
Navigating Virtual Agents in Online Virtual Worlds

Russell Gayle Dinesh Manocha
Department of Computer Science

University of North Carolina at Chapel Hill
{rgayle,dm}@cs.unc.edu

http://gamma.cs.unc.edu/SecondLife

a b c
Real agent Virtual agents

Virtual tour
guide

Virtual tour group

Figure 1: College campus: (a) Many areas in online virtual worlds, such as this college campus in Second Life R©, are sparsely inhabited.
(b) We present techniques to add virtual agents and perform collision-free autonomous navigation. In this scene, the virtual agents navigate
walkways, lead groups, or act as a member of a group. A snapshot from a simulation with 18 virtual agents (wearing blue-shaded shirts) that
automatically navigate among human controlled agents (wearing orange shirts). (c) In a different scenario, a virtual tour guide leads virtual
agents around the walkways among other virtual and a real agent.

Abstract

We present an approach for navigating autonomous virtual agents
in online virtual worlds that are based on a centralized server net-
work topology. Each agent’s motion is controlled through local and
global navigation. Our local navigation model is based on artificial
social forces that has been extended to account for inaccurate sens-
ing from network latency. Global navigation for each virtual agent
is based on cell decomposition and computes high level paths. The
overall computation is balanced by performing local navigation on
client machines and global navigation on the server. We have imple-
mented our navigation algorithm into the Second Life virtual world
and highlight our results by simulating up to 18 virtual agents over
multiple different client computers.

Keywords: crowd simulation, virtual worlds, avatar behaviors

1 Introduction

Large, online 3D virtual worlds (VWs) have been growing rapidly
in popularity due to rich environments, widespread interactivity
and immersion, and large user bases. Millions of users are regis-
tered and are actively participating in worlds such as Second Life R©
(SLTM), World of WarcraftTM (WoW), or OLIVETM by Forterra
Systems, Inc. In addition to these online worlds, Microsoft’s Vir-
tual EarthTM or Google EarthTM represent large and detailed navi-
gable environments, although they do not currently support avatars.
Many of these virtual worlds have been used for gaming applica-
tions and recently they have been shown useful for remote collabo-
ration, economic planning, social simulations, and educational ac-

tivities [Bainbridge 2007]. These online virtual worlds also provide
a unifed environment to study complex global behaviors such as
traffic flows or evacuations.

At any time, thousands of users are logged on, but they are typically
widely distributed over the virtual world. As a result, many portions
of these worlds appear sparsely inhabited. In simulations or experi-
ences where interaction with other avatars is essential, this can pose
a problem and can detract from the overall immersive experience.
One way to overcome this problem is to add virtual avatars to pop-
ulate these worlds and improve the overall immersive experience.
In this context, a virtual agent or avatar is a member of the virtual
world whose motion is controlled entirely by a simulation, whereas
a human agent is controlled by a human user.

There are several challenges in adding realistic virtual agents to on-
line virtual worlds. First, virtual agents should automatically nav-
igate the environments and act appropriately in a variety of situa-
tions, such as maintaining a separation from other agents or moving
in a formation. Secondly, networking issues such as limited band-
width and client-to-server latency add uncertainties into much of
the navigation process, resulting in incomplete information about
the environments. Finally, performance is a key consideration in
evaluating online virtual worlds and adding virtual agents should
not greatly degrade the performance of the online virtual world sys-
tem.

Main results: We present an approach for adding autonomous vir-
tual agents into online virtual worlds with a centralized server net-
work topology. We combine techniques to control the motion of
each agent based on local and global navigation with a general net-
working model. Briefly, local navigation determines how agents
coordinate with nearby objects whereas global navigation allows
agents to select goals in order to complete their current task or
reach the goal position. To reduce the impact of network latency,
we make assumptions about the linearity of motion in a short time
interval and augment the model with a velocity-bias social force.
Since global planning is agent-specific, our algorithm that runs on
the server can be used to balance the computational load between
client and server.

