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Abstract—We present an efficient algorithm for simulating diffuse reflections of sound in a static scene. Our
approach is built on recent advances in precomputed light transport techniques for visual rendering and uses
them to develop an improved acoustic radiance transfer technique. We precompute a direct-to-indirect acoustic
transfer operator for a scene, and use it to map direct sound incident on the surfaces of the scene to multi-
bounce diffuse indirect sound, which is gathered at the listener to compute the final impulse response. Our
algorithm decouples the transfer operator from the source position so we can efficiently update the acoustic
response at the listener when the source moves. We highlight its performance on various benchmarks and
observe significant speedups over prior methods based on acoustic radiance transfer.

Index Terms—sound propagation, radiosity, virtual reality, precomputed transport

1 INTRODUCTION

Sound rendering can augment visual render-
ing and provide an enhanced spatial sense of
presence. Some of the driving applications of
sound rendering include video games, archi-
tectural acoustics and VR simulations.

The modeling of sound propagation effects
needs to account for different wave propaga-
tion phenomena such as specular reflections,
diffuse reflections, edge diffraction and inter-
ference. In this paper, we focus on model-
ing diffuse reflections. Many objective [1], [2]
and perceptual [3] studies have demonstrated
the importance of diffuse reflections in sound
propagation. Further, it is computationally
challenging to model high orders of diffuse
reflection. Hence, modeling diffuse reflections
for sound propagation is an active area of
interest in many interactive sound rendering
applications.

Sound propagation algorithms can be
broadly classified into wave-based and
geometric methods. Wave-based methods
numerically solve the acoustic wave equation.
However, their complexity is proportional
to the volume of the scene and the fourth
power of the maximum frequency of sound

e L. Antani, A. Chandak, M. Taylor and D. Manocha are with
the Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599.

E-mail: {lakulish,achandak,taylormt,dm}@cs.unc.edu

simulated, therefore they can be very slow for
large acoustic spaces or high frequency sound
sources. Geometric methods approximate
sound waves by rays. Two standard methods
used to simulate diffuse sound reflections are
based on ray (or volume) tracing and radiance
transfer. Our approach is motivated by recent
developments in global illumination based
on precomputed light transport algorithms
[4], [5], [6]. Specifically, our work is based on
direct-to-indirect transfer algorithms for visual
rendering, which map direct light incident on
the surfaces of a scene to indirect light on the
surfaces of the scene after multiple bounces.

Main Results We present a new algorithm for
modeling diffuse reflections of sound based on
the direct-to-indirect transfer approach. The
algorithm computes an acoustic transfer oper-
ator in matrix form which is decoupled from
both the source and the listener positions, and
can efficiently update the acoustic response at
the listener whenever the source moves.

The algorithm approximates the transfer
matrix using the singular value decomposition
(SVD) to perform higher-order diffuse reflec-
tions. We show that this approximation re-
duces the memory requirements and increases
the performance of our algorithm.

We highlight the performance of our al-
gorithm on various models. In practice, it is
much faster than prior methods based on ra-



diance transfer. To the best of our knowledge,
it is the first approach that can perform high
orders of diffuse reflections in static scenes
with moving sources and listeners at almost
interactive rates.

The rest of this paper is organized as fol-
lows. We briefly survey related work in Sec-
tion 2, and discuss mathematical prerequisites
in Section 3. We present our algorithm in
Section 4 and discuss implementation details
in Section 5. We present experimental results
in Section 6 and conclude in Section 7.

2 RELATED WORK

Wave-based Acoustics The propagation
of sound in a medium is described by the
acoustic wave equation, a second-order partial
differential equation [7]. Several techniques
are known for numerically solving the wave
equation [8], [9] and accurately modeling
sound propagation in a scene. Diffuse
reflections can be modeled by performing the
simulation on a grid fine enough to capture
the detailed “roughness” of the surfaces
that results in acoustic wave scattering
[10]. However, despite recent advances [9],
these methods can be rather slow and are
mainly limited to scenes with static sources.
Precomputation-based methods have recently
been developed [11] that use a numerical
wave equation solver to compute the acoustic
response of a scene from several sampled
source positions; at run-time these responses
are interpolated given the actual position of a
moving source. These methods are fast, but
require large amounts of precomputed data.

