
Efficient Generation of Motion Plans from Attribute-Based Natural
Language Instructions Using Dynamic Constraint Mapping

Jae Sung Park, Biao Jia, Mohit Bansal, and Dinesh Manocha
http://gamma.cs.unc.edu/SafeMP/NLP/ (full video)

Abstract— We present an algorithm for combining natural
language processing (NLP) and fast robot motion planning
to automatically generate robot movements. Our formulation
uses a novel concept called Dynamic Constraint Mapping to
transform complex, attribute-based natural language instruc-
tions into appropriate cost functions and parametric constraints
for optimization-based motion planning. We generate a factor
graph from natural language instructions called the Dynamic
Grounding Graph (DGG), which takes latent parameters into
account. The coefficients of this factor graph are learned
based on conditional random fields (CRFs) and are used to
dynamically generate the constraints for motion planning. We
map the cost function directly to the motion parameters of the
planner and compute smooth trajectories in dynamic scenes.
We highlight the performance of our approach in a simulated
environment and via a human interacting with a 7-DOF Fetch
robot using intricate language commands including negation,
orientation specification, and distance constraints.

I. INTRODUCTION

In the field of human-robot interaction (HRI), natural
language has been used as an interface to communicate a
human’s intent to a robot [1], [2], [3], [4]. Much of the work
in this area is related to specifying simple tasks or commands
for robot manipulation, such as picking up and placing
objects. As robots are increasingly used in complex scenarios
and applications, it is important to develop a new generation
of motion planning and robot movement techniques that
can respond appropriately to diverse, attribute-based NLP
instructions for HRI, e.g., instructions containing negation
based phrases or references to position, velocity, and distance
constraints. Furthermore, we need efficient techniques to
automatically map the NLP instructions to such motion
planners.

Humans frequently issue commands that include sentences
with orientation-based or negation constraints such as “put a
bottle on the table and keep it upright” or “move the knife
but don’t point it towards people,” or sentences with velocity-
based constraints such as “move slowly when you get close
to a human.” To generate robot actions and movements in
response to such complex natural language instructions, we
need to address two kinds of challenges:
1. The accurate interpretation of attribute-based natural lan-
guage instructions and their grounded linguistic semantics,
especially considering the environment and the context.
2. The motion planner needs to generate appropriate trajec-
tories based on these complex natural language instructions.
This includes appropriately setting up the motion planning
problem based on different motion constraints (e.g., orien-

(a) (b) (c)
Fig. 1. The Fetch robot is moving a soda can on a table based on
NLP instructions. Initially the user gives the “pick and place” command.
However, when the robot gets closer to the book, the person says “don’t put
it there” (i.e. negation) and the robot uses our dynamic constraint mapping
functions and optimization-based planning to avoid the book. Our approach
can generate appropriate motion plans for such attributes.

tation, velocity, smoothness, and avoidance) and computing
smooth and collision-free paths.

At a high level, natural language instructions can be
decomposed into task description and attributes. Task de-
scriptions are usually verb or noun phrases that describe the
underlying task performed by a robot. The attributes include
various adjectives, adverbs, or prepositional phrases that are
used to specify additional conditions the robot must (or must
not) satisfy. For example, these conditions may specify some
information related to the movement speed, the orientation,
the physical space characteristics, or the distances. Therefore,
it is important to design motion planners that consider these
robotic task descriptions and robot motion constraints.
Main Results: We present an algorithm for generating pa-
rameterized constraints for optimization-based motion plan-
ning from complex, attribute-based natural language instruc-
tions. We use Dynamic Grounding Graphs (DGG) to parse
and interpret the commands and to generate the constraints.
Our formulation includes the latent parameters in the ground-
ing process, allowing us to model many continuous variables
in our grounding graph. Furthermore, we present a new
dynamic constraint mapping that takes DGG as the input and
computes different constraints and parameters for the motion
planner. The appropriate motion parameters are speed, orien-
tation, position, smoothness, repulsion, and avoidance. The
final trajectory of the robot is computed using a constraint
optimization solver. Compared to prior techniques, our over-
all approach offers the following benefits:

• The inclusion of latent parameters in the grounding
graph allows us to model continuous variables that are
used by our mapping algorithm. Our formulation com-
putes the dynamic grounding graph based on conditional
random fields.