Client
Human User a0

Client
Virtual Agents

{a1, a2, a3}

Virtual World
Servers

Geometry
Physics

Motion constraints
Global navigation

Local navigation
Avatar control

Events
Geometry

State Updates

Distributed
Clients Network

Connections

Figure 2: Online Virtual World Architecture: The virtual world
servers are responsible for maintaining and correcting the state of
all avatars and objects in the world. We assume that all clients
communicate with the individual servers in a centralized manner.

We have implemented our approach into the Second Life virtual
world using a motion controller built with Libsecondlife (LibSL).
We highlight our results by simulating up to 18 agents over two dif-
ferent client computers of varying computation power, in different
geographic locations and using different internet bandwidths.

Organization: This paper is organized as follows. Section 2 de-
scribes prior work in multi-agent simulation and navigation. Our
virtual agent navigation model is described in Section 3. Section 4
concludes the paper with a description of the implementation and
results.

2 Related Work

In this section, we give a brief overview on prior work on motion
planning and navigation of multiple agents. For theory and applica-
tions of general motion planning for multi-robot systems, we refer
the readers to [LaValle 2006]. And, for details on design and im-
plementation of networked virtual worlds, we refer the readers to
[Singhal and Zyda 1999].

There has been a great deal of work on modeling the motion of in-
dividual agents as well as those in small groups and large crowds
[Ashida et al. 2001; Shao and Terzopoulos 2005; Thalmann et al.
2006; Treuille et al. 2006; van den Berg et al. 2008]. Several
approaches have been proposed for generating motion of crowds;
including agent-based methods, cellular automata, and methods
based on discretized and continuous flows.

Agent-based methods typically include methods and rules for deter-
mining a heading based on information local to an individual agent.
One of the earliest works by Reynolds [1987] described simple lo-
cal rules for efficient and plausible flocking and herding behaviors.
This model has been extended in many ways to include other fac-
tors including psychological [Pelechano et al. 2005] and sociologi-
cal [Musse and Thalmann 1997] preferences.

Cellular automata methods model the evolution of agent locations
by solving cellular automata. Different techniques for generating
rules have been proposed, including methods based on static and
dynamic fields [Hoogendoorn et al. 2000], and behavioral models
[Tu and Terzopoulos 1994].

Flow-based approaches treat the motion of multiple agents like that
of physical flows. In discretized approaches, agents are treated like
particles in a 2D dynamic simulation [Helbing et al. 2003; Lokoba
et al. 2005]. Our motion formulation is most closely related to that
of Helbing et. al [2003].

Additionally, several approaches have been proposed to include
global navigation for groups of human agents. Voronoi graphs have
been efficiently used to compute and update navigation graphs [Sud

et al. 2007a]. Other statically generated navigation graphs allow
agents to navigate [Pettre et al. 2007] and dynamically updating
graphs have been used to combine global navigation with local be-
havior [Sud et al. 2007b].

3 Autonomous Virtual Agents

In this section, we introduce the notation used throughout the paper
and present our approach.

3.1 Notation and Definitions

We represent an agent as ai ∈ A = {a0, . . . , an} and is repre-
sented by a cylinder of finite radius ri. The state qi of ai at time t
is denoted by qi(t) = {xi(t),vi(t)} for position xi and velocity
vi. Note that we make no distinction between whether other agents
are controlled by human users (i.e. real agents) or are virtual agents.
This allows our virtual agent to treat all other agents in a uniform
manner.

We assume that environment E is composed of polygonal or 3D
polyhedral obstacles O = {o0, . . . , om}. The number of obstacles
in O can vary for each agent. Additionally, we assume there is a
centralized network topology, such that each agent connects to a
server, or group of servers with a shared database. These servers
are responsible for sending the agent’s state information to all other
agents connected to that particular server (See Fig. 2).

3.2 Collision Free Navigation

Due to uncertainties and latencies caused by the network, the posi-
tion of other agents and the obstacles may not be precisely known.
As a result, it is difficult to compute absolutely collision-free mo-
tion.

