
Fast Hard and Soft Shadow Generation on Complex Models using Selective Ray

Tracing

UNC CS Technical Report TR09-004, January 2009

Christian Lauterbach∗

University of North Carolina at Chapel Hill

Qi Mo†

University of North Carolina at Chapel Hill

Dinesh Manocha‡

University of North Carolina at Chapel Hill

Figure 1: Soft shadows: Our algorithm can render the 12.7M tri-
angle Powerplant model at 16 fps with hard shadows (left) and over
2 fps with soft shadows with 16 light samples (right) running on a
NVIDIA GTX 280 GPU.

Abstract

We present fast algorithms to generate high-quality hard and soft
shadows in complex models. Our method combines the efficiency
of rasterization-based shadow mapping approaches with the accu-
racy of a ray tracer based on conservative image space bounds.
The algorithm can handle moving light sources as well as dynamic
scenes. In practice, our approach is able to generate shadows on
CAD and scanned models composed of millions of triangles at
close to interactive rates on current high-end GPUs.

1 Introduction

The state of the art in interactive rendering is constantly moving to-
wards greater physical realism and detail. This is primarily driven
by the rapid increase in performance provided by commodity GPUs
which are able to utilize parallelism along with high coherence in
memory accesses and computations to rasterize models with mil-
lions of triangles at interactive rates. However, one of the chal-
lenges is generating images with high-quality hard and soft shad-
ows. Many rasterization-based approaches can be used to generate
shadows, but when evaluating them on large, complex models they
typically can only provide either high performance or accuracy, but
not both. On the other hand, ray tracing provides a simple solution
to generate accurate hard and soft shadows with good scalability
for large in-core models [Foley and Sugerman 2005; Günther et al.
2007]. Despite recent advances and good use of parallelism, cur-
rent ray tracing implementations are one or two orders of magnitude
slower than rasterization approaches on GPUs.

Shadow volumes can be used to generate high-quality hard and
soft shadows, but their complexity can increase considerably with

∗e-mail: cl@cs.unc.edu
†e-mail:qmo@cs.unc.edu
‡e-mail:dm@cs.unc.edu

model complexity and number of silhouette edges. The fastest
techniques for hard shadows are based on regular shadow maps,
which are well supported by current rasterization hardware. How-
ever, these algorithms can suffer from aliasing errors. It is possible
to overcome these errors by using hybrid combinations of shadow
maps and shadow volumes [Chan and Durand 2004] or using irreg-
ular shadow mapping [Aila and Laine 2004; Johnson et al. 2005].
However, these algorithms may not scale well to complex models
composed of millions of triangles and are limited to hard shadow
generation.

Main results: In this paper, we present a selective ray tracing algo-
rithm to generate accurate hard and soft shadows on current many-
core GPUs. Our approach is general and the overall image quality
is comparable to that of a fully ray-traced shadow generation al-
gorithm. Moreover, the algorithm can efficiently handle complex
models, as long as the model and its bounding volume hierarchy
can fit into the GPU memory.

Our hybrid formulation performs conservative rasterization based
on shadow mapping techniques and identifies the regions or the pix-
els of the frame (called PIP) that are potentially inaccurate due to
under-sampling in light space or missed primitives due to rasteriza-
tion errors. We use selective ray tracing to compute correct shading
information only for those pixels in PIP, as described in Section 3.
We also present an efficient technique for coupling with a GPU ray
tracer to provide the missing information for those pixels. In ad-
dition, our approach extends very easily to area light sources and
can be used to generate high-quality stochastic soft shadows. In
practice, the subset of inaccurate pixels is small and our approach
shoots relatively few rays as compared to a full ray tracer, resulting
in a significant speedup.

The notion of performing hybrid shadow generation based on con-
servative rasterization is not new. As compared to prior hybrid ap-
proaches, our algorithm offers the following advantages:

• High-quality shadows: In our complex benchmark scenes the
hard and soft shadow generation algorithms result in almost
no perspective or projective aliasing artifacts.

• Efficiency: We use compact hierarchical representations to
accelerate ray intersections and allow ray tracing on GPUs
with low memory overhead. As compared to pure shadow
mapping, our hybrid algorithms are only 30-70% slower, but
about 4−10 times faster than full ray tracing.

• Hardware utilization: Our approach maps directly onto cur-
rent GPUs and needs no special hardware support or changes
to existing architectures. It uses less memory bandwidth than
full ray tracing and its performance should increase with the
growth rate of future GPUs, as described in Section 4.

We demonstrate our implementation on several models ranging
from game-like scenes with dynamic objects to massive CAD mod-
els with millions of triangles at interactive rates on a high-end GPU,
as described in Section 5.