Geometric Acoustics Most interactive systems
model sound waves in terms of rays or 3D vol-
umes. These geometric acoustics techniques
cannot accurately solve the wave equation,
and cannot easily model all kinds of propa-
gation effects, but allow efficient simulation
of early reflections. However, geometric tech-
niques have trouble handling some acous-
tic phenomena such as finite-size diffracting
edges, or absorbers with complex boundary
conditions.

Methods based on ray tracing [12], [13] can
model both diffuse and specular reflections of
sound. Since early specular reflections provide
the listener with important directional cues,

specialized techniques have been developed
for modeling specular reflections, such as
volume tracing [14], [15] and the image source
method [16], [17]. For static scenes, which
frequently arise in architectural acoustics and
virtual environments, algorithms based on
acoustic radiosity [18], [19], [20] or radiance
transfer methods can be used to model
reflections from surfaces with arbitrary
bidirectional reflectance distribution functions
(BRDFs) [21], [22]. Many techniques have also
been designed to model edge diffraction [23],
[24], [25].

Precomputed Light Transport Radiosity [26]
is the classic precomputed light transport al-
gorithm. However, it computes a full solution
that has to be recomputed whenever the light
source moves. In contrast, precomputed radiance
transfer (PRT) algorithms decouple light trans-
port effects from the light source configuration
by computing a linear operator that defines
how a variable light source configuration af-
fects the radiances at surface sample points.
PRT techniques can support both distant [4],
[27] and local [28] source configurations.

Direct-to-indirect transfer algorithms [5], [6]
are one class of precomputed light transport
algorithms. These algorithms compute linear
operators which map direct light incident on
the surface samples to multi-bounce indirect
light at the samples. They are designed to
handle diffuse reflections, and some of them
can also support limited glossy reflections.
Our approach is based on applying these ideas
to sound propagation.

3 PRELIMINARIES

This section briefly describes the mathematical
background on which our algorithm is based.

3.1

Light transport simulation is concerned with
the steady-state values of radiance over the
surface of the scene, since light travels fast
enough (3 x 10® m/s) that transient radiance
values are not observed and can be ignored.
However, the speed of sound in air is much
slower (340 m/s), and hence it is important
to compute time-varying radiances over the
surface.

Sound Rendering vs. Visual Rendering
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Fig. 1. Parts of a typical impulse response [30]
(absolute values shown). The early response is
dominated by specular reflections and diffrac-
tion; the late reverberation is dominated by
diffuse reflections [29].

Furthermore, sound waves have much
larger wavelengths than light waves, and
are comparable in size to obstacles in typi-
cal architectural and game scenes. Therefore,
diffraction plays an important role in sound
propagation, and it must be modeled in order
to generate plausible sounds.

The computation of sound propagation
paths takes into account the knowledge of
sound sources, listener locations, the 3D
model of the environment, material absorption
and scattering properties, and air absorption.
Given the signal emitted by a sound source
(i.e., a time-varying pressure wave), the sig-
nal heard by a listener (after modeling re-
flections, diffractions and interference) is typi-
cally computed using impulse responses (IRs).
An IR is the signal received at the listener
if the source emits a unit impulse at ¢t = 0.
Since room acoustics are modeled as a linear
time-invariant system [29], the response at the
listener to an arbitrary source sound can be
computed by convolving the source sound
with the IR.

IRs can be divided into three parts [30]: (a)
direct, sound arriving directly from the source;
(b) early response, sound reaching the listener
soon after the direct sound, via a small num-
ber of reflections or diffractions; and (c) late
reverberation, the gradual decay of amplitude
after the early response (see Figure 1). Late
reverberation gives an impression of the size
of an acoustic space, and is mostly composed
of diffuse reflections [29], therefore in this

paper we focus on computing higher-order
diffuse reflections; our approach can be used
in tandem with existing approaches for mod-
eling specular reflections and edge diffraction.

