RESound

Interactive Sound Rendering in Dynamic Virtual Environments

Micah Taylor, Anish Chandak
Lakulish Antani, Dinesh Manocha

University of North Carolina
• Sound rendering and applications

• Details of propagation

• Our system: RESound
- Sound rendering and applications
- Details of propagation
- Our system: RESound
Sound Rendering

- Three main steps
 - Signal input
 - Sound propagation
 - Audio output
Sound Rendering: Signal Input

- Recorded sample
 - Simple and fast
 - Played with events
 - Static

- Synthesized sound
 - Physics simulation generates sound
 - Matches virtual events

[Matt Hileo]

[Raghuvanshi 2006]
Sound Rendering: Signal Input

- Synthesized sound
- Uses physical models [Florens et al. 1991]
- Interactive rates with many objects [Raghuvanshi et al. 2006]
- Correlates closely with visual scene [Ren et al. 2009]
Sound Rendering: Propagation

- **Goal:** Model environment influences
 - Echoes
 - Delay from distance
 - Attenuation from distance
 - Frequency shifts
- **Output:** Impulse response
 - Represents room's effect on input signal
Sound Rendering: Propagation

- Common methods
 - No propagation - direct path only
 - Geometric simulation
 - Numerical simulation
Sound Rendering: Audio Output

- **Goal**
 - Combine many sounds from environment
 - Apply any needed effects
 - Output to user's audio device

- **Uses the output from prior steps**
 - Input signal
 - Room impulse response
Sound Rendering: Audio Output

- Common output methods
 - Mono
 - Fast, simple
 - No spatialization
 - Stereo
 - Fast, simple, left+right spatialization
 - 3d sound
 - Head Related Transfer Functions (HRTF)
 - Complex, very good spatialization
Applications

- Video games
 - Helps player avoid monsters
 - Provides sound cues to environment size
 - Used in most 3d video games
Applications

- Training simulators
 - Improves realism
 - Decreases incorrect training

- Current uses
 - Tactical training
 - EMT training
Applications

● Multimedia

● Auditory displays
 - Enhance data visualization

● Telephony and Video conferencing
Applications

- Computer aided design
- Relay cues about environment design
- Preview room acoustics before construction
• Sound rendering and applications

• Details of propagation

• Our system: RESound
Propagation

- Simplest method:
 - Direct path between source and listener
 - Add echoes with post-process filter

- Fast

- Widely used
Propagation

- However
 - Not physically based
 - Spatialization incorrect
 - Echoes do not match environment
Propagation

• Acoustic simulations
 • Numerical
 – Solves acoustic wave equation
 – Slow, but getting faster [Raghuvanshi et al. 2009]
 • Geometric
 – High frequency approximation
 – Very fast – interactive
 – Models sound as ray
Propagation

- Specular reflection
 - Mirror-like reflections
 - Reflections decrease amplitude
 - Longer paths, longer delays
Propagation

- Specular reflection
 - Mirror-like reflections
 - Reflections decrease amplitude
 - Longer paths, longer delays
 - Often many reflection paths
Propagation

- Diffuse reflection
- Scattering reflections
Propagation

- Diffuse reflection
- Scattering reflections
- Scattered sound reaches listener
Propagation

• **Diffraction**
 - Sound 'bends' around corners
 - Can change phase
Propagation

• Diffraction
 • Sound 'bends' around corners
 • Can change phase
 • Often many diffraction paths
Propagation

- Combine
 - Direct
 - Specular
 - Diffuse
 - Diffraction
- Early contributions
 - 4-5 recursions
Propagation

- Reverberation
 - Late contributions
 - Impulses decays over time
 - Hundreds of recursions
 - Gives 'feel' of the room
Propagation

• Specular reflections
 • Image-source method [Allen et al. 1979]
 • From source
 • Reflect against all scene triangles
 - Creates image-sources
 - Is listener visible
 • Reflect image sources
 - and so on...
Propagation

- However
 - Very compute intensive
 - Need to accelerate

- Graphic acceleration
 - Remove non-visible triangles

- Sound acceleration
 - Remove non-reflecting triangles
Propagation

- Accelerated by
 - Ray tracing [Vorlander 1989]
 - Beam tracing [Funkhouser et al. 1998]
 - Frustum tracing [Lauterbach et al. 2007]
 - And others...

- Often require precomputation
 - Non-moving source
Propagation

- Diffuse reflections
 - Often modeled by ray tracing [Dalenbaeck 1996]
 - Radiosity [Siltanen et al. 2004]

- Compute intensive
 - Fixed source and receiver
 - No scene movement
Propagation

- Diffraction
- Added to
 - Beam tracing [Tsingos et al. 2001]
 - Ray tracing [Stephenson et al. 2007]
 - Frustum tracing [Taylor et al. 2009]
 - Image source [Shroeder et al. 2009]
Propagation

- Reverberation
- Ray tracing
 - Slow, accurate [Hodgson 1990]
- Statistical
 - Fast, some error [Savioja et al. 1999]
• Sound rendering and applications

