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Abstract
We present a motion planning algorithm to compute collision-free and smooth trajectories for high-DOF robots
interacting with humans in a shared workspace. Our approach uses offline learning of human actions along with
temporal coherence to predict the human actions. Our intention-aware online planning algorithm uses the learned
database to compute a reliable trajectory based on the predicted actions. We represent the predicted human motion
using a Gaussian distribution and compute tight upper bounds on collision probabilities for safe motion planning. We
also describe novel techniques to account for noise in human motion prediction. We highlight the performance of our
planning algorithm in complex simulated scenarios and real-world benchmarks with 7-DOF robot arms operating in
a workspace with a human performing complex tasks. We demonstrate the benefits of our intention-aware planner in
terms of computing safe trajectories in such uncertain environments.
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Introduction

Motion planning algorithms are used to compute collision-
free paths for robots among obstacles. As robots are
increasingly used in workspace with moving or unknown
obstacles, it is important to develop reliable planning
algorithms that can handle environmental uncertainty and
the dynamic motions. In particular, we address the problem
of planning safe and reliable motions for a robot that is
working in environments with humans. As the humans move,
it is important for the robots to predict the human actions
and motions from sensor data and to compute appropriate
trajectories.

In order to compute reliable motion trajectories in such
shared environments, it is important to gather the state
of the humans as well as predict their motions. There is
considerable work on online tracking and prediction of
human motion in computer vision and related areas Shotton
et al. (2013). However, the current state of the art in
gathering motion data results in many challenges. First of
all, there are errors in the data due to the sensors (e.g.,
point cloud sensors) or poor sampling Choo et al. (2014).
Secondly, human motion can be sudden or abrupt and this
can result in various uncertainties in terms of accurate
representation of the environment. One way to overcome
some of these problems is to use predictive or estimation
techniques for human motion or actions, such as using
various filters like Kalman filters or particle filters Vasquez
et al. (2009). Most of these prediction algorithms use a
motion model that can predict future motion based on the
prior positions of human body parts or joints, and corrects
the error between the estimates and actual measurements.
In practice, these approaches only work well when there
is sufficient information about prior motion that can be

accurately modeled by the underlying motion model. In
some scenarios, it is possible to infer high-level human intent
using additional information, and thereby perform a better
prediction of future human motions Bandyopadhyay et al.
(2013); Bera et al. (2016). These techniques are used to
predict the pedestrian trajectories based on environmental
information in 2D domains.
Main Results: We present a novel high-DOF motion
planning approach to compute collision-free trajectories
for robots operating in a workspace with human-obstacles
or human-robot cooperating scenarios (I-Planner). Our
approach is general, and doesn’t make much assumptions
about the environment or the human actions. We track
the positions of the human using depth cameras and
present a new method for human action prediction using a
combination of classification (to predict the type of human
motion) and regression (to predict the actual future human
motion) methods. Given the sensor noises and prediction
errors, our online motion planner uses probabilistic collision
checking to compute a high dimensional robot trajectory that
tends to compute safe motion in the presence of uncertain
human motion. In contract to prior methods, the main
benefits of our approach include:
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Figure 1. A 7-DOF Fetch robot is moving its arm near a
human, avoiding collisions. (a) While the robot is moving, the
human tries to move his arm to block the robot’s path. The robot
arm trajectory is planned without human motion prediction,
which may result in collisions and a jerky trajectory, as shown
with the red circle. This is because the robot cannot respond to
the human motion to avoid collisions. (b) The trajectory is
computed using our human motion prediction algorithm; it
avoids collisions and results in smoother trajectories. The robot
trajectory computation uses collision probabilities to anticipate
the motion and compute safe trajectories.

1. A novel data-driven algorithm for intention and motion
prediction, given noisy point cloud data. Compared to
prior methods, our formulation can account for big
noise in skeleton tracking in terms of human motion
prediction.

2. An online high-DOF robot motion planner for
efficient completion of collaborative human-robot
tasks that uses upper bounds on collision probabilities
to compute safe trajectories in challenging 3D
workspaces. Furthermore, our trajectory optimization
based on probabilistic collision checking results in
smoother paths.

We highlight the performance of our algorithms in a
simulator with a 7-DOF KUKA arm operating and in a real
world setting with a 7-DOF Fetch robot arm in a workspace
with a moving human performing cooperative tasks. We have
evaluated its performance in some challenging or cluttered
3D environments where the human is close to the robot
and moving at varying speeds. We demonstrate the benefits
of our intention-aware planner in terms of computing safe
trajectories in these scenarios. A preliminary version of
this paper was published Park et al. (2017c). As compared
to Park et al. (2017c), we improve the human motion
prediction algorithm using depth sensor data. We present a
mathematical analysis of the robustness of our prediction
algorithm and highlight its benefits and improved accuracy
for challenging scenarios. We also analyze the performance
of our algorithm with varying human motion speeds.

Related work

In this section, we give a brief overview of prior work on
human motion prediction, task planning for human-robot
collaborations, and motion planning in environments shared
with humans.

Intention-aware motion planning and prediction

Intention-Aware Motion Planning (IAMP) denotes a motion
planning framework where the uncertainty of human
intention is taken into account Bandyopadhyay et al. (2013).
The goal position and the trajectory of moving pedestrians
can be considered as human intention and used so that a
moving robot can avoid pedestrians Unhelkar et al. (2015).

In terms of robot navigation among obstacles and
pedestrians, accurate predictions of humans or other
robot positions are possible based on crowd motion
models Fulgenzi et al. (2007); van den Berg et al. (2008)
or integration of motion models with online learning
techniques Kim et al. (2014) for 2D scenarios and they are
orthogonal to our approach.

Predicting the human actions or the high-DOF human
motions has several challenges. Estimated human poses
from recorded videos or realtime sensor data tend to be
inaccurate or imperfect due to occlusions or limited sensor
ranges Choo et al. (2014). Furthermore, the whole-body
motions and their complex dynamics with many high-DOF
makes it difficult to represent them with accurate motion
models Hofmann and Gavrila (2012). There has been a
considerable literature on recognizing human actions Turaga
et al. (2008). Machine learning-based algorithms using
Gaussian Process Latent Variable Models (GP-LVM) Ek
et al. (2007); Urtasun et al. (2006) or Recurrent neural
network (RNN) Fragkiadaki et al. (2015) have been proposed
to compute accurate human dynamics models. Recent
approaches use the learning of human intentions along with
additional information, such as temporal relations between
the actions Nikolaidis et al. (2013); Hawkins et al. (2013) or
object affordances Koppula and Saxena (2016) to improve
the accuracy. Inverse Reinforcement Learning (IRL) has
been used to predict 2D motions Ziebart et al. (2008);
Kuderer et al. (2012) or 3D human motions Dragan and
Srinivasa (2013).