UNC CS Technical Report TR09-004, January 2009

Hierarchy

Geometry

Framebuffer(s) unshaded FB with pixels marked

Open ray buffer Traced ray results

FB shaded with ray results

PIP detection
Ray generation

and compaction
Ray tracing Shading

Rasterization

Figure 2: Overview: Pipeline model of our hybrid rendering algorithm. After GPU-based rasterization is run, the PIP computation detects
and marks pixels that need to be ray traced. The ray generation step generates a dense ray list from the sparse buffer of potentially incorrect
pixels and then generates one or more rays per pixels as required. A selective ray tracer traces all the rays using the scene hierarchy and
then applies the results to the original buffer. Finally, the pixels are shaded based on the ray results.

2 Previous work

We give a brief overview of related work limited to interactive
shadow generation and reducing aliasing errors and refer the read-
ers to [Hasenfratz et al. 2003; Lloyd 2007; Laine 2006] for recent
surveys on shadow algorithms.

Hard shadows: At a broad level, prior techniques to alleviate
aliasing artifacts using rasterization methods are based on shadow
maps [Williams 1978] and shadow volumes [Crow 1977]. Some
hybrid approaches have been proposed that combine shadow map-
ping and volumes [McCool 2000; Chan and Durand 2004] that can
improve shadow volume performance and allow interactive high-
quality shadows on simple scenes. Most current interactive applica-
tions use variants of shadow mapping, but may suffer from aliasing
problems. Many practical algorithms have been proposed to allevi-
ate perspective aliasing [Stamminger and Drettakis 2002; Wimmer
et al. 2004; Lloyd 2007] as well as projective aliasing [Lefohn et al.
2007]. Other shadow mapping algorithms can eliminate blocking
artifacts [Aila and Laine 2004; Johnson et al. 2005] by implement-
ing a rasterizer that can process arbitrary samples on the image
plane.

Soft shadows: In general, soft shadows can be implemented by
sample-based methods such as using averaging visibility from mul-
tiple shadow maps to calculate visibility or ray tracing. Both these
methods can be slow, so many approaches have been developed to
generate plausible soft shadows with methods such as post-filtering
shadow maps or special camera models [Mo et al. 2007], which
produce correct results only for simple scenes. More accurate ap-
proaches evaluate the light source visibility from the image samples
by back-projection [Assarsson and Akenine-Möller 2003; Schwarz
and Stamminger 2007; Sintorn et al. 2008; Bavoil et al. 2008] or by
generating shadows from environment lighting [Annen et al. 2008].
Techniques using irregular z-buffering have also been extended for
soft shadows on a proposed new architecture [Johnson et al. 2009].

3 Shadows using selective ray tracing

In this section, we present our algorithms for generating high qual-
ity shadows based on hybrid rendering and selective ray tracing.
The main idea behind selective ray tracing is to only shoot rays cor-
responding to a small subset of the pixels in the final image in order
to accelerate overall rendering. Our assumption is that we have un-
derlying fast rasterization algorithms such as shadow mapping that
compute the correct result for most of the frame, but may include
localized error such as aliasing artifacts in parts of the image. We
try to identify these regions of potentially incorrect pixels (PIP) in
a conservative manner, since any additionally selected pixels will
not change the image whereas missed ones may result in artifacts.
As Fig. 2 illustrates, this is a multi-step process that starts with the
results of a GPU shadow algorithm that provides a first approxi-

mation to the desired result. As a next step, we test the accuracy
of each pixel and classify it accordingly, marking some pixels in
the buffer as potentially incorrect. The buffer with all marked and
unmarked pixels is then passed into the ray tracer where the first
step filters out all non-marked pixels and keeps just the potentially
incorrect pixels in a compact, non-sparse form. For each pixel in
the PIP set, we shoot one or more rays to compute the correct vis-
ibility or shading information for the shadows. All rays are stored
in a dense list that can be used as input for any data parallel, many-
core GPU ray tracer. After the rays have been evaluated, the results
are then written back to the original pixels in the PIP set. Back in
the rasterizer, a shading kernel is used to compute colors for all the
pixels.

