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Abstract—We present a motion planning algorithm to com-
pute collision-free and smooth trajectories for high-DOF robots
interacting with humans in a shared workspace. Our approach
uses offline learning of human actions along with temporal
coherence to predict the human actions. Our intention-aware
online planning algorithm uses the learned database to compute
a reliable trajectory based on the predicted actions. We represent
the predicted human motion using a Gaussian distribution and
compute tight upper bounds on collision probabilities for safe
motion planning. We highlight the performance of our plan-
ning algorithm in complex simulated scenarios and real world
benchmarks with 7-DOF robot arms operating in a workspace
with a human performing complex tasks. We demonstrate the
benefits of our intention-aware planner in terms of computing
safe trajectories in such uncertain environments.

I. INTRODUCTION

Motion planning algorithms are used to compute collision-
free paths for robots among obstacles. As robots are increas-
ingly used in workspace with moving or unknown obstacles, it
is important to develop reliable planning algorithms that can
handle environmental uncertainty and the dynamic motions.
In particular, we address the problem of planning safe and
reliable motions for a robot that is working in environments
with humans. As the humans move, it is important for the
robots to predict the human actions and motions from sensor
data and to compute appropriate trajectories.

In order to compute reliable motion trajectories in such
shared environments, it is important to gather the state of the
humans as well as predict their motions. There is considerable
work on online tracking and prediction of human motion in
computer vision and related areas [32]. However, the current
state of the art in gathering motion data results in many
challenges. First of all, there are errors in the data due to
the sensors (e.g., point cloud sensors) or poor sampling [4].
Secondly, human motion can be sudden or abrupt and this
can result in various uncertainties in terms of accurate repre-
sentation of the environment. One way to overcome some of
these problems is to use predictive or estimation techniques
for human motion or actions, such as using various filters
like Kalman filters or particle filters [40]. Most of these
prediction algorithms use a motion model that can predict
future motion based on the prior positions of human body
parts or joints, and corrects the error between the estimates
and actual measurements. In practice, these approaches only
work well when there is sufficient information about prior
motion that can be accurately modeled by the underlying
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Fig. 1: A 7-DOF Fetch robot is moving its arm near a human,
avoiding collisions. (a) While the robot is moving, the human
tries to move his arm to block the robot’s path. The robot
arm trajectory is planned without human motion prediction,
which may result in collisions and a jerky trajectory, as shown
with the red circle. This is because the robot cannot respond
to the human motion to avoid collisions. (b) The trajectory
is computed using our human motion prediction algorithm;
it avoids collisions and results in smoother trajectories. The
robot trajectory computation uses collision probabilities to
anticipate the motion and compute safe trajectories.

motion model. In some scenarios, it is possible to infer high-
level human intent using additional information, and thereby
perform a better prediction of future human motions [1, 2].
These techniques are used to predict the pedestrian trajectories
based on environmental information in 2D domains.

Main Results: We present a novel high-DOF motion plan-
ning approach to compute collision-free trajectories for robots
operating in a workspace with human-obstacles or human-
robot cooperating scenarios. Our approach is general, and
doesn’t make much assumptions about the environment or the
human actions. We track the positions of the human using
depth cameras and present a new method for human action
prediction using combination of classification and regression
methods. Given the sensor noises and prediction errors, our
online motion planner uses probabilistic collision checking
to compute a high dimensional robot trajectory that tends
to compute safe motion in the presence of uncertain human
motion. As compared to prior methods, the main benefits of
our approach include:
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1) A novel data-driven algorithm for intention and motion
prediction, given noisy point cloud data. Compared to
prior methods, our formulation can account for big
noise in skeleton tracking in terms of human motion
prediction.

2) An online high-DOF robot motion planner for efficient
completion of collaborative human-robot tasks that uses
upper bounds on collision probabilities to compute safe
trajectories in challenging 3D workspaces. Furthermore,
our trajectory optimization based on probabilistic colli-
sion checking results in smoother paths.

We highlight the performance of our algorithms in a simulator
with a 7-DOF KUKA arm operating and in a real world
setting with a 7-DOF Fetch robot arm in a workspace with
a moving human performing cooperative tasks. We have
evaluated its performance in some challenging or cluttered
3D environments where the human is close to the robot and
moving at varying speeds. We demonstrate the benefits of our
intention-aware planner in terms of computing safe trajectories
in these scenarios.

The rest of paper is organized as follows. In Section II,
we give a brief survey of prior work. Section III presents
an overview of our human intention-aware motion planning
algorithm. Offline learning and runtime prediction of human
motions are described in Section IV, and these are combined
with our optimization based motion planning algorithm in
Section V. The performance of the intention-aware motion
planner is analyzed in Section VI. Finally, we demonstrate the
performance of our planning framework for a 7-DOF robot in
Section VII.