3.2

The IR at a point is a function of time. At-
tenuation and delay can be applied using a
unified formulation [22] by representing our
IRs in Fourier space. For a continuous func-
tion f : [0,T] — R, the Fourier transform
projects f into a sinusoidal basis (with basis
vectors of the form e‘“*). For discrete signals,
we compute the Discrete Fourier Transform
(DFT) using the Fast Fourier Transform (FFT)
algorithm. The signal is discretized into N
time-domain samples, where the value of N is
chosen based on the desired audio sampling
frequency and the length of the IR modeled
(which could be tuned based on the expected
reverberation time of a room).

Since the Fourier transform is linear, at-
tenuations and accumulation of IRs can be
performed easily (n denotes a discrete sample
index):

Flofi(n) + b)) = aF () + 1),

1
Unlike in the time domain, in the frequency
domain delays can also be applied using a
scale factor, since the Fourier basis vectors
are eigenvectors of linear time-invariant op-
erators:

F(f(n—An)) =e 2" F(f(n). (2

Impulse Response Representation

Note that care must be taken to ensure that the
delays align on time-domain sample bound-
aries, otherwise the inverse Fourier transform
will contain non-zero imaginary parts. An al-
ternative solution to this issue would be to use
fractional delays [31]; we choose to address
this in future work in the interests of simplic-
ity of implementation.

A unit impulse emitted by the source at time
t = 0 has all Fourier coefficients set to 1. Com-
puting the IR using the above expressions for
delay and attenuation results in a frequency-
domain signal. Computing the inverse Fourier
transform of this signal using the frequency-
domain replication method described by Silta-
nen et al. [22] yields a periodic function which
is approximately equal to the time-domain IR



at the listener. Note that this method does not
compute the steady-state acoustic response, but
the time-varying impulse response. The key to
this is the frequency-domain delay equations
described above.

3.3 Acoustic Rendering Equation

The propagation of sound in a scene can be
modeled using an extension of the standard
graphics rendering equation [32], called the
acoustic rendering equation [21]:

L(z,Q) =

where L is the total outgoing radiance, Ly is
the emitted radiance and R is the reflection ker-
nel, which describes how radiance at point z’
influences radiance at point z. 2 is the exitant
radiance direction at x; the incident radiance
direction at « is implicit in the specification of
x':
R(z,2',Q) = p(z,2', Q)G(x,
@
Here, p is the BRDF of the surface at z, G
is the form factor between z and 2/, V is
the point-to-point visibility function, and P
is a propagation term [21] that accounts for
propagation delays (as per Equation 2).

The radiances in Equation 3 are IRs; the time
variable ¢ is hidden for the sake of brevity.
This added dimension of time complicates
the storage and processing requirements of
algorithms based on the acoustic rendering
equation.

4 ALGORITHM

Our algorithm provides two main improve-
ments over the state-of-the-art acoustic radi-
ance transfer algorithms: (a) we decouple the
source position from the precomputed data
by computing an acoustic transfer operator as
opposed to simply precomputing the IRs at
surface samples due to a sound source as per
the method of Siltanen et al. [22]; and (b) we
use the SVD to compress the transfer operator
and quickly compute higher-order reflections.
The rest of this section details how our algo-
rithm achieves these improvements over the
state-of-the-art.

L() LC Q (3)
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Our overall approach is as follows (see Fig-
ure 2 and Algorithms 1 and 2):

o Preprocessing. We sample the surface of
the scene and compute a transfer oper-
ator which models one or more orders
of diffuse reflections of sound among the
surface samples.

o Run-time. First, we shoot rays from the
source to determine the direct IR at each
surface sample. Next, we apply the trans-
fer operator to the direct response to
obtain the indirect response. Finally, we
shoot rays from the listener and gather
the direct and indirect responses from
each surface sample hit by a ray. These are
added to obtain the final IR at the listener.