Robot task planning for human-robot
collaboration

In human-robot collaborative scenarios, robot task planning
algorithms have been developed for the efficient distribution
of subtasks. One of their main goal is reducing the
completion time of the overall task by interleaving subtasks
of robot with subtasks of humans with well designed task
plans. In order to compute the best action policy for a
robot, Markov Decision Processes (MDP) have been widely
used Busoniu et al. (2008). Nikolaidis et al. (2013) use
MDP models based on mental model convergence of human
and robots. Koppula et al. (2016) use Q-learning to train
MDP models where the graph model has the transitions
corresponding to the human action and robot action pairs.
Pérez-D’Arpino and Shah (2015) used a Bayesian learning
algorithm on hand motion prediction and tested the algorithm
in a human-robot collaboration tasks. Our MDP models
extend these approaches, but also take into account the issue
of avoiding collisions between the human and the robot.
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Motion planning in environments shared with
humans
Prior work on motion planning in the context of
human-robot interaction has focused on computing robot
motions that satisfy cognitive constraints such as social
acceptability Sisbot et al. (2007) or being legible to
humans Dragan et al. (2015).

In human-robot collaboration scenarios where both the
human and the robot perform manipulation tasks in a shared
environment, it is important to compute robot motions
that avoid collisions with the humans for safety reasons.
Dynamic window approach Fox et al. (1997) (which searches
the optimal velocity in a short time interval) and online
replanning Petti and Fraichard (2005); Park et al. (2012,
2013) (which interleaves planning with execution) are widely
used approaches for planning in such dynamic environments.
As there are uncertainties in the prediction model and in
the sensors for human motion, the future pose is typically
represented as the Belief state, which corresponds to the
probability distribution over all possible human states.
Mainprice and Berenson (2013) explicitly construct an
occupied workspace voxel map from the predicted Belief
states of humans in the shared environment and avoid
collisions.

Partially Observable Markov Decision Process (POMDP)
techniques are widely used for motion planning with
uncertainty in the robot state and in the environment. These
approaches estimate the robot environment states, represent
them in a probabilistic manner, and tend to compute the
best action or the best robot trajectory considering likely
possibilities. Because the search space of the exact POMDP
formulation is too large, many practical and approximate
POMDP solutions have been proposed Kurniawati et al.
(2011); Van Den Berg et al. (2012) to reduce the running
time and obtain almost realtime performance. Bai et al.
(2015) use an approximate and realtime POMDP motion
planner on autonomous driving carts. Our algorithm solves
the problem in two steps: first, the future human motion
trajectory is predicted; second, our planning algorithm
generates a collision-free trajectory by considering the
predicted trajectory. Our current formulation does not fully
account for the uncertainty in the robot state and can be
combined with POMDP approaches to handle this issue.

Notation and assumptions

In this section, we first introduce the notation and
terminology used in the paper and give an overview of our
motion planning algorithms.

In the context of this paper, we use the term human
‘intention’ as a predetermined simple action to interact with
the robotic environment. This is in the user’s mind before
the action is taken. The intention is a combination of what to
do (e.g. reaching his/her hand to grab an object) and how to
achieve it (e.g. moving his/her arm from an idle pose to the
cup while avoiding the robot). More formally in the context
of learning algorithms, the former is the action class in a
discrete domain, the latter is a set of possible motions in a
continuous domain, and ‘intention’ is a combination of both
components.

I-Planner (Intention-Aware Motion Planner) is our robot
motion planning algorithm that predicts human intentions
and plans robot motions with the information of the predicted
human intentions, given a whole task to be completed by
the human and the robot working cooperatively. A task
consists of multiple subtasks that the human or the robot can
accomplish. The goal of I-Planner is to complete the given
task efficiently, while guaranteeing safety for the human
by avoiding any collisions. We specifically focus on three
parts: predicting human intention in a short time window,
determining a subtask for the robot to be achieved next, and
planning a robot’s motion trajectory that avoids the human
for his/her safety. The predicted human action class (the first
component of ‘intention‘) is used in determining a subtask
for the robot. The predicted human motion trajectory (the
second component of ‘intention’) is used in planning the
robot trajectory.

As we need to learn about human actions and short-
term motions, a large training dataset of human motions
is needed. We collect N demonstrations of how human
joints typically move while performing some tasks and in
which order subtasks are performed. Each demonstration is
represented using T (i) time frames of human joint motion,
where the superscript (i) represents the demonstration index.
The motion training dataset is represented as following:

• ξ is a matrix of tracked human joint motions. ξ(i)

has T (i) columns, where a column vector represents
the different human joint positions during each time
frame.

• F is a feature vector matrix. F (i) has T (i) columns and
is computed from ξ(i).

• ah is a human action (or subtask) sequence vector that
represents the action labels over different time frames.
For each time frame, the action is categorized into one
of themh discrete action labels, where the action label
set is Ah = {ah1 , · · · , ahmh}.

• L = {(ξ(i), F (i),ah,(i))}Ni=1 is the motion database
used for training. It consists of human joint motions,
feature descriptors and the action labels at each time
frame.

During runtime, MDP-based human action inference is
used in our task planner. The MDP model is defined as a
tuple (P,Ar, T ):

• Ar = {ar1, · · · , armr} is a robot action (or subtask) set
of mr discrete action labels.

• P = P(Ar ∪Ah), a power set of union of Ar and
Ah, is the set of states in MDP. We refer to the state
p ∈ P as a progress state because each state represents
which human and robot actions have been performed
so far. We assume that the sequence of future actions
for completing the entire task depends on the list of
actions completed. p has mh +mr binary elements,
which represent corresponding human or robot actions
have been completed (pj = 1) or not (pj = 0). For
cases where same actions can be done more than once,
the binary values can be replaced with integers, to
count the number of actions performed.

• T : P ×Ar → Π(P ) is a transition function. When a
robot performs an action ar in a state p, T (p, ar) is a
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Figure 2. Overview of our Intention-Aware Planner: Our
approach consists of three main components: task planner,
trajectory optimization, and intention and motion estimation.

probability distribution over the progress state set P .
The probability of being state p′ after taking an action
ar from state p is denoted as T (p, ar,p′).
• π : P → Ar is the action policy of a robot. π(p)

denotes the best robot action that can be taken at state
p, which results in maximal performance.

We use Q-learning Sutton and Barto (1998) to determine the
best action policy during a given state, which rewards the
values that are induced from the result of the execution.

For the robot representation, we denote a single
configuration of the robot as a vector q that consists of
joint-angles. The n-dimensional space of configuration q is
the configuration space C. We represent each link of the
robot as Ri. The finite set of bounding spheres for link Ri
is {Bi1, Bi2, · · · }, and is used as a bounding volume of
the link, i.e., Ri ⊂ ∪jBij . The links and bounding spheres
at a configuration q are denoted as Ri(q) and Bij(q),
respectively. In our benchmarks, where the robot arms are
used, these bounding spheres are automatically generated
using the medial axis of robot links. We also generate
the bounding spheres {C1, C2, · · · } for humans and other
obstacles.

For a planning task with start and goal configurations qs
and qg , the robot’s trajectory is represented by a matrix Q,

Q =

[
qs q1 · · · qn−1 qg
t0 t1 · · · tn−1 tn

]
,

where robot trajectory passes through the n+ 1 waypoints.
We denote the i-th waypoint of Q as xi =

[
qTi ti

]
.