II. RELATED WORKS
In this section, we give a brief overview of prior work

on human motion prediction, task planning for human-robot
collaborations, and motion planning in environments shared
with humans.

A. Intention-Aware Motion Planning and Prediction

Intention-Aware Motion Planning (IAMP) denotes a motion
planning framework where the uncertainty of human intention
is taken into account [1]. The goal position and the trajectory
of moving pedestrians can be considered as human intention
and used so that a moving robot can avoid pedestrians [37].

In terms of robot navigation among obstacles and pedestri-
ans, accurate predictions of humans or other robot positions
are possible based on crowd motion models [11, 39] or inte-
gration of motion models with online learning techniques [15]
for 2D scenarios and they are orthogonal to our approach.

Predicting the human actions or the high-DOF human
motions has several challenges. Estimated human poses from
recorded videos or realtime sensor data tend to be inaccurate
or imperfect due to occlusions or limited sensor ranges [4].
Furthermore, the whole-body motions and their complex dy-
namics with many high-DOF makes it difficult to represent
them with accurate motion models [14]. There has been a
considerable literature on recognizing human actions [36].
Machine learning-based algorithms using Gaussian Process

Latent Variable Models (GP-LVM) [8, 38] or Recurrent neural
network (RNN) [10] have been proposed to compute accurate
human dynamics models. Recent approaches use the learning
of human intentions along with additional information, such as
temporal relations between the actions [22, 13] or object affor-
dances [16] to improve the accuracy. Inverse Reinforcement
Learning (IRL) has been used to predict 2D motions [42, 18]
or 3D human motions [5].

B. Robot Task Planning for Human-Robot Collaboration

In human-robot collaborative scenarios, robot task planning
algorithms have been developed for the efficient distribution
of subtasks. One of their main goal is reducing the completion
time of the overall task by interleaving subtasks of robot with
subtasks of humans with well designed task plans. In order to
compute the best action policy for a robot, Markov Decision
Processes (MDP) have been widely used [3]. Nikolaidis et
al. [22] use MDP models based on mental model convergence
of human and robots. Koppula and Saxena [17] use Q-
learning to train MDP models where the graph model has
the transitions corresponding to the human action and robot
action pairs. Pérez-D’Arpino and Shah [28] used a Bayesian
learning algorithm on hand motion prediction and tested the
algorithm in a human-robot collaboration tasks. Our MDP
models extend these approaches, but also take into account
the issue of avoiding collisions between the human and the
robot.

C. Motion Planning in Environments shared with Humans

Prior work on motion planning in the context of human-
robot interaction has focused on computing robot motions that
satisfy cognitive constraints such as social acceptability [33]
or being legible to humans [6].

In human-robot collaboration scenarios where both the
human and the robot perform manipulation tasks in a shared
environment, it is important to compute robot motions that
avoid collisions with the humans for safety reasons. Dynamic
window approach [9] (which searches the optimal velocity
in a short time interval) and online replanning [29, 24, 25]
(which interleaves planning with execution) are widely used
approaches for planning in such dynamic environments. As
there are uncertainties in the prediction model and in the
sensors for human motion, the future pose is typically repre-
sented as the Belief state, which corresponds to the probability
distribution over all possible human states. Mainprice and
Berenson [20] explicitly construct an occupied workspace
voxel map from the predicted Belief states of humans in the
shared environment and avoid collisions.

III. OVERVIEW

In this section, we first introduce the notation and termi-
nology used in the paper and give an overview of our motion
planning algorithms.



A. Notation and Assumptions

As we need to learn about human actions and short-term
motions, a large training dataset of human motions is needed.
We collect N demonstrations of how human joints typically
move while performing some tasks and in which order sub-
tasks are performed. Each demonstration is represented using
T (i) time frame of human joint motion, where the superscript
(i) represents the demonstration index. The motion training
dataset is represented as following:
• ξ is a matrix of tracked human joint motions. ξ(i) has T (i)

columns, where a column vector represents the different
human joint positions during each time frame.

• F is a feature vector matrix. F (i) has T (i) columns and
is computed from ξ(i).

• ah is a human action (or subtask) sequence vector that
represents the action labels over different time frames.
For each time frame, the action is categorized into one
of the mh discrete action labels, where the action label
set is Ah = {ah1 , · · · , ahmh}.

• L = {(ξ(i), F (i),ah,(i))}Ni=1 is the motion database used
for training. It consists of human joint motions, feature
descriptors and the action labels at each time frame.