3.1 Hard shadows

Shadow mapping is one of the most widely used algorithms for
generating hard shadows for interactive applications. It works on
general, complex 3D static and dynamic scenes and maps well onto
current GPUs. However, the shadow maps may need high reso-
lution to avoid aliasing artifacts. These errors can be classified
into perspective and projective aliasing [Stamminger and Drettakis
2002]. Perspective error occurs due to the position of the surface
with respect to the light and viewpoint and result in the ’blocki-
ness’ of shadows in the algorithm. Projective error stems from the
orientation of the receiver to light and viewpoint. Geometric errors
from under-sampling can also include missing contributions from
objects that are too small or thin in light space, e.g. surfaces that
are oriented close to coplanar with the view direction. Artifacts
from this error result in missing and interrupted shadows for these
objects. Finally, shadow map self-shadowing error occurs from in-
accuracies in the depth values computed in the light view and the
camera view. It stems both from depth buffer precision (numeri-
cal error) as well as orientation of the surface (geometric error). We
consider this mainly an artifact that can be minimized by increasing
depth precision and using slope-dependent bias and do not address
it directly in our algorithm.

Pixel classification: We now discuss our method for estimating the
set of pixels in the image that can potentially be incorrect (PIP)
due to the error described above. We first note that most of the
error in shadow mapping appears at shadow boundaries while the
shadow interiors (as well as the interiors of lit regions) tend to be
accurate. Thus, we can assume that when we look up the corre-
sponding sample in the shadow map for a given image sample, it
should not be considered accurate if it is adjacent to an edge in
the shadow map. We therefore modify the standard depth buffer
look-up to test the 8 texels around the sample value with depth
s in the shadow map and find the maximum absolute difference
∆ = max(‖s − s′‖,s′ ∈ depth around S) in depth. If ∆ exceeds a
threshold value, e.g. a fraction of the possible scene depth as de-
termined by z-buffer near and far planes, we assume that there is a
shadow edge at this image pixel. In this case, we need to make sure

UNC CS Technical Report TR09-004, January 2009

S

n

L

X
X

S

S

X

a) b)

= shadow map sample = image sample

X
X

SS

c) d)

X

X

S

n

Figure 3: PIP computation: a) For a given image sample X we
project back to the shadow map and find the corresponding sample
S. We then test the depths of the surrounding shadow map samples
and select the one with the maximum difference ∆ in depth value to
S and label it as Ŝ. b) We now determine whether the surface at X

can be affected by an edge at S and Ŝ by finding the closest point X̂

on the surface within the angle α of one shadow map pixel and find

its depth d̂. c) If d̂ is within the shaded region of depth ∆ around S

or on the other side of the region as seen from X, then it needs to be
ray traced. In this case, the pixel can be classified as shadowed. d)
Counter-example: X̂ is in the region and thus the pixel is ray traced.

this edge can affect the shadow generation at the current shading
sample X that is at distance d from the light source (see Fig. 3.1 for
illustration.) This is to prevent that a relatively small shadow dis-
continuity at one side of the model does still affect pixels far away.
To achieve this, we find the closest distance to the light d̂ that the
receiver surface can reach within the angle α of one texel of the
shadow map. Intuitively, the closer to parallel the receiver surface
is to the light direction, the larger the difference between d̂ and d

becomes. If d̂ overlaps the interval [s−∆,s + ∆] or d and d̂ are on
different sides of S then we mark the pixel as part of the PIP set.

The actual computation of d̂ for a local point light source follows
from trigonometry such that d̂ = d sinβ/sinα +β . Given the nor-
mal vector n and normalized light direction L, then this is easily
computed by using sinβ = n ·L. A similar calculation for direc-
tional lights is relatively straightforward. Note that is also possible
to precompute ∆ for the shadow map and store it for each pixel in
addition to the depth value. This may be useful if the light source is
mostly static since it reduces the memory bandwidth needed during
the lighting pass of the rasterization algorithm.

One case that the method above does not detect is the geometric
aliasing problem when a primitive is too small (e.g. a thin wire)
as seen from the light view and thus not even drawn during scan-
line rendering. Some of the pixels that are actually covered by the
object may not get rasterized and thus not detected during edge fil-
tering. This can cause missing shadows regions in the actual image.
Our solution is to identify these small objects during rasterization
from the light view and employ conservative rendering techniques
to assure that they are actually part of the PIP set. We use geometry
shaders to implement the conservative triangle rendering method
described in [Hasselgren et al. 2005] and modified by [Sintorn et al.
2008]. In essence, each triangle is transformed into a polygon with
6 corners by extruding at the original vertices. The new extruded
primitive is then guaranteed to cover the center point of each pixel
that it touches. Since extending all the triangles in the scene could
be extremely costly, the shader also tests the area and aspect ratio
of each triangle in image space and only uses conservative render-
ing for those that are thin and thus likely to be missed. At the same

Figure 4: Detecting shadow artifacts: Shadow on City model.