• We present a novel dynamic constraint mapping
used to compute different parametric constraints for

optimization-based motion planning.
• Our grounding graphs can handle more complex,

attribute-based natural language instructions and our
mapping algorithm uses appropriate cost functions as
parameters over the continuous space. Compared to
prior methods, our approach is much faster and better
able to handle more complex and attribute-based natural
language instructions.

We highlight the performance of our algorithms in a sim-
ulated environment and on a 7-DOF Fetch robot operating
next to a human. Our approach can handle a rich set of
natural language commands and can generate appropriate
paths. These include complex commands such as picking
(e.g., “pick up a red object near you”), correcting the motion
(e.g., “don’t pick up that one”), and negation (e.g., “don’t
put it on the book”).

II. RELATED WORK

Most algorithms used to map natural language instruction
to robot actions tend to separate the problem into two parts:
parsing and motion planning computation. In this section,
we give a brief overview of prior work in these areas.

A. Natural Language Processing

Nyga et al. [6], [7], [8], [9] have developed Probabilis-
tic Robot Action Cores through which robots understand
natural language instructions from a knowledge base. The
natural language understanding system creates a proba-
bilistic model for converting taxonomies to semantics and
find the combination of semantics that gives the highest
probability. Duvallet et al. [10] use a probabilistic graph-
ical learning model called Generalized Grounding Graphs
(G3) on a ground vehicle for a navigation problem given
natural language commands. Branavan et al. [3], [11] use
reinforcement learning to learn a mapping from natural
language instructions and then apply it to sequences of
executable actions. Matuszek et al. [4] use a statistical
machine translation model to map natural language instruc-
tions to path description language, which allows a robot to
navigate while following directions. Duvallet et al. [12] use
imitation learning to train the model through demonstrations
of humans following directions. Paul et al. [13] propose the
Adaptive Distributed Correspondence Graph (ADCG). Arkin
et al. [14] further extend DCG, proposing the Hierarchical
Distributed Correspondence Graph (HDCG), which defines
constraints as discrete inequalities and grounds word phrases
to corresponding inequalities. Chung et al. [15] use HDCG
on ground vehicles to implement navigation commands and
demonstrate performance improvements over G3 in terms of
running time, factor evaluations, and correctness. We chose
the DCG model as our base framework, because it has a
flexibility for many applications and extensions based on the
parse tree from the input natural language instructions.

B. Robot Motion Planning in Dynamic Environments

Many replanning algorithms have been suggested to gener-
ate collision-free motion plans in dynamic environments. Fox

Fig. 2. Overall pipeline of our approach highlighting the NLP parsing
module and the motion planner. Above the dashed line (from left to
right): Dynamic Grounding Graphs (DGG) with latent parameters that are
used to parse and interpret the natural language commands, generation
of optimization-based planning formulation with appropriate constraints
and parameters using our mapping algorithm. We highlight the high-level
interface below the dashed line.

et al. [16] propose the dynamic window approach to compute
optimal velocity in a short time window. Optimization-
based motion planners [17], [18], [19] solve a constrained
optimization problem to generate smooth and collision-free
robot paths. We present an automatic scheme that generates
the motion planning problem from NLP instructions.

There is some work on integrating optimization-based mo-
tion planning with NLP in 2D workspaces. Silver et al. [20]
develop an algorithm for learning navigation cost functions
from demonstrations. Howard et al. [2] use a probabilistic
graphical model to generate motion planning constraints for
a 2D navigation problem. Compared to these methods, our
approach can handle 3D workspaces and high-dimensional
configuration spaces to generate robot motions correspond-
ing to complex NLP instructions. Other techniques focus
on efficiency in human-robot collaborative tasks. Markov
Decision Processes (MDP) are widely used to compute the
best robot action policies [21], [22]. These techniques are
complementary to our approach.

III. DYNAMIC GROUNDING GRAPHS

Fig. 2 shows the basic pipeline of our approach. When
natural language commands are given as input, the NLP
module (upper left) creates an optimization problem for a
motion planning module (upper middle). The robot motion
trajectory is then computed from the motion planning module
(upper right). As the planned trajectory is executed (bottom
right), the result is fed back to the NLP module. In this
section, we present the algorithms used in the NLP module.