Algorithm 1 Preprocessing

P « set of samples on scene surface
p; denotes the i*" element of P

T+ 0
for all ; € [0,|P| — 1] do
for all [ € [0, Nyqys] do

r <— random path traced from p;
p; < final sample hit by r
T;;+ = IR contribution along r
end for
end for

Algorithm 2 Run-time

lp < direct IR from source at each sample
L, « T- 10
IR < gather from (Ip +1,)

4.1 Acoustic Transfer Operator

The acoustic transfer operator is expressed
over a set of p samples chosen over the surface
of the scene. The transfer operator is com-
puted in terms of the responses at all surface
samples to impulses emitted from every other
surface sample. We use Fourier coefficients to
represent the sample-to-sample IRs. Let there
be f Fourier coefficients per surface sample.
All subsequent computations are performed
on each Fourier coefficient independently.
For each frequency w,,, we define the acous-
tic radiance vector 1(w;,), which contains p
elements that represent the m!" Fourier co-
efficients of the IRs at each surface sample.
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Fig. 2. Overview of our algorithm. In a precomputation step, we sample the surfaces on the
scene, and compute a one-bounce transfer operator for these samples (T). We then use the
SVD to compute the modes of the transfer operator. At runtime, we shoot rays from the source
(which may move freely) and compute direct IRs at the surface samples. We then apply the
transfer operator (with a user-specified number of modes retained) repeatedly to quickly obtain
the multi-bounce indirect IRs at the surface samples. We then compute the final IR at the listener

position in a final gathering step.

For the sake of brevity, we shall omit the
parameter w,, from the equations in the rest
of the paper as it may be obvious from the
context.

The Neumann series expansion of Equation
3 expressed in matrix form is:

1n+1(wm) = T(wm)ln(wm)a 5)

where 1,(w,,) contains the m!"* Fourier co-
efficients of the IRs at each surface sample
after n reflections. The transfer matrix T(wy,)
models the effect of one diffuse reflection. The
(i,7)"" element of T(w,,) describes how the
m" Fourier coefficient at surface sample j
affects the m'" Fourier coefficient at surface
sample ¢ after one diffuse reflection. The en-
tries in row i of T are computed by tracing
paths sampled over the hemisphere at surface
sample 4; the delays and attenuations along
each path terminating at any other surface
sample j are added to the entry T;; [22]. We
can compute a multi-bounce transfer operator
with n orders of reflection as the matrix sum
T,=T+T?+...+T".

Existing acoustic radiance transfer algo-
rithms [22] implicitly apply the transfer opera-
tor by performing path tracing from the source

and precomputing the IR at each surface sam-
ple after several orders of reflection. This ap-
proach has the disadvantage of having to re-
peat the entire process if the source moves. We
eliminate this disadvantage by precomputing
T, and multiplying it with the direct response
of the source at run-time. This decoupling
of the source position from the precomputed
data allows rapid updates of the IR at the
listener whenever the source moves.

4.2 Transfer Operator Compression

To apply the transfer operator once, the
matrix-vector multiplication in Equation 5
needs to be performed once per Fourier coef-
ficient at run-time. However, even for scenes
of moderate complexity, the number of surface
samples, p, can be very large. Since T is a px p
matrix and 1, is a p x 1 vector, this step takes
O(p?) time per Fourier coefficient per order
of reflection, which can quickly become quite
expensive. We use the SVD to compute a rank
k approximation of T. This allows us to reduce
the complexity to O(pk).

Intuitively, truncating T to & modes using
the SVD removes some of the high spatial
frequencies in the transfer operator. A lower-



order mode of T might model reflections
from an entire wall, while higher-order modes
might model details added to the acoustic
response due to local variations in the wall’s
geometry (such as a painting on the wall). In
effect, the parameter k can be used to control
the level-of-detail of the acoustic response.

As we shall discuss in Section 7, there
are use cases where we wish to precompute
a one-bounce transfer operator and apply it
repeatedly to obtain higher-order reflections.
In such cases, the cost of computing transfer
matrices that represent additional bounces can
be further reduced to O(k?) by precomputing
appropriate matrices as follows. The direct IRs
at each surface sample are stored in the vector
lp. Suppose we have a rank k approximation
of T, given by T = I~J§\N/'T, where U is apxk
matrix, S is a k x k diagonal matrix and V7 is
a k x p matrix. Then the first-order IR at each
surface sample is given by:

~ ~ T
Tl, = USV |,
= Ub
where b = §\~7T10 is Iy projected into the span

of the first k right singular vectors of T. The
second-order response is:

~~ T T
TTl, = U(SV U)SV |,
UDb
where D = SV' U is essentially the one-

bounce operator in the k-dimensional sub-
space spanned by the singular vectors corre-
sponding to the top k singular values of T.
The cost of multiplying b by D is simply
O(k?). Notice that the third-order response can
be written as UD?b, and so on. This allows
us to compute higher-order responses using a
k x k matrix instead of a p X p matrix.

