring operation. However, there
can be overlap between two children nodes of n1 or the
two children nodes of n2. Therefore, we add two new pairs,
(Le f t(n1),Right(n1)) and (Le f t(n2),Right(n2)) to the pair-
queue. In other words, the pair (n1,n2) is refined into those
two pairs. On the other hand, if there is overlap between BVs
of two nodes of a pair (n1,n2), this pair is a possible candidate
for restructuring operation. Therefore, we also perform a re-
finement operation to further localize the overlapping area be-
tween BV(n1) and BV (n2). We compare the volumes of both
the BVs and select the node with the larger volume, say n1.
We refine this node with its children, and create two new pairs,
(Le f t(n1),n2)) and (Right(n1),n2). At the same time, we also
add another pair (Le f t(n1),Right(n1)) to the pair-queue.

Stopping Criteria: There is a cost associated with refining the
node pairs and evaluating the RM-IQ metric for the node pairs.
Let Cre f ine represent the cost of refining a pair. We refine a
pair when it is likely that refinement could result in improving
the overall performance. Specifically, we refine a pair if its
restructuring benefit is at least bigger than the refinement cost.
We define the refinement cost of a pair as a function of the
number of nodes in the queue since we have to process all the
pairs in the queue before we process the refined pairs.

Propagation: When we apply the basic restructuring opera-
tion to two nodes of a pair, the overlap between the BVs of the
nodes can be reduced. Moreover, restructuring any of the an-
cestor nodes of those two nodes can reduce the overlap too.
However, when we evaluate restructuring benefit only with
those ancestor nodes, we cannot foresee such benefit with their

Algorithm 1 Selective Restructuring Algorithm
1: // Hierarchical Refinement Phase
2: PairQ← (Left(nRoot), Right(nRoot)) // Add initial pair to the

queue
3: while (! PairQ.empty ()) do
4: Pair← PairQ.front ();
5: EvaluateRM-IQ (Pair); // Evaluate RM-IQ based on the

overlap
6: // Check whether restructuring benefit of a pair is larger than

the refining cost
7: if (WorthRefine(Pair)) then
8: PairQ← Refine (Pair);
9: end if

10: Propagate (Pair); // Propagate RM-IQ value of Pair to pairs,
which are refined to Pair

11: end while
12: // Restructuring Phase
13: PairH← All created pairs // Add the created pairs to the pair

heap
14: while (! PairH.empty ()) do
15: Pair← PairH.front ();
16: // Restructure benefit should be larger than the restructuring

cost
17: if (WorthRebuild (Pair)) then
18: (n1,n2)← Pair
19: RestructureTwoSubBVHs (n1,n2); // Described in

Sec. 3.2
20: end if
21: end while

descendant nodes. To address this issue, the restructuring ben-
efit of a pair p1 should be recursively propagated and added
to the RM-IQ value associated with a pair, which was refined
to p1. Also, this information is recursively propagated to the
very first pair (Le f t(nRoot),Right(nRoot)). This is because re-
structuring two child nodes of the root node can reduce all
the overlaps between any nodes of the BVH. We perform the
propagation right after the refinement operation, as shown in
Line 10 of Alg. 1.

5.3. Restructuring Phase

In the hierarchical phase, we computed the restructuring ben-
efit of pairs in top-down manner. To maximize the overall per-
formance of ray tracing dynamic scenes, we restructure pairs
with higher restructure benefits in a greedy manner. In order to
perform this computation, we start the restructuring phase by
putting all the pairs created so far into a pair-heap, where the
pairs are sorted based on difference between the restructuring
benefit and the restructuring cost associated with each pair.
As we fetch a pair from the pair-heap, we restructure the two
sub-BVHs associated with the pair whenever the restructuring
benefit is larger than the restructuring cost.