We extend the ideas of the Generalized Grounding Graphs
(G3) model and the Distributed Correspondence Graph
(DCG) model [2] by including the latent variables in the
grounding graph and using them to compute the constraints
for motion planning. The input to our algorithm is the natural
language instruction. We do not account for any errors due to
voice recognition. From a natural language command input,
we construct a factor graph, as shown in Fig. 3(a), which is
based on the parsing of the command. For each node of the
parse tree, we generate three types of nodes: word phrase
node λ , grounding node γ , and correspondence node φ .

The input sentence Λ is parsed using the NLTK li-
brary [23]. The word phrase of each node in the parse tree
is denoted as λi for i = 1,2, · · · . Children of λi are λi1, · · · ,
λim. The root node of the parse tree is λ1. For example, in
Fig. 3(a), the input sentence is “Put the cup on the table.”
The parse tree has the root word phrase λ1 =“Put”. Its noun
λ2 =“the cup” and the preposition λ3 =“on,” which are the
children nodes of the root node. The noun phrase λ4 =“the
table” is the child node of λ3.

Our goal is to compute a mapping from a natural language
sentence Λ to the cost function parameters H given the
robotic environment E where the robot is operating. E is
a representation of the environment, which is composed of
obstacle positions, orientations, and the robot’s configuration.
Feature vectors are constructed in the factor graph from the
description of the environment. H is a real-valued vector
that contains all cost function parameters and weights used
in the optimization-based motion planner. It also includes
the weights of different types of cost functions used in the
optimization formulation.

We first compute the groundings γi of each word phrase
λi. The grounding of each word phrase is the mapping from
the word phrase to its meaning in the real world. Groundings
can be objects, locations, motions, tasks, or constraints. In
our model, the grounding γi depends on its word phrase
λi and its children grounding nodes γi1, · · · , γim, where
the tree structure of the grounding nodes follows the parse
tree. Correspondence node φi indicates the correct matching
between the word phrase λi and the grounding γi. It is
a binary variable; φi is true if the word phrase and the
grounding match and f alse if they do not.

A. Latent Parameters

A key novel component of our approach is the inclusion
of latent variables in the grounding graph. Our primary goal
is to compute the best cost function parameters H to be used
directly for optimization-based motion planning. We denote
H ∈Rh, a real vector of size h, as a collection of cost function
parameters. In this case, the size h and the number of cost
function parameters depend on the types of cost functions
that are used. 1 From the predicted groundings γi, the
cost function parameters in the motion planning formulation
(Fig. 3(b)) are inferred through the latent variable H. H
contains all the cost function parameters (e.g., weights of
cost functions, locations, and orientations). Details about the
cost functions are described in Section IV.

In Fig. 3(b), the resulting constraint-based motion planning
problems are shown. We use the collision avoidance cost
function as the default smoothness cost function and the
target location cost function, though weights can vary. The
target location, whose 3D coordinates are the cost function
parameters, is set on the surface of the table. The cost
function parameter node H contains the weights of the

1In this paper, we set maximum h = 22 to fully specify the smoothness,
the end-effector position, the end-effector orientation, the end-effector speed,
and the repulsion cost functions. It is a sum of three terms: 5 for weights,
16 for positions and orientations, and 1 for an exponential constant.

parameters and the 3D coordinates of the target location.
In the bottom of Fig. 3(b), where a new “Don’t” command
is given, a repulsion cost function is added. Thus, the cost
function weight and the location of the repulsion source
(below the robots end-effector position) are added to H.

B. Probabilistic Model

We present a new probabilistic model to compute H,
Λ and E. We assume the conditional independence of the
probabilities so that we can construct a factor graph (see
Fig. 3(a)). With the independence assumptions, a single
factor is connected to a word phrase node and its children
grounding nodes, which contain information about the sub-
components. This graphical representation corresponds to the
following equation:

p(H|λ1, · · · ,λn,E) = p(H|γ1,E)∏
i

p(γi|λi,φi,γi1, · · · ,γim,E).

