
Rendering Environmental Voice Reverberation for Large-scale Distributed
Virtual Worlds

Micah Taylor∗

University of North Carolina
Nicolas Tsingos†

Dolby Laboratories
Dinesh Manocha‡

University of North Carolina

Figure 1: Our algorithm can efficiently generate environmental acoustic effects in large virtual worlds. The city scene above is 600 meter×
980 meter in size. Our algorithm can precompute the acoustics for this space in less than 15 minutes, with the resulting data consuming only
173MB of storage. At runtime, over 690 sound streams can be rendered in realtime on a single core.

Abstract
We present an algorithm that can render environmental audio ef-
fects for a large number of concurrent voice users immersed in a
large distributed virtual world. Our approach uses an offline step,
efficiently computing acoustic similarity measures based on aver-
age path length, reflection direction and diffusion throughout the
environment. The similarity measures are used to adaptively de-
compose the scene into acoustic regions. Sound propagation sim-
ulation is performed on the acoustic regions; the resulting acoustic
response data can be used efficiently at runtime to enable reverber-
ation effects. We show that adaptive sampling based on our sim-
ilarity metric correlates well with errors in perceptual acoustical
metrics, contrary to naive subsampling. We demonstrate real-time,
plausible sound rendering of large number of voice streams in vir-
tual environments encompassing areas of tens of square kilometers
at a fraction of the authoring and memory cost of previous acousti-
cal precomputation approaches.

1 Introduction
For networked virtual environments, such as social communities or
massively multiplayer on-line (MMO) games, meaningful interac-
tion through voice conversation with other participants is a valuable
feature [Williams et al. 2007; Wadley et al. 2007; Sallnäs 2005].
First adopted through side-clients that enabled telephone-quality,
walkie-talkie style communication, voice services are becoming
more integrated and are now connecting hundreds of millions of
users on PCs, game consoles and cell phones. For instance, group
voice chat is integral to gaming services such as Microsoft Xbox
LIVE, Sony Playstation Network, and Valve Steam, and is also di-
rectly integrated into such games as Blizzard’s World of Warcraft,
CCP Games’ EVE Online, Electronic Arts’s Need for Speed World,
and Linden Lab’s Second Life.

There has been much work on voice communication over the in-

∗e-mail: taylormt@cs.unc.edu
†e-mail: nicolas.tsingos@dolby.com
‡email: dm@cs.unc.edu

ternet, typically called VoIP (Voice over Internet Protocol) [Goode
2002]. Some of the key issues include latency, voice coding effi-
ciency, network error resilience, and endpoint voice cleaning and
processing [Markopoulou et al. 2002; Benesty et al. 2000]. While
most work in scalable VoIP focuses on the infrastructure system,
there has also been significant research on improving the immer-
sive effects of the voice communication, typically through spatial-
ized rendering [West et al. 1992; Hollier et al. 1997]. Studies have
shown [Halloran 2009; Gibbs et al. 2006] that, while voice commu-
nication helps users coordinate in virtual environments, a lack of
environmental effects can make it difficult for users identify sound
sources.

Modeling the effects of sound propagation, such as occlusion and
echoes, can help convey scenes where participants communicate
from different rooms or areas. For example, the direction of the
direct sound path and early sound reflection can help a user spatial-
ize the sound source position (i.e. localization), while the time it
takes for the late reverberation echoes to decay conveys the scale of
the environment and the materials present (i.e. immersion). There
has been considerable progress in interactive sound propagation and
many techniques based on geometric and numeric methods have
been proposed [Funkhouser et al. 1998; Raghuvanshi et al. 2010;
Vorländer 1989; Mehra et al. 2013; James et al. 2006; Taylor et al.
2012; Yeh et al. 2013; Savioja 2010; Schissler et al. 2014; Tsingos
et al. 2004; Tsingos et al. 2007; Raghuvanshi and Snyder 2014].
They have been used for interactive sound propagation and render-
ing for indoor and outdoor environments on high-end multi-core
workstations and also integrated with game engines, such as Half-
Life 2 and Unity. However, these techniques may not work well in
large-scale VoIP systems. VoIP algorithms have unique aspects:

• Restricted data: Each client is constantly recording voice data
that is known only to that individual client.

• Communication cost: The voice must be transferred between
clients leading to bandwidth and latency costs. In client-
server arrangements, thousands of clients need to be handled
by a single server.

• Rendering cost: VoIP is commonly used in large MMOs,
on the order of tens to hundreds of square kilometers in
scale. This can significantly increase the computational cost
of acoustic simulation.

• Thin clients: Cell phones and tablets are becoming increas-
ingly popular and magnify the transfer and rendering costs in
VoIP. Current cell phones often allocate only 12kbs for voice
streams [ETSI 2014].

Since the voice mixing is generally performed on a remote server,
network delivery cost restricts the amount of data that can be trans-
ferred. Moreover, a typical multi-core server platform must handle
thousands of remote clients simultaneously [Dol 2012], strongly
limiting the processing capabilities. Peer-to-peer VoIP systems
[Berndt et al. 2011; Liang et al. 2013] remove the need for a server
system to process all client audio, but push the communication and
simulation cost to the clients. In these systems, implementing spa-
tialized audio is possible [Zimmermann and Liang 2008; Jiang et al.
2014], but such effects are limited to binaural or distances attenua-
tion effects.

Even VoIP systems that include effects beyond simple direct-path
distance attenuation [Radenkovic et al. 2002; Boustead and Safaei
2004; Safaei 2005] only support direct line-of-sight occlusion mod-
eling and simplified diffraction effects, which result in unrealistic
proximity cues. This is because the storage or compute cost of
propagation simulations (discussed below) is quite high. This load
must be either borne by the clients (handling 3-4 simulations in
real-time) or the server (handling hundreds of simulations in real-
time).

For MMO games, where localizing teammates and enemies is of
primary importance, rendering inappropriate distance cues could
lead to a tactical disadvantage. Advances have been made in peer-
to-peer infrastructures where bandwidth cost is reduced, but audio
computation remains quite costly for clients to evaluate in real-time.
In this paper, we focus on the immersive rendering of environmen-
tal reverberation effects on voice streams for such large-scale dis-
tributed virtual worlds with multiple sources and receivers.

Sound reverberation and environmental effects

In current video games, reverberation is either directly pre-rendered
into the sound effects or implemented at run-time using dynamic ar-
tificial reverberation filters [Jot 1999]. Parameters of reverberation
decay can be directly manipulated by the sound designer to achieve
a desired effect without requiring any geometrical modeling. While
simplifying the authoring process, traditional artificial reverberators
suffer from a number of issues. They impose a “single room” model
and constrain the shape of the decay profile (e.g., exponential). Be-
cause of their limited use of scene geometric representation, these
methods also fail to convincingly model coupled or outdoor spaces.
In [Bailey and Brumitt 2010], distance histograms extracted from
a cube map rendered at a position of interest are used to select the
parameters for such an artificial reverberator. However, distances
to the camera origin alone fail to capture local variations of the
surfaces, which have a strong influence on the scattering proper-
ties [Tsingos et al. 2007].

Client-server solutions have been proposed to dynamically com-
pute sound propagation paths using the actual scene representa-
tion [Funkhouser et al. 1999]. But even the most recent geometrical
acoustic (GA) approaches, which can model dynamic sound reflec-
tions and diffraction interactively [Taylor et al. 2012; Schissler et al.
2014; Schissler and Manocha 2014], use high-end workstations
with multiple CPU cores or GPUs to compute propagation paths
and are not designed for client-server environments, i.e. handling
thousands of remote clients simultaneously, very large number of

sources, etc. Other geometric acoustic methods [Funkhouser et al.
1998; Chandak et al. 2009] take advantage of the static nature of
the scene to precompute a visibility tree. However, these methods
assume that either the source or the receiver position is fixed.

One practical approach to simulating the acoustics of virtual envi-
ronments is to pre-compute the acoustical impulse response (IR)
at several locations throughout the environment in an off-line pro-
cess; the results can then be efficiently re-used to process the audio
signals at run-time by querying the response database and recon-
structing a reasonable solution for a given source and microphone
pair [Pope et al. 1999; Tsingos 2009; Siltanen et al. 2007; Antani
et al. 2012; Raghuvanshi et al. 2010; Mehra et al. 2013; Yeh et al.
2013; Raghuvanshi and Snyder 2014] . The main benefit of the off-
line computation is that both early and high-order sound scattering
(reflection/diffraction) can be simulated, providing improved prox-
imity cues and distance perception. Moreover, the numerical meth-
ods can also accurately compute the low-frequency sound propaga-
tion effects. However, most of these techniques have been designed
for small indoor or outdoor acoustic spaces with only a few sources
or objects and may not scale to large virtual worlds with a high
number of sources and receivers. As a result, these methods are not
well-suited for large-scale VoIP systems.

Overview

Given our goal of supporting environmental acoustic effects in very
large virtual environments, we wish to reduce the time and stor-
age cost required to support such scenes. One way to accomplish
this goal is to reduce the number of acoustic responses that must
be precomputed and stored, while still maintaining the accuracy of
acoustic effects. We can sample the scene at a finite number of lo-
cations and compute the acoustic response based on those sample
positions. The precomputation time and storage cost can be lowered
by reducing the number of samples needed. This can be achieved
by combining nearby sample points that have similar acoustic im-
pulse responses. This process requires sampling the acoustic field
at each point. However, combining sample points in this manner
only reduces the final storage cost, not the time cost required to
precompute all the acoustic responses.

To address this challenge, we introduce three main contributions:

1. Geometric acoustic similarity measure: We introduce a geo-
metric measure based on the properties that influence the acoustic
field. The measure can be computed quickly using the local neigh-
borhood of a given point location in the environment. This enables
us to perform scene decomposition and sampling in O(p) time for
p sample points (section 2).