Partitioning Plane: Our goal in performing restructuring op-
erations is to reduce the overlap between BVs of two nodes
of a pair. To achieve this goal, we need to compute a parti-
tioning plane that will re-partition triangles associated with
two nodes and their sub-BVHs. Suppose that we restructure
two nodes n1 and n2 of a pair. Also, suppose that n1 and n2
are descendant nodes of Le f t(nA) and Right(nA), respectively,

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

Figure 7: Cloth simulation benchmark: Three image se-
quences are shown among 80 frames from a dynamic sequence
of a cloth twisting around a ball. This scene consists of 92K
triangles. We compare the performance of different ray tracing
algorithms on this scene. The BVH created for the first frame
works well for the rest of the frames with simple BV refitting
method. Therefore, "BV refitting only" method shows the best
performance. However, even in this case, our algorithm shows
only 4% worse performance over the refitting algorithm and
more than three times improvement over the complete recon-
struction algorithm.

where nA is the lowest common ancestor of n1 and n2. We set
the partitioning plane to pass the centroid of the overlapping
area between BV (Le f t(nA)) and BV (Right(nA)) and the nor-
mal of the plane is parallel to a direction that has longest ex-
tent of BV (nA). The main reason that the partitioning plane
is computed based on BV (nA), not based on the local overlap
between BV (n1) and BV (n2), is to minimize or avoid any BV
overlap between any ancestor nodes of n1 and n2. Please note
that these ancestor nodes were partitioned to reduce the over-
lap between BV (Le f t(nA)) and BV (Right(nA)). We observe
that our heuristic to compute a partitioning plane works well
in our benchmarks.

5.4. Ray Tracing

Once we compute a BVH for the dynamic dataset at each
frame, we run BVH-based ray tracing algorithm and perform
ray intersection queries. BVH-based ray tracing methods have
been recently used for interactive ray tracing of dynamic or
deformable models. This is due to the fact that it is relatively
inexpensive to update a BVH as compared to a kd-tree, which
works better for static scenes [LYTM06, WBS07]. We fur-
ther improve the performance of BVH-based ray tracing based
on our selective restructuring algorithm. We use axis-aligned
bounding box (AABB) as a BV due to its simplicity and em-
ploy a surface-area heuristic [WH06] within our basic selec-
tive restructuring operations.

The simplest algorithms shoot a ray corresponding to each
pixel and perform ray-AABB intersection queries during tree
traversal. At each intersection, the algorithm may spin off sec-
ondary rays, including shadow rays and reflection rays. The
overall performance of ray tracing algorithm is governed by
both the restructuring time and tree traversal time.

In order to achieve better performance for ray tracing, we
further specialize the RM-IQ metric. For example, a rebuilt

node n̂ can be used for many frames before it will be rebuilt
again. Therefore, it is likely that the culling efficiency im-
provement of n̂ can be observed for many frames. We take this
factor into account by introducing the notion of life time of all
nodes in the BVH. This expected life time is simply computed
as an average life time of all nodes by considering the number
of rebuilt nodes and the number of nodes in the BVH from
the first frame to the current frame. Since it is likely that we
get a higher restructuring benefit on sub-BVHs by restructur-
ing them as the expected life time is getting longer, we simply
multiply our final RM-IQ model shown in Eq. (7) by the value
of expected life time.

6. Implementation and Results

In this section, we describe our implementation and the perfor-
mance improvement for ray tracing dynamic scenes using our
algorithm. We highlight its performance on different bench-
marks and also compare it with prior restructuring methods as
well as ray tracing algorithms.

6.1. Implementation

We have implemented our algorithm on a Intel Pentium 4 mo-
bile laptop machine with a 2.1Ghz CPU and 2GB main mem-
ory. All the timing data collected in this paper is based on a
single-threaded implementation. We use AABB as the BV and
implemented an AABB-based ray tracer on dynamic models,
as described in Sec. 5.4.