(1)

For the root factor connecting H, γ1 and E, we formulate the
continuous domain of H. We compute the Gaussian Mixture
Model (GMM) on the probability distribution p(H|γ1,E) and
model our probability with non-root factors as follows:

p(γi|λi,φi,γi1, · · · ,γim,E) (2)

=
1
Z

exp(−θ
T
i f (γi,λi,φi,γi1, · · · ,γim,E)), (3)

where Z is the normalization factor, and θi and f are the
log-linearizations of the feature function. The function f
generates a feature vector given a grounding γi, a word
phrase λi, a correspondence φi, children groundings γi j,
and the environment E. The information from the robotic
environment is used in the feature function f and in the
log-linearized feature function f . The attributes of objects in
the robotic world such as shapes and colors are encoded as
multidimensional binary vectors, which indicate whether the
object has a given attribute.
Word phrases. The feature vector includes binary-valued
vectors for the word and phrase occurrences, and Part of
Speech (PoS) tags. There is a list of words that could be
encountered in the training dataset such as {put, pick, cup,
up, there, · · · }. The word list is constructed from H2SL
dataset [13] that contains 1672 word phrases. If the word
phrase contains the word “put,” then the occurrence vector
at the first index is set to 1 and the others are set to 0. This
list also includes real-valued word similarities between the
word and the pre-defined seed words. The seed words are the
pre-defined words that the users expect to encounter in the
natural language instructions. We used Glove word2vec [24]
to measure cosine-similarity (i.e. the inner product of two
vectors divided by the lengths of the vectors) between the
words.
Robot states. From the robot state, we collect the robot
joint angles, the velocities, the end-effector position, the end-
effector velocity, etc. This information can affect the cost
function parameters even while processing the same natural
language commands. We also store information about the
objects that are close to the robot.

(a) (b) (c)

Fig. 3. Factor graphs for different commands: In the environment in
the right-hand column, there is a table with a thin rectangular object on it.
A robot arm is moving a cup onto the table, but we want it to avoid moving
over the book when given NLP instructions. (a) The command “Put the cup
on the table” is given and the factor graph is constructed (left). Appropriate
cost functions for the task are assigned to the motion planning algorithm
(middle) and used to compute the robot motion (right). (b) As the robot
gets close to the book, another command “Don’t put it there” is given with
a new factor graph and cost functions.

C. Factor Graph using Conditional Random Fields

We represent our dynamic grounding graph as a factor
graph. We build a factor graph based on the probabilistic
model described in Section III-B and use it to train and
to infer the meaning of given commands. In particular, we
use Conditional Random Fields (CRF) [25] as a learning
model for factor graphs because CRFs are a good fit for
applying machine learning to our probabilistic graph model
with conditional probabilities.

At the inference step, we used the trained CRF factor
graph models to find the best groundings Γ and the cost
function parameters H by solving the CRF maximization
problem

maximize
H,γ1,··· ,γn

p(H|γ1,E)∏
i

1
Z

exp(θ T
i f (γi,λi,φi,γi1, · · · ,γim,E)).

(4)

When the nodes H, γ1, · · · ,γn are optimized, they create
a tree structure in the factor graph, meaning that we can
solve the optimization problem efficiently using dynamic
programming. Each factor depends on its parent and children
varying variables and other fixed variables connected to it.
This implies that we can solve the sub-problems in a bottom-
up manner and combine the results to solve the bigger
problem corresponding to the root node.

During the training step of CRF, we solve the optimization
problem of maximizing the probability of the samples in the
training dataset over the feature coefficients θi for every parse
tree structure. The optimization problem is the same as Eq.
(4), except that the problem is solved over θ instead of H
and Γ. More details are given in [26].

IV. DYNAMIC CONSTRAINT MAPPING WITH NLP INPUT

We use an optimization-based algorithm [27] to solve the
cost minimization problem. The function and constraints
of this cost minimization problem come from DGG, as
explained in Sec. III. In this section, we present our mapping
algorithm, Dynamic Constraint Mapping, which maps the

word phrase groundings to proper cost function parameters
corresponding to natural language instructions [26].

A. Robot Configurations and Motion Plans

We denote a single configuration of the robot as a vector q,
which consists of joint-angles or other degrees-of-freedom.
A configuration at time t, where t ∈ R, is denoted as q(t).
We assume q(t) is twice differentiable, and its derivatives
are denoted as q′(t) and q′′(t). The n-dimensional space of
configuration q is the configuration space C . We represent
bounding boxes of each link of the robot as Bi. The bounding
boxes at a configuration q are denoted as Bi(q).