Top left: shadows with shadow mapping at 20482 resolution. Top
Right: pixels marked for ray tracing in red. Bottom left: pixels
marked by conservative rendering. Bottom right: final result. The
image is identical to the fully ray-traced result.

time, this technique automatically avoids very small but regular tri-
angles (e.g. as in scanned models) where conservative rendering is
not needed. Note that an even more efficient culling method would
detect whether the triangle also has a silhouette edge, but we found
that this adds more constraints on the rendering pipeline by having
to provide adjacency information. Figure 4 illustrates the effect of
our conservative rendering approach.

3.2 Soft shadows

We now describe an extension of the approach presented above that
can also be used to render high quality soft shadows. Ray tracing
approaches commonly stochastically generate a number of samples
on the area light source for each hit point, evaluate their visibility
using shadow rays and then average the results to find an estimate
of how much of the light source is visible from the hit point. How-
ever, a high number of samples and shadow rays are needed to avoid
high frequency aliasing error. We observe that the only area that
needs to be evaluated from multiple light samples is the penumbra
region, because for umbra and fully lit regions the visibility of the
light is binary. This enables us to handle those binary regions using
rasterization-based techniques, e.g. shadow mapping, and to iden-
tify the penumbra as potentially incorrect pixels (PIP), and thereby
perform selective ray tracing on these pixels. They only correspond
to a portion of the final image, so significant amount of computa-
tion can be saved. More importantly, ray-based computation can be
directed to regions that need it the most.

One standard shadow map taken from the center of the light suffices
for our approach to estimate the penumbra region. For pixels in the
image plane that do not fall in our estimated penumbra no shadow
rays are needed and they will be shaded by shadow mapping. The
penumbra is identified in the following manner. First we compute
edge pixels in the shadow map in the same way we do for hard
shadows. For hard shadows those edge pixels are the potentially
inaccurate pixels, while for soft shadows they need to be expanded
to account for the effect of the area light sources. Next we compute
the projection of the area light onto the shadow map, centered at
each of these silhouette pixels. This is equivalent to splatting each
edge pixel using the shape of the light and a size based on the depth
difference between the light and the edge. After splatting all the
edge pixels we get a mask which is a union of all the splats in the
map. Masked pixels are potentially in penumbra while unmasked
pixels are either in the umbra or fully lit. We use this in a sim-
ilar way as a shadow map. During rendering any points that are
projected inside the masked area belong to the estimated penumbra

UNC CS Technical Report TR09-004, January 2009

Figure 5: Penumbra classification: Soft shadow on Bunny model.
Left: mask in the shadow map formed by splatting edge pixels. Mid-
dle: penumbra pixels marked for ray tracing in red. Right: final
result.

and are ray traced using multiple shadow rays (e.g. 8×8 sampling),
while points that are projected inside unmasked area are classified
as umbra or fully lit based on the original shadow map. Figure 5
shows an example of this process.

The advantage of this approach is that it estimates the penumbra
with the cost of little more than a standard shadow map, and con-
sequently large parts of the image can be exempted from shadow
ray tracing. Admittedly not all silhouette edges can be captured be-
cause the shadow map is generated only from the center of the light,
but because such missed edges are often in the vicinity of the edges
that are actually identified, it is very likely that most of the penum-
bra regions in the final image plane have been correctly identified.
The accuracy can be further improved by computing shadow maps
from multiple samples on the area light source, e.g. the corners,
and then computing the union of masked pixels from each.

4 Analysis and Comparison

4.1 Comparison

A very important aspect for evaluation of our algorithm is the dif-
ference in image quality compared to the full ray tracing solution.
We present a detailed comparison for several benchmark scenes in
the appendix that show the original image generated with shadow
mapping at 10242 resolution, selective ray tracing results and ref-
erence full ray tracing (with a difference image). In practice, for
hard shadows we have observed that our algorithm computes im-
ages that are almost error free and virtually identical to fully ray
traced results for all our benchmark scenes, with differences arising
from biasing errors. Unfortunately, we cannot guarantee full cor-
rectness since some features such as very small holes inside a solid
object could theoretically be missed due to the regular sampling in
light space (i.e. geometric aliasing errors). However, these artifacts
appear to be very rare.

It is hard to directly compare the quality of our results with only
rasterization-based approaches. The fast shadow mapping meth-
ods based on warping and partitioning may not account for pro-
jective aliasing [Stamminger and Drettakis 2002; Wimmer et al.
2004; Lloyd 2007] and their accuracy can vary based on the rela-
tive position of the light source w.r.t. the viewpoint. Many tech-
niques to handle projective aliasing [Lefohn et al. 2007] and alias-
free shadow maps [Aila and Laine 2004; Johnson et al. 2005] can
be implemented on current GPUs. These approaches can generate
high quality shadows, but it is not clear whether they can scale well
to massive models. For soft shadows, most of the accurate meth-
ods may not be able to handle complex models at interactive rates
on current processors. Recently, Sintorn et al. [2008] presented
a soft shadow algorithm that can handle models with at most tens
of thousands of triangles at interactive rates. It uses a more accu-
rate method for penumbra computation, but its scalability on large
models with moving light sources is not clear.