2. Scene subdivision: We use the similarity measure to sample the
virtual environment and then segment the scene into regions. These
regions enclose portions of the scene that are similar based on the
properties of our similarity measure, and our algorithm only needs
to sample the full acoustic responses in each region. This results in
a reduction of both the precomputation time and the storage over-
head, and thereby enables us to handle very large scenes which span
kilometers in virtual space (section 3).

3. Efficient response storage: We present an efficient approach
that scales in both time and space complexity to accommodate large
acoustic scenes. Our storage algorithm compresses redundant data
while supporting fast inserts and constant average time retrieval.
This allows for efficient storage of the tens of billions of acoustic
responses needed for kilometer-sized scenes (section 4) .

Figure 2 offers an overview of the proposed approach in the context
of a large-scale VoIP system as used in multi-player online games.
We have evaluated our algorithm in large indoor and outdoor scenes

precomputed
acoustical map

Reduced
GA solution

Sample heuristic Create
 zones

Scene O�-line adaptive sampling

Sample
direct path

Look up IR
Mix direct sound

+ early reverberated
component

Per client live server processing
for each voice

Client-side
processing

Mix to
output voice streams

late reverberation data

zones
and IRs

voice signal + position

networkSpatialize
voice

Figure 2: Example integration into a VoIP system: Our efficient pre-computation and reverberation algorithm enables real-time rendering
of environmental audio effects in large-scale environments with many connected clients. In this paper we focus on the components highlighted
in red boxes.

(a) (b) (c) (d)

Figure 3: Sample signature for FPS scene in Figure 10(b): The
components of the similarity measure: (a) distance with black being
near and white far, (b) direction with vectors shown as RGB compo-
nents, (c) discontinuities in depth and direction, and (d) materials
with three frequency bands shown in RGB components.

that correspond to game maps and virtual worlds, with specular re-
flections, diffuse reflections and edge diffraction. We show that
adaptive sampling based on our geometrical similarity metric cor-
relates well with errors in perceptual acoustic criteria, contrary to
naive subsampling (section 5). Our approach can be used to au-
tomatically create environmental reverberation maps up to 5 times
faster than previous solutions on indoor scenes and up to 80 times
faster on large outdoor scenes. In addition, storage costs are re-
duced by a similar factor, and our optimized runtime processing
allows interactive rendering of reverberation effects for scenes com-
prising hundreds of connected clients (section 6) and we highlight
the benefits over prior approaches (section 7).

2 Geometric Acoustic Similarity Measure

In this section, we introduce our metric and present a GPU-based
algorithm for fast computation. In Section 3, we use this metric to
decompose the scene into regions.

Our goal is to sample the acoustic field and form a database of
acoustic responses, using as few samples as possible, while still
generating a reasonable set of responses. The final output of any
acoustic simulation is derived from the source/receiver configura-
tion, the location of obstacles and the material properties of the
scene. This can be expressed using the room acoustic rendering
equation (RARE) [Siltanen et al. 2007], which describes the acous-
tic radiance from a point in the scene as

`(x′,Ω) = `0(x′,Ω) +

∫
G

R(x, x′,Ω)`(x,Γ)dx, (1)

where the outgoing acoustic radiance ` for point x′ and angle Ω
is a sum of the emissive radiance `0(x′,Ω) and the integral of all
reflected radiance from point x. The reflected radiance is scaled by

the function R

R(x, x′,Ω) = V (x, x′)ρ(x′,Θ,Ω)g(x, x′), (2)

which accounts for the visibility V between points, the reflectance
function ρ, and the distance and orientation of the points g. The
function g() can be expressed as:

g(x, x′) =

⌊
n(x) · x

′ − x
|x′ − x|

⌋⌊
n(x′) · x− x

′

|x− x′|

⌋
S|x−x′|

|x− x′|2 , (3)

where n represents the surface normal at a point and S represents
the effects of propagation over a distance, i.e. delay and attenuation.

Our goal is to quickly sample the scene and find locations where the
acoustic field has a high gradient to guide the sampling. One possi-
bility is to use the RARE to sample the scene, but this can be rather
expensive for a large environment. Instead, we compute a first-
order approximation that can be evaluated quickly using standard
rasterization algorithms such as cube mapping [Greene 1986]. Us-
ing axis-aligned cube maps, we sample geometric and spatial data
from the scene. From the cube map data, we extract several val-
ues related to the physical properties that influence the propagation
of sound waves in the scene: surface distance, surface orientation,
surface discontinuities, and surface absorption. Figure 3 shows the
visual data that is sampled.This spatial data corresponds to some
of the physical properties that influence first-order reflections: path
length, reflection direction, surface reflectance properties, and dif-
fusion.

2.1 Distance
Acoustic waves that arrive at the receiver as reflections must first
bounce off an object in the scene. The path the sound travels results
in delay, creating temporal effects that humans use to determine
environment properties. In media that absorbs sound, the distance
the sound travels modifies the signal further, as some energy is lost
to absorption. The S term in RARE (Equation 3) accounts for ef-
fects that are related to the propagation distance. However, in order
to measure this effect exactly, one must perform an acoustic sim-
ulation that computes both early reflections and late reverberations
between the source and the receiver. It can be expensive to per-
form this computation for each source-receiver pair. Instead, we
use a simpler approximation, and only sample first-order geometric
properties to compute the reflection paths.

We note, using the law of cosines, that the length of the reflection
path, p, can be computed by forming a triangle between the source,
the reflector, and the receiver (Fig. 4). This is given as

p = f +
√
f2 + v2 − 2fv cosφ,

fℓ

fs

v

Source

Receiver

ϕs

ϕℓ

Figure 4: Surface distance: The first-order propagation distance
p is directly related to nearby reflectors. v is the direct path to the
receiver. fs represents the shortest first-order reflection path as φs

goes to 0. f` represents the longest first-order reflection path as φ`

goes to π. Our algorithm measures the f terms of p.

vSource

n
r

Figure 5: Surface orientation: Reflection direction r varies as a
property of the incoming vector v and the surface normal orienta-
tion n.

where f represents the path to the reflector, v is the direct path
to the receiver position, and φ is the angle between these vectors.
As φ approaches zero, the path approaches the shortest possible
reflection path between the source and the receiver; when φ is π,
the reflection path is the longest possible path between the source
and the receiver. Figure 4 illustrates the shortest path as fs and the
longest path as f`. The value of φ, and consequently p, are only
known at runtime, so we sample the f component and use it to
approximate the distance in the final acoustic response.

2.2 Surface orientation
The direction of earliest incoming sound paths to a receiver is
highly indicative of the direction of the sound source, and is a
key element in sound localization. The g() function in Equation
3 describes how the direction of an object’s surface normal directly
influences the direction of any reflected sound paths off the sur-
face. As in our handling of arrival delay, we avoid computing the
full acoustic simulation by sampling only the first-order geometric
properties.

Reflection direction r can be determined based on the view direc-
tion v and the surface normal direction n (Fig. 5). We note that v is
fixed by the cube map sample location and the reflection direction
is a function of n, given as:

r = 2(v · n)n− v.

Since the surface normal directly influences the direction of first-
order reflection, computing the difference in first-order normals be-
tween two scene locations provides an approximation of the differ-
ence in reflection direction, and the actual difference in early onset
direction.

2.3 Surface discontinuities
The amount of diffraction and diffuse scattering from surfaces can
significantly influence the final acoustic response at the receiver’s
location. The RARE does not directly account for edge diffrac-
tion effects, but the reflectance function ρ() (Equation 2) can model
such scattering. Scattering occurs at the boundaries, which corre-
spond to edges in 3D scenes. Simulating scattering effects using
geometric acoustics is time-consuming and challenging, as com-
pared to reflection effects [Calamia and Svensson 2007; Taylor et al.

2012], and may require an accurate wave-based solver [Raghuvan-
shi et al. 2010]. Instead, we use an approximation based on first-
order geometric properties that influences these effects, including
depth and orientation discontinuity.

We measure the surface gradient with respect to surface normal and
depth to estimate diffraction and diffuse properties. When sampling
our cube maps, we record the depth values and surface normals.
Next, we use a series of 2D operators over the cube face to find dis-
continuities in depth gradient and normal gradient. These discon-
tinuities represent potential regions where diffraction and diffusion
effects are significant. First, a 2D gradient is computed from the
depth information:

∇x = [1,−1]; ∇y =

[
1
−1

]
.

This results in a two-component image that represents depth
changes in x and y directions. We look for discontinuities in this
image to estimate where scattering is likely to originate from. An
edge detection kernel is applied to the components of the gradient:

k =

0 1 0
1 −4 1
0 1 0

 .
The maximum value, u, of the two components is retained and
clamped to the range [0, 1], resulting in a black and white map
used to detect depth and normal discontinuities. Since the depth
and normal discontinuities influence the scattering of sound in the
scene, we use these discontinuities as a component in our measure.

2.4 Surface material
The material properties govern the absorption and scattering effects.
The RARE accounts for materials in the bidirectional reflectance
distribution function (BRDF) term, ρ(Ωi,Ωe;x′) (Equation 2). A
commonly used BRDF segments the reflectance into pure absorp-
tion, diffuse reflection, and specular reflection components using
an absorption factor α and a diffusion factor δ. These factors are
defined over several frequency bands to define absorption, diffuse,
and specular coefficients:

α︸︷︷︸
absorption

+ δ(1− α)︸ ︷︷ ︸
diffusion

+ (1− δ)(1− α)︸ ︷︷ ︸
specular

= 1.

We directly sample the material of the first-order surface and use
that to approximate the resulting effect. Note that α is a vector over
several frequency bands.

2.5 Overall similarity measure
The components of the measure are stored on each face of the cube
map and constitute a first-order response measure related to the sur-
faces near the sampling point. Storing all cube-face images for each
sample point requires large amounts of storage. In order to reduce
the memory overhead, we perform an integration step to compute
the mean of the geometric properties on each cube face. Given a
geometric value q (representing one of the four data values) across
s cube map samples, we compute the mean qavg =

∑s
i=0

qi
s

.