During runtime, MDP-based human action inference is used
in our task planner. The MDP model is defined as a tuple
(P,Ar, T ):
• Ar = {ar1, · · · , armr} is a robot action (or subtask) set of
mr discrete action labels.

• P = P(Ar ∪ Ah), a power set of union of Ar and Ah,
is the set of states in MDP. We refer to the state p as a
progress state because each state represents which human
and robot actions have been performed so far. We assume
that the sequence of future actions for completing the
entire task depends on the list of actions completed. p has
mh+mr binary elements, which represent corresponding
human or robot actions have been completed (pj = 1) or
not (pj = 0). For cases where same actions can be done
more than once, the binary values can be replaced with
integers, to count the number of actions performed.

• T : P × Ar → Π(P ) is a transition function. When a
robot performs an action ar in a state p, T (p, ar) is a
probability distribution over the progress state set P . The
probability of being state p′ after taking an action ar

from state p is denoted as T (p, ar,p′).
• π : P → Ar is the action policy of a robot. π(p) denotes

the best robot action that can be taken at state p, which
results in maximal performance.

We use the Q-learning [35] to determine the best action policy
during a given state, which rewards the values that are induced
from the result of the execution.

B. Robot Representation

We denote a single configuration of the robot as a vector
q that consists of joint-angles. The n-dimensional space of
configuration q is the configuration space C. We represent each
link of the robot as Ri. The finite set of bounding spheres for

Fig. 2: Overview of our Intention-Aware Planner: Our
approach consists of three main components: task planner,
trajectory optimization, and intention and motion estimation.

link Ri is {Bi1, Bi2, · · · }, and is used as a bounding volume of
the link, i.e., Ri ⊂ ∪jBij . The links and bounding spheres at a
configuration q are denoted as Ri(q) and Bij(q), respectively.
In our benchmarks, where the robot arms are used, these
bounding spheres are automatically generated using the medial
axis of robot links. We also generate the bounding spheres
{C1, C2, · · · } for humans and other obstacles.

For a planning task with start and goal configurations qs
and qg , the robot’s trajectory is represented by a matrix Q,

Q =

[
qs q1 · · · qn−1 qg
t0 t1 · · · tn−1 tn

]
,

where robot trajectory passes through the n+1 waypoints. We
denote the i-th waypoint of Q as xi =

[
qTi ti

]
.

C. Online Motion Planning

The main goals of our motion planner are: (1) planning
high-level tasks for a robot by anticipating the most likely
next human action and (2) computing a robot trajectory that
reduces the probability of collision between the robot and the
human or other obstacles, by using motion prediction.

At the high-level task planning step, we use MDP, which
is used to compute the best action policies for each state. A
state of an MDP graph denotes the progress of the whole task.
The best action policies are determined through reinforcement
learning with Q-learning. Then, the best action policies are
updated within the same state. The probability of choosing
the action increases or decreases according to the reward
function. Our reward computation function is affected by the
prediction of intention and the delay caused by predictive
collision avoidance.

We also estimate the short-term future motion from learned
information in order to avoid future collisions. From the joint
position information, motion features are extracted based on
human poses and surrounding objects related to human-robot
interaction tasks, such as joint positions of humans, relative
positions from a hand to other objects, etc. The motions are
classified over the human action set Ah. For classifying the
motions, we use Import Vector Machine (IVM) [41] for clas-
sification and a Dynamic Time Warping (DTW) [21] kernel
function for incorporating the temporal information. Given
the human motions database of each action type, we train
future motions using Sparse Pseudo-input Gaussian Process
(SPGP) [34]. Combining these two prediction results, the



final future motion is computed as the weighted sum over
different action types weighed by the probability of each
action type that could be performed next. For example, if the
action classification results in probability 0.9 for action Move
forward and 0.1 for action Move backward, the future motion
prediction (the results of SPGP) for Move forward dominates.
If the action classification results in probability 0.5 for both
actions, the predicted future motions for each action class will
be used in avoiding collisions but with weights 0.5. However,
in this case, the current motion does not have specific features
to distinguish the action, meaning that the future motion in
a short term will be similar and there will be an overlapped
region in 3D space, working as a future motion of weight 1.
More details are described in Section IV.

After deciding which robot task will be performed, the robot
motion trajectory is then computed that tends to avoid colli-
sions with humans. An optimization-based motion planner [24]
is used to compute a locally optimal solution that minimizes
the objective function subject to many types of constraints
such as robot related constraints (e.g., kinematic constraint),
human motion related constraints (e.g., collision free con-
straint), etc. Because future human motion is uncertain, we
can only estimate the probability distribution of the possible
future motions. Therefore, we perform probabilistic collision
checking to reduce the collision probability in future motions.
We also continuously track the human pose and update the
predicted future motion to re-plan safe robot motions. Our
approach uses the notion of online probabilistic collision
detection [23, 26, 27] between the robot and the point-cloud
data corresponding to human obstacles, to compute reactive
costs and integrate them with our optimization-based planner.