Human action prediction
In this section, we describe our human action prediction
algorithm, which consists of offline learning and online
inference of actions.

Learning of human actions and temporal
coherence
We collect N demonstrations to form a motion database L.
The 3D joint positions are tracked using OpenNI library Pri
(2010), and their coordinates are concatenated to form a
column vector ξ(i). For full-body motion prediction, we used
21 joints, each of which has 3D coordinates tracked by
OpenNI. So, ξ(i) is a 63-dimensional vector. For upper-body
motion prediction, there are 10 joints and thus ξ(i) is length
30. Then, feature vector F (i) is derived from ξ(i). It has joint
velocities and joint accelerations, as well as joint positions.

(a) (b)

Figure 3. Motion uncertainty and prediction: (a) A point cloud
and the tracked human (blue spheres). The joint positions are
used as feature vectors. (b) Prediction of next human action and
future human motion, where 4 locations are colored according
to their probability of next human action from white (0%) to
black (100%). Prediction of future motion after 1 second (red
spheres) from current motion (blue spheres) is shown as
performing the action: move right hand to the second position
which has the highest probability associated with it.

To learn the temporal coherence between the actions, we
deal with only the human action sequences {ah,(i)}Ni=1.
Based on the progress state representation, for any time
frame s, the prefix sequence of ah,(i) of length s yields a
progress state p(i)

s and the current action ch,(i)s = a
h,(i)
s . The

next action label nh,(i)s performed after frame s can also be
computed, at which the action label differs at the first time
while searching in the increasing order from frame s+ 1.
Then, for all possible pairs of demonstrations and frame
index (i, s), the tuples (p

(i)
s , c

h,(i)
s , n

h,(i)
s ) are collected to

compute histograms h(nh;p, ch), which counts the next
action labels at each pair (p, ch) that have appeared at least
once. We use the normalized histograms to estimate the next
future action for the given p and ch. i.e.,

p(nh = ahj |p, ch) =
h(ahj ;p, ch)
m∑
k=1

h(ahk ;p, ch)
. (1)

In the worst case, there are at most O(2m) progress states
since there are m binary values per action. However, in
practice, only O(N ·m) progress states are generated. This
is because the number of unique progress states is less than
m, and the subtask order dependency may allow only a few
possible topological orders.

In order to train the human motion, the motion sequence
ξ(i) and the feature sequence F (i) are learned, as well as the
action sequences a(i). Because we are interested in short-
term human motion prediction for collision avoidance, we
train the learning module from multiple short periods of
motion. Let np be the number of previous consecutive frames
and nf be the number of future consecutive frames to look
up. nf and np are decided so that the length of motion is
short-term motion (about 1 second) that will be used for
short-term future collision detection in the robot motion
planner. At the time frame s, where np ≤ s ≤ T (i) − nf ,
the columns of feature matrix F (i) from column index s−
np + 1 to s are denoted as F (i)

prev,s. Similarly, the columns
of motion matrix from index s+ 1 to s+ nf are denoted as
ξ
(i)
next,s.
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Tuples (F
(i)
prev,s,p

(i)
s , c

h(i)
s , ξ

(i)
next,s) for all possible pairs

of (i, s) are collected as the training input. They are
partitioned into groups having the same progress state p.
For each progress state p and current action ch, the set of
short-term motions are regressed using SPGP with the DTW
kernel function Müller (2007), considering {Fprev} as input
and {ξnext} as multiple channeled outputs. We use SPGPs,
a variant of Gaussian Processes, because it significantly
reduces the running time for training and inference by
choosing M pseudo-inputs from a large number of an
original human motion inputs. The final learned probability
distribution is

p(ξnext|Fprev,p, ch) =
∏

c:channels

p(ξnext,c|Fprev,p, ch),

p(ξnext,c|Fprev,p, ch) ∼ GP(mc,Kc), (2)

where GP(·, ·) represents trained SPGPs, c is an output
channel (i.e., an element of matrix ξnext), and mc and Kc

are the learned mean and covariance functions of the output
channel c, respectively.

The current action label c
h,(i)
s should be learned to

estimate the current action. We train c
h,(i)
s using Tuples

(F
(i)
prev,s,p

(i)
s , c

h(i)
s ). For each state p, we use Import

Vector Machine (IVM) classifiers to compute the probability
distribution:

p(ch = ahj |Fprev,p) =
exp(fj(Fprev))∑
ahk

exp(fk(Fprev))
, (3)

where fj(·) is the learned predictive function Zhu and Hastie
(2012) of IVM.

Runtime human intention and motion inference
Based on the learned human actions, at runtime we
infer the next most likely short-term human motion and
human subtask for the purpose of collision avoidance and
task planning, respectively. The short-term future motion
prediction is used for the collision avoidance during the
motion planning. The probability of future motion is given
as:

p(ξnext|F,p) =
∑
ch∈Ah

p(ξnext, c
h|F,p).

By applying the Bayes theorem, we get

p(ξnext|F,p) =
∑
ch∈Ah

p(ch|F,p)p(ξnext|F,p, ch). (4)

The first term p(ch|F,p) is inferred through the IVM
classifier in (3). To infer the second term, we use the
probability distribution in (2) for each output channel.

We use Q-learning for training the best robot action
policy π in our MDP-based task planner. We first define the
function Q : P ×Ar → IR, which is iteratively trained with
the motion planning executions. Q is updated as

Qt+1(pt, a
r
t ) =(1− αt)Qt(pt, art )

+ αt(Rt+1 + γmax
ar

Qt(pt+1, a
r)),

where the subscripts t and t+ 1 are the iteration indexes,
Rt+1 is the reward function after taking action art at state

pt, and αt is the learning rate, where we set αt = 0.1 in our
experiments. A reward value Rt+1 is determined by several
factors:

• Preparation for next human action: the reward gets
higher when the robot runs an action before a human
action which can be benefited by the robot’s action.
We define this reward as Rprep(pt, art ). Because the
next human subtask depends on the uncertain human
decision, we predict the likelihood of the next subtask
from the learned actions in (1) and use it for the reward
computation. The reward value is given as

Rprep(pt, a
r
t ) =

∑
ah∈Ah

p(nh = ah|pt)H(ah, art ),

(5)
where H(ah, ar) is a prior knowledge of reward,
representing the amount of how much the robot helped
the human by performing the robot action ar before
the human action ah. If the robot action ar has no
relationship with ah, the H value is zero. If the robot
helped, the H value is positive, otherwise negative.

• Execution delay: There may be a delay in the robot
motion’s execution due to the collision avoidance with
the human. To avoid collisions, the robot may deviate
around the human and make it without delay. In this
case the reward function is not affected, i.e.Rdelay,t =
0. However, there are cases that the robot must wait
until the human moves to another pose because the
human can block the robot’s path, which causes delay
d. We penalize the amount of delay to the reward
function, i.e. Rdelay,t = −d. Note that the delay can
vary during each iteration due to the human motion
uncertainty.