After the integration step, the cube map data for each axis is re-
duced to a four tuple of mean surface distance favg , mean surface
orientation ravg , mean surface absorption αavg , and mean number
of pixels that lie on possible scattering edges uavg . The final sim-
ilarity measure G is a six row matrix composed of this four tuple
for each of the six axis-aligned sample directions. Each direction is
referred to as a superscript (shown as x below):

G = [fx
avg, r

x
avg, α

x
avg, u

x
avg].

(a) (b) (c)

Figure 6: Adaptive sampling: (a) Regular grid sampling creates
a very high number of samples; (b) we remove redundant samples;
(c) adaptive sampling of the scene with fewer samples.

3 Scene decomposition and sampling
In this section, we present our scene-decomposition algorithm,
which greatly reduces the time and storage cost of the acoustic pre-
computation while incurring only small error in response accuracy.
The similarity measure, G, described above is simple and fast to
compute. As a result, our algorithm first evaluates the similarity
measure on a dense grid of sample points over the scene. Once
the surface properties near each sample point have been measured,
sample points with similar properties are merged, which reduces the
total sample point count in the scene. We first discuss the method to
compute the difference between two samples, followed by the tech-
niques used to segment the scene and compute acoustic responses.

3.1 Similarity comparison

In the previous sections, we described our method for extracting
geometric properties that correspond to expected reflection-path
length, expected reflection direction, and expected diffuse energy.
We assume that if two sample points have similar values for these
parameters, it is likely that the acoustic field measured around the
sample positions will be similar. The difference S between sam-
ple points a and b can be computed by taking the component-wise
difference of the quantities described above:

S = |Ga −Gb|.

When calculating the difference in the mean surface distance, favg ,
the percent difference distances is used. This results in a difference
value in the range [0, 1], which can account for changes in both
short and long distances. Similarly, for direction, the dot product is
taken and scaled to the range [0, 1]. Since the absorption vector, α,
is already bounded [0, 1], we use the maximum scalar absorption
difference for any sub band. The discontinuity measure is also nat-
urally bounded [0, 1]. The result is that S is a 6× 4 matrix with the
components being scalars in the range [0, 1].

S will be used to determine if two locations in the scene are similar.
In addition to the S parameters, line of sight is also used to restrict
similarity; we assume that there is a line of sight (LOS) between
the sample points considered similar. This forms the basis of our
similarity metric: sample points are likely to have a similar acoustic
response if the early response (i.e., cube map measured data) is
similar and if the points are visible to each other (LOS restriction).

3.2 Sample merging

Once the similarity properties between all neighboring sample
points have been measured, the scene-decomposition algorithm is
used to compute adaptive sampling. We note that the similarity
measure S is useful for evaluating whether two sample positions
are similar, but not directly useful for eliminating sample positions.
If a sample point is removed, the nearby acoustic field will be sam-
pled sparsely, which may lead to more error at reconstruction when
a receiver is placed near that sample point.

The sample points are merged in an adaptive quad-tree like man-
ner. This is done by recursively subdividing the sample points into
regions. The corners of regions are evaluated for similarity. Most
quad trees divide the working set by four at each level. Our reduc-
tion algorithm also attempts to subdivide the four half regions (two
along each dimension). This reduces the number of subdivision
steps by a small amount.

The maximum norm is taken for each property in S across all di-
mensions (e.g. column vectors), and the result is used to form a
weighted average error, sp. This error is compared against the sim-
ilarity threshold sthr:

sp =
1

4
(||S0||∞ + ||S1||∞ + ||S2||∞ + ||S3||∞),

sp < sthr.

If the error criterion is satisfied, all points bounded by the corners
may be combined into a single region. If the corners do not sat-
isfy the metric, the region is further subdivided and the tests are
repeated for all sub-regions. Each resulting region then contains
similar geometric properties based to the degree specified in sthr .

3.3 Acoustic regions
The output of the refinement stage is an irregular arrangement of
merged samples (see Figure 6). The process of sample merging
also gives us acoustic regions: if two sample points are merged,
they were classified to be similar by the error criteria, and their
original positions in the 2D grid are marked as belonging to the
same region. As points are merged, the acoustic regions grow until
the edges at the boundary of the region no longer satisfy the error
criteria. At runtime, the acoustic region of the source point and the
receiver point must be selected based on the spatial position of the
source and the receiver.

Since the source and the receiver will not lie exactly on the sample
points used during precomputation, the appropriate acoustic region
is computed by checking the four nearest grid locations. The sim-
plest case is when the four nearest grid locations belong to a single
acoustic region. This region can be immediately identified. If not,
LOS queries with O(log t) time cost are performed from the four
points against the objects in the scene. The closest point with a
clear LOS is selected as the closest grid node.

3.4 Simulation of sound propagation
Our method treats sound propagation simulation as a black box,
and its only requirement is with respect to the input: the scene rep-
resentation, along with the positions of source and receiver. From
this input, it computes an impulse responses as the output. We use
geometric acoustics (GA) simulation in order to compute responses
on large scenes, since the complexity of wave-based simulators is a
linear function of the scene volume. Our simulator traces specular,
diffuse, and diffraction rays [Vorländer 1989; Taylor et al. 2012]
and computes paths between a source-receiver pair; it then outputs
an acoustic impulse response that represents environmental effects
on sound waves traveling from the source to the receiver. This im-
pulse response can be convolved with any input sound signal to
render an output signal with the appropriate effects.

We identify the center of each region obtained from the decomposi-
tion process; this point becomes a sample point for the propagation
simulation. Each sample is modeled as a source from which rays
are traced into the scene. Every sample is also considered a receiver,
and propagation paths are recorded at each sample. In other words,
each sample position acts as a source and a receiver. The acoustic
field is measured by simulating an acoustic emitter at each sam-
ple position and measuring the resulting IR at all sample position.
Considering a emitter at one of the sample positions, sound waves

leave the emitter and are recorded at all other sample positions, re-
sulting in an IR at each receiving sample position. For each sample
position, a full acoustic simulation is run, resulting in the acoustic
propagation paths between all sample positions. In our implementa-
tion we use a ray-based GA simulator tracing uniform random rays
from the source and perform specular, diffuse, and diffracting trans-
port. Each ray carries a portion of the emitted sound energy into
the scene, modeling sound propagation. We model the receivers as
spheres at the sample position and use ray tracing methods to com-
pute the acoustic field in the scene. Since modern ray acceleration
structures can achieve O(logt) performance for a scene composed
of t primitives (often triangles), model size in terms of primitives
is not a restricting factor. However, in addition to the scene inter-
section, each ray requires intersection with p receivers at the sample
points. Even with region segmentation, there are still a high number
of source-receiver pairs and each sample point also acts as a source,
this results in O(p2) ray tests using naive methods. We include re-
ceiver locations in a ray-tracing acceleration structure to reduce the
receiver intersection cost to O(p log p). We take additional steps to
reduce the size of p, as described in Section 4.1.

4 Storage and reconstruction
This section describes our storage algorithm. We have designed a
method to efficiently compress, store, and retrieve audio-response
data. Since our method is designed for large scenes, our storage
database must scale in time and space. An acoustic response is a
signal over time or frequency. If spatialization effects are desired,
direction data must also accompany the signal. For our purposes,
three portions of the response data are recorded: decay profile, in-
cident direction, and diffusion. However, the methods described
below can encode any type of data.

4.1 Response representation

The paths computed in the trace step form the acoustic response be-
tween the two samples and represent the environment’s filter of the
acoustic signal between the two locations. Such filters can be rep-
resented compactly by sampling the energy decay profile through
time [Merimaa and Pullki 2004; Tsingos 2009]. The decay pro-
files are built by integrating the energy in the impulse response over
small time-steps and a number of frequency sub-bands. In this way,
both temporal and frequency resolution can be controlled by the
user.

The response is stored in three parts: pressure values, a direction
value in 2D, and a diffuse coefficient to indicate how strong the
directionality is. Similarly to other methods [Tsingos 2009], we
store pressure values for several spectral sub-bands quantized in the
time domain. An energy-weighted average direction of incidence is
stored at time-step resolution; all pressure frequency bands share
the same direction. Similarly, a directional-to-diffuse energy value
is also computed [Merimaa and Pullki 2004].

In the theoretical worst case, p2 responses could be generated (p
sources to p receivers), this does not happen in practice. Since there
exists a maximum sound energy level for each source (e.g. human
voices), there must be a bound on the number of responses gener-
ated. Moreover, the energy emitted is diminished by air absorption
as it travels. For a given grid of n sample points, only k samples
will have audible response to the human voice. The k factor is based
on the distance between the sampling points, dissipation by the air
attenuation model, the maximum pressure level that is simulated,
and the minimum pressure level that can be sensed.

This bounds the number of responses that can be be inserted in the
database, i.e. kn. This also bounds the time cost of the simulation,
since the simulation can be confined to a region large enough to en-
close the k sample points. As the scene size increases, the fact that

A

B

C

h(x,y)
4 4

h(x,y)
3 3

h(x,y)
1 1

h(x,y)
2 2

B A C

A

C
B
A

Decay DecayDecay

(x,y)
Decay

input

linked list

map

h

hash table

decay pointer
decay index

position hash
decay index

(a)

Figure 7: Data insertion: The decay data A, B, C (example re-
sponse data) is appended to a linked list and the length of the list
is the data index. The index is stored with a pointer to the decay
data as a pair in a map. The index is paired with a position hash
and stored in a hash table. The insertion can be performed in av-
erage O(logn) time. After all the data is stored, the linked list is
converted to a linear array, for a total time complexity ofO(n) and
average storage cost of O(n).

k is constant allows the time and space required by the simulation
to be bounded.

4.2 Storage data structures

Since there is response data for each source-receiver pair, it is log-
ical to store the data in a linear vector with an index table to query
by source-receiver. This approach allows O(1) insert and retrieval
time. However, since the number of source-receiver pairs can be
very large, the O(p2) scaling of the table index dominates the stor-
age cost. For example, a scene of 35K sample points would result
in nearly 5GB of storage for the table itself. On very large scenes,
the size of the index can exceed the storage needed for the acoustic
data. It is thus desirable to reduce the size of the actual data stored
and the size of the index needed to query the data.