Our hybrid approach shares the same theme as other hybrid shadow
generation algorithms that use shadow polygons and LODs [Govin-

Model Geometry Full RT SRT SRT+SM SRT % Rays

City 2 MB 1066 MB 113 MB 222 MB 5

Sibenik 2.2 MB 2280 MB 224 MB 859 MB 4

Buddha 27 MB 3148 MB 601 MB 1144 MB 12

Figure 6: Memory bandwidth: Simulated memory bandwidth re-

quirements for rendering one frame at 5122 image resolution with
selective (SRT) and full ray tracing (FRT) on several models (total
storage for geometry and BVH is given in second column to show
the total working set size.) The last column shows the time for SR
plus a very conservative estimation of bandwidth needed by scan-
line rendering of the shadow map.

daraju et al. 2003] or shadow volumes [Chan and Durand 2004].
However, LODs can affect the accuracy of the shadow boundaries.
Moreover, the complexity of shadow volumes tense to increase with
the number of silhouette edges in complex models. Thus, the bottle-
neck becomes the fill rate needed for rendering all volumes, which
becomes prohibitively large with high geometric complexity. The
analysis in [McGuire 2004] shows that the overall expected num-
ber of silhouette edges for a model is proportional to the sum of
the dihedral angles. As an example, the average dihedral angle per
primitive on Powerplant model is about 6 times the average angle
on the Buddha model. Based on our experiments with several view-
points, over 4 million silhouette edges may need to be rendered per
frame for shadow volumes on Powerplant. The hybrid method in
[Chan and Durand 2004] uses shadow mapping and employs a sim-
ple discontinuity detection on the depth map, then performs selec-
tive rasterization for the marked pixels using hierarchical z-culling.
However, hybrid shadow volumes still have significant drawbacks
compared to our approach. First, generating and processing the vol-
umes including silhouette computation can be expensive especially
for large CAD models with complex topology such the models used
here. Second, even though shadow volumes may need to be selec-
tively rasterized for only a small set of pixels, all shadow volumes
still have to be processed by the rendering pipeline in any case.
Hierarchical culling in the hardware may cull areas of the image
efficiently, but the hybrid approach will most likely decrease the ef-
ficiency of the GPU rasterizer since active pixels will be relatively
sparse and the parallel rasterization units are not sufficiently utilized
by rendering only a few pixels inside a block of pixels. Finally,
our approach provides a much improved algorithm for detecting
whether depth continuities actually affect each pixel, thus reducing
the number of pixels ray traced on complex models, while our con-
servative rendering approach detects contributions from small ob-
jects that would be missed by the previously described approaches.

4.2 Performance analysis

In this section, we show that our hybrid algorithm maps to current
many-core GPUs and has lower memory bandwidth requirements
as compared to full ray tracing. A key issue in designing GPGPU or
related algorithms on current highly parallel architectures is to en-
sure that they are not limited by memory bandwidth. This is mainly
because the growth rate for computational power far exceeds that
of memory bandwidth. The streaming model of computation used
in the rasterization pipeline has been shown to be very successful
in this regard with memory bandwidth being mostly used for depth
and frame buffer accesses.

We analyzed the memory bandwidth requirements when running
both selective and full ray tracing for two of our benchmark models,
in particular the memory bandwidth used by the actual ray tracing
kernel. Since current GPU architectures have limited cache sizes,
i.e. only a texture cache, such analysis is simpler than for CPUs.
We implemented a simple software simulator that emulates the be-
havior of the memory unit for global memory accesses in CUDA
in device emulation mode running on the host CPU. Care has to be

UNC CS Technical Report TR09-004, January 2009

0
5

10
15
20
25
30
35
40
45
50

1000000 2000000 4000000 8000000

P
e

rf
o

rm
a

n
ce

 F
P

S

#triangles

Hard shadows

Soft shadows (16x)

0

2

4

6

8

10

12

14

16

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20

%
 p

ix
e

ls
 r

a
y

 t
ra

ce
d

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
ce

Light source area

Performance

% pixels

Figure 7: Scalability: Top: Performance vs. model complexity
on several simplification levels of the St. Matthew model, showing
close to logarithmic scaling. Bottom: Performance vs. light source
size on Buddha model.