The total reward value is a weighted sum of both factors:

Rt+1 =wprepRprep(pt, a
r
t ) + wdelayRdelay,t(pt, a

r
t ),

where wprep and wdelay are weights for scaling the two
factors. The preparation reward value is predefined for each
action pairs. The delay reward is measured during runtime.

Human motion prediction with noisy input
In most scenarios, our human motion prediction algorithm
deals with the noisy data. As a result, it is important to
analyze the performance of our approach in relation to these
limitations. To analyze the robustness of our human motion
prediction algorithm, we account for input noise in our
Gaussian Process model.

Equation 2 is the Gaussian Process Regression for human
motion prediction where the input variable is Fprev and
the output variables are represented asξnext,c. Following the
standard notation of the Gaussian Process, we use the symbol
x as a D-dimensional input vector instead of Fprev , y as an
output variable instead of ξnext,c, and y = f(x) + εy instead
of p(ξnext,c|Fprev) GP(mc,Kc). We add an input noise term
εx to the standard GP model,

y = ỹ + εy, εy ∼ N (0, σ2
y),

x = x̃ + εx, εx ∼ N (0,Σx),
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where we assume that the input noise is Gaussian and that the
D-dimensional input vector is independently noised, i.e. Σx
is diagonal. With the input noise term, the output becomes

y = f(x̃ + εx) + εy,

and the first term Taylor expansion on the function f yields

y = f(x̃) + εTx ∂f (x) + εy,

where ∂f (x) is the D-dimensional derivative of f with
respect to x. We have N training data items, represented as
(xi, yi)

N
i=1. y is an N -dimensional vector {y1, · · · , yN}T .

If we follow the derivation of the Gaussian Process (GP)
with the additional error term presented in McHutchon and
Rasmussen (2011), GP with noisy input becomes

mc(x∗) = k∗
(
K + σ2

yI + diag
(
∆fΣx∆T

f

))−1
y,

Kc(x∗) = k∗∗ − k∗
(
K + σ2

yI + diag (∆fΣx∆f )
)−1

k∗,

where x∗ is the input of the mean function mc and of the
variance function Kc; k∗∗ is the kernel function value on
x∗, i.e. k∗∗ = k(x∗,x∗); K is a matrix of kernel function
values on all pairs of input points, i.e. Kij = k(xi,xj); and
∆f is a matrix whose i-th row is the derivative of f at xi.
diag(·) results in a diagonal matrix, leaving the diagonal
elements and reducing the non-diagonals to zero. Compared
to the standard GP, the additional term is the diagonal matrix
diag (∆fΣx∆f ), which acts as the output noise term σyI .

In our human motion prediction algorithm, we use the
human joint positions as input and output, so the input and
the output have the same amount of noise. In other words,
Σx = σxI and σx = σy . Instead of differentiating between
input and output noise, we use σ = σx = σy . Also, the
derivative ∂f is proportional to the joint velocities because
f is proportional to the joint position values. Therefore, the
elements of the diagonal matrix can be expressed as

(diag (∆fΣx∆f ))ii = σx||∂f (xi)||2 = σ||vi||2,

where vi is the joint velocity. Because the joint velocity is
a variable for every training input data, instead of taking
joint velocities, we set the joint velocity limits v, satisfying
||vi||2 ≤ ||v||2. As a result, the Gaussian Process regression
for human motion prediction can be given as:

mc(x∗) = k∗
(
K + σ2

(
1 + ||v||2

)
I
)−1

y,

Kc(x∗) = k∗∗ − k∗
(
K + σ2

y

(
1 + ||v||2

)
I
)−1

k∗.

If we keep the joint velocity small, the Gaussian Process with
input noise behaves robustly, like how it behaves without
input noise. The mean function is over-smoothed and the
variance function becomes higher if the joint velocity limit
is set high.

I-Planner: Intention-aware motion planning
The main goals of our motion planner are: (1) planning
high-level tasks for a robot by anticipating the most likely
next human action and (2) computing a robot trajectory that
reduces the probability of collision between the robot and the
human or other obstacles by using motion prediction.

At the high-level task planning step we use MDP, which
is used to compute the best action policies for each state.
The state of an MDP graph denotes the progress of the
whole task. The best action policies are determined through
reinforcement learning with Q-learning. Then, the best
action policies are updated within the same state. The
probability of choosing an action increases or decreases
according to the reward function. Our reward computation
function is affected by the prediction of intent and the delay
caused by predictive collision avoidance.

We also estimate the short-term future motion from
learned information to avoid future collisions. From the
joint position information, motion features are extracted
based on human poses and surrounding objects related
to human-robot interaction tasks, such as human joint
positions, positions of a hand relative to other objects,
etc. The motions are classified over the human action set
Ah. To classify the motions, we use an Import Vector
Machine (IVM) Zhu and Hastie (2012) for classification
and a Dynamic Time Warping (DTW) Müller (2007) kernel
function for incorporating the temporal information. Given
the human motions database of each action type, we train
future motions using Sparse Pseudo-input Gaussian Process
(SPGP) Snelson and Ghahramani (2005). Combining these
two prediction results, the final future motion is computed as
the weighted sum over different action types weighed by the
probability of each action type that could be performed next.
For example, if the action classification results in probability
are 0.9 for action Move forward and 0.1 for action Move
backward, the future motion prediction (the results of SPGP)
for Move forward dominates. If the action classification
results in a probability of 0.5 for both actions, the predicted
future motions for each action class will be used in avoiding
collisions, but with weights of 0.5. However, in this case, the
current motion does not have specific features to distinguish
the action, meaning that the future motion in the short term
will be similar and there will be an overlapped region in the
3D space that works as the future motion of weight 1.

After deciding which robot task will be performed,
a robot motion trajectory that tends to avoid collisions
with humans is then computed. An optimization-based
motion planner Park et al. (2012) is used to compute
a locally optimal solution that minimizes the objective
function subject to many types of constraints such as
robot related constraints (e.g., kinematic constraint), human
motion related constraints (e.g., collision free constraint),
etc. Because future human motion is uncertain, we can
only estimate the probability distribution of the possible
future motions. Therefore, we perform probabilistic collision
checking to reduce the collision probability in future
motions. We also continuously track the human pose and
update the predicted future motion to re-plan safe robot
motions. Our approach uses the notion of online probabilistic
collision detection Pan et al. (2011); Park et al. (2016, 2017b)
between the robot and the point-cloud data corresponding
to human obstacles to compute reactive costs and integrate
them with our optimization-based planner.

Out motion planner is based on an optimization
formulation, where n+ 1 waypoints in the space-time
domain Q define a robot motion trajectory to be
optimized. Specifically, we use an optimization-based
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planner, ITOMP Park et al. (2012), that repeatedly refines
the trajectory while interleaving the execution and motion
planning for dynamic scenes. We handle three types of
constraints: smoothness constraint, static obstacle collision-
avoidance, and dynamic obstacle collision avoidance. To
deal with the uncertainty of future human motion, we use
probabilistic collision detection between the robot and the
predicted future human pose.