4.2.1 Storing acoustic data

Based on acoustic reciprocity, we assume that acoustic responses
from swapping source position and receiver position should be sim-
ilar. We capitalize on this factor to reduce the amount of acoustic
data stored. To perform this step, we detect if an insertion will re-
sult in duplicate data. We can impose strict weak ordering on all
the acoustic data, so a map offers fast insertion and query time.
However, the ordering of map nodes is not fixed until all the in-
sertions are completed. Since the index must be built at the same
time, we use a linked list to store the actual acoustic data, and the
map references this data. The ordering of this list is fixed through
the insertion process, and the index is built against the list. This al-
lows insertions to take place in O(1) time for the list and O(log p)
time for the map. Moreover, space complexity for both structures is
O(p). Refer to the supplementary materials for algorithm details.

In our algorithm, we store decay profile, direction, and diffusion
separately, and store only unique responses to take advantage of
reciprocity. This allows very efficient duplicate storage, and, most
importantly, sparse storage of the empty response. Since we are
simulating very large scenes, the most common output from the
simulator is an empty acoustic response.

4.2.2 Efficient data indexing

For the acoustic data, both insertions and queries are performed
during the simulation. At runtime, only the acoustic data is queried.
Thus, when all insertions are complete, the map is discarded and the
list is converted to a vector for efficient storage. The separate index
is used to query acoustic data from this vector. Since the vector
representation supports random access in O(1) time, the cost of

h(x,y)
4 4

h(x,y)
3 3

h(x,y)
1 1

h(x,y)
2 2

B A C
A

C
B
A

h
Decay Decay Decay

Decay

hash table

array

(x,y)

outputinput

Figure 8: Data access: For runtime access, the query position is
hashed and the decay index is found in average O(1) time. The
data array is then queried for the final decay data.

Time

A
m
p
lit
u
d
e

Time
A
m
p
lit
u
d
e

Time

A
m
p
lit
u
d
e

*
Figure 9: Early response attenuation: The early response pres-
sure is attenuated for source/receiver pairs in the same region.

querying acoustic data is thus dominated by index lookup.

The data stored in the index is a key-value pairing of a hash with the
index to the acoustic data in the previously discussed list. When the
list is converted to a vector, the ordering is preserved. Combining
the source-receiver indices results in a good hash function; it can
be represented as a single integer that is guaranteed to not collide
with any other hashed values. We also note that we expect many
responses to be empty and thereby, represent such a quiet response
(i.e. no sound). Based on these assumptions, we do not store keys
that reference empty acoustic data. Instead, if a key is not found
at query time, it is assumed that the data for the key is the empty
response. This significantly reduces the size of the index.

This data is queried often at run time to lookup the acoustic data
vector locations. Therefore, during we construct a hash map from
the unordered vector to represent the final index for O(1) query
time and O(p) storage cost on average. We also found that sorted
vectors performed equally well, even withO(log p) query time due
to the constant values associated with each data structure. The re-
sponses can be accessed in constant time using our data structure
(see Figure 8). The source-receiver hash map can be queried in
O(1) time on average.

4.3 Response reconstruction and rendering

When sampling an acoustic region, the source and receiver posi-
tions for response sampling are centered in the region. However,
at runtime, the source and the receiver may be in the same region
separated by the full width of the the region. Since our algorithm
has only computed a single response for the entire region, we ap-
proximate the distance attenuation by scaling the early portion of
the decay response. For example, we define the early portion as the
first 140ms of the response. We scale each pressure value in the
early portion by 1

d
, where d is the distance that leads to a response

during that time step. This attenuation factor is linearly reduced for
each consecutive time step, so that no attenuation is applied to the
final early time sample. This process allows the early field to be
attenuated without altering the standing late reverberation field (see
Fig. 9). The direct path and early reflection rendering is performed
on the server using a block-based convolution in the Modified Co-
sine Transform Domain [Tsingos et al. 2011]. This is efficient as
audio is often coded in that same domain. The direct path and de-
cay data are interpolated over time as the user moves through the

(a) (b) (c) (d)

Figure 10: Example scenes: Our algorithm can generate environ-
mental acoustic effects in large virtual worlds and games. We show
different benchmarks with their dimensions in meters: (a) simple
outdoor scene (33× 33× 10); (b) first person shooter (FPS) game
scene (30× 60× 20); (c) city scene (600× 980× 33); (d) canyon
model (4000 × 4000 × 100). Our approach scales with the size
of these models and can handle a large number of sources and re-
ceivers in multi-player environments at interactive rates.

scene to avoid audible discontinuities in the output.

In many situations, the server can process the reverberation in re-
altime and operates in full mixing mode. This means all the pro-
cessing is done on the server and stereo or multichannel results are
generated and sent back to the client. Thanks to our representation
of reverberation filters, it is also possible to send only a mono mix-
ture and energy-weighted direction and direct/diffuse metadata to
further reduce bandwidth and enable flexible spatialization on the
client. No matter the rendering arrangement, all head-related filter-
ing is performed at the client-side.

For environments with very long reverberations, which cannot be
completely processed on the server, a further optimization would be
to process only the direct + early part of the response (up to some
number of blocks) on the server. An additional dry mono mixture
and representative late reverb metadata would also be sent to the
client so that it can provide local late reverb processing but this is
not demonstrated in our video or results. This necessary metadata is
the local late decay rate in the vicinity of the listener and an average
late decay rate for all the sources.

5 Validation
In this section, we evaluate the accuracy of our approach using var-
ious perceptual metrics used in room-acoustic analysis. We used
several example scenes, shown in Figure 10. These selected test
scenes represent the likely use cases, and comprise both indoor and
outdoor scenes, corresponding to game maps and virtual worlds.
The details about these models and the underlying grid resolution
are given in Table 1.

Scene # Triangle Size (m) Grid spacing (m) Sample count

Simple Outdoor 2k 33 x 33 x 10 4 81
FPS game 14k 30 x 60 x 20 4 128
Small city 2k 100 x 100 x 33 4 625
Large city 2k 247 x 168 x 33 4 4.9k
Canyon 540k 4k x 4k x 100 4 1,000k

Table 1: Example scenes: Physical sizes for the indoor and out-
door scenes are given in meters (m). The sample count is for a
regular grid at the given resolution.

5.1 Error computation

We have measured various errors related to acoustic responses gen-
erated by our algorithms, including the similarity measure and
the scene decomposition. We measured these errors in the re-
constructed results based on certain properties of the impulse re-
sponses. In particular, we used some well-known acoustic evalua-
tion metrics related to evaluating acoustic responses: onset time de-
lay, initial onset direction, reverberation time in the form of RT60,

and signal definition in the form of D [Kuttruff 2007; ISO 3382
2009]. We performed GA simulation using our precomputation al-
gorithm, computed impulse responses, and compared our results to
a ground truth dataset. The ground-truth data is the full set of re-
sponses from the GA simulator with the source and the receiver po-
sitions at the same grid size, but without any sample reduction. We
used a dense, uniformly-sampled grid to generate the ground-truth,
as shown in Table 1. In both simulations, we traced 50K rays from
each sample point, performing 50 orders of specular and diffuse
reflections and 5 orders of edge diffraction. The relative error is
calculated by dividing the absolute error by the maximum possible
error for each metric. Below we give details related to error com-
putation and evaluation and illustrate many error maps (as shown in
Figure 2 and Figure 3). The low error in these maps validates our
approach with respect to various acoustic evaluation metrics.

5.2 Similarity measure thresholds and validation

During the precomputation step, our method computes an acous-
tic similarity measure for positions in the environment. An error
threshold is used to select similar regions during the scene decom-
position. When merging the sample points and performing scene
decomposition, the error between two sample points ranges in the
interval (0, 1]. For the results presented in this paper, we set our
error threshold sthr to such that 75% of the original nodes are re-
moved.

Since our approach reduces the number of acoustic responses based
on our similarity measure, it is possible that the final acoustic map
may not accurately represent the responses of the original acoustic
environment. In order to show the accuracy of our decomposition
algorithm, we compare the properties of a full ground-truth simu-
lation to properties generated from our method in two scenes with
the initial grid size set to 4m× 4m.

By adjusting the error threshold in the region-segmentation step,
higher accuracy in acoustic properties can be achieved. However,
this increases the number of acoustic regions that need to be stored.
We expect simulations with fewer regions to have greatly reduced
computational overhead, but to also have a small increase in errors
in the impulse response. Figures 11 highlights the relative variation
in error and computation cost as the region merge threshold is ad-
justed. The errors in this figure are computed by taking the average
of the error for every possible position of the receiver, similar to the
error maps used in Figure 2.

5.3 Acoustic property error calculation

In order to compare our approach to a ground-truth simulation, we
consider several acoustic evaluation metrics: Onset delay (Onset),
Onset direction, reverberation (RT60), and Definition (D). More de-
tails about these metrics can be found in [Kuttruff 2007; ISO 3382
2009] and in the supplementary materials. Due to our adaptive de-
composition, some positions in our precomputed solution may be
associated with empty responses, while the corresponding solution
in the ground-truth data may have a non-zero response (and vice
versa). In this case, the error at those positions is undefined and we
use a worst case error value at these locations for our error metrics.

5.4 Error analysis for reduction algorithms

We investigated other possible reduction algorithms: naive sub-
sampling, greedy flood fill reduction, and greedy sorted merge, and
compared them with our adaptive schemes. Subsampling is plac-
ing the sample points in a regular grid at lower resolution sampling
rates. This is the most natural way to reduce sampling in a scene.
Flood fill is performed by sorting edges according to the minimum
error, then greedily merging the lowest error nodes to form a region.
Any nodes connected to the region are merged, provided the result-
ing error is low enough. In greedy sort merge, the edges are sorted

according to the minimum error. Edges are merged in a greedy fash-
ion until all possible edges are merged. We investigated all these
methods and observed that adaptive reduction is the most effective
(see Figure 12).