For a planning task with a given start configuration q0
and derivative q′0, the robot’s trajectory is represented by a
matrix Q, whose elements correspond to the waypoints [17],
[18], [27]:

Q =

 q0 q1 qn−1 qn
q′0 q′1 · · · q′n−1 q′n

t0 = 0 t1 tn−1 tn = T

 . (5)

The robot trajectory passes through n + 1 waypoints
q0, · · · ,qn, which will be optimized by an objective function
under constraints in the motion planning formulation. Robot
configuration at time t is interpolated from two waypoints.
Formally, for j such that t j ≤ t ≤ t j+1, the configuration q(t)
and derivative q′(t) are cubically interpolated using q j, q′j,
q j+1, and q′j+1.

The i-th cost functions of the motion planner are Ci(Q).
Our motion planner solves an optimization problem with
non-linear cost functions and linear joint limit constraints
to generate robot trajectories for time interval [0,T],

minimize
Q ∑

i
wiCi(Q)

subject to
qmin ≤ q(t)≤ qmax,
q′min ≤ q′(t)≤ q′max

0≤ ∀t ≤ T.
(6)

In the optimization formulation, Ci is the i-th cost function
and wi is the weight of the cost function.

B. Parameterized Constraints

The overall optimization formulation is given in Eqn. 6.
To formulate the constraints, we use the following cost func-
tions, which are designed to account for various attributes
in the NLP instructions, including collision avoidance. In
our formulation, we use many types of cost functions such
as collision avoidance, robot smoothness, robot end-effector
speed, target positions, and target orientations. These cost
functions are used to handle many attributes of natural
language instructions. Each cost function has its weight and
may also have other cost function parameters, if necessary.

To handle various attributes, we use the following param-
eterized constraints in our optimization formulation.
Collision avoidance:

Ccollision(Q) =
∫ T

0
∑

i
∑

j
dist(Bi(t),O j)

2dt, (7)

where dist(Bi(t),O j) is the penetration depth between a robot
bounding box Bi(t) and an obstacle O j.

Smoothness: This cost function corresponds to the integral
of the first derivative of joint angles over the trajectory
duration.
End-effector position:

Cposition(Q) =
∫ T

0
||pee(t)−ptarget ||2dt, , (8)

where pee(t) is the robot end-effector position at time t and
ptarget is the target position. The target position ptarget is
considered as a cost function parameter.
End-effector orientation:

Corientation(Q) =
∫ T

0
angledist(qee(t),qtarget)

2dt, (9)

Cupvector(Q) =
∫ T

0
angledist(nup(t),ntarget)

2dt, (10)

where qee(t) is the quaternion representation of the robot
end-effector’s orientation at time t, qtarget is the end-effector
orientation that we want the robot to maintain, nup is the
normal up-vector of the robot’s end-effector, and ntarget is
the target up-vector. As with the end-effector position cost,
the target orientation qtarget is the cost function parameter.
End-effector speed:

Cspeed(Q) =
∫ T

0
||vee(t)−vtarget ||2dt, (11)

where vee(t) is the robot’s end-effector speed at time t and
vtarget is the target speed. The parameters of this cost function
correspond to vtarget .
Repulsion:

Crepulsion(Q) =
∫ T

0
exp(−c||pee(t)−pr||)dt, (12)

where pr is the position to which we don’t want the robot
to move. The coefficient c > 0 suggests how much the cost
is affected by ||pee(t)−prepulsive||, the distance between the
end-effector position and the repulsion source.

V. IMPLEMENTATION AND RESULTS

We have implemented our algorithm and evaluated its
performance in a simulated environment and on a 7-DOF
Fetch robot. All the timings are generated on a multi-
core PC with Intel i7-4790 8-core 3.60GHz CPU and a
16GB RAM. We use multiple cores for fast evaluation and
parallel trajectory search to compute a good solution to the
constrained optimization problem [27].

A. Training DGGs for Demonstrations

We describe how the training dataset for our DGG model
were generated. The training dataset for DGGs requires three
components: a natural language sentence, a robotic envi-
ronment, and the cost function parameters for optimization-
based motion planners.

For each demonstration, we write tens of different sen-
tences that specify the take goals the constraints for the mo-
tion plans with different nouns, pronouns, adjectives, verbs,
adverbs, preposition, etc. For each sentence, we generate a
random robotic environment and an initial state for the robot.