Let s be the current waypoint index, meaning that the
motion trajectory is executed in the time interval [t0, ts],
and let m be the replanning time step. A cost function for
collisions between the human and the robot can be given as:

s+2m∑
i=s+m

p

⋃
j,k

Bjk(qi) ∩ Cdyn(ti) 6= ∅

 (6)

where Cdyn(t) are the workspace volumes occupied by
dynamic human obstacles at time t. The trajectory being
optimized during the time interval [ts, ts+m] is executed
during the next time interval [ts+m, ts+2m]. Therefore, the
future human poses are considered only in the time interval
[ts+m, ts+2m].

The collision probability between the robot and the
dynamic obstacle at time frame i in (6) can be computed as
a maximum between bounding spheres:

max
j,k,l

p (Bjk(qi) ∩ Cl(ti) 6= ∅) , (7)

where Cl(ti) denotes bounding spheres for a human body at
time ti whose centers are located at line segments between
human joints. The future human poses ξfuture are predicted
in (4) and the bounding sphere locations Cl(ti) are derived
from it. Note that the probabilistic distribution of each
element in ξfuture is a linear combination of current action
proposal p(ch|F,p) and Gaussians p(ξfuture|F,p, ch) over
all ch, i.e., (7) can be reformulated as

max
j,k,l

∑
ch

p(ch|F,p)p (Bjk(qi) ∩ Cl(ti) 6= ∅) .

Let z1l and z2l be the probability distribution functions
of two adjacent human joints obtained from ξfuture(ti),
where the center of Cl(ti) is located between them by
a linear interpolation Cl(ti) = (1− u)z1l + uz2l where 0 ≤
u ≤ 1. The joint positions follows Gaussian probability
distributions:

zil ∼ N (µil,Σ
i
l)

cl(ti) ∼ N ((1− u)µ1
l + uµ2

l , (1− u)2Σ1
l + u2Σ2

l ) (8)
= N (µl,Σl), (9)

where cl(ti) is the center of Cl(ti). Thus, the collision
probability between two bounding spheres is bounded by∫

IR3

I(||x− bjk(qi)||2 ≤ (r1 + r2)2)f(x)dx, (10)

where bjk(qi) is the center of bounding sphere Bjk(qi), r1
and r2 are the radius of Bjk(qi) and Cl(ti), respectively,
I(·) is an indicator function, and f(x) is the probability
distribution function. The indicator function restricts the

integral domain to a solid sphere, and f(x) is the probability
density function of cl(ti), in (9). There is no closed form
solution for (10), therefore we use the maximum possible
value to approximate the probability. We compute xmax at
which f(x) is maximized in the sphere domain and multiply
it by the volume of sphere, i.e.

p (Bjk(qi) ∩ Cl(ti) 6= ∅) ≤
4

3
π(r1 + r2)2f(xmax). (11)

Since even xmax does not have a closed form solution, we
use the bisection method to find λ with

xmax = (Σ−1 + λI)−1(Σ−1plm + λojk(qi)),

which is on the surface of sphere, explained in Generalized
Tikhonov regularization Groetsch (1984) in detail.

The collision probability, computed in (10), is always
positive due to the uncertainty of the future human position,
and we compute a trajectory that is guaranteed to be nearly
collision-free with sufficiently low collision probability.
For a user-specified confidence level δCL, we compute a
trajectory that its probability of collision is upper-bounded
by (1− δCL). If it is unable to compute a collision-free
trajectory, a new waypoint qnew is appended next to the last
column of Q to make the robot wait at the last collision-free
pose until it finds a collision-free trajectory. This approach
computes a guaranteed collision-free trajectory, but leads
to delay, which is fed to the Q-learning algorithm for the
MDP task planner. The higher the delay that the collision-
free trajectory of a task has, the less likely the task planner
selects the task again.

Upper bound of collision probability
Using the predicted distribution and user-specified threshold
δCL, we can compute an upper bound using the following
lemma.

Lemma 1. The collision probability is less than (1− δCL)
if 4

3π(r1 + r2)2f(xmax) < 1− δCL.

Proof. This bound follows Equations (10) and (11).

p (Bjk(qi) ∩ Cl(ti) 6= ∅) ≤
4

3
π(r1 + r2)2f(xmax)

< 1− δCL.

We use this bound in our optimization algorithm for
collision avoidance.

Safe trajectory optimization
Our goal is to compute a robot trajectory that will either
not collide with a human or that will reduce the probability
of collision below a certain threshold. Sometimes, there is
no feasible collision-free trajectory for the robot. However,
if there is any trajectory for which the collision probability
is less than a threshold, we want to be able to compute
it. Our optimization-based planner also generates multiple
initial trajectories and finds the best solution in parallel.
In this manner, it expands the search space and reduces
the probability of the robot being stuck in a local minima
configuration. This can be expressed as the following
theorem:
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Theorem 2. An optimization-based planner with n parallel
threads will compute a global solution trajectory with
a collision probability less than (1− δCL), with the
probability 1− (1− |A(δCL)|

|S| )n, if it exists, where S is
the entire search space. A(δCL) corresponds to the
neighborhood around the optimal solutions with a collision
probability being less than (1− δCL), where the local
optimization converges to one of the global optima. | · | is
the measure of the search or configuration space.

We give a brief overview of the proof. In this case,
|A(δCL)|
|S| measures the probability that a random sample

lies in the neighborhood of the global optima. In general,
|A(δCL)| will become smaller as the environment becomes
more complex and has more local minima. Overall, this
theorem provides a lower bound on the probability for our
intention-aware planner with n threads. If the limit for n
increases, the planner will compute the optimal solution, if
it exists. This can be stated as:

Corollary 2.1. Probabilistic Completeness. Our intention-
aware motion planning algorithm with n trajectories
becomes probabilistically complete as n increases.

Proof. When the number of threads increases, we have a
higher chance of computing the global optimal trajectory
and, in the same manner, the increasing number of threads
improves the probability that the planner computes an
acceptable solution, according to the following:

lim
n→∞

1−
(

1− |A(δCL)|
|S|

)n
= 1.

Theorem 2 and Corollary both implicate that the use
of more threads with different initial random function
seed values increases the probability of finding a valid
solution, where validity is a trajectory with the upper
bound of collision probability at less than a certain safety
value, as shown in Lemma 1. Since I-Planner uses an
optimization-based formulation and all optimization threads
run independently, the parallel algorithm significantly
increases the probability of finding a reliable trajectory
with a small collision probability while not taking
additional running time. From the implications of Lemma 1,
Theorem 2, and Corollary , our I-Planner algorithm with
multiple optimization threads can efficiently find a valid and
safe robot trajectory with a collision probability less than a
certain safety value.

Implementation and performance
We highlight the performance of our algorithm in a situation
where the robot is performing a collaborative task with a
human and computing safe trajectories. We use a 7-DOF
KUKA-IIWA robot arm. The human motion is captured by
a Kinect sensor operating with a 15Hz frame rate, and only
upper body joints are tracked for collision checking. We use
the ROS software Quigley et al. (2009) for robot control and
sensor data communication. The motion planner has a 0.5s
re-planning timestep, The number of pseudo-inputs M of
SPGPs is set to 100 so that the prediction computation is
performed online.