Machine-specific constants: The performance of our selected
restructuring algorithm depends on machine-dependent con-
stants. These include the cost of reconstructing a sub-BVH (n)
(Crebuild(n)), the cost of performing an intersection test with
a leaf node vs. the intersection test with a BV, i.e. Clea f =

(
ray-triangle intersection cost
ray-AABB intersection cost), and the cost of refining a pair

of nodes performed during selective restructuring (Cre f ine).
We also measure Cre f ine and Crebuild as the relative cost to the
cost of ray-AABB intersection cost; therefore, all our metrics
using these constants are compared in the same unit. We auto-
matically compute these costs by running those routines a few
times without any manual intervention during the ray tracing
system’s initialization. Then, we use their average values in
our algorithm. Once these constants are computed on a ma-
chine, these constants are used for all dynamic scenes without
any modification.

Lazy computations: Many interactive algorithms use a lazy
strategy to construct a hierarchy [LAM06]. These algorithms
only construct a node of a tree if that node is needed to per-
form an intersection test during the traversal. Our selective re-
structuring operation on the pair (n1,n2) also reconstructs the
nodes within sub-BVH(n1) and sub-BVH(n2) in a lazy man-
ner. The new descendants of n̂1 and n̂2 are computed in a lazy
manner only if they are needed to perform intersection tests
during the traversal.

Benchmarks: In order to test the performance of our algo-
rithm, we used three types of dynamic scenes. These include:

• Deformable models: Models undergoing non-rigid defor-
mation. This type of models is represented by our cloth sim-
ulation (with 92K) triangles, shown in Fig. 7.

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

Model Triangles Number of Image
(K) Frames

Exploding dragon 252 100 Fig. 1
N-body simulation 146 130 Fig. 8
Cloth simulation 92 80 Fig. 7
BART benchmark 16 40 Fig. 2

Table 1: Dynamic Benchmark Models: This table shows the
complexity of the benchmarks and the number of frames used
in our timing computations.

• N-body simulations: These consist of multiple moving ob-
jects. Each object may undergo a rigid or deformable mo-
tion and the objects collide with each other and the ground.
We use a simulation of hundreds of moving balls with 146K
triangles (Fig. 8).

• Breaking objects: In these benchmarks, one or more ob-
jects break into smaller pieces (i.e. explosions) and thereby
change their topologies. These are some of the most chal-
lenging dynamic scenes. We also use the well-known BART
benchmark with 16K triangles (Fig. 2) and an "Exploding
dragon" benchmark, where a bunny collides with the dragon
model and breaks the dragon into numerous pieces (Fig. 1).
This model has more than 250K triangles and is a challeng-
ing benchmark for many prior algorithms.

All of these models have different characteristics and model
complexity. As a result, they provide a good suite of bench-
marks to test the performance of our algorithm. Detail infor-
mation about each benchmark is shown in Table 1.

6.2. Performance Comparison

We compare the performance of our selective restructuring
based ray tracing algorithm with prior ray tracing algorithms
that use dynamic BVHs. Specifically, we have compared the
performance with four prior approaches:

• BV refitting only: In this case, the dynamic BVH is com-
puted by refitting all the BVs in the tree in a lazy man-
ner. This is the cheapest algorithm for recomputing a dy-
namic BVH and has been used for ray tracing dynamic
scenes [WBS07]. Its performance strongly depends on an
initially built BVH and can drastically degrade on models
with changing topologies.

• Complete reconstruction: This algorithm reconstructs a
new BVH during each frame using O(k logk) computations.
Its performance slows down on large models due to the
complexity of the algorithms.

• RT-Deform: This is a hybrid refitting/reconstruction algo-
rithm [LYTM06]. By default, this algorithm only refits the
BVs during each frame. However, it uses a simple heuris-
tic based on SAH metric to evaluate the culling efficiency
of the whole tree. If the culling efficiency is low, this algo-
rithm computes a new BVH using complete reconstruction,
and thereby takes a large fraction of the frame time.