(a) (b) (c)
Fig. 4. The simulated Fetch robot arm reaches towards one of the two red
objects. (a) When a command “pick up one of the red objects” is issued, the
robot moves to the red object on the right because of the DGG algorithm. (b)
If the user doesn’t want the robot to pick up the object on the right, he/she
uses a command “don’t pick up that one.” Our DGG algorithm dynamically
changes the cost function parameters. (c) The robot approaches the object
on the right and stops.

(a) (b) (c)
Fig. 5. In this simulated environment, the human instructs the robot to
“put the cube on table” (a). As it approaches the laptop (b), the human
uses a negation NLP command “don’t put it there,” so the robot places it
at a different location (c).

In addition, the robot joint values and joint velocities are
randomly set as initial states. We collect tens or hundreds
of random robotic environments. For a natural language
sentence, a random robotic environment, and a random initial
state for the robot, the cost function parameters are assigned
manually or synthesized from other examples. Hundreds of
multiple data samples are generated from generated data
samples by switching the correspondence variable in the
DGG model from 1 (true) to 0 (false) and changing the
grounding variables to the wrong ones to match the false
correspondence variable. The training dataset is created with
up to 100,000 samples in our experiments. When the cost
function parameters are determined, the optimization-based
motion planner is used to compute a feasible robot trajectory.
In the optimization-based motion planning algorithm, there
are some waypoints through which the robot trajectory
should pass. For the robot’s safety, we check if the robot
trajectory with given cost function parameters is in- collision
and appropriately set a higher value of the coefficient of the
collision cost and compute a new trajectory. This process is
repeated until the trajectory is collision-free.

We use different training data for each scenario. For the
scenarios shown in Fig. 4, the initial pose of the robot in front
of the table and the positions of the blue and red objects
on the table are randomly set. For “Pick up” commands,
appropriate cost function parameters are computed so that the
robot picks up a blue or red object depending on the given
command. Similarly, in Fig. 5, the position and orientation of
the laptop is initialized randomly. Given the “Put” command,
we create an end-effector position cost function so that the
robot places the object on the table; and a repulsive cost
function to avoid the laptop position.

TABLE I
PLANNING PERFORMANCES WITH VARYING SIZES OF TRAINING DATA

FOR THE SCENARIO IN FIG. 4 WITH 21 DIFFERENT NLP INSTRUCTIONS.
Training Data Success Rate Duration Smoothness Cost

1,000 5/10 23.46s (5.86s) 8.72 (5.56)
3,000 9/10 16.02s (3.28s) 2.56 (0.64)
10,000 10/10 13.16s (1.24s) 1.21 (0.32)
30,000 10/10 12.81s (0.99s) 0.78 (0.12)

100,000 10/10 12.57s (0.97s) 0.72 (0.10)

TABLE II
RUNNING TIME OF OUR DGG AND MOTION PLANNING MODULES.

Scenarios Instructions |H| DGG
Time

Planning
Time

Pick up an object (Fig. 4) 10 12 32ms 93ms
Don’t put on laptop (Fig. 5) 20 13 16ms 98ms

Move around obstacle 45 9 16ms 95ms
Static Instructions (video) 20 18 73ms 482ms

Dynamic Instructions (Fig. 1) 21 18 58ms 427ms

B. Simulations and Real Robot Demonstrations

We evaluate the performance on optimization problems
that occur in complex environments composed of multiple
objects. Based on the NLP commands, the robot decides to
pick an appropriate object or is steered towards the goal
position in a complex scene. In particular, the user gives
NLP commands such as “move right,” “move up,” “move
left,” or “move down” to guide the robot. For each such
command, we compute the appropriate cost functions.

In terms of the 7-DOF Fetch robot, we test the perfor-
mance of our approach on different tasks corresponding to:
(1) moving a soda can on the table from one position to an
other; (2) not moving the soda can over the book [26].

C. Analysis

We evaluate the performance based on the following:
Success Rate: The ratio of successful task completion among
all trials. Failure includes colliding with the obstacles due to
an incorrect mapping of cost function parameters, violating
constraints specified by natural language commands, and not
completing the task due to some other reason.
Trajectory Duration: The time between the giving of the
first NLP command and the robot’s successful completion
of the task after trajectory computation. A shorter duration
implies a higher performance.
Trajectory Smoothness Cost: A cost based on evaluating
the trajectory smoothness according to standard metrics and
dividing it by the trajectory duration. A lower cost implies
a smoother and more stable robot trajectory.