IV. HUMAN ACTION PREDICTION

In this section, we describe our human action prediction
algorithm, which consists of offline learning and online infer-
ence of actions.

A. Learning of Human Actions and Temporal Coherence

We collect N demonstrations to form a motion database L.
The 3D joint positions are tracked using OpenNI library [30],
and their coordinates are concatenated to form a column vector
ξ(i). For full-body motion prediction, we used 21 joints, each
of which has 3D coordinates tracked by OpenNI. So, ξ(i) is
a 63-dimensional vector. For upper-body motion prediction,
there are 10 joints and thus ξ(i) is length 30. Then, feature
vector F (i) is derived from ξ(i). It has joint velocities and
joint accelerations, as well as joint positions.

To learn the temporal coherence between the actions, we
deal with only the human action sequences {ah,(i)}Ni=1. Based
on the progress state representation, for any time frame s, the
prefix sequence of ah,(i) of length s yields a progress state
p
(i)
s and the current action c

h,(i)
s = a

h,(i)
s . The next action

label nh,(i)s performed after frame s can also be computed, at
which the action label differs at the first time while searching
in the increasing order from frame s + 1. Then, for all
possible pairs of demonstrations and frame index (i, s), the

(a) (b)

Fig. 3: Motion uncertainty and prediction: (a) A point cloud
and the tracked human (blue spheres). The joint positions
are used as feature vectors. (b) Prediction of next human
action and future human motion, where 4 locations are colored
according to their probability of next human action from white
(0%) to black (100%). Prediction of future motion after 1
second (red spheres) from current motion (blue spheres) is
shown as performing the action: move right hand to the second
position which has the highest probability associated with it.

tuples (p
(i)
s , c

h,(i)
s , n

h,(i)
s ) are collected to compute histograms

h(nh;p, ch), which counts the next action labels at each pair
(p, ch) that have appeared at least once. We use the normalized
histograms to estimate the next future action for the given p
and ch. i.e.,

p(nh = ahj |p, ch) =
h(ahj ;p, ch)
m∑
k=1

h(ahk ;p, ch)
. (1)

In order to train the human motion, the motion sequence
ξ(i) and the feature sequence F (i) are learned, as well as the
action sequences a(i). Because we are interested in short-term
human motion prediction for collision avoidance, we train the
learning module from multiple short periods of motion. Let
np be the number of previous consecutive frames and nf
be the number of future consecutive frames to look up. nf
and np are decided so that the length of motion is short-term
motion (about 1 second) that will be used for short-term future
collision detection in the robot motion planner. At the time
frame s, where np ≤ s ≤ T (i) − nf , the columns of feature
matrix F (i) from column index s−np+ 1 to s are denoted as
F

(i)
prev,s. Similarly, the columns of motion matrix from index
s+ 1 to s+ nf are denoted as ξ(i)next,s.

Tuples (F
(i)
prev,s,p

(i)
s , c

h(i)
s , ξ

(i)
next,s) for all possible pairs of

(i, s) are collected as the training input. They are partitioned
into groups having the same progress state p. For each
progress state p and current action ch, the set of short-term
motions are regressed using SPGP with the DTW kernel func-
tion [21], considering {Fprev} as input and {ξnext} as multiple
channeled outputs. We use SPGPs, a variant of Gaussian
Processes, because it significantly reduces the running time
for training and inference by choosing M pseudo-inputs from
a large number of an original human motion inputs. The final



learned probability distribution is

p(ξnext|Fprev,p, ch) =
∏

c:channels

p(ξnext,c|Fprev,p, ch),

p(ξnext,c|Fprev,p, ch) ∼ GP(mc,Kc), (2)

where GP(·, ·) represents trained SPGPs, c is an output
channel (i.e., an element of matrix ξnext), and mc and Kc

are the learned mean and covariance functions of the output
channel c, respectively.

The current action label ch,(i)s should be learned to es-
timate the current action. We train c

h,(i)
s using Tuples

(F
(i)
prev,s,p

(i)
s , c

h(i)
s ). For each state p, we use Import Vector

Machine (IVM) classifiers to compute the probability distri-
bution:

p(ch = ahj |Fprev,p) =
exp(fj(Fprev))∑
ahk

exp(fk(Fprev))
, (3)

where fj(·) is the learned predictive function [41] of IVM.