• LM-reconstruction algorithm: [LAM06] propose a re-
structuring algorithm that only reconstructs a subset of the
BVH. This algorithm was initially designed for collision
detection between two objects. However, because the core
of the algorithm is focused on detecting BVH degradation
and localizing reconstruction, the same approach can also
be used to compute a dynamic BVH for ray tracing. We

LM- RT-DEFORM Refitting Complete BVH
algorithm algorithm only Reconstruction

Exploding dragon 2.16 1.65 11 8.5
N-body simulation 1.36 1.25 > 80 1.81
Cloth simulation 1.29 1.03 0.96 4.69
BART 1.11 2.5 28 1.14

Table 2: Comparison of our ray-tracing algorithm with
prior approaches: This table shows the speedups obtained
by our ray tracing algorithm over prior approaches in terms
of the total ray tracing time. We use 512× 512 image reso-
lution and single ray per pixel. All the restructuring opera-
tions are based on SAH-based construction method. Our se-
lective restructuring algorithm yields improvement over prior
algorithms on different benchmarks, except for the cloth simu-
lation benchmark where "refitting only" method outperforms
our method. In the cloth benchmark, an initial BVH at the
first frame is built with almost uniformly spread triangles and
works quite well for the rest of frames with BV refitting method
(see our accompanying video). However, even in this case, our
method shows only 4% lower performance over BV refitting
method.

have implemented their metric for detecting BVH degrada-
tion. In order to employ their method, we traverse the BVH
in a top-down manner while evaluating each node with their
metric. If the metric suggests re-construction of a node, we
reconstruct a sub-tree of the node. Finally, we use the dy-
namically computed BVH to perform ray intersections.

Also, we employ the lazy construction for the tested methods
to perform fair comparisons with our selective restructuring
method, which also uses lazy construction. Table 2 summa-
rizes the performance improvement of our selective restructur-
ing method compared to other tested methods with our bench-
marks.

It is relatively simple to compare and contrast the per-
formance of our algorithm with refitting only and com-
plete reconstruction. On the other hand, it is harder to iden-
tify the cases where RT-DEFORM or LM-restructuring al-
gorithms may or may not work well. The metric in the LM-
reconstruction algorithm is defined as the ratio of the volume
of a node to the sum of the volumes of its children nodes. This
is a simple heuristic to measure the extent of overlap between
the children nodes. [LAM06] rebuilds a sub-BVH if the com-
puted metric is less than a certain threshold. The metric in the
RT-DEFORM algorithm is similar to the metric used by the
LM-reconstruction algorithm, except it is based on the surface
area of BVs. The RT-DEFORM algorithm accumulates all the
ratios of the nodes up to the root node of the BVH. If the accu-
mulated ratio is bigger than a certain threshold, the algorithm
performs complete reconstruction. In some ways, the metrics
used in LM-reconstruction and RT-DEFORM algorithm are
opposite in nature and we observe their relative performance
in Table 2. On the other hand, our selective restructuring al-
gorithm always outperforms both of these algorithms in our
benchmarks.

Robustness: One of the main features of our selective re-
structuring algorithm is that it offers consistent performance
improvement across various benchmarks with different char-

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

Figure 8: N-body Simulation Benchmark: Two images are
shown among 130 dynamic sequences of the bouncing ball
benchmark consisting of 146K triangles. We use our selec-
tive restructuring algorithm to improve the performance of ray
tracing this dynamic scene. We are able to achieve near two
orders of magnitude improvement on the performance of ray
tracing over "BV refitting only" method on this model.

acteristics. At the same time, our algorithm does not exhibit
any major slowdown compared to prior approaches, except for
4% slowdown on one benchmark with respect to the "refitting
only" method. Overall, our approach offers significant or com-
parable performance improvement over other methods in ray
tracing dynamic scenes. This makes it useful for ray tracing a
wide class of dynamic scenes.

7. Analysis and Limitations
In this section, we analyze the performance of our selective
restructuring algorithm and its application to ray tracing. We
also discuss some of its limitations.