6 Implementation and Performance
We describe our implementation and highlight the performance of
our algorithm on game scenes and virtual worlds. We have im-
plemented our precompute system on a PC with an NVIDIA GPU
with 480 threads and 1.5 GB video memory. The precompute sys-
tem CPU is an Intel Xeon with 48 threads and 256 GB main mem-
ory. The runtime system is a common Intel Core i7 CPU at 3.3
GHz with 16GB memory. The cube sampler and similarity metrics
were implemented in OpenGL with GLSL shaders to compute the
diffusion and integration steps. The precomputation algorithm is
implemented in C++ with OpenMP threading.

6.1 Similarity and reduction cost

Our similarity metrics are computed on cube faces using the GPU.
We used GLSL shaders to sample the surface distance and normals.
The distance is computed in the object space and recorded along
with the normals. The diffusion metric is computed in one pass
based on the gradient for each query using the edge-convolution
kernel. The integration step is performed using a simple texture
value summation kernel and scaled by the kernel size. In our bench-
marks, we found that a kernel size of 4 pixels gives the best per-
formance on our GPU. In the reduction and similarity comparison
step, LOS queries are performed using a fast CPU-based BVH ray
tracer. All edge-reduction and region computations are performed
using custom data structures backed by STL containers. The reduc-
tion process has a low computational overhead. Given the appropri-
ate error thresholds, we perform sampling and segmentation on our
benchmark scenes. The time to compute the similarity measure at
each sample point as well as the time cost to eliminate similar sam-
ple points are shown in Table 2. The results in this section are for
specular and diffuse responses only. Diffuse reflection requires a
trace for each frequency band in order to model per frequency scat-
tering effects. Unless noted, we trace 50k rays for 50 specular and
diffraction recursions and 5 diffraction recursions for 4 frequency
bands. For our algorithm’s reduced results, we selected a reduction
of 75%. Depending on goals, an actual user may desire a different
reduction amount to adjust the performance vs. accuracy tradeoff.
Table 3 shows the cost of simulating diffuse reflections.

Full Reduced Time
Scene grid Cubemap Segmentation Trace improvement

Simple outdoor 15.14s 1.3s 1ms 6.4s 2.0x
FPS game 141.0s 2.0s 1ms 41.6s 3.2x
Small city 8.8m 8.6s 3ms 4.6m 1.9x
Large city 68m* 26s 69ms 14.4m 4.7x
Canyon 52d* 1.24h 3s 174h 7.17x

Table 2: Precomputation time cost: Region segmentation using
cube maps allows a significant reduction in precomputation time.
The full grid data is generated based on the grid size given in Table
1 for each benchmark. Due to the high time and space cost, times
marked with an * are based on partial simulation.

Our ray based GA simulator is highly optimized for massive scenes.
In Table 4, we compare our method to [Schissler et al. 2014]. The
[Schissler et al. 2014] algorithm ran on an Intel i7 4770k and we
ran our algorithm on an Intel i7 3720QM. Both methods sample the
acoustic field at 44.1khz and trace 50k rays for 100 recursions for
4 frequency bands. By building a ray acceleration structure for our
receiver detection spheres, we improve tracing performance com-
pared by over an order of magnitude.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Node reduction

R
el

at
iv

e
ch

an
ge

●

● ●
● ●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

Change with sub−sampling

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
Energy error
Size
Render time

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Node reduction

R
el

at
iv

e
ch

an
ge

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

Change with adaptive reduction

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
Energy error
Size
Render time

(b)

Figure 11: Sampling accuracy vs. error and cost: Naive subsampling (a) is the most common way of reducing time and storage cost.
As the threshold error in our adaptive sampling algorithm changes (b), the overall error in the acoustic evaluation metrics increases, while
overall storage, precomputation time, and number of samples decrease (FPS game scene).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ●

Change with adaptive reduction

●

D
Late diffuse
Energy
Onset direction
RT60

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ●

Change with flood fill reduction

●

D
Late diffuse
Energy
Onset direction
RT60

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ●

Change with single sort reduction

●

D
Late diffuse
Energy
Onset direction
RT60

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●
●

●

●
● ●

●

●

Change with sub−sampling

●

D
Late diffuse
Energy
Onset direction
RT60

(d)

Figure 12: Error values for different reduction algorithms corresponding to different acoustic evaluation metrics: The (a) adaptive
algorithm performs better than any other, but the other node placement algorithms guided by our signature, (b) flood fill and (c) sorted merge,
perform much better than naive (d) subsampling. These error plots demonstrate the benefit of using our geometric acoustic similarity criteria
along with the adaptive scheme as compared to other approaches. For example, the error reduction over sub-sampling algorithms can be
large, as compared to that over flood-fill and single sort reduction. These results are for the FPS scene.

6.2 Precomputation: time and storage
By segmenting the scene and reducing the number of sample points
during precomputation, the time and storage costs can be consider-

ably reduced. Our sound propagation simulator is based on discrete
ray tracing, accelerated by efficient BVH trees. The ray tracer is
heavily multi-threaded, but not SIMD optimized, as high-order re-

With diffuse Without
full reduced full reduced

FPS: time 554s 223s 141s 42s
FPS: memory 2.0MB 0.3MB 1.3MB 0.3MB

FPS: error 0% 18% 0% 18%
Small city: time 33.5m 14.9m 8.8m 4.6m

Small city: memory 39MB 3.3MB 39MB 5MB
Small city: error 0% 21% 0% 21%

Table 3: Diffuse reflection cost: Diffuse reflections requires more
simulation time and slightly more storage space. The reduced re-
sults use a subset of the full sample positions as selected by our
algorithm. Reduction results are for 75% node reduction, although
the user may select a different reduction amount to adjust perfor-
mance vs. accuracy tradeoffs.

Scene [Schissler et al. 2014] Ours

FPS (128 nodes) 2.6h 8.8m
Small city (625 nodes) 56h 52.5m

Table 4: Precompute time comparison: Other simulation meth-
ods cannot scale massive scenes. Our reduction algorithm and
efficient simulation allow sub-quadratic performance on massive
scenes.

flections are very incoherent. The simulator computes the response
at each receiver in the scene from a single source in one simulation
cycle. This results in n simulation cycles for n acoustic regions or
source positions.

We store our acoustic data as quantized decay filters. A four second
reverberation decay profile can be efficiently encoded using 200
blocks, each containing 6 bytes of information, for a total of 1.2
KB. Our reduced sample count and efficient storage structure sig-
nificantly reduce the storage overhead, as compared to grid based
methods. Table 5 compares our storage overhead (“Reduced”) to
standard grid based methods (“Full”).

We design our storage algorithms to reduce both time and space
costs. For p sample positions, the time cost is O(p log p), which is
dominated by map operations and sorting the index vector. Ad-
ditionally, data is stored sparsely when possible. Sparse data,
response quantization, and node reduction result in highly com-
pressed acoustic databases (Table 6).

Full grid Reduced Storage
Scene inserts storage inserts storage improvement

Simple outdoor 5.5k 1.6MB 1k 0.3MB 5.3x
FPS game 7.3k 1.3MB 1.6k 0.3MB 4.3x
Small city 229k 39MB 7.3k 3MB 13x
Large city * * 722k 173MB *
Canyon * * 11.6B 20.8GB *

Table 5: Storage cost: We compare storage cost of our reduction
algorithm to a full grid, both stored in our efficient sparse data
structure.We observe significant improvement for large scenes. Due
to the high time and space cost, times marked with an * could not
be computed.

6.3 Runtime cost

The direct sound and early reflection computations are performed
on the server for a viable VoIP application. A single server would
be expected to support thousands of clients (e.g. Axon supports
8K clients on an 8-core server [Dol 2012]). The results for the
maximum number of streams that can be mixed on a single core in
realtime are given in Table 7. By implementing our runtime mix-
ing using efficient GPU kernels, we can further scale the approach
to thousands of streams in realtime using high-end GPUs [Tsingos

Method Error Space savings

Value quantization ∼2% 75%
No duplicates None ∼50%

Node reduction ∼20% ∼80%

Total ∼ 22% ∼99.99%

Table 6: Compression: We combine several algorithms to produce
highly compressed scenes

et al. 2011].

Scene # Mixes Convolve (ms) Setup (ms)

Walkway 764 16.2 5.0
Game FPS 731 13.7 4.8
Small city 800 15 5.6
Large city 692 14.8 5.2
Canyon 684 14.2 5.8

Table 7: Max realtime mixes per core: This table shows mixing
costs for 500ms of decay data per stream. The setup time includes
data structure access and LOS traces. The realtime mixing step in
our system is performed in less than 20ms.

In traditional spatial VoIP systems, occluded voices that are not in
direct LOS would fade into silence, and therefore would not be con-
sidered for mixing; this indirectly improves the computation and
bandwidth scalability of the system. In contrast, we take into ac-
count occluded voices for clustering and mixing as they might be
audible due to early scattering and reverberation effects. This can
decrease the forwarding-to-mixing ratio and requires more runtime
processing.

We measure the performance of our algorithm by changing the
number of audio streams that can be rendered simultaneously. For
our purposes, an audio stream is the data that must be mixed for
each source to each receiver. For example, if a single source is
within the range of three receivers, three streams would need to be
mixed. If source or receiver is moving, the decays must be inter-
polated at region boundaries. This results in an extra multipy-add
for each impulse, decreasing performance by a slight degree. All
numbers shown in Table 7 are for moving sources and receivers.

7 Comparison and limitations
In this section, we compare our approach with other precomputa-
tion methods and highlight some limitations.

7.1 Comparison
Many precomputation techniques have been proposed for interac-
tive sound propagation and rendering. We compare some features
of our approach to other precomputation methods in Table 8.