B. Runtime Human Intention and Motion Inference

Based on the learned human actions, at runtime we infer the
next most likely short-term human motion and human subtask
for the purpose of collision avoidance and task planning,
respectively. The short-term future motion prediction is used
for the collision avoidance during the motion planning. The
probability of future motion is given as:

p(ξnext|F,p) =
∑
ch∈Ah

p(ξnext, c
h|F,p).

By applying the Bayes theorem, we get

p(ξnext|F,p) =
∑
ch∈Ah

p(ch|F,p)p(ξnext|F,p, ch). (4)

The first term p(ch|F,p) is inferred through the IVM classifier
in (3). To infer the second term, we use the probability
distribution in (2) for each output channel.

We use Q-learning for training the best robot action policy
π in our MDP-based task planner. We first define the function
Q : P ×Ar → IR, which is iteratively trained with the motion
planning executions. Q is updated as

Qt+1(pt, a
r
t ) =(1− αt)Qt(pt, art )

+ αt(Rt+1 + γmax
ar

Qt(pt+1, a
r)),

where the subscripts t and t+1 are the iteration indexes, Rt+1

is the reward function after taking action art at state pt, and αt
is the learning rate, where we set αt = 0.1 in our experiments.
A reward value Rt+1 is determined by several factors:
• Preparation for next human action: the reward gets higher

when the robot runs an action before a human action
which can be benefited by the robot’s action. We define
this reward as Rprep(pt, art ). Because the next human
subtask depends on the uncertain human decision, we
predict the likelihood of the next subtask from the learned

actions in (1) and use it for the reward computation. The
reward value is given as

Rprep(pt, a
r
t ) =

∑
ah∈Ah

p(nh = ah|pt)H(ah, art ), (5)

where H(ah, ar) is a prior knowledge of reward, rep-
resenting the amount of how much the robot helped
the human by performing the robot action ar before
the human action ah. If the robot action ar has no
relationship with ah, the H value is zero. If the robot
helped, the H value is positive, otherwise negative.

• Execution delay: There may be a delay in the robot
motion’s execution due to the collision avoidance with
the human. To avoid collisions, the robot may deviate
around the human and make it without delay. In this case
the reward function is not affected, i.e. Rdelay,t = 0.
However, there are cases that the robot must wait until
the human moves to another pose because the human
can block the robot’s path, which causes delay d. We
penalize the amount of delay to the reward function, i.e.
Rdelay,t = −d. Note that the delay can vary during each
iteration due to the human motion uncertainty.

The total reward value is a weighted sum of both factors:

Rt+1 =wprepRprep(pt, a
r
t ) + wdelayRdelay,t(pt, a

r
t ),

where wprep and wdelay are weights for scaling the two
factors. The preparation reward value is predefined for each
action pairs. The delay reward is measured during runtime.

V. INTENTION-AWARE MOTION PLANNING

Out motion planner is based on an optimization formulation,
where n+ 1 waypoints in the space-time domain Q define a
robot motion trajectory to be optimized. Specifically, we use
an optimization-based planner, ITOMP [24], that repeatedly
refines the trajectory while interleaving the execution and
motion planning for dynamic scenes. We handle three types
of constraints: smoothness constraint, static obstacle collision-
avoidance, and dynamic obstacle collision avoidance. To deal
with the uncertainty of future human motion, we use proba-
bilistic collision detection between the robot and the predicted
future human pose.

Let s be the current waypoint index, meaning that the
motion trajectory is executed in the time interval [t0, ts], and
let m be the replanning time step. A cost function for collisions
between the human and the robot can be given as:

s+2m∑
i=s+m

p

⋃
j,k

Bjk(qi) ∩ Cdyn(ti) 6= ∅

 (6)

where Cdyn(t) are the workspace volumes occupied by dy-
namic human obstacles at time t. The trajectory being opti-
mized during the time interval [ts, ts+m] is executed during the
next time interval [ts+m, ts+2m]. Therefore, the future human
poses are considered only in the time interval [ts+m, ts+2m].



The collision probability between the robot and the dynamic
obstacle at time frame i in (6) can be computed as a maximum
between bounding spheres:

max
j,k,l

p (Bjk(qi) ∩ Cl(ti) 6= ∅) , (7)

where Cl(ti) denotes bounding spheres for a human body at
time ti whose centers are located at line segments between
human joints. The future human poses ξfuture are predicted
in (4) and the bounding sphere locations Cl(ti) are derived
from it. Note that the probabilistic distribution of each element
in ξfuture is a linear combination of current action proposal
p(ch|F,p) and Gaussians p(ξfuture|F,p, ch) over all ch, i.e.,
(7) can be reformulated as

max
j,k,l

∑
ch

p(ch|F,p)p (Bjk(qi) ∩ Cl(ti) 6= ∅) .