7.1. Analysis

Overhead of our algorithm: Our selective restructuring al-
gorithm has relatively small overhead as compared to com-
plete reconstruction. Our algorithm involves computation of
overlap between the BVs and evaluation of two metrics, CM-
IQ and RM-IQ. Each of these metrics can be evaluated in a
few operations, especially for simple BVs such as spheres and
AABBs. Our selective restructuring algorithm computes a set
of pairs, which are potential candidates for restructuring oper-
ation by traversing the BVH in a top-down manner. During re-
finement of a pair, we take into account the refinement cost as
well as its expected restructuring benefit. We also found that
the time spent in our selective restructuring algorithm takes
about 0.1%–1% of total ray tracing frame time in our bench-
marks. This low overhead is mainly due to the fact that our se-
lective restructuring algorithm considers a small number (e.g.,
200 to 1000 pairs) of pairs for restructuring operations at each
frame.

Restructuring time vs. model complexity: We measure the
time spent in the restructuring algorithm and restructuring op-
erations as we increase the scene complexity in an N-body
benchmark of atoms and electrons shown in Fig. 10. In this
model only a small portion of geometric primitives are mov-
ing significantly. As can be seen in Fig. 9, the restructur-
ing time of our algorithm is significantly lower than those of

Figure 9: Restructuring time vs. model complexity: This
graph shows how restructuring time varies as a function of
model complexity. We measure this time in the benchmark in-
volving multiple spheres (Fig. 10), where a small subset of ge-
ometric primitives is moving. Our selective restructuring algo-
rithm exhibits almost linear growth rate as a function of model
complexity. On the other hand, other restructuring algorithms
such as LM-reconstruction and complete reconstruction take
considerably more time.

Figure 10: N-body simulation with restricted motion: In this
benchmark, only a small subset of the geometric primitives are
moving. Our algorithm is able to capture these localized be-
havior and performs relatively few selective restructuring op-
erations. Therefore, our selective algorithm is able to achieve
better performance than other methods as shown in Fig. 9.

complete restructuring and LM-method. This test also demon-
strates that our method identifies smaller subsets for the re-
structuring operation and, thus, has better performance over
LM-reconstruction algorithm. This is due to the fact that we
perform selective restructuring operations at lower levels of
the BVH (as shown in Fig. 4), whereas the LM-reconstruction
algorithm may recompute the sub-BVH rooted at the lowest
common ancestor of the two nodes.

Lazy construction: We use lazy construction method given
our selective restructuring technique, since the lazy construc-
tion method can further reduce the construction time, espe-
cially for large models. If we do not employ the lazy con-
struction method in our selective restructuring method, our se-
lective restructuring will trigger restructuring operations less
frequently since restructuring operations can be more expen-
sive. Moreover, in a non-lazy construction framework, our se-
lective restructuring algorithm is likely to offer better perfor-
mance compared to other methods including complete recon-
struction, RT-Deform, and LM-reconstruction, which will be
much more expensive, especially on large models.

Comparison with kd-tree based ray tracer: In static mod-
els, the best performance of ray tracing has been achieved with
kd-trees [RSH05, WSB01, Hav00]. BVH-based dynamic ray

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

tracers, however, have also shown comparable performance
to that of kd-tree based ray tracers [WBS07, LYTM06] or
even better performance in GPU [TS05]. Since incremental
update methods like BV-refitting are not readily applicable to
kd-trees, the resulting ray tracers reconstruct a kd-tree from
scratch every time the model undergoes any changes or mo-
tion. To more efficiently deal with dynamic models, several
fast kd-tree construction methods have been recently proposed
[HMS06, PGSS06]. It is expected that, in small dynamic mod-
els, kd-tree based ray tracers with these fast kd-tree construc-
tion methods may exhibit better performance than BVH-based
ray tracers. However, since time complexity is still O(k logk),
where k is the number of primitives in a hierarchy, construct-
ing the kd-trees can become a major bottleneck in terms of ray
tracing large dynamic models.