taken mainly to correctly account for the behavior of the memory
unit in combining data parallel accesses to contiguous memory. Our
results (see Fig. 6) indicate that selective ray tracing consistently
only uses about an order of magnitude less memory bandwidth per
frame than full ray tracing. The bandwidth for selective ray tracing
is still slightly higher than expected from the number of rays com-
pared to full ray tracing. This is due to the fact that the ray groups
in selective ray tracing are more incoherent and thus will access
more memory locations. In order to perform a complete analysis,
we also need to compute the memory bandwidth needed by the ras-
terizer for scan-line rendering of the shadow map. However, this
is not possible for hardware accelerated rasterization (i.e. current
GPUs) since the implementation details are not publicly available.
However, we provide an estimate for the bandwidth used for ras-
terizing the shadow map by multiplying the peak bandwidth on the
GPU by the time taken for rasterization, thus providing us a con-
servative upper bound. We list the summed memory bandwidth for
shadow mapping plus selective ray tracing in the last column of Fig.
6. Note that the combined bandwidth is still significantly lower than
full ray tracing.

4.3 Scalability analysis

We also demonstrate the scalability of our approach with model
complexity. To eliminate bias introduced by different model char-
acteristics, we use different simplification levels of the same model
and then compare the time used for selective ray tracing for each of
the levels. Our results in Fig. 7 show that we can achieve sub-linear
scalability with model size due to the use of hierarchical structures
and occlusion culling. We also look at the performance implications
of increasing the area of the light source for soft shadow rendering
(see Fig. 7 bottom). Similar to other approaches our performance
decreases significantly with larger light sources mostly due to more
of the pixels being in penumbra regions and subsequently being ray
traced.

5 Implementation and Results

5.1 Implementation

We have implemented the algorithms described above on a
NVIDIA GPU. We use OpenGL with Cg as the rendering inter-
face and CUDA for general-purpose programming. Our ray tracer
uses a BVH built on the GPU as the acceleration structure with a
simple stack-based traversal similar to the one described in [Gün-
ther et al. 2007]. This also allows us to handle dynamic scenes

Benchmarks Tris Hard Soft

SM SRT FRT SM SRT FRT

City 58K 256 103 (3%) 21 200 19 (9.8%) 3.7

Sibenik 82K 150 66 (4%) 13 47 7.3 (6%) 0.64

Buddha 1M 42 29 (1.4%) 8 34 9 (7.7%) 2.5

Powerplant 12M 25 16 (7.1%) 4 4.4 2.1 (11%) 0.8

Figure 8: Performance: Performance of our selective ray tracing
(SRT) approach on our benchmark models, compared to the simple
shadow mapping algorithm (SM) with one point light for hard and 4
point lights for hard shadows, as well as a fully ray traced solution
(FRT). The percentages show the fraction of pixels marked for ray
tracing. All numbers are frames per second (FPS) at 10242 screen
resolution.

by rebuilding the hierarchy each frame. A compaction step groups
all the rays generated for marked pixels into a dense buffer that is
then subdivided into small packets, each of which is handled inde-
pendently. For rendering massive models, memory for storing the
geometry and hierarchy on the GPU becomes an issue. We use a
variant of the ReduceM representation [Lauterbach et al. 2008], but
we modify the strip representation such that it is possible to also
directly rasterize strips via OpenGL in order to use the same repre-
sentation both for rasterization and ray tracing. In addition, we also
use the top levels of the scene BVH for view frustum culling and
occlusion culling based on occlusion queries both from the light as
well as the camera view. These culling methods drastically acceler-
ate the performance of the rasterization algorithm for large models.
In our current implementation, view frustum culling is currently
performed on the CPU, but could also be easily implemented in a
CUDA algorithm. For soft shadows, we use a simple stratified sam-
pling scheme for the shadow ray samples that is computed for each
pixel with a simple random number generator inside the ray gener-
ation kernel. We base the random seed on sample location which
allows us to compare our results for selective and full ray tracing
without having to isolate variance in the estimate.

5.2 Results

We now present results from our implementation running on a Intel
Core2 Duo system at 2.83 GHz using a NVIDIA GTX 280 GPU
running Windows XP. Fig. 8 summarizes the timings for hard and
soft shadows at 1024×1024 screen resolution, including compari-
son timings for GPU algorithm only, selective ray tracing and full
ray tracing. The data for selective ray tracing also shows the per-
centage of pixels in the PIP set. We selected a wide range of bench-
mark models from relatively low-complexity game-like environ-
ments to high-complex scanned, CAD and architectural models to
highlight the scalability of the algorithm. For shadows, all timings
are for a moving light source, i.e. the shadow map is generated per
frame, and soft shadows are generated by using 16 samples/pixel.
Note that our algorithm is typically 5 times faster than full ray trac-
ing.