Let z1l and z2l be the probability distribution functions of
two adjacent human joints obtained from ξfuture(ti), where
the center of Cl(ti) is located between them by a linear
interpolation Cl(ti) = (1 − u)z1l + uz2l where 0 ≤ u ≤ 1.
The joint positions follows Gaussian probability distributions:

zil ∼ N (µil,Σ
i
l)

cl(ti) ∼ N ((1− u)µ1
l + uµ2

l , (1− u)2Σ1
l + u2Σ2

l ) (8)
= N (µl,Σl), (9)

where cl(ti) is the center of Cl(ti). Thus, the collision
probability between two bounding spheres is bounded by∫

IR3

I(||x− bjk(qi)||2 ≤ (r1 + r2)2)f(x)dx, (10)

where bjk(qi) is the center of bounding sphere Bjk(qi), r1
and r2 are the radius of Bjk(qi) and Cl(ti), respectively, I(·)
is an indicator function, and f(x) is the probability distribution
function. The indicator function restricts the integral domain
to a solid sphere, and f(x) is the probability density function
of cl(ti), in (9). There is no closed form solution for (10),
therefore we use the maximum possible value to approximate
the probability. We compute xmax at which f(x) is maximized
in the sphere domain and multiply it by the volume of sphere,
i.e.

p (Bjk(qi) ∩ Cl(ti) 6= ∅) ≤
4

3
π(r1 + r2)2f(xmax). (11)

Since even xmax does not have a closed form solution, we
use the bisection method to find λ with

xmax = (Σ−1 + λI)−1(Σ−1plm + λojk(qi)),

which is on the surface of sphere, explained in Generalized
Tikhonov regularization [12] in detail.

The collision probability, computed in (10), is always posi-
tive due to the uncertainty of the future human position, and we
compute a trajectory that is guaranteed to be nearly collision-
free with sufficiently low collision probability. For a user-
specified confidence level δCL, we compute a trajectory that
its probability of collision is upper-bounded by (1 − δCL).

If it is unable to compute a collision-free trajectory, a new
waypoint qnew is appended next to the last column of Q
to make the robot wait at the last collision-free pose until
it finds a collision-free trajectory. This approach computes a
guaranteed collision-free trajectory, but leads to delay, which
is fed to the Q-learning algorithm for the MDP task planner.
The higher the delay that the collision-free trajectory of a task
has, the less likely the task planner selects the task again.

VI. ANALYSIS

The overall performance is governed by three factors:
the predicted human motions described in Section IV; The
optimization-based motion planner described in Section V;
and the collision probability between the robot and predicted
human motions for safe trajectory computation. In this section,
we analyze the performance and accuracy of each factor.

A. Upper bound of Collision Probability

Using the predicted distribution and user-specified threshold
δCL, we can compute an upper bound using the following
lemma.

Lemma 1. The collision probability is less than (1− δCL) if
4
3π(r1 + r2)2f(xmax) < 1− δCL.

Proof: This bounds follows Equation (10) and (11).

p (Bjk(qi) ∩ Cl(ti) 6= ∅) ≤
4

3
π(r1 + r2)2f(xmax) < 1− δCL.

We use this bound in our optimization algorithm for colli-
sion avoidance.

B. Safe Trajectory Optimization

Our goal is to compute a robot trajectory that will either
not collide with the human or reduces the probability of
collision below a certain threshold. Sometimes, there is no
feasible collision-free trajectory that the robot cannot avoid
with the human. However, if there is any trajectory where
the collision probability is less than a threshold, we seek to
compute such a trajectory. Our optimization-based planner also
generates multiple initial trajectories and finds the best solution
in parallel. In this manner, it expands the search space and
reduces the probability of the robot being stuck in a local
minima configuration. This can be expressed as the following
theorem:

Theorem 2. An optimization-based planner with n parallel
threads will compute the a global solution trajectory with
collision probability less than (1− δCL), with the probability
1 − (1 − |A(δCL)|

|S| )n, if it exists, where S is the entire search
space. A(δCL) corresponds to the neighborhood around the
optimal solutions, with collision probability being less than
(1−δCL), where the local optimization converges to one of the
global optima. |·| is the measure of the search or configuration
space.

We give a brief overview of the proof. In this case, |A(δCL)|
|S|

measures the probability that a random sample lies in the



neighborhood of the global optima. In general, |A(δCL)| will
be smaller as the environment becomes more complex and has
more local minima. Overall, this theorem provides a lower
bound on the probability that our intention-aware planner
with n threads. In the limit that n increases, the planner will
compute the optimal solution if it exist. This can be stated as:

Corollary 2.1 (Probabilistic Completeness). Our intention-
aware motion planning algorithm with n trajectories is prob-
abilistic complete, as n increases.