Extension to parallel ray tracer: Our current selective algo-
rithm proceeds in a serial manner. Given its small overhead
among the total ray tracing frame time, it may be unnecessary
to make our selective algorithm run in a parallel manner. How-
ever, restructuring operations performed during our selective
algorithm can be performed in a parallel manner. Moreover,
since these restructuring operations are chosen such that they
do not modify the same region of the BVHs, these operations
can be performed in a parallel manner without any expensive
synchronization and can be performed in an asynchronous
manner [IWP07]. Also, BV-refitting and our metric evalua-
tions as the initial step of our algorithm can be performed in a
parallel manner.

7.2. Benefits and Limitations

Our algorithm works well on our benchmarks. As compared to
prior approaches for computing dynamic BVHs, our selective
restructuring algorithm has three major advantages:

1. Selective Restructuring: Our algorithm detects small sub-
sets of BVHs and restructures them to improve the culling
efficiency. Prior approaches rebuild the entire BVH or a
sub-BVH, or perform more global restructuring.

2. Quantification of Restructuring Benefits: We derive two
new metrics for BVHs that quantify the culling efficiency
in terms of intersection tests, as well as the expected re-
structuring benefit of performing a selective restructuring
operation. These metrics could also be useful for other
BVH-based computations and applications.

3. Broad application: Our selective restructuring algorithm
can work well with various kinds of dynamic datasets.
This is in contrast with other algorithms that use heuris-
tics which may not work well in some cases, as shown in
Table 2.

Limitation: Our approach also has a few limitations. First of
all, our metrics, CM-IQ and RM-IQ, are probabilistic models
that estimate the culling efficiency and restructuring benefit,
respectively. Therefore, there is no guarantee that our algo-
rithm would always improve the performance of ray tracing
on all benchmarks. Secondly, the selective restructuring algo-
rithm has some overhead. If the BV refitting only algorithm
offers the optimum performance for an application, then the
overhead of selective restructuring algorithm could slow down
the application, as observed in the cloth simulation bench-
mark. Finally, our approach is rather general and makes no

assumption about objects motion. In some cases, it may be
possible to develop faster algorithms that take into account
the characteristics of the underlying application. These may
include selective restructuring algorithms for cloth simulation,
FEM simulation or fracture [OCSG07].

8. Conclusion and Future Work

We presented a novel selective restructuring algorithm to effi-
ciently re-compute dynamic BVHs. Our formulation is based
on two metrics, CM-IQ and RM-IQ. We also described effi-
cient formulations to compute these metrics and applied the
selective restructuring operations in an incremental manner
to improve BVH culling efficiency. As compared to prior re-
structuring algorithms, our approach has lower overhead and
results in fewer false positive tests. We used our algorithm to
improve the performance of ray tracing algorithms and ob-
served the performance improvement over prior methods. One
of the major benefits of our approach is that it is applicable to
a broad range of dynamic scenes.

There are many avenues for future work. We would like to
use our algorithm for other applications, including collision
detection and visibility computations on complex, dynamic
scenes. It would be useful to test the performance of our al-
gorithm on other BVH hierarchies, including sphere trees or
OBB trees. Many applications also use hybrid combinations of
BVHs and spatial partitioning hierarchies, and we would like
to extend our selective restructuring algorithm to such hybrid
combinations. Finally, it may be possible to further improve
the performance of our algorithm by taking into account some
of the characteristics of the deforming models.

Acknowledgments

We would like to thank Naga Govindaraju for providing
the breaking dragon simulation data and Christian Lauter-
bach for sharing his BVH-based ray tracing implementation.
Also, we would like to thank Ingo Wald, Ming Jang, Hanan
Samet, and anonymous reviewers for constructive feedbacks
and suggestions, and Peter Lindstrom for his support. This
work was supported in part by by ARO Contracts DAAD19-
02-1-0390 and W911NF-04-1-0088, NSF awards 0400134,
0429583 and 0404088, DARPA/RDECOM Contract N61339-
04-C-0043 and Disruptive Technology Office. Some of the
work was performed under the auspices of the U.S. Depart-
ment of Energy by the University of California, Lawrence Liv-
ermore National Laboratory under Contract No. W-7405-Eng-
48.