Table I shows the results on our benchmarks with varying
numbers of training data samples in the simulation envi-
ronment shown in Fig. 4. When the number of training
data samples increases, the success rate also increases while
the trajectory duration and the trajectory smoothness cost
decrease. Table II shows the running time of our algorithm
and the distances from the obstacle on the table in the real-
world scenarios.

VI. BENEFITS AND COMPARISONS

Most prior methods that combine NLP and motion plan-
ning have focused on understanding natural language instruc-
tions to compute robot motion for simple environments and

constraints. Most of these methods are limited to navigation
applications [28], [15], [10] or simple settings [11], or they
are not evaluated on real robots [14]. Nyga et al. [6], [7],
[8], [9] use probabilistic relation models based on knowledge
bases to understand natural language commands that describe
visual attributes of objects. This is complimentary to our
work. Broad et al. [29] extend DCG for a robot manipulator
so that it will handle natural language correction for robot
motion in realtime. In our approach, the goal is to generate
appropriate high-DOF motion trajectories in response to
attribute-based natural language instructions like negation,
distance or orientation constraints, etc. Unlike prior methods,
the output of our NLP parsing algorithm is directly coupled
with the specification of the motion planning problem as a
constrained optimization method.

It may be possible to extend prior methods [1], [2] to
handle attribute-based NLP instructions. For example, dis-
tance attributes require a number of constraints in the motion
planning formulation. In natural language instructions such
as “Pick up the blue block and put it 20cm to the left
of the red block” or “Pick up one of the two blocks on
the rightmost, and place it 10 inches away from the block
on the leftmost,” the exact distance specifications are the
distance attributes. Prior methods that use G3, DCG, or the
Hybrid G3-DCG models have only been evaluated with a
small number of attributes (distance, orientation and contact)
to solve constrained motion planning problems. These prior
techniques use discretized constraints [2], each of which can
be active (i.e. f (x) > 0)), inverted (f (x) < 0), or ignored
(i.e. not included). Therefore, it is not possible to represent
an explicit constraint corresponding to the value of the
continuous variable distance in their formulation.

VII. LIMITATIONS, CONCLUSIONS AND FUTURE WORK

We present an motion planning algorithm that computes
appropriate motion trajectories for a robot based on complex
NLP instructions. Our formulation is based on two novel
concepts: dynamic grounding graphs and dynamic constraint
mapping. We highlight the performance in simulated and
real-world scenes with a 7-DOF manipulator operating next
to humans. We use a high dimensional optimization algo-
rithm and the solver may get stuck in local minima, though
we use multiple initializations to solve this problem.

As future work, we would like to overcome these limita-
tions and evaluate the approach in challenging scenarios with
moving obstacles while performing complex robot tasks.
More work is needed to handle the full diversity of a natural
language, especially for rare words, complicated grammar
styles, and hidden intentions or emotions in human speech.
We plan to incorporate stronger natural language processing
and machine learning methods such as those based on
semantic parsing, neural sequence-to-sequence models, etc.

ACKNOWLEDGMENT

This research is supported in part by ARO grant
W911NF19-1-0069, ARO-YIP Award W911NF-18-1-0336,
and Intel.

REFERENCES

[1] T. Kollar, S. Tellex, M. R. Walter, A. Huang, A. Bachrach,
S. Hemachandra, E. Brunskill, A. Banerjee, D. Roy, S. Teller, et al.,
“Generalized grounding graphs: A probabilistic framework for under-
standing grounded language,” JAIR, 2013.

[2] T. M. Howard, S. Tellex, and N. Roy, “A natural language planner in-
terface for mobile manipulators,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE, 2014, pp. 6652–6659.

[3] S. R. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzilay, “Re-
inforcement learning for mapping instructions to actions,” in ACL-
IJCNLP. Association for Computational Linguistics, 2009.

[4] C. Matuszek, D. Fox, and K. Koscher, “Following directions using
statistical machine translation,” in HRI. IEEE, 2010.

[5] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and
predictability of robot motion,” in HRI. IEEE, 2013.