Performance of human motion prediction
We have tested our human motion prediction model on
labeled motion datasets corresponding to a human’s reaching
action. Our human motion prediction model allows human
joint position errors, as discussed in the previous section.
To demonstrate the robustness of our model against input
noise errors, we measure the classification accuracy and
regression accuracy, varying the sensor error parameter and
the maximum human joint velocity limits.

In the human reaching action motion datasets, the human
is initially in a static pose in front of a table. Then, his or her
left or right arm moves and reaches towards one of the target
locations on the table. Then the arm returns to the initial pose.
The dataset contains 8 different target positions on the table
and 30 reaching motions for each target position. Because
the result of our human motion prediction model depends on
human joint velocities, we synthesize fast and slow motions
by changing the speed of captured motions.

We measure the correctness of human motion classifica-
tion and human motion regression in the following ways:

• Motion classification precision: Because human
motion is continuous and the transition between
motions can be difficult to measure, we only count
the motion frames in which the multi-class classifier
yields the highest probability greater than 50%.

• Motion regression precision: At a certain time, human
motion trajectory for the next T seconds is predicted.
We compute the regression precision as the integral
of distance between the predicted and ground-truth
motions over the T -second window as:∫ T

0

∑
i:joint

||ppred,i(t)− ptrue,i(t)||2 dt,

where ppred(t) is the collection of resulting mean
values of the Gaussian Process with noisy input for
joint i.

• Motion regression accuracy: As with the precision,
accuracy is the integral of the volume of ellipsoids
generated by the Gaussian distributions:∫ T

0

∑
i:joint

det (Ki,pred(t)) dt,

where Ki,pred(t) is the collection of resulting variance
of the Gaussian Process with noisy input for joint i. In
this case, a lower value results in a better prediction
result.

Figure 4 shows the human motion prediction results. The
Gaussian Process regression algorithm corresponds to the
use of Gaussian distribution ellipsoids around the predicted
mean values of the joint positions. In (a), when the human
is in an idle position, the motion classifier results in near
uniform distribution among the action classes and the motion
regression algorithm generates human motion trajectories
that progress slightly towards the target positions. In (b),
when the human arm gets close to the target position, the
motion classifier predicts the motion class with a dominant
probability and the motion regression algorithm infers a
correct future motion trajectory that is more accurate than

Prepared using sagej.cls



Park et al. 9

(a) (b)

Figure 4. Human motion prediction results: The result of human motion prediction is represented by Gaussian distributions for
each skeleton joint. The ellipsoid boundaries within which the integral of Gaussian distribution probability is 95% are drawn in red
and the human skeleton is shown in blue. Bounding ellipsoids have transparency values that are proportional to the action classifier
probability. (a) Undistinguished human action class: This occurs when the classifier fails to distinguish the human action class,
generating nearly uniform probability distribution among the action classes. (b) Prediction results when untrained human motion is
given: These cases result in larger boundary spheres around the human skeleton. This is because, in the Gaussian Process, the
output has a uniform mean and a high variance when the input point is outside the range of the training input data.

(a) (b) (c)

Figure 5. Performance of human motion prediction: The precision/accuracy of classification and regression algorithms are shown
in the graphs, with varying input noise. (a) Classification precision versus input noise: We only take the input points where the
probability of an action classification is dominant, i.e. probability > 50%. (b) Regression precision versus input noise: Measured by
the integral of distance between the predicted human motion and the ground-truth human motion trajectory. (c) Regression
precision versus input noise: The integral of the volume of Gaussian distribution ellipsoids.

(a). In (c), when an untrained human motion is given,
the motion classifier and the motion regression algorithm
result in uniform values and high variances, respectively,
generating a conservative collision bound around the human.
This is a normal behavior in terms of classification and
regression because the given input point is outside the range
of training data input points.

Figure 5 shows the classification precision, regression
precision, and accuracy with varying input noises. When
the input noise is high, the accuracy of human motion
classification and regression can decrease.

Comparison with prior work

We compared our method against Anticipatory Temporal
Conditional Random Field (ATCRF) Koppula and Saxena
(2016), a prior method for human activity classification
and future motion regression. The ATCRF algorithm creates
a learning model based on Conditional Random Field,
learning human intentions from a dataset with annotated
human action classes, human motion trajectories, and object
affordances (the functionality of the object). For this
comparison, we used the CAD-120 dataset Koppula et al.
(2013), which contains 120 RGB-D videos of 4 different
subjects and 10 activity classes. We also train their algorithm

on our dataset, which contains 100 RGB-D videos with 5
activity classes performed by one subject.

By using additional information about properties of
objects close to humans, ATCRF can predict the action
classes and generate future human motion trajectories.
However, compared to our human motion prediction method,
ATCRF cannot handle noisy input or predict the variance
around the predicted motion trajectories. Thus, we measure
the motion classification and regression precision to compare
the performance of our method with that of ATCRF. For a fair
comparison, the input noise parameter in our human motion
prediction is set to zero.

Table 1 shows the results of ATCRF and our human
motion prediction method. The classification precision
and recall of our algorithm is lower than that of the
ATCRF algorithm. Note that ATCRF uses object affordance
annotations as additional information in the learning
phase, whereas our algorithm does not. There is a big
difference in motion regression result. With our definition of
regression precision, our algorithm predicts human motion
trajectory 2 times closer to the ground-truth human motion
trajectory than that of ATCRF. Also, we could measure
regression accuracy with our algorithm that could be used in
probabilistic collision detection, whereas ATCRF could not.
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Algorithm
CAD-120 Dataset

Action Classification Motion Regression
Precision Recall Precision Accuracy

ATCRF 74.8 66.2 0.305 N/A
Our model 68.3 60.3 0.153 1.25

Table 1. Performances of action classification and motion regression of ATCRF Koppula and Saxena (2016) and our human motion
prediction algorithm. As ATCRF algorithm does not predict the variance of motion around the trajectory, the motion regression
accuracy cannot be measured on the algorithm. ATCRF uses object affordance annotations as additional information in the learning
phase, and we got higher precision and recall with ATCRF than with our algorithm. In terms of motion regression, our algorithm
outperformed ATCRF in regression precision.

Robot motion planning with human motion
prediction
In the simulated benchmark scenario, the human is sitting in
front of a desk. In this case, the robot arm helps the human
by delivering objects from one position that is far away
from the human to target position closer to the human. The
human waits till the robot delivers the object. As different
tasks are performed in terms of picking the objects and
their delivery to the goal position, the temporal coherence
is used to predict the actions. The action set for a human
is Ah = {Take0 ,Take1 , · · · }, where Takei represents an
action of taking object i from its current position to the
new position. The action set for the robot arm is defined as
Ar = {Fetch0 ,Fetch1 , · · · }.