References

[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive medial-axis
approximation for sphere-tree construction. ACM Trans. on Graph-
ics 23, 1 (2004). 2

[CH04] CARR N., HART J.: Two algorithms for fast reclustering of
dynamic meshed surfaces. In Eurographics Symposium on Geom-
etry Processing (2004). 3

[CSE06] CLINE D., STEELE K., EGBERT P. K.: Lightweight
bounding volumes for ray tracing. Journal of Graphics Tools: JGT
(2006). 1

[GFW∗06] GÜNTHER J., FRIEDRICH H., WALD I., SEIDEL H.-P.,
SLUSALLEK P.: Ray tracing animated scenes using motion decom-
position. Computer Graphics Forum 25, 3 (September 2006). 3

c© The Eurographics Association 2007.

S. Yoon & S. Curtis & D. Manocha / Ray Tracing Dynamic Scenes using Selective Restructuring

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBB-Tree:
A hierarchical structure for rapid interference detection. Proc. of
ACM Siggraph’96 (1996), 171–180. 2

[GNRZ02] GUIBAS L., NGUYEN A., RUSSEL D., ZHANG L.:
Collision detection for deforming necklaces. In Symp. on Com-
putational Geometry (2002), pp. 33–42. 3

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of object
hierarchies for ray tracing. IEEE Comput. Graph. Appl. 7, 5 (1987),
14–20. 1, 4

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Dept. of CSE, Czech Technical Univ. in Prague, 2000. 4, 10

[HHS06] HAVRAN V., HERZOG R., SEIDEL H.-P.: On the fast
construction of spatial data structures for ray tracing. 71–80. 3

[HMS06] HUNT W., MARK W. R., STOLL G.: Fast kd-tree con-
struction with an adaptive error-bounded heuristic. In IEEE Sym-
posium on Interactive Ray Tracing (2006). 3, 11

[Hub93] HUBBARD P. M.: Interactive collision detection. In Pro-
ceedings of IEEE Symposium on Research Frontiers in Virtual Re-
ality (October 1993). 2

[IWP07] IZE T., WALD I., PARKER S. G.: Asynchronous bvh con-
struction for ray tracing dynamic scenes on parallel multi-core ar-
chitectures. In Eurographics Symposium on Parallel Graphics and
Visualization (2007). 11

[JP04] JAMES D. L., PAI D. K.: BD-Tree: Output-sensitive colli-
sion detection for reduced deformable models. Proc. of ACM SIG-
GRAPH (2004), 393–398. 3

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J., SOWIZRAL
H., ZIKAN K.: Efficient collision detection using bounding vol-
ume hierarchies of k-dops. IEEE Trans. on Visualization and Com-
puter Graphics 4, 1 (1998), 21–37. 2

[KK86] KAT T., KAJIYA J.: Ray tracing complex scenes. Computer
Graphics (1986), 269–278. 1

[KPLM98] KRISHNAN S., PATTEKAR A., LIN M., MANOCHA D.:
Spherical shell: A higher order bounding volume for fast proximity
queries. In Proc. of Third International Workshop on Algorithmic
Foundations of Robotics (1998), pp. 122–136. 2

[LAAM01] LEXT J., ASSARSSON U., AKENINE-MÖLLER T.: A
benchmark for animated ray tracing. In IEEE Computer Graphics
and Applications (2001). 2, 3

[LAM03a] LARSSON T., AKENINE-MÖLLER T.: Efficient colli-
sion detection for models deformed by morphing. Visual Computer
19 (2003), 164–174. 3