We present a detailed analysis of the timing breakdown in selective
ray tracing (see Fig. 9) for several of our benchmark scenes. There
is a relatively constant overhead associated with PIP detection, ray
compaction and parts of the implementation such as the overhead
of CUDA/OpenGL communication in the current programming en-
vironment. Note that the actual tracing of the selected ray samples
only makes up a fraction of the time spent. While we do not explic-
itly show the overhead in rasterization introduced by conservative
rendering in the graph above, we have found that in practice it slows
down the rasterization step by about 10% since only a relatively
small set of primitives are rendered conservatively.

UNC CS Technical Report TR09-004, January 2009

0% 20% 40% 60% 80% 100%

City

Sibenik

Buddha

Powerplant

Shadow mapping Ray Tracing
Ray organization CUDA/GL overhead

0% 20% 40% 60% 80% 100%

City

Sibenik

Buddha

Powerplant

Figure 9: Timings: Time spent in different parts of the algorithm
for hard (left) and soft shadows (right). Rasterization includes both
shadow map generation, frame buffer rendering and shading. Ray
tracing includes time spent in the ray tracing kernel only, while ray
generation is the time for generating the compact ray buffer from
sparse frame buffer and writing back at the end. CUDA/GL times
represent the cost for buffer transfers and similar as the overhead
of switching between OpenGL and CUDA.

Figure 10: Benchmarks: Soft shadows using 16 light samples in

Sibenik cathedral model, running at 7 fps at 10242 resolution.

6 Limitations and future work

Overall, the main determining factor for our algorithm is the size of
the PIP set. If the set is too large, then our algorithm cannot achieve
a significant speedup over full ray tracing; however, at worst it can
also only be slightly slower to the extent of shadow mapping over-
head. In addition, the rays generated by selective ray tracing may
exhibit less ray coherence than in full ray tracing which means that
tracing these rays will be slightly more expensive on a per-ray met-
ric. Since the rays still can access any part of the model, we also
can only render models that fit into GPU memory and need to store
an additional ray tracing hierarchy as well as update or rebuild it for
deformable models. Our approach may also still carry over some of
the geometric errors from rasterization such as depth buffer errors
and resulting shadow map bias. The accuracy of our soft shadow
algorithm is also governed by the underlying sampling algorithm.

We presented new algorithms for selective ray tracing that augment
existing fast rasterization approaches for shadows. In practice, they
can generate high-quality hard and soft shadows and are about 5
times faster than ray tracing on current GPUs. Our approach is ro-
bust and scalable with geometric complexity. We also analyzed its
bandwidth requirements compared to full ray tracing and demon-
strate that our approach maps well to current architectural trends.

There are many avenues for improvement. For one, the shadow ac-
curacy detection could be made less conservative by using a better
edge representation in shadow maps, such as silhouette maps [Sen
et al. 2003], but as a trade-off the shadow mapping may be slower.
Our approach should also be directly applicable to screen-space am-
bient occlusion approaches. An important aspect in the pipeline is
the implementation of the actual ray tracing algorithm. The tra-
ditional ray tracing paradigm using accelerating structures means
that all the geometry needs to be stored for random access during

ray tracing, which may be incompatible with the GPU streaming
model. One interesting solution here is to use ray hierarchies, i.e. a
hierarchy that is built on top of the total set of rays and is intersected
with the scene.

Acknowledgments

This work was supported in part by ARO Contracts DAAD19-02-1-
0390 and W911NF-04-1-0088, NSF awards 0400134, 0429583 and
0404088, DARPA/RDECOM Contract N61339-04-C-0043, Dis-
ruptive Technology Office, Intel and NVIDIA.

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proceedings of Euro-

graphics Symposium on Rendering 2004, Eurographics Association, 161–166.

ANNEN, T., DONG, Z., MERTENS, T., BEKAERT, P., SEIDEL, H.-P., AND KAUTZ,
J. 2008. Real-time, all-frequency shadows in dynamic scenes. ACM Trans. Graph.

27, 3, 1–8.

ASSARSSON, U., AND AKENINE-MÖLLER, T. 2003. A geometry-based soft shadow
algorithm using graphics hardware. ACM Transactions on Graphics 22, 3, 511–
520.

BAVOIL, L., CALLAHAN, S. P., AND SILVA, C. T. 2008. Robust soft shadow mapping
with backprojection and depth peeling. Journal of Graphics Tools 13(1).

CHAN, E., AND DURAND, F. 2004. An efficient hybrid shadow rendering algorithm.
In Proceedings of the Eurographics Symposium on Rendering, Eurographics Asso-
ciation, 185–195.