• Details of propagation

• Our system: RESound
RESound

- Simulates all mentioned effects
- Interactive update rates
- Dynamic scenes
- Handles propagation and output
- Given input sound + environment
 - Propagates sound through environment
 - Renders signal at receiver's position
RESound

System overview
RESound

- Early contributions by simulation
 - Specular + diffraction
 - Diffuse reflection
- Late contributions by statistics
- 3d audio output
RESound

- Unified engine
 - Frustum tracing
 - Ray tracing
- Ray primitive
- Single acceleration structure
 - Bounding Volume Hierarchy
 - Allows dynamic scenes
 - Fast ray tracing
RESound

- Scene acceleration hierarchy
 - Bounding Volume Hierarchy [Lauterbach et al. 2006]
 - Fast construction times
 - Allows interactive visual ray tracing
 - Allows dynamic scene changes
 - Can accelerate frustum and ray tracing
• Specular + diffraction
 • Frustum tracing
 • Volumetric, finds most paths
 • Dynamic scenes
 • Fast

• Diffuse
 • Ray tracing
 • Shares scene structure
 • Dynamic scenes
 • Fast
RESound

- Frustum tracing
- Specular reflection
RESound

- Frustum tracing
 - Specular reflection
 - Frustum is bounded by rays
RESound

- Frustum tracing
 - Specular reflection
 - Check if receiver is inside bounded volume
RESound

- Frustum tracing
 - Specular reflection
 - Bounding rays can be reflected
RESound

- Frustum tracing
 - Specular reflection
 - Sound path is linear combination of rays
RESound

- Diffraction
 - Covers more area
 - Allows smooth transitions
 - Fades out
RESound

- Diffraction
 - Covers more area
 - Allows smooth transitions
 - Fades out

- First step
 - Find diffracting edges
RESound

- Frustum tracing
- Edge diffraction
RESound

- Frustum tracing
 - Edge diffraction
- From source
 - Trace many frusta
RESound

- Frustum tracing
 - Edge diffraction
- Receiver is hidden from source
RESound

- Frustum tracing
 - Edge diffraction
 - But diffracting edge is visible
RESound

- Frustum tracing
- Edge diffraction
- Create diffraction frustum
RESound

- Frustum tracing
 - Edge diffraction
 - Diffracting sound reaches the receiver
RESound

- Diffuse reflections
 - Uses ray tracing

- Collection sphere
 - Same size as listener's head (0.3 m)
 - Record rays that hit collection sphere
RESound

- Ray tracing
- Diffuse reflection
RESound

- Ray tracing
 - Diffuse reflection
 - Shoot rays from source
RESound

- Ray tracing
 - Diffuse reflection
 - Rays diffusely reflect
RESound

- Ray tracing
 - Diffuse reflection
 - Some rays hit this collection sphere
RESound

• Update stronger paths more often:

• Three simulations
 • Frustum tracing (first order, 1 thread)
 • Frustum tracing (third order, 7 threads)
 • Ray tracing, 200k rays (third order, 7 threads)
RESound

- From 3 simulations
- Now have impulse response of:
 - Direct sound
 - Specular reflection
 - Diffuse reflection
 - Edge diffraction
RESound

- Audio output
 - Reverberation
 - 3d sound rendering
 - Dynamic scenes
RESound

- Reverberation
 - Need to fill in late contributions
 - Use Eyring model [Eyring 1930]
 - Statistically estimate sound decay

- Combing impulse responses
 - Frustum + frustum + ray tracing
RESound

- Reverberation
 - Fit curve to impulse response
 - Estimate time for signal to decay to 0.001% (RT_{60})
 - Create reverberation filter with sound system
RESound

- HRTF is expensive
 - Three impulse responses
 - 1^{st} order frustum tracing
 - 3^{rd} order frustum tracing
 - 3^{rd} order ray tracing
 - Compute only for 1^{st} order frustum tracing
 - Other impulses use simple convolution
RESound

- Dynamic scenes
 - Impulse response may change drastically
 - Can cause artifacts (clicking)
- Restrict motion speed
- Crossfade audio frames
Results

- Test scenes
Results

- Open scenes
 - Many triangles visible
 - Many reflections
Results
Results

• Reverberation
 • Begin with 6m cathedral
 • Dynamically expand cathedral to 30m
 • With reverb and without
Results
Results

● Limitations
 ● Must shoot many rays for diffuse reflections
 ● Certain diffraction paths may not be found
 ● Frustum tracing is approximate visibility
 – May miss some paths
Results

- Specular + diffuse + diffraction components
 - Uses unified representation: ray
 - Single acceleration structure
- Interactive rates on multi-core PC
- Handles large scenes
- Moving source and listener
- Scene can be dynamic
Related and Future Work

● Conservative frustum tracing [Chandak et al. 2009]

● GPU acceleration

● Robust diffraction
 ● Conservative diffraction region
 ● From region visibility – advanced diffraction
Acknowledgements

• Nikunj Raghuvanshi and Paul Calamia for helpful advice

• Sponsors
 – ARO
 – NSF
 – DARPA/RDECOM
 – Intel
 – Microsoft
Thanks!

Project website
http://gamma.cs.unc.edu/Sound/RESound/