Numerical propagation: Wave-based precomputation ap-
proaches [Raghuvanshi et al. 2010; Mehra et al. 2013; Yeh et al.
2013; Raghuvanshi and Snyder 2014] are more accurate than
GA methods for low frequencies and can model higher order
diffraction and scattering effects. However, the complexity of
this simulation increases as a fourth power of frequency and is
a linear function of the volume of the virtual world. As a result,
these techniques are currently limited to small indoor scenes
and are used only for low frequencies (e.g. less than 1000 Hz) .
Although our current implementation is based on GA, we believe
that our similarity-measure and decomposition method could also
be combined with wave-based solvers [Raghuvanshi et al. 2010;
Raghuvanshi and Snyder 2014].

Cell and portals: Many games and interactive applications use
cell-and-portal scene decompositions, which can be utilized to pre-
compute higher-order reflections of sound between moving sources

Algorithm Ours PART Wave-grid IS-gradient DP-Cache Reverb-graph

Mem. use <Low Low High Low Medium Low
Convolution >Realtime Interactive Realtime >Realtime Realtime Realtime
Regions Acoustic Spatial None Cell+Portal Cell+Portal Cell+Portal
Directionality All samples 1st order 1st order All samples 1st order 1st order
Decomposition Automatic Automatic Automatic Manual Manual Manual

Table 8: Comparison: We compare some features of our ap-
proach with other precomputation methods, including PART [Sil-
tanen et al. 2009], Wave-grid [Raghuvanshi et al. 2010], IS gra-
dient [Tsingos 2009], DP Cache [Foale and Vamplew 2007], and
Reverb graph [Stavrakis et al. 2008]. The compression scheme pre-
sented in [Raghuvanshi and Snyder 2014] can considerably reduce
the memory overhead of Wave-grid [Raghuvanshi et al. 2010].

and listeners using ray tracing [Foale and Vamplew 2007; Stavrakis
et al. 2008; Tsingos 2009]. These approaches typically store IRs
sampled at a single position for each cell and/or portal encountered
along the paths between the source and the receiver. However, these
approaches require significant manual intervention to define regions
and portals, making them impractical for large-scale environments.
Defining cells and portals suitable for acoustic rendering can of-
ten be unintuitive, especially for large outdoor scenes. In contrast,
our approach can automatically partition any large environment into
acoustic regions.

Frequency and time decomposition: Some techniques perform
frequency-domain precomputation based on the acoustic rendering
equation [Siltanen et al. 2009], which limits them to static sources.
Recently, [Antani et al. 2012] extended the approach by precom-
puting acoustic transfer operators. However, this approach can only
handle a few moving sources, since it performs ray tracing to com-
pute early reflections at runtime. As a result, the runtime overhead
can be very high for a large number of sources and receivers. Fur-
thermore, its storage overhead is about 50− 100X higher than our
approach.

7.2 Limitations

Our approach introduces several approximations with respect to re-
verberation computation. While our segmentation and precom-
putation algorithms are independent of frequency, our storage and
runtime implementation is highly optimized for voice related fre-
quencies. Speech can often be rendered at low frequency with ac-
ceptable results, for example, cellular phones often sample audio
at 8 kHz [ETSI 2014]. Our implementation renders all audio at 16
kHz. In order to support high frequency 44.1 kHz audio, memory
and runtime costs would increase by approximately 2.75 times (i.e.
a linear function of the highest frequency).

Within regions, the direct path can be rendered with occlusion and
distance attenuation. However, the decay data has been precom-
puted and cannot be adjusted within region. We attempt to mitigate
this issue by restricting the region sizes and apply a heuristic scaling
to the early response. Nonetheless, the interpolation within regions
is not physically based and may lead to incorrect decay responses.

We render integrated decay profiles reconstructed with a random
phase, rather than the original impulse response. This reduces the
accuracy with which the early reflections can be rendered. In par-
ticular, flutter echoes might not be captured by our approach unless
the number of sub-bands is increased. Since we use GA simulation,
it cannot accurately simulate all wave effects (e.g. low frequency
effects).

Since our similarity measure computation is a heuristic based on
scene geometric representation, which only takes into account first-
order reflections or responses, this formulation may fail in some
cases to accurately estimate the late responses. In scenes where
the depth variance is large, the early response time cannot be reli-
ably estimated from the local geometric representation. Moreover,

in scenes with high depth complexity or occlusion, the diffraction
paths contribute significantly towards the early responses, and our
approach may not work well in such scenes. Finally, our reduction
metrics can be overly conservative in some scenes, resulting in less
time and storage benefits.

8 Conclusion and future work
We present a new approach to generating environmental voice re-
verberation in large virtual worlds. Our algorithm scales with the
size of the model and computes early and late acoustic responses
complete with diffraction and reverberation effects. We use a lo-
cal geometrical similarity metric to efficiently sample key positions
and create zones with similar acoustical properties. Due to our sam-
ple reduction algorithm and efficient storage structures, we observe
more than an order of magnitude improvement in precomputation
time and storage overhead. We demonstrate results on kilometer-
sized virtual worlds with a large number of sources and receivers.
The size of the environment and the number of sources used in
our simulation are much larger than the ones used in recent real-
time propagation algorithms. In practice, our approach can gen-
erate plausible environmental audio effects and is targeted towards
gaming and virtual environments.

There are many avenues for future work. In addition to overcoming
the stated limitations, we plan to investigate techniques to update
the acoustic response based on dynamic objects using precomputed
filters. It would be useful to extend our acoustic similarity met-
ric and adaptive similarity metric to wave-based propagation tech-
niques [Raghuvanshi et al. 2010; Raghuvanshi and Snyder 2014]
to improve our computation for low-frequency effects. We also
would like to investigate possible perceptual reduction techniques
to further reduce the number of samples that need to be stored.
We need to perform more validation and error analysis, especially
for large outdoor scenes. Our current error analysis is based on
standard ISO-3382 parameters, which were primarily designed for
room acoustics. We plan to integrate our approach in a large-scaled
VoIP system and evaluate its performance. We believe that a user
study to evaluate the accuracy of reduced sampling strategies and
plausibility would be useful.

References
ANDŌ, Y. 1998. Architectural Acoustics: Blending Sound Sources, Sound Fields, and

Listeners. Modern Acoustics and Signal Processing Series. Springer Verlag.

ANTANI, L., CHANDAK, A., SAVIOJA, L., AND MANOCHA, D. 2012. Interactive
sound propagation using compact acoustic transfer operators. ACM Trans. Graph.
31, 1 (Feb.), 7:1–7:12.

BAILEY, R., AND BRUMITT, B. 2010. Method and system for automatically gen-
erating world environment reverberation from a game geometry. Tech. rep., U.S.
Patent Application US 2010/0008513 A1, January.

BENESTY, J., GAENSLER, T., AND ENEROTH, P. 2000. Multi-channel sound, acous-
tic echo cancellation, and multi-channel time-domain adaptive filtering. In Acoustic
Signal Processing for Telecommunication. Kluwer Academic Publishers, 101–120.

BERNDT, P., HOVESTADT, M., AND KAO, O. 2011. Crowd buzz: Scalable au-
dio communication for mmves using latency optimized hypercube gossiping. In
Haptic Audio Visual Environments and Games (HAVE), 2011 IEEE International
Workshop on, IEEE.

BOUSTEAD, P., AND SAFAEI, F. 2004. Comparison of delivery architectures for
immersive audio in crowded networked games. In Proceedings of the 14th interna-
tional workshop on Network and operating systems support for digital audio and
video, ACM, New York, NY, USA, NOSSDAV ’04, 22–27.

CALAMIA, P., AND SVENSSON, U. P. 2007. Fast time-domain edge-diffraction cal-
culations for interactive acoustic simulations. EURASIP Journal on Advances in
Signal Processing.

CHANDAK, A., ANTANI, L., TAYLOR, M., AND MANOCHA, D. 2009. Fastv: From-
point visibility culling on complex models. In Eurographics Symposium on Ren-
dering.

2012. Dolby axon surround sound chat for gamers. http://www.dolby.com/
us/en/consumer/technology/gaming/dolby-axon.html.

ETSI, 2014. TS 126 071 V12.0.0; AMR speech Codec; General description.

FOALE, C., AND VAMPLEW, P. 2007. Portal-based sound propagation for first-person
computer games. In Proceedings of the 4th Australasian conference on Interactive
entertainment, IE ’07, 9:1–9:8.

FUNKHOUSER, T., CARLBOM, I., ELKO, G., PINGALI, G., SONDHI, M., AND

WEST, J. 1998. A beam tracing approach to acoustic modeling for interactive
virtual environments. In Proc. of ACM SIGGRAPH, 21–32.

FUNKHOUSER, T. A., MIN, P., AND CARLBOM, I. 1999. Real-time acoustic model-
ing for distributed virtual environments. In Proc. of ACM SIGGRAPH, 365–374.

GIBBS, M., WADLEY, G., AND BENDA, P. 2006. Proximity-based chat in a first
person shooter: using a novel voice communication system for online play. In Pro-
ceedings of the 3rd Australasian conference on Interactive entertainment, Murdoch
University, Murdoch University, Australia, Australia, IE ’06, 96–102.

GOODE, B. 2002. Voice over internet protocol (voip). In Proceedings of the IEEE,
1495 – 1517.

GREENE, N. 1986. Environment mapping and other applications of world projections.
IEEE Computer Graphics and Applications 6, 11 (Nov.).

HALLORAN, J. 2009. It’s talk, but not as we know it: Using voip to communicate in
war games. In Proceedings of the 2009 Conference in Games and Virtual Worlds
for Serious Applications, VS-GAMES ’09, 133–140.

HOLLIER, M. P., RIMELL, A. N., AND BURRASTON, D. 1997. Spatial audio tech-
nology for telepresence. BT Technology Journal 15, 4, 33 – 41.

ISO 3382, 2009. Measurement of room acoustic parameters.

JAMES, D. L., BARBIC, J., AND PAI, D. K. 2006. Precomputed acoustic transfer:
output-sensitive, accurate sound generation for geometrically complex vibration
sources. In Proc. of ACM SIGGRAPH, 987–995.