[6] D. Nyga and M. Beetz, “Everything robots always wanted to know
about housework (but were afraid to ask),” in 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2012,
pp. 243–250.

[7] ——, “Cloud-based probabilistic knowledge services for instruction
interpretation,” in Robotics Research. Springer, 2018, pp. 649–664.

[8] D. Nyga, M. Picklum, S. Koralewski, and M. Beetz, “Instruction
completion through instance-based learning and semantic analogical
reasoning,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4270–4277.

[9] D. Nyga, M. Picklum, and M. Beetz, “What no robot has seen
beforeprobabilistic interpretation of natural-language object descrip-
tions,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4278–4285.

[10] F. Duvallet, M. R. Walter, T. Howard, S. Hemachandra, J. Oh, S. Teller,
N. Roy, and A. Stentz, “Inferring maps and behaviors from natural
language instructions,” in Experimental Robotics. Springer, 2016,
pp. 373–388.

[11] S. Branavan, N. Kushman, T. Lei, and R. Barzilay, “Learning high-
level planning from text,” in Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long Papers-Volume
1. Association for Computational Linguistics, 2012, pp. 126–135.

[12] F. Duvallet, T. Kollar, and A. Stentz, “Imitation learning for natural
language direction following through unknown environments,” in
ICRA. IEEE, 2013, pp. 1047–1053.

[13] R. Paul, J. Arkin, N. Roy, and T. M. Howard, “Efficient grounding of
abstract spatial concepts for natural language interaction with robot
manipulators.” in Robotics: Science and Systems, 2016.

[14] J. Arkin and T. M. Howard, “Towards learning efficient models for
natural language understanding of quantifiable spatial relationships,”
in RSS 2015 Workshop on Model Learning for Human-Robot Com-
munication, 2015.

[15] I. Chung, O. Propp, M. R. Walter, and T. M. Howard, “On the
performance of hierarchical distributed correspondence graphs for
efficient symbol grounding of robot instructions,” in Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE, 2015, pp. 5247–5252.

[16] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[17] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,”
in Proceedings of IEEE International Conference on Robotics and
Automation, 2011, pp. 4569–4574.

[18] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[19] C. Park, J. Pan, and D. Manocha, “Real-time optimization-based
planning in dynamic environments using GPUs,” in Proceedings of
IEEE International Conference on Robotics and Automation, 2013.

[20] D. Silver, J. A. Bagnell, and A. Stentz, “Learning autonomous driving
styles and maneuvers from expert demonstration,” in Experimental
Robotics. Springer, 2013, pp. 371–386.

[21] S. Nikolaidis, P. Lasota, G. Rossano, C. Martinez, T. Fuhlbrigge, and
J. Shah, “Human-robot collaboration in manufacturing: Quantitative
evaluation of predictable, convergent joint action,” in Robotics (ISR),
2013 44th International Symposium on. IEEE, 2013, pp. 1–6.

[22] H. S. Koppula, A. Jain, and A. Saxena, “Anticipatory planning for

human-robot teams,” in Experimental Robotics. Springer, 2016, pp.
453–470.

[23] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[24] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014, pp. 1532–1543.

[25] C. Sutton, A. McCallum, et al., “An introduction to conditional random
fields,” Foundations and Trends R© in Machine Learning, vol. 4, no. 4,
pp. 267–373, 2012.

[26] J. S. Park, B. Jia, M. Bansal, and D. Manocha, “Generating
realtime motion plans from complex natural language commands
using dynamic grounding graphs,” CoRR, vol. abs/1707.02387, 2017.
[Online]. Available: http://arxiv.org/abs/1707.02387

[27] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Proceedings of International Conference on Automated Planning and
Scheduling, 2012.

[28] J. Oh, T. M. Howard, M. R. Walter, D. Barber, M. Zhu, S. Park,
A. Suppe, L. Navarro-Serment, F. Duvallet, A. Boularias, et al.,
“Integrated intelligence for human-robot teams,” in International Sym-
posium on Experimental Robotics. Springer, 2016, pp. 309–322.

[29] A. Broad, J. Arkin, N. Ratliff, T. Howard, and B. Argall, “Real-time
natural language corrections for assistive robotic manipulators,” The
International Journal of Robotics Research, vol. 36, no. 5-7, pp. 684–
698, 2017.