Our approach breaks down agent’s navigation into two portions;
local and global navigation. Local navigation allows the agents to
make adjustments to their current path based on nearby agents and
obstacles. Global navigation provides a sequence of subgoals for
an agent so that it can reach its final goal or destination.

3.2.1 Local Navigation

The local motion model for each virtual agents is based on the con-
cept of social forces, i.e. non-physical forces that can mimic deci-
sions and behavioral responses [Helbing et al. 2003]. These forces
are used to guide an agent along a path toward its intermediate or fi-
nal goal. The general idea is that each agent and obstacle generates
a repulsive or attractive force field around itself. At each discrete
time instance, the agent ai samples a force field at its current lo-
cation. The resulting force is applied to ai, resulting in a motion
trajectory.

Our formulation of social forces extends the models proposed by
Helbing et al. [2003] and later extended by Lakoba et al. [2005]. In
practice, this model is able to capture emergent behavior of crowds
with varying number of agents per in different areas. For sake of
space, we refer interested reader to these articles for additional de-
tails [2003; 2005]. Fig. 3 provides a brief illustration and descrip-
tion of the ideas.

Contact Handling: While the repulsive forces generally allow
agents to avoid contacts, they do not give guarantee of a collision-
free motion. Social forces with a large magnitude can cause
the agents to move directly towards each other. Moreover, net-
work communication latencies can result in incomplete information
about the location of other agents, objects or dynamic obstacles in

a1

a2

a3

qgoal

o1

Fgoal(a1)
Fobs(a1)1

Fsoc(a1)2

Fatt(a1)3

a1

a2

a3

qgoal

o1

v2

v3Fvel(a1)2 Fnet(a1)

v1

a b

Figure 3: Local Navigation via social forces: The colors of the
arrows correspond to the specific object that generates the social
force. (a) Agent a1 is acted upon by social repulsive force Fsoc

2 (a1)
from a2, attractive force Fatt

3 (a1) from a3, repulsive obstacle force
Fobs

1 (a1) from o1, and goal force Fgoal(a1). Repulsive and at-
tractive forces encourage the agent to move toward or away from
agents and obstacles, respectively. (b) An additional velocity bias
force Fvel

2 (a1) is computed to account for agent a2’s velocity dur-
ing inaccurate sensing. By assuming a linear trajectory over a short
period of time, we can help to reduce the impact of network latency.
No velocity bias force is computed for a3 since it is heading in the
same direction as a1. The final net force Fnet(ai) reflects the sum
of all the forces and serves as the agent’s next heading.

the scene. In these situations, contacts between the agents must be
resolved. We assume that the central server is ultimately in charge
of resolving intersections between both agents and obstacles. Since
latency is a factor even in the absence of virtual agents, it enforces
hard constraints on agent positions to prevent intersection and re-
turns that information to the clients.

Network Modeling: Our virtual agent model is computed based
on the information on a client database. This introduces certain
amount of uncertainty in the position and velocity of other agents
and also in other moving obstacles in two ways. First, some agents
or obstacles may not have yet been sensed, i.e. their base informa-
tion has not yet been received by the client from the server. Second,
due to low network bandwidth or high network latency, the updated
positions and velocities are not received in time by both the server
and client.

To account for these issues, we augment the social force model with
a velocity bias force, Fvel

j (ai), to help reduce the impact of latency.
Let Vj = SSV (aj ,vj , tbias) be the spherical swept volume as
agent aj travels along heading vj/||vj || for time tbias. Then,

Fvel
j (ai) = γe(ri−d(Vj ,xi)/ε)n(i,Vj),

where γ is a velocity bias scaling factor, ε is a bias dropoff distance,
and d(., .) and n(., .) are the distance and normal direction between
the ai and volume Vj . Intuitively, the force naively assumes that
agent aj will proceed in its current direction for a fixed period of
time and generates a force field around the volume swept of aj

along that heading (See Fig. 3(b)). As a result, other agents will
tend to move away from their current direction of motion. The net
effect of this force is that it gives virtual agents a way to estimate
where other agents will go based on the information is available,
and thus reduces the impact of latency or bandwidth limitations.