JIANG, J.-R., WU, J.-W., FAN, C.-W., AND WU, J.-Y. 2014. Immersive voice
communication for massively multiplayer online games. Peer-to-Peer Networking
and Applications, 1–13.

JOT, J.-M. 1999. Real-time spatial processing of sounds for music, multimedia and
interactive human-computer interfaces. Multimedia Systems 7, 1, 55–69.

KUTTRUFF, H. 2007. Acoustics: An Introduction. Taylor and Francis, New York.

LIANG, K., SEO, B., KRYCZKA, A., AND ZIMMERMANN, R. 2013. Idm: An
indirect dissemination mechanism for spatial voice interaction in networked virtual
environments. Parallel and Distributed Systems, IEEE Transactions on 24, 2, 356–
367.

MARKOPOULOU, A., TOBAGI, F., AND KARAM, M. 2002. Assessment of voip
quality over internet backbones. In IEEE INFOCOM 2002, 150 – 159.

MEHRA, R., RAGHUVANSHI, N., ANTANI, L., CHANDAK, A., CURTIS, S., AND

MANOCHA, D. 2013. Wave-based sound propagation in large open scenes using
an equivalent source formulation. ACM Trans. on Graphics 32, 2, 19:1–19:13.

MERIMAA, J., AND PULLKI, V. 2004. Spatial impulse response rendering. Proc. of
the 7th Intl. Conf. on Digital Audio Effects (DAFX’04) (Oct.).

POPE, J., CREASEY, D., AND CHALMERS, A. 1999. Realtime room acoustics using
ambisonics. Proc. of the AES 16th Intl. Conf. on Spatial Sound Reproduction, 427–
435.

RADENKOVIC, M., GREENHALGH, C., AND BENFORD, S. 2002. Deployment issues
for multi-user audio support in cves. In Proceedings of the ACM symposium on
Virtual reality software and technology, ACM, New York, NY, USA, VRST ’02,
179–185.

RAGHUVANSHI, N., AND SNYDER, J. 2014. Parametric wave field coding for pre-
computed sound propagation. ACM Transactions on Graphics (TOG) 33, 4, 38:1–
38:11.

RAGHUVANSHI, N., SNYDER, J., MEHRA, R., LIN, M., AND GOVINDARAJU, N.
2010. Precomputed wave simulation for real-time sound propagation of dynamic
sources in complex scenes. In ACM Trans. on Graphics, vol. 29, 68:1 – 68:11.

SAFAEI, F. 2005. Dice: Internet delivery of immersive voice communication for
crowded virtual spaces. In Proceedings of the 2005 IEEE Conference 2005 on
Virtual Reality, IEEE Computer Society, Washington, DC, USA, VR ’05, 35–41.

SALLNÄS, E.-L. 2005. Effects of communication mode on social presence, vir-
tual presence, and performance in collaborative virtual environments. Presence:
Teleoper. Virtual Environ. 14, 4, 434–449.

SAVIOJA, L. 2010. Real-Time 3D Finite-Difference Time-Domain Simulation of Mid-
Frequency Room Acoustics. In 13th International Conference on Digital Audio
Effects (DAFx-10).

SCHISSLER, C., AND MANOCHA, D. 2014. Interactive sound propagation and ren-
dering for large multi-source scenes. Tech. rep., Department of Computer Science,
University of North Carolina. Submitted for publication.

SCHISSLER, C., MEHRA, R., AND MANOCHA, D. 2014. High-order diffraction and
diffuse reflections for interactive sound propagation in large environments. ACM
Trans. Graph. 33, 4 (July), 39:1–39:12.

SCHROEDER, M. R. 1965. New method of measuring reverberation time. The Journal
of the Acoustical Society of America 37, 409.

SILTANEN, S., LOKKI, T., KIMINKI, S., AND SAVIOJA, L. 2007. The room acous-
tic rendering equation. The Journal of the Acoustical Society of America 122, 3
(September), 1624–1635.

SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2009. Frequency domain acoustic
radiance transfer for real-time auralization. Acta Acustica 95, 1, 106–117.

STAVRAKIS, E., TSINGOS, N., AND CALAMIA, P. 2008. Topological sound prop-
agation with reverberation graphs. Acta Acustica/Acustica - the Journal of the
European Acoustics Association 94, 921–932.

TAYLOR, M., CHANDAK, A., MO, Q., LAUTERBACH, C., SCHISSLER, C., AND

MANOCHA, D. 2012. Guided multiview ray tracing for fast auralization. IEEE
Transactions on Visualization and Computer Graphics 18, 1797–1810.

TSINGOS, N., GALLO, E., AND DRETTAKIS, G. 2004. Perceptual audio rendering
of complex virtual environments. ACM Trans. Graph. 23, 3, 249–258.

TSINGOS, N., DACHSBACHER, C., LEFEBVRE, S., AND DELLEPIANE, M. 2007.
Instant sound scattering. In Proceedings of the Eurographics Symposium on Ren-
dering, 111–120.

TSINGOS, N., JIANG, W., AND WILLIAMS, I. 2011. Using programmable graphics
hardware for acoustics and audio rendering. Journal of Audio Engineering Society
59, 9, 628–646.

TSINGOS, N. 2009. Pre-computing geometry-based reverberation effects for games.
35th AES Conference on Audio for Games.

VORLÄNDER, M. 1989. Simulation of the transient and steady-state sound propa-
gation in rooms using a new combined ray-tracing/image-source algorithm. The
Journal of the Acoustical Society of America 86, 1, 172–178.

WADLEY, G., GIBBS, M., AND BENDA, P. 2007. Speaking in character: using voice-
over-ip to communicate within mmorpgs. In Proceedings of the 4th Australasian
conference on Interactive entertainment, IE ’07, 24:1–24:8.

WEST, J., BLAUERT, J., AND MACLEAN, D. 1992. Teleconferencing system using
head-related signals. Applied Acoustics 36, 3-4, 327 – 333.

WILLIAMS, D., CAPLAN, S., AND XIONG, L. 2007. Can You Hear Me Now?
The Impact of Voice in an Online Gaming Community. Human Communication
Research 33, 4, 427–449.

YEH, H., MEHRA, R., REN, Z., ANTANI, L., MANOCHA, D., AND LIN, M. 2013.
Wave-ray coupling for interactive sound propagation in large complex scenes. ACM
Trans. Graph. 32, 6, 165:1–165:11.

ZIMMERMANN, R., AND LIANG, K. 2008. Spatialized audio streaming for networked
virtual environments. In Proceedings of the 16th ACM international conference on
Multimedia, ACM, New York, NY, USA, MM ’08, 299–308.

http://www.dolby.com/us/en/consumer/technology/gaming/dolby-axon.html
http://www.dolby.com/us/en/consumer/technology/gaming/dolby-axon.html

Rendering Environmental Voice Reverberation for
Large-scale Distributed Virtual Worlds

2 Appendix
In this supplementary material we include details on various aspects
of our algorithm and its error analysis. We first describe the error
metrics and how the error of each acoustic property is computed
(Section 2.1). In Section 2.2 we highlight the error maps for some
benchmarks to evaluate the accuracy of our adaptive sampling al-
gorithm. Section 2.3 shows the errors for all the metrics used in our
similarity analysis. We highlight the errors for each metric sepa-
rately as well all four combined metrics. We show that all four met-
rics are need for robust segmentation. Section 2.4 gives the details
(and pseudo-codes) for various algorithm described in the paper.

2.1 Error metrics

We evaluate the accuracy of our simulation by comparing proper-
ties of the resulting acoustic field. Below, we describe the details of
error calculation for each metric. Refer to Section 5.3 for a general
overview of how the metrics are compared. Figure 1 is similar to
Figure 12 in the paper and shows the error of some of these proper-
ties for various reduction strategies.

Onset delay: This is the time it takes for the earliest first-order path
(reflection or diffraction) to reach the receiver. This is very similar
to the Initial Time Delay Gap [Andō 1998], but we cannot guarantee
the presence of a direct contribution; so we measure the delay from
the initial simulation time. We compute this parameter by finding
the delay of the first impulse in the acoustic response. Moreover,
we assume that a missing value indicates that the onset occurred
outside the measurement range (4 seconds in our implementation).
In these cases we set the error to the difference between the maxi-
mum measurable onset and the known delay. Otherwise, this error
is computed as a time difference between the two response onset
delays.

Onset direction: This is the average direction of all contributions
for the initial impulse. It is the first directional sound that a listener
hears in the absence of direct sound and is important for localiza-
tion. We compute this parameter by averaging the directions of all
contributing paths that contribute the first impulse. This error is
computed as the dot product of the normalized onset directions of
the responses. We scale the error over the [0, 1] interval, where an
error of 1 represents the maximum error of 90◦. Since highly dif-
fuse signals will have nearly random direction, the direction error
is scaled by the strength of the spatial response. This means that
highly diffuse signals will produce low directional error, while sig-
nals with less diffusion could produce more error.

Reverberation (RT60): This corresponds to the time it takes for
sound waves to decay past a certain threshold. In particular, RT60
is the time needed for the sound to decay -60dB. The reverberation
decay helps the listener to determine the size of the space. We com-
pute this using the Schroeder method [Schroeder 1965; ISO 3382
2009] by matching a least-squares fit of the pressure decay in log
space. We compute the time to decay to -60 dB by fitting a least
square line to both the decay responses; we report the error as the
time difference in decay time. For reverberation, we assume that a
missing value indicates that the signal decayed immediately, so the
error is the decay time from the other signal.

Definition (D) This value represents the ratio between energy levels
in the early and late portions of the acoustic response. We use D,
the ratio of the integral of the first 50 milliseconds of energy to
the total energy in the response, as defined in [Kuttruff 2007; ISO
3382 2009]. D represents the intelligibility of speech signals. If
both responses have a value, the error is the difference between the

measured D values. If the response is empty, we assume it has a D
value of 0.