We quantitatively measure the following values:

• Modified Hausdorff Distance (MHD) Dubuisson and
Jain (1994): The distance between the ground-truth
human trajectory and the predicted mean trajectory
is used. In our experiments, MHD is measured for
an actively moving hand joint over 1 second. This
evaluates the quality of the anticipated trajectory of the
human motion.
• Smoothness: We also measure the smoothness of the

robot’s trajectory with and without human motion
prediction results. The smoothness is computed as

1

T

∫ T

0

n∑
i=1

q̈i(t)
2 dt, (12)

where the two dots indicate acceleration of joint
angles.
• Jerkiness: Jerkiness is defined as

max
0≤t≤T

n∑
i=1

q̈i(t)
2. (13)

• Distance: The closest distance between the robot and
the human during task collaboration.
• Efficiency: The ratio of the task completion time when

the robot and the human collaborate to complete all the
subtasks to the task completion time when the human
performs all the tasks without any help from the robot.
This is used to evaluate the capability of the resulting
human-robot system.

To compare the performance of our I-Planner, we use the
following algorithm:

• ITOMP. This model is the same as the real-
time motion planner for dynamic environments,

ITOMP Park et al. (2012), without human motion
prediction.

• I-Planner, no noisy input (I-Planner, no NI). This
is our motion planning algorithm with human motion
prediction, but the motion prediction does not assume
noisy input. The details of this algorithm are given in
the preliminary paper Park et al. (2017c).

• I-Planner, noisy input (I-Planner, NI). This is the
modified algorithm presented in the previous section,
which also considers noise in the human motion
prediction data.

Table 2 highlights the performance of our algorithm in
three different variations of this scenario: arrangements of
blocks, task order and confidence level. The numbers in
the ”Task Order” column indicates the identifiers of human
actions. Parentheses mean that the human actions in the
parentheses can be performed in any order. Arrows mean
that the right actions can be performed only if the left
actions are done. For example, (0, 1)→ (2, 3) means that the
possible action orders are 0→ 1→ 2→ 3, 0→ 1→ 3→
2, 1→ 0→ 2→ 3 and 1→ 0→ 3→ 2. Table 3 shows the
performance of our algorithm in a simulation compared to
algorithms without human motion prediction or input noise.
The 3 different algorithms were tested in 9 different scenarios
and we found that our complete algorithm outperformed
other versions of the algorithm in various measurements
in most scenarios. Table 4 highlights the performance of
our algorithm with a real robot. Our algorithm has been
implemented on a PC with 8-core i7-4790 CPU. We used
OpenMP to parallelize the computation of future human
motion prediction and probabilistic collision checking.

Robot motion responses to human motion
speed
Figure 6 shows the robot’s responses to three different speeds
of human movements in a human-robot scenario. In this
scenario, the human arm serves as a block or an obstacle
to the robot’s motion from left to right. The human moves
at a slow speed in (a), a medium speed in (b), and a fast
speed in (c). Because the human motion prediction and the
robot motion planning process operate in parallel at the
same time, the motion planner needs to account for the
current results of the motion predictor. If the human moves
slowly, the robot motion planner is given the future predicted
human motion and the planner has enough planning time
to adjust the robot’s trajectory. This results in smooth and
collision-free trajectories for the robot. However, if the robot
moves quickly, the prediction is not very accurate due to the
limited processing time. At the next planning timestep, the

Prepared using sagej.cls



Park et al. 11

Scenarios Arrangement Task Order Confidence
Level

Average
Prediction Time

Different
Arrangements

1× 4 (0, 1)→ (2, 3) 0.95 52.0 ms
2× 2 (1, 5)→ (2, 6) 0.95 72.4 ms
2× 4 (0, 4)→ (1, 5)→ (2, 6)→ (3, 7) 0.95 169 ms

Temporal
Coherence

1× 4 0→ 1→ 2→ 3 0.95 52.1 ms
1× 4 Random 0.95 105 ms
1× 4 (0, 2)→ (1, 3) 0.95 51.7 ms

Confidence
Level

1× 4 0→ (1, 2)→ 3 0.90 47.2 ms
1× 4 0→ (1, 2)→ 3 0.95 50.7 ms
1× 4 0→ (1, 2)→ 3 0.99 155 ms

Table 2. Three different simulation scenarios: Different Arrangements, Temporal Coherence, and Confidence Level. We consider
different arrangements of blocks as well as the confidence levels used for probabilistic collision checking. These confidence levels
are used for motion prediction.

Scenarios Model Prediction Time MHD Smoothness Jerkiness Distance Efficiency

Different
Arrangements (1)

ITOMP N/A N/A 2.96 5.23 3.2 cm 1.2
I-Planner, no NI 52.0 ms 6.7 cm 1.08 1.52 6.7 cm 1.6

I-Planner, NI 58.5 ms 7.2 cm 0.92 1.03 8.1 cm 1.7

Different
Arrangements (2)

ITOMP N/A N/A 5.78 7.19 2.3 cm 1.1
I-Planner, no NI 72.4 ms 6.2 cm 1.04 1.60 8.2 cm 1.6

I-Planner, NI 70.8 ms 7.0 cm 0.84 1.32 10.7 cm 1.6

Different
Arrangements (3)

ITOMP N/A N/A 4.82 6.82 1.6 cm 1.2
I-Planner, no NI 169 ms 10.4 cm 1.15 1.30 6.2 cm 1.6

I-Planner, NI 150 ms 12.6 cm 1.02 1.20 8.9 cm 1.6

Temporal
Coherence (1)

ITOMP N/A N/A 1.79 3.22 6.0 cm 1.3
I-Planner, no NI 52.1 ms 4.3 cm 0.65 1.56 9.3 cm 1.5

I-Planner, NI 48.9 ms 5.2 cm 0.62 1.53 9.7 cm 1.5

Temporal
Coherence (2)

ITOMP N/A N/A 5.49 7.30 2.0 cm 1.0
I-Planner, no NI 105 ms 8.2 cm 1.21 1.28 8.8 cm 1.6

I-Planner, NI 110 ms 9.9 cm 1.08 1.10 9.9 cm 1.6

Temporal
Coherence (3)

ITOMP N/A N/A 3.12 3.18 8.0 cm 1.3
I-Planner, no NI 51.7 ms 6.8 cm 1.00 1.20 12.1 cm 1.5

I-Planner, NI 60.0 ms 8.2 cm 0.79 0.93 13.2 cm 1.5

Confidence
Level (1)

ITOMP N/A N/A 2.90 3.40 7.2 cm 1.2
I-Planner, no NI 47.2 ms 7.9 cm 1.17 1.58 9.5 cm 1.6

I-Planner, NI 52.1 ms 9.1 cm 1.08 1.32 10.2 cm 1.7

Confidence
Level (2)

ITOMP N/A N/A 3.12 3.80 10.3 cm 1.2
I-Planner, no NI 50.7 ms 7.9 cm 1.28 1.71 13.3 cm 1.6

I-Planner, NI 48.2 ms 9.1 cm 1.20 1.66 14.1 cm 1.8

Confidence
Level (3)

ITOMP N/A N/A 3.76 4.33 13.0 cm 1.2
I-Planner, no NI 155 ms 7.9 cm 1.40 1.90 16.2 cm 1.7

I-Planner, NI 129 ms 9.1 cm 1.35 1.73 17.7 cm 1.8
Table 3. Performance of our planning algorithm in terms of robot motion simulation. The use of motion prediction results in a
smoother trajectory and we observe up to 4X improvement in our smoothness metric, as defined in Equation (12). Our resulting
planning algorithm (I-Planner) runs in real-time.