Goal Selection: The last portion of our model for local motion
computation involves selecting intermediate goals. The selection
of goals can result in a variety of behaviors. In our formulation, we
use two different methods to select the goals. First, the goals are
randomly selected within some radius of the agent. This gives the
appearance of wandering or exploring within that radius. Second,
scripted goals can be provided for other effects. For instance, in
a panic situation the agents would be given goals away from the
cause or location of the panic.

3.2.2 Global Navigation

In many situations, local navigation may be insufficient to navigate
an agent through a complex environment. This may be due to the
lack of a straight-line route to the goal or due to a local minima in
the social force field which prevents progress from being made.

In these situations, a global planner is necessary. The global planner
provides agents with a sequence of subgoals which will eventually
lead to the final goal. There are a wide variety of options available
for route planning or roadmap computation [LaValle 2006]. For
simplicity, we use a cell decomposition based approach, extended
for use with unknown and changing environments.

Our approach initially samples all navigable surfaces, such as floors
in the buildings or walkways. It uniformly samples the surfaces
with a sampling resolution based on the size and scale of the en-
vironment. Each sample is classified as free, in collision, or in the
mixed region of the cell decomposition. Next, we connect neigh-
boring free samples in order to generate a connectivity graph. When
an agent requests a path from the global planner, an A* search is
performed on this graph at runtime, and a sequence of subgoals is
computed. The free or colliding state of each cell is updated as
changes occur in the environment. These changes in turn notify the
virtual agents when they need to recompute a path.

Server Planning: Within a localized region, there is little need to
duplicate the global navigation system since it will be essentially
the same for each virtual agent. One simple optimization would be
to make a single module which would perform planning computa-
tion for each agent. By placing this module on the server, the cost
of planning and replanning is reduced. Furthermore, it acts as a
means to balance some of the overall computation by placing some
work on the server while the client does the rest.

4 Discussion and Results

In this section we describe our implementation, show results of our
virtual agent model, and discuss possible issues with the approach.

4.1 Implementation

A preliminary implementation of his approach has been developed
for Second Life, based on the LibSecondlife (LibSL) framework.
LibSL is used to reverse engineer the SL network protocol. With
this, it is possible to create a SL client session without using the
official SL viewer resulting in avatars that appear as full clients to
the server. The avatar motion control model along with the local
agent dynamics has been implemented on top of this framework.

For testing, one PC ran only virtual agents while a second PC ran
both virtual agents and a viewer. These computers were placed on
different networks, a university network connection and an at home
cable modem respectively.

4.2 Results

We have tested our approach in a two scenarios:

• Populating a city block: This city block scenario includes 2
streets, a fountain and a patio of a building. Virtual agents
are added to the city block to improve realism (Fig. 4). Vir-
tual agents randomly select points of interest while interacting
with each other through repulsive forces. The server managed
18 virtual agents and 3 real agents. The 17 virtual agents were
distributed between two PCs.

Real agents

(a) (b) (c)

a1
a2

a1

a2

a2
a1

Figure 4: City block: A sequence of still images following the evolution of virtual agents in a small city block. Several virtual citizens
(circled in red and wearing shirts in various shades of blue) move around the streets and occasionally stop by the fountain. Agents a1 and
a2 are identified to demonstrate their avoidance of each other as they cross near the fountain. A human controlled agent (orange) acts as an
obstacle and must be avoided. The scene has 18 virtual agents distributed over 2 PCs.

• Campus tour guide: To show a wider variety of behaviors,
we added agents to a university campus. This scene included
three classes of virtual agents; wandering students, a tour
group, and a tour guide. Grouping and following along with
the effects of both attractive and repulsive behaviors and fol-
lowing are observable in this scene (See Fig. 1(c)). There are
a total of 20 agents, 2 real and 18 virtual agents, in the scene.
As before the virtual agents were simulated on two client PCs.

The overall run-time performance in both scenarios was about the
same. Virtual agents were distributed over 2 client computers. Af-
ter tuning the computers, we were able to achieve interactive perfor-
mance. So, it is likely that this approach will scale with additional
client computers.