Clarity (C80) This value is similar to D, except it is the ratio be-
tween the energy in the first 80 milliseconds of the response to the
rest of the energy [Kuttruff 2007]. In short responses, this can lead
to a division by 0 if there is no energy past the initial 80 millisec-
onds. We compute error in this value as a percent difference in
decibel values. If there is no energy in the later portion of the re-
sponse, we avoid dividing by 0 and assign a default value of 20
decibels.

Strength (G) This value represents the strength of the response as
a ratio of response energy to the direct path at 10m [Kuttruff 2007].
We compute error in this value as a percent difference in decibel
values.

Total energy (Energy) This value represents the sum of the sound
pressure levels over the length of the response. Before the sum,
the frequency band values are averaged into a single time domain
response. We compute relative error in this value as a percent dif-
ference in decibel values.

Diffuseness (Diffuse) We compute the diffuseness of the response
as a function of the direction of incoming sound at a sample posi-
tion over time. If majority of the sound arriving at a sample posi-
tion for a given time index is from a similar direction, that response
time sample will have low diffuseness. If the sound arrives from
many different directions, the time sample will have high diffuse-
ness. This value is computed by finding the mean direction of the
contribution paths arriving at a receiver. The length of the resulting
vector is the ratio of diffuseness. To compute the error, we find the
average diffuseness for the signal over time, then taking the differ-
ence from the known diffuseness. If a diffuseness value is missing,
we assume a maximum error of 1.

2.2 Example maps

(a) (b) (c)

Figure 2: Energy error maps: We compute sound energy for the
(a) full dataset and (b) our reduced dataset. The details of these
datasets are given in Table 2. The difference between these datasets
represents the error in our solution (c). The total energy values for
the source position outlined in green are shown.

Since it is difficult to report the thousands of error values from a sin-

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●● ●●

Change with adaptive reduction

●

D
Late diffuse
Energy
Onset direction
RT60

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

Change with flood fill reduction

●

D
Late diffuse
Energy
Onset direction
RT60

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●
● ●●

Change with single sort reduction

●

D
Late diffuse
Energy
Onset direction
RT60

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ●

●
●

Change with sub−sampling

●

D
Late diffuse
Energy
Onset direction
RT60

(d)

Figure 1: Error values for different reduction algorithms corresponding to different acoustic evaluation metrics (City): This is similar
to Figure 12 in the paper, but for a different benchmark. It highlights the error values for different reduction algorithms corresponding to
different acoustic environment metrics. The (a) adaptive algorithm performs better than any other, but the other node placement algorithms
guided by our signature

gle scene, we compute various maps that average the error values
over the entire scene. All of these calculations are performed on the
acoustic evaluation metrics defined above. The most intuitive error
is the difference between a property f from a ground-truth acous-
tic response and a property c from our region-segmented acoustic
response. For a given source position, we measure the acoustic
property difference of all receiver positions over the entire map as
|f − c|. This differencing process is shown in Figure 2.

We weight the acoustic property error relative to audibility a, which
we define as the maximum decibel value in the acoustic response.
The error for a response is scaled over the range 0 to 2 for audibility
of -60 to 0 dB. Thus, the error in quiet responses is weighted less,
while error in loud responses is weighted more.

Using these difference maps, we compute the relative error in
acoustic evaluation metric over the range of that metric (g) and
scale it by the audibility factor a as |f−c|

g
a. The average relative

error A for a single source position s to any of n receiver positions
can be given as

A =

∑n
s=0

|fs−cs|
g

as∑n
s=0 as

Figure 3 shows the value A visually. The average relative error M
is computed for all positions:

∑n
s=0As/n. This is the value shown

in Figure 11. We note that for large maps, many responses are
silent, as the sound decays before reaching distant receivers. These
responses are trivially equal (i.e. empty) and are not included in
any error calculations.

We have computed the ground-truth for the FPS Game scene using
our simulator with no segmentation. The results in Figure 4 are
the relative error for an initial sampling of 4 meters with a merge
threshold Sthr set such that the simulated node count is 75% of the
original grid sample count.

2.3 Metric analysis

We use four metrics in our similarity measure: distance, direction,
diffuseness, and material. We weight the metrics identically since
it is difficult to know which metric will perform best for a given
scene. For example, the material metric may be very useful in an
office environment with many different materials, but less useful in
a stone cathedral where all materials share similar properties. In
Figure 6 we show the results of reduction with some metrics dis-
abled. We have highlighted these results for Small City benchmark
in the paper and for the City benchmark and FPS benchmark here.
We can only get low error and significant node reduction when all
four metrics are used (i.e. a robust solution).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ● ● ● ● ●

Material only

●

D
Late diffuse
Energy
Onset direction
RT60

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ● ● ● ● ●

Scattering only

●

D
Late diffuse
Energy
Onset direction
RT60

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ●

●
●

Sub sampling

●

D
Late diffuse
Energy
Onset direction
RT60

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ●● ●●● ● ● ● ● ●

Direction only

●

D
Late diffuse
Energy
Onset direction
RT60

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●●●● ● ● ● ● ● ● ● ●

Distance only

●

D
Late diffuse
Energy
Onset direction
RT60

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ● ● ● ● ●

All metrics

●

D
Late diffuse
Energy
Onset direction
RT60

(f)

Figure 5: Individual metric results (Small City): We show the reduction results when only a single metric is enabled on the Small City
scene. Single metrics cannot robustly predict the acoustic field: distance (e) alone cannot reduce node count below 40% (because of our
criteria) and direction (d) fails to robustly segment the scene for some values of S. For general scenes, all metrics are required for robust
segmentation, as they allow significant node reduction (i.e. reduced storage overhead) and lower error in our sampled representation.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ●

Material only

●

D
Late diffuse
Energy
Onset direction
RT60

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ●

Scattering only

●

D
Late diffuse
Energy
Onset direction
RT60

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●
●

●

●
● ●

●

●

Sub sampling

●

D
Late diffuse
Energy
Onset direction
RT60

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ●● ●● ● ● ●

Direction only

●

D
Late diffuse
Energy
Onset direction
RT60

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

●●● ● ● ● ● ●

Distance only

●

D
Late diffuse
Energy
Onset direction
RT60

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e
er

ro
r

● ● ● ● ● ● ● ●

All metrics

●

D
Late diffuse
Energy
Onset direction
RT60

(f)

Figure 6: Individual metric results (FPS): Similar to the Individual metric results shown in Figure 6, we show the reduction results when
only a single metric is enabled on the FPS scene. This plot demonstrates the benefit of using all four metrics, as opposed to a single metric.
For general scenes, all metrics are required for robust segmentation, as they allow significant node reduction (i.e. reduced storage overhead)
and lower error in our sampled representation.

(a) (b)

Figure 3: Segmentation region error: The segmentation map for
the FPS scene is shown in (a), where each unique color is an acous-
tic region. The total energy relative error resulting from this seg-
mentation is shown in (b) We show the source position sampled in
Figure 2 as a green circle. The legend for (b) is the same as the
legend in Figure 4.

2.4 Algorithm details
Prior to simulation, acoustic regions are identified. The details of
the adaptively merging algorithm is given in Algorithm 1.

Algorithm 2 describes how responses are inserted into our storage
structure during precompute. Our storage algorithm is extremely
efficient on large scenes by not storing empty responses and coa-
lescing duplicate data.

At runtime, the storage structure is queried for acoustic response
data. Algorithm 3 shows the details of this process.

Algorithm 1 Adaptively merge regions with similar signatures.
Each region can be subdivided into four subregions. Neighboring
subregions could form larger rectangular regions. In this algorithm,
the ordering of merges ensures that the largest possible regions are
merged. That is, if there is a possible merge of a rectangular re-
gion, it is used. The similar() function tests if the signatures in
the region satisfy the LOS and sp < sthe constraints.

function MERGE(corner, size)
c← corner
s← size
h← size/2
entireRegion← (c, c), (s, s)
topRect← (c, c), (s, h)
botRect← (c, c+ h), (s, h)
lefRect← (c, c), (h, s)
rigRect← (c+ h, c), (h, s)
topLef ← (c, c), (h, h)
topRig ← (c+ h, c), (h, h)
botLef ← (c, c+ h), (h, h)
botRig ← (c+ h, c+ h), (h, h)

if similar(entireRegion) then
merge(entireRegion)

else if similar(topRect) and similar(botRect) then
merge(topRect); merge(botRect)

else if similar(lefRect) and similar(rigRect) then
merge(lefRect); merge(rigRect)

else if similar(topRect) then
merge(topRect); merge(botLef); merge(botRig)

else if similar(botRect) then
merge(botRect); merge(topLef); merge(topRig)

else if similar(lefRect) then
merge(lefRect); merge(topRig); merge(botRig)

else if similar(rigRect) then
merge(rigRect); merge(topLef); merge(botLef)

else
merge(topLef); merge(topRig)
merge(botLef); merge(botRig)

end if
end function

Algorithm 2 Insert response data. All the insertions are performed
during simulation phase. We give details of our insertion algorithm
based on the hash table representation.

function INSERTRESPONSEDATA(data, location)
if data = emptyData then

return
end if
ptrD ← pointer(data)
id← map.Query(ptrD)
if id = emptyID then

list.Insert(data)
ptrD ← pointer(list.End)
map.Insert(ptrD)
pair(location, list.Size)
hashmap.Insert(pair)

else
pair(location, id)
index.Insert(pair)

end if
end function

(a) (b) (c) (d)
Figure 4: Relative error maps: We compute the relative error
in FPS scene with respect to different evaluation metric: (a) onset
delay; (b) onset wave direction; (c) RT60; (d) and definition D. A
wireframe of the scene is overlaid on the error maps. Red areas
indicate high error. In most regions the errors in terms of onset
delay, RT60 and definition are low. A few locations result in high
values of the onset direction relative error.

Algorithm 3 Get response data. This query is performed at runtime
to lookup the acoustic data vector locations.

function GETRESPONSEDATA(location)
id← index.Query(location)
if id = emptyID then

return emptyData
else

return data[id]
end if

end function