[LAM03b] LARSSON T., AKENINE-MÖLLER T.: Strategies for
Bounding Volume Hierarchy Updates for Ray Tracing of De-
formable Models. Tech. rep., 2003. 1

[LAM06] LARSSON T., AKENINE-MÖLLER T.: A dynamic
bounding volume hierarchy for generalized collision detection.
Computers and Graphics 30, 3 (2006), 451–460. 2, 3, 8, 9

[LGLM99] LARSEN E., GOTTSCHALK S., LIN M., MANOCHA
D.: Fast Proximity Queries with Swept Sphere Volumes. Tech.
Rep. TR99-018, Department of Computer Science, University of
North Carolina, 1999. 2

[LM03] LIN M., MANOCHA D.: Collision and proximity queries.
In Handbook of Discrete and Computational Geometry (2003). 1,
2

[LYTM06] LAUTERBACH C., YOON S., TUFT D., MANOCHA D.:
RT-DEFORM: Interactive ray tracing of dynamic scenes using
bvhs. IEEE Symposium on Interactive Ray Tracing (2006). 1, 3, 8,
9, 11

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Visual Computer (1990). 4

[OCSG07] OTADUY M., CHASSOT O., STEINEMANN D., GROSS
M.: Balanced hierarchies for collision detection between fracturing
objects. In IEEE Virtual Reality (2007). 1, 3, 11

[PGSS06] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK
P.: Experiences with streaming construction of SAH KD-trees. In
IEEE Symp. on Interactive Ray Tracing (2006). 3, 11

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm. ACM Trans. Graph. 24, 3 (2005), 1176–
1185. 10

[RW80] RUBIN S. M., WHITTED T.: A 3-dimensional representa-
tion for fast rendering of complex scenes. Computer Graphics 14,
3 (July 1980), 110–116. 1

[Sam06] SAMET H.: Foundations of MultiDimensional and Metric
Data Structures. Morgan Kaufmann, 2006. 2, 3

[SM04] SANNA A., MILANI M.: CDFast: an algorithm combining
different bounding volume strategies for real time collision detec-
tion. SCI Proceedings 2 (2004), 144–149. 2

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-P.,
FAURE F., MAGNENAT-THALMANN N., STRASSER W., VOLINO
P.: Collision detection for deformable objects. Computer Graphics
Forum 19, 1 (2005), 61–81. 1, 2, 3

[TS05] THRANE N., SIMONSEN L. O.: A comparison of accelera-
tion structures for gpu assisted ray tracing, 2005. 11

[vdB97] VAN DEN BERGEN G.: Efficient collision detection of
complex deformable models using AABB trees. Journal of Graph-
ics Tools 2, 4 (1997), 1–14. 2, 3

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Distributed In-
teractive Ray Tracing of Dynamic Scenes. In Proceedings of the
IEEE Symposium on Parallel and Large-Data Visualization and
Graphics (PVG) (2003). 3

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics (2007). 1, 3, 8, 9, 11

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing (2006). 4, 8

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. In Proceedings of the Eurographics
Symposium on Rendering (2006), pp. 139–149. 3

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-KD Trees
for Hardware Accelerated Ray Tracing of Dynamic Scenes. In
Proceedings of Graphics Hardware (2006). 3

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive dis-
tributed ray tracing of highly complex models. In Rendering Tech-
niques 2001 (Proc. of the 12th EUROGRAPHICS Workshop on
Rendering (2001), pp. 277–288. 10

[YM06] YOON S.-E., MANOCHA D.: Cache-efficient layouts of
bounding volume hierarchies. Computer Graphics Forum (Euro-
graphics) 25 (2006), 507–516. 4

[ZW06] ZACHMANN G., WELLER R.: Kinetic bounding volume
hierarchies for deforming objects. In ACM Int’l Conf. on Virtual
Reality Continuum and its Applications (2006). 3

c© The Eurographics Association 2007.