Proof:

lim
n→∞

1−
(

1− |A(δCL)|
|S|

)n
= 1.

VII. IMPLEMENTATION AND PERFORMANCE

We highlight the performance of our algorithm in a situation
where the robot is performing a collaborative task with a
human and computing safe trajectories. We use a 7-DOF
KUKA-IIWA robot arm. The human motion is captured by
a Kinect sensor operating with a 15Hz frame rate, and only
upper body joints are tracked for collision checking. We use
the ROS software [31] for robot control and sensor data
communication. The motion planner has a 0.5s re-planning
timestep, The number of pseudo-inputs M of SPGPs is set to
100 so that the prediction computation is performed online.

In the simulated benchmark scenario, the human is sitting
in front of a desk. In this case, the robot arm helps the
human by delivering objects from one position that is far away
from the human to target position closer to the human. The
human waits till the robot delivers the object. As different
tasks are performed in terms of picking the objects and
their delivery to the goal position, the temporal coherence
is used to predict the actions. The action set for a human
is Ah = {Take0 ,Take1 , · · · }, where Takei represents an
action of taking object i from its current position to the
new position. The action set for the robot arm is defined as
Ar = {Fetch0 ,Fetch1 , · · · }.

To evaluate the quality of anticipated trajectory of human
motion, modified Hausdorff distance (MHD) [7] between
the ground-truth human trajectory and the predicted mean
trajectory is used. In our experiments, MHD is measured for
an actively moving hand joint over 1 second.

We also measured the smoothness of robot’s trajectory with
and without human motion prediction results. The smoothness
is computed as

1

T

∫ T

0

n∑
i=1

q̈i(t)
2, (12)

where the two dots indicate acceleration of joint angles.
Table I highlights the performance of our algorithm in three

different variations of this scenario: arrangements of blocks,
task order and confidence level. The numbers in the ”Task
Order” column indicates the identifiers of human actions.
Parentheses mean that the human actions in the parentheses

can be performed in any order. Arrows mean that the right
actions can be performed only if the left actions are done.
For example, (0, 1) → (2, 3) means that the possible action
orders are 0 → 1 → 2 → 3, 0 → 1 → 3 → 2,
1 → 0 → 2 → 3 and 1 → 0 → 3 → 2. Table II shows the
performance of our algorithm with a real robot. Our algorithm
has been implemented on a PC with 8-core i7-4790 CPU. We
used OpenMP to parallelize the computation of future human
motion prediction and probabilistic collision checking.

A. Benefits of our Prediction Algorithm

(a) (b) (c)

Fig. 4: Different block arrangements: Different arrange-
ments in terms of the positions of the blocks, results in different
human motions and actions. Our planner computes their intent
for safe trajectory planning. The different arrangements are:
(a) 1× 4. (b) 2× 2. (c) 2× 4.

In the Different Arrangements scenarios, the position and
layout of the blocks changes. Fig. 4 shows three different
arrangements of the blocks: 1 × 4, 2 × 2 and 2 × 4. In the
two cases 2 × 2 and 2 × 4, where positions are arranged in
two rows unlike the 1 × 4 scenario, the human arm blocks
a movement from a front position to the back position. As a
result, the robot needs to compute its trajectory accordingly.

Depending on the temporal coherence present in the human
tasks, the human intention prediction may or may not improve
the performance of our the task planner. It is shown in the
Temporal Coherence scenarios. In the sequential order coher-
ence, the human intention is predicted accurately with our
approach with 100% certainty. In the random order, however,
the human intention prediction step is not accurate until the
human hand reaches the specific position. The personal order
varies for each human, and reduces the possibility of predicting
the next human action. When the right arm moves forward a
little, Fetch0 is predicted as the human intention with a high
probability whereas Fetch1 is predicted with low probability,
even though position 1 is closer than position 0.

In the Confidence Level scenarios, we analyze the effect
of confidence level δCD on the trajectory computed by the
planner, the average task completion time, and the average
motion planning time. As the confidence level becomes higher,
the robot may not take the smoothest and shortest path so as
to compute a collision-free path that is consistent with the
confidence level.

In all cases, we observe the prediction results in smoother
trajectory, using the smoothness metric defined as Equation
(12). This is because the robot changes its path in advance
before the human obstacle actually blocks the robot’s shortest
path if human motion prediction is used.



Scenarios Arrangement Task Order Confidence
Level

Average
Prediction Time MHD Smoothness

No Pred. Pred.