While the simulation computation was relatively cheap, the biggest
limiting factor was the available bandwidth. Each agent, even if
they’re hosted on the same client computer, sends and receives a
extensive amount of information to the server. In our experiments,
each PC could support about 8 to 15 agents without noticeable
degradation in performance. It should be noted that our limit of
18 agents is unrelated to the performance. Instead, it was the num-
ber of accounts on Second Life we were able to use. In the future,
we expect to use many more agents.

5 Conclusion and Future Work

We have presented a virtual agent navigation algorithm for online
worlds. In our implementation, each virtual agent navigates using
an established pedestrian model augmented to take sensing laten-
cies into account. Our preliminary results are promising and the
algorithm can control and simulate several virtual agents from a
single computer.

While the approach works well, there are some limitations. The
approach generally requires more bandwidth, which can become
a bottleneck. Moreover, server-based solutions probably require
modifications on the server if not already supported and thus may
be less practical. As with many “potential field” planners, there is
no guarantee of success in reaching a goal. Finally, we hope to scale
our work to include much larger crowds in virtual worlds.

Acknowledgements

This research was supported in part by ARO Contracts DAAD19-
02-1-0390 and W911NF-04-1-0088, NSF awards 0400134,
0429583 and 0404088, DARPA/RDECOM Contract N61339-04-
C-0043 and Intel. The first author is also supported by a Depart-

ment of Energy High Performance Computer Science Fellowship
administered by the Krell Institute.

References
ASHIDA, K., LEE, S. J., ALLBECK, J., SUN, H., BADLER, N., AND METAXAS,

D. 2001. Pedestrians: Creating agent behaviors through statistical analysis of
observation data. Proc. Computer Animation.

BAINBRIDGE, W. S. 2007. The scientific research potential of virtual worlds. Science.

HELBING, D., BUZNA, L., AND WERNER, T. 2003. Self-organized pedestrian crowd
dynamics and design solutions. Traffic Forum 12.

HOOGENDOORN, S. P., LUDING, S., BOVY, P., SCHRECKENBERG, M., AND WOLF,
D. 2000. Traffic and Granular Flow. Springer.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge University Press.

LOKOBA, T. I., KAUP, D. J., AND FINKELSTEIN, N. M. 2005. Modifications of the
helbing-molnr-farkas-vicsek social force model for pedestrian evolution. Simula-
tion.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human crowd behavior:
Group inter-relationship and collision detection analysis. Computer Animation and
Simulation, 39–51.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER, N. 2005. Crowd
simulation incorporating agent psychological models, roles and communication.
First International Workshop on Crowd Simulation.

PETTRE, J., GRILLON, H., AND THALMANN, D. 2007. Crowds of moving objects:
Navigation planning and simulation. In ICRA, 3062–3067.

REYNOLDS, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model.
Comput. Graph. 21, 4, 25–34. Proc. SIGGRAPH ’87.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestrians. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, 19–28.

SINGHAL, S., AND ZYDA, M. 1999. Networked Virtual Environments: Design and
Implementation. Addison-Wesley Professional.

SUD, A., ANDERSEN, E., CURTIS, S., LIN, M., AND MANOCHA, D. 2007. Real-
time path planning for virtual agents in dynamic environments. Proc. of IEEE VR,
91–98.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND MANOCHA, D.
2007. Real-time navigation of independent agents using adaptive roadmaps. Proc.
of ACM VRST . to appear.

THALMANN, D., O’SULLIVAN, C., CIECHOMSKI, P., AND DOBBYN, S. 2006. Pop-
ulating Virtual Environments with Crowds. Eurographics 2006 Tutorial Notes.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum crowds. Proc. of
ACM SIGGRAPH, 1160 – 1168.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: Physics, locomotion, per-
ception, behavior. In Proceedings of SIGGRAPH ’94, A. Glassner, Ed., 43–50.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND LIN, M. C. 2008.
Interactive navigation of individual agents in crowded environments. Proc. of ACM
Symposium on Interactive 3D Graphics and Games.