Scenarios Model Prediction Time MHD Smoothness Jerkiness Distance

Waving Arms
ITOMP N/A N/a 4.88 6.23 2.1 cm

I-Planner, no NI 20.9 ms 5.0 cm 0.91 1.33 9.3 cm
I-Planner, NI 23.5 ms 6.1 cm 0.83 1.25 10.5 cm

Moving Cans
ITOMP N/A N/A 5.13 7.83 3.9 cm

I-Planner, no NI 51.7 ms 7.3 cm 1.04 1.82 8.7 cm
I-Planner, NI 50.0 ms 8.8 cm 0.93 1.32 13.5 cm

Table 4. Performance of our planning algorithm on a real robot running on a 7-DOF Fetch robot next to dynamic human obstacles.
Our online motion planner computes safe trajectories for challenging benchmarks like “moving cans.” We observe almost 5X
improvement in the smoothness of the trajectory due to our prediction algorithm.

robot’s trajectory may abruptly change to avoid the current
human pose, generating a jerky or non-smooth motion. This

highlights how the performance of the prediction algorithm
affects the smoothness of a robot’s trajectory.
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(a)

(b)

(c)

Figure 6. Responses to three different human arm movement speeds: While the robot arm moves from left to right, the human
moves his arm to block the robot’s trajectory at different speeds. (a) The human arm moves slowly. The robot has enough time to
predict the human arm motion, generating the smoothest and the least jerky robot trajectory. (b) As the human moves at a medium
speed, the robot predicts the human’s future motion, recognizes that it will block the robot’s path, and therefore changes the
trajectory upwards (at t = 0.8s) to avoid the obstacle and generate a smooth trajectory. (c) When the human arm moves faster, the
robot trajectory abruptly changes to move upwards (at t = 0.8s), generating a less smooth trajectory while still avoiding the human.

Benefits of our prediction algorithm

(a) (b) (c)

Figure 7. Different block arrangements: Different
arrangements in terms of the positions of the blocks, results in
different human motions and actions. Our planner computes
their intent for safe trajectory planning. The different
arrangements are: (a) 1× 4. (b) 2× 2. (c) 2× 4.

In the Different Arrangements scenarios, the position and
layout of the blocks changes. Fig. 7 shows three different
arrangements of the blocks: 1× 4, 2× 2 and 2× 4. In the
two cases 2× 2 and 2× 4, where positions are arranged in
two rows unlike the 1× 4 scenario, the human arm blocks
a movement from a front position to the back position. As a
result, the robot needs to compute its trajectory accordingly.

Depending on the temporal coherence present in the
human tasks, the human intention prediction may or may not
improve the performance of our the task planner. It is shown

in the Temporal Coherence scenarios. In the sequential order
coherence, the human intention is predicted accurately with
our approach with 100% certainty. In the random order,
however, the human intention prediction step is not accurate
until the human hand reaches the specific position. The
personal order varies for each human, and reduces the
possibility of predicting the next human action. When the
right arm moves forward a little, Fetch0 is predicted as the
human intention with a high probability whereas Fetch1 is
predicted with low probability, even though position 1 is
closer than position 0.

In the Confidence Level scenarios, we analyze the effect
of confidence level δCD on the trajectory computed by the
planner, the average task completion time, and the average
motion planning time. As the confidence level becomes
higher, the robot may not take the smoothest and shortest
path so as to compute a collision-free path that is consistent
with the confidence level.

In all cases, we observe the prediction results in smoother
trajectory, using the smoothness metric defined as Equation
(12). This is because the robot changes its path in advance
before the human obstacle actually blocks the robot’s
shortest path if human motion prediction is used.
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(a) (b) (c)

Figure 8. Probabilistic collision checking with different
confidence levels: A collision probability less (1− δCD) implies
a safe trajectory. The current pose (i.e., blue spheres) and the
predicted future pose (i.e. red spheres) are shown. The robot’s
trajectory avoids these collisions before the human performs its
action. The higher the confidence level is, the longer the
distance between the human arm and the robot trajectory. (a)
δCD = 0.90. (b) δCD = 0.95. (c) δCD = 0.99.

Evaluation using 7-DOF Fetch robot

We integrated our planner with the 7-DOF Fetch robot arm
and evaluted in complex 3D workspaces. The robot delivers
four soda cans from start locations to target locations on a
desk. At the same time, the human sitting in front of the
desk picks up and takes away the soda cans delivered to the
target positions by the robot, which can cause collisions with
the robot arm. In order to evaluate the collision avoidance
capability of our approach, the human intentionally starts
moving his arm to a soda can at a target location, blocking
the robot’s initially planned trajectory, when the robot is
delivering another can moving fast. Our intention aware
planner avoids collisions with the human arm and results
in a smooth trajectory compared to motion planner results
without human motion prediction.

Figure 1 shows two sequences of robot’s trajectories.
In the first row, the robot arm trajectory is generated an
ITOMP Park et al. (2012) re-planning algorithm without
human motion prediction. As the human and the robot arm
move too fast to re-plan collision-free trajectory. As a result,
the robot collides (the second figure) or results in a jerky
trajectory (the third figure). In the second row, our human
motion prediction approach is incorporated as described in
Section . The robot re-plans the arm trajectory before the
human actually blocks its way, resulting in collision-free
path.

Conclusions, limitations, and future work

We present a novel intention-aware planning algorithm to
compute safe robot trajectories in dynamic environments
with humans performing different actions. Our approach
uses offline learning of human motions and can account
for large noise in terms of depth cameras. At runtime,
our approach uses the learned human actions to predict
and estimate the future motions. We use upper bounds
on collision guarantees to compute safe trajectories. We
highlight the performance of our planning algorithm in
complex benchmarks for human-robot cooperation in both
simulated and real world scenarios with 7-DOF robots.
Compared to Park et al. (2017c), our improved human
motion prediction model can better handle input noise and
can generate smoother robot trajectories.

Our approach has some limitations. As the number of
human action types increases, the number of states of
MDP can increase significantly. In this case, it may be
useful to use POMDP for robot motion planning under
uncertainty Kurniawati et al. (2012). Our classification
can be improved with more information of the robotic
environment such as object affordances. So we would like
to improve our algorithm by using additional annotations
as future work. Our probabilistic collision checking
formulation is limited to environment uncertainty and does
not take into account robot control errors. The performance
of motion prediction algorithm depends on the variety and
size of the learned data. Currently, we use supervised
learning with labeled action types, but it would be useful to
explore unsupervised learning based on appropriate action
clustering algorithms. Furthermore, our analysis of human
motion prediction noise assumes the use of a Gaussian
Process model and it would be useful to extend it other
noise models. Moreover, we would to measure the impact
of robot actions on human motion, and thereby establish a
two-way coupling between robot and human actions. Our
realtime planner can also be combined with natural language
processing to generate robot movements Park et al. (2017a).
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