CROW, F. C. 1977. Shadow algorithms for computer graphics. ACM Computer

Graphics 11, 3, 242–248.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration structures for a GPU
raytracer. In Proc. ACM SIGGRAPH/EG Conf. on Graphics Hardware, 15–22.

GOVINDARAJU, N., LLOYD, B., YOON, S., SUD, A., AND MANOCHA, D. 2003.
Interactive shadow generation in complex environments. Proc. of ACM SIG-

GRAPH/ACM Trans. on Graphics 22, 3, 501–510.

GÜNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Realtime Ray
Tracing on GPU with BVH-based Packet Traversal. In Proc. IEEE/EG Symposium

on Interactive Ray Tracing, 113–118.

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND SILLION, F. 2003.
A survey of real-time soft shadows algorithms. Computer Graphics Forum 22, 4
(dec), 753–774.

HASSELGREN, J., AKENINE-MÖLLER, T., AND OHLSSON, L. 2005. Conservative
rasterization on the gpu. GPU Gems 2, 677–690.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R. 2005. The irregular
z-buffer: Hardware acceleration for irregular data structures. ACM Trans. Graph.

24, 4, 1462–1482.

JOHNSON, G. S., HUNT, W. A., HUX, A., MARK, W. R., BURNS, C. A., AND

JUNKINS, S. 2009. Soft irregular shadow mapping: fast, high-quality, and robust
soft shadows. In Proc. I3D ’09, 57–66.

LAINE, S. 2006. Efficient Physically-Based Shadow Algorithms. PhD thesis, Helsinki
University of Technology.

LAUTERBACH, C., YOON, S.-E., TANG, M., AND MANOCHA, D. 2008. ReduceM:
Interactive and memory efficient ray tracing of large models. Computer Graphics

Forum 27, 4, 1313–1321.

LEFOHN, A. E., SENGUPTA, S., AND OWENS, J. D. 2007. Resolution-matched
shadow maps. ACM Trans. Graph. 26, 4, 20.

LLOYD, B. 2007. Logarithmic Perspective Shadow Maps. PhD thesis, University of
North Carolina at Chapel Hill.

MCCOOL, M. 2000. Shadow volume reconstruction from depth maps. ACM Trans.

on Graphics 19, 1, 1–26.

MCGUIRE, M. 2004. Observations on silhouette sizes. jgt 9, 1, 1–12.

MO, Q., POPESCU, V., AND WYMAN, C. 2007. The soft shadow occlusion camera.
Proc. Pacific Graphics 2007, 189–198.

SCHWARZ, M., AND STAMMINGER, M. 2007. Bitmask soft shadows. Comput.

Graph. Forum 26, 3, 515–524.

UNC CS Technical Report TR09-004, January 2009

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow silhouette maps.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003) 22, 3
(July), 521–526.

SINTORN, E., EISEMANN, E., AND ASSARSSON, U. 2008. Sample-based visibility
for soft shadows using alias-free shadow maps. Computer Graphics Forum (Proc.

EGSR ’07) 27, 4, 1285–1292.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective shadow maps. In Proc.

SIGGRAPH ’02, 557–562.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. In Computer

Graphics (SIGGRAPH ’78 Proceedings), vol. 12, 270–274.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W. 2004. Light space per-
spective shadow maps. In Proc. of the Eurographics Symposium on Rendering,
143–152.

UNC CS Technical Report TR09-004, January 2009

Shadow mapping Our approach Ray traced Difference image

(e) 256 FPS (f) 103 FPS (g) 21 FPS (h) Difference

(i) 150 FPS (j) 66 FPS (k) 13 FPS (l) Difference

(m) 42 FPS (n) 29 FPS (o) 8 FPS (p) Difference

(q) 25 FPS (r) 16 FPS (s) 4 FPS (t) Difference

Figure 11: Hard shadows: We compare the image fidelity of our algorithm to a pure ray-traced reference solution. From left to right:

shadow mapping at 10242, selective ray tracing, ray traced reference, difference selective to reference.

UNC CS Technical Report TR09-004, January 2009

Shadow mapping Our approach Ray traced Difference image

(e) 200 FPS (f) 19 FPS (g) 3.9 FPS (h) Difference

(i) 47 FPS (j) 7.3 FPS (k) 0.64 FPS (l) Difference

(m) 34 FPS (n) 9 FPS (o) 2.5 FPS (p) Difference

(q) 4.4 FPS (r) 2.1 FPS (s) 0.8 FPS (t) Difference

Figure 12: Soft shadows: We compare the image fidelity of our algorithm to a pure ray-traced reference solution . From left to right: shadow

mapping with 4 samples at 10242, selective ray tracing, ray traced reference (both at 16 samples/pixel), difference selective to reference.