Different Arrangements
1× 4 (0, 1)→ (2, 3) 0.95 52.0 ms 6.7 cm 2.96 1.08
2× 2 (1, 5)→ (2, 6) 0.95 72.4 ms 6.2 cm 5.78 1.04
2× 4 (0, 4)→ (1, 5)→ (2, 6)→ (3, 7) 0.95 169 ms 10.4 cm 4.82 1.15

Temporal Coherence
1× 4 0→ 1→ 2→ 3 0.95 52.1 ms 4.3 cm 1.79 0.65
1× 4 Random 0.95 105 ms 8.2 cm 5.49 1.21
1× 4 (0, 2)→ (1, 3) 0.95 51.7 ms 6.8 cm 3.21 1.00

Confidence Level
1× 4 0→ (1, 2)→ 3 0.90 47.2 ms

7.9 cm
2.90 1.17

1× 4 0→ (1, 2)→ 3 0.95 50.7 ms 3.12 1.28
1× 4 0→ (1, 2)→ 3 0.99 155 ms 3.76 1.40

TABLE I: Performance of our planner in three different scenarios: Different Arrangements, Temporal Coherence and Confidence
Level. We take into account different arrangement of blocks as well as the confidence levels used for probabilistic collision
checking. These confidence levels are used for motion prediction. The prediction results in smoother trajectory and we observe
up to 4X improvement in our smoothness metric defined in Equation (12). The overall planner runs in realtime.

Scenarios Average
Prediction Time MHD Smoothness

No Pred. Pred.
Waving Arms 20.9 ms 5.0 cm 4.88 0.91

Moving Cans (Table) 51.7 ms 7.3 cm 5.13 1.04

TABLE II: Performance of the planner with a real robot
running on the 7-DOF Fetch robot next to dynamic human ob-
stacles. The online motion planner computes safe trajectories
for challenging benchmark like ”moving cans”. We observe
almost 5X improvement in the smoothness of the trajectory
due to our prediction algorithm.

(a) (b) (c)

Fig. 5: Probabilistic collision checking with different con-
fidence levels: A collision probability less (1− δCD) implies
a safe trajectory. The current pose (i.e., blue spheres) and the
predicted future pose (i.e. red spheres) are shown. The robot’s
trajectory avoids these collisions before the human performs
its action. The higher the confidence level is, the longer the
distance between the human arm and the robot trajectory. (a)
δCD = 0.90. (b) δCD = 0.95. (c) δCD = 0.99.

B. Evaluation using 7-DOF Fetch Robot

We integrated our planner with the 7-DOF Fetch robot arm
and evaluted in complex 3D workspaces. The robot delivers
four soda cans from start locations to target locations on a
desk. At the same time, the human sitting in front of the
desk picks up and takes away the soda cans delivered to the
target positions by the robot, which can cause collisions with
the robot arm. In order to evaluate the collision avoidance
capability of our approach, the human intentionally starts
moving his arm to a soda can at a target location, blocking
the robot’s initially planned trajectory, when the robot is de-
livering another can moving fast. Our intention aware planner
avoids collisions with the human arm and results in a smooth
trajectory compared to motion planner results without human
motion prediction.

Figure 1 shows two sequences of robot’s trajectories. In the

first row, the robot arm trajectory is generated an ITOMP [24]
re-planning algorithm without human motion prediction. As
the human and the robot arm move too fast to re-plan collision-
free trajectory. As a result, the robot collides (the second
figure) or results in a jerky trajectory (the third figure). In
the second row, our human motion prediction approach is
incorporated as described in Section V. The robot re-plans
the arm trajectory before the human actually blocks its way,
resulting in collision-free path.

VIII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We present a novel intention-aware planning algorithm
to compute safe robot trajectories in dynamic environments
with humans performing different actions. Our approach uses
offline learning of human motions and can account for large
noise in terms of depth cameras. At runtime, our approach
uses the learned human actions to predict and estimate the
future motions. We use upper bounds on collision guarantees
to compute safe trajectories. We highlight the performance of
our planning algorithm in complex benchmarks for human-
robot cooperation in both simulated and real world scenarios
with 7-DOF robots.

Our approach has some limitations. As the number of hu-
man action types increases, the number of states of MDP can
increase significantly. Partially Observable MDP (POMDP)
for robot motion planning under uncertainty [19] can be a
better approach in this case, for the sake of running time.
Our probabilistic collision checking formulation is limited
to environment uncertainty and does not take into account
robot control errors. The performance of motion prediction
algorithm depends on the variety and size of the learned
data. Currently, we use supervised learning with labeled action
types, but it would be useful to explore unsupervised learning
based on appropriate action clustering algorithms. In particu-
lar, we would to measure the impact of robot actions on human
motion, and thereby establish a two-way coupling between
robot and human actions.
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