5 IMPLEMENTATION

Our implementation is CPU-based, and uses
Microsoft DirectX 9 for visualization, and Intel
Math Kernel Library (MKL) for the matrix
operations.

5.1 Approximations

Our algorithm allows for the following user-
controlled approximations:

Surface Samples We parameterize the scene
surface by mapping the primitives to the unit
square (a uv texture mapping) using Least
Squares Conformal Mapping (LSCM) [33].
The user specifies the texture dimensions;
each texel of the resulting texture is mapped
to a single surface sample using an inverse
mapping process. The number of texels
mapped to a given primitive is weighted
by the area of the primitive, to ensure a
roughly even distribution of samples. We
chose the LSCM algorithm for this purpose
since our modeling tools (Blender !) have an
implementation built-in; it can be replaced
with any other technique for sampling the
surfaces as long as the number of samples
generated on a primitive is proportional to its
area.

Frequency Samples We allow the user to
vary the number of Fourier coefficients used
to represent the IRs. We use 1K Fourier
coefficients in all our experiments, since it
has been shown [22] that this provides an
acceptable compromise between performance
and quality.

Transfer Operator Modes The SVD approxi-
mation error of the transfer operator is mea-
sured using the Frobenius norm. Figure 3
plots the error against the number of modes
retained in the transfer operator. The figure
suggests that we could potentially use a very
small number of modes to compute IRs with
diffuse reflections at runtime. Figure 4 plots
the SVD approximation error (at 50 modes)
with increasing orders of reflection. The figure
clearly shows that the error introduced by
the SVD approximation for higher orders of
reflection quickly converges. In other words,
the IR energy due to higher-order reflections
can be modeled using very few SVD modes
of the transfer operator. This matches the in-
tuition that higher-order reflections have low
spatial frequency. As a result, when computing
very high orders of reflection (say 50), we can
use very few SVD modes beyond the first 2-3
orders while still capturing the higher order
energy (which must be captured to model the
late reverberation tail of the IR) accurately.

1. http://www.blender.org
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Fig. 3. SVD approximation error for transfer operators. For each benchmark scene, the plots
show the relative Frobenius norm error of rank-k approximations of T (for one value of w) for all
possible values of k. From left to right: (a) Room (252 samples), (b) Hall (177 samples), (c) Sigyn

(1024 samples).
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Fig. 4. SVD approximation error for each
higher order of reflection, for the Sigyn scene
(see Figure 5).

5.2 Audio Processing

The algorithm presented in Section 4
computes a frequency domain energy IR
with 1K Fourier coefficients. The pressure
IR is computed from the energy IR [34] and
upsampled to encode the desired propagation
delay in the IR [22].

Moving Sources and Listeners: In typical
virtual environment applications, the source
and listener tend to move and the audio is
streamed from the source in chunks of audio
samples (called audio frames). The frame size
is determined by the allowed latency for the
application. We choose audio frames of 4800
samples at a sampling rate of 48KHz, leading
to a 100ms latency in our audio output. For a
static source and listener, computing the final
audio is trivial and amounts to convolving
each audio frame with the IR to compute
output audio frames. For moving sources and
listeners, IRs evolve over time which could
lead to discontinuities in the final audio when
using different IRs for two adjacent audio

frames. In order to minimize such discontinu-
ity artifacts, windowing [35] is applied at the
source frame and the listener frame when the
source and listener are moving respectively.
We use a windowing method similar to Sil-
tanen et al. [22].

Note that the audio used in the accompa-
nying video is generated by convolving the
dry input audio with the listener IR. Ideally,
one would apply the listener’s Head-Related
Transfer Function (HRTF) in order to model
the shape of the listener’s head and inter-
reflections due to the head and shoulders.
However, this step has been skipped in the
video for simplicity, especially since HRTFs
are not related to our main contributions.

6 EXPERIMENTS

We now present some experimental results.
All tests were performed on an Intel Xeon
X5560 workstation with 4 cores (each operat-
ing at 2.80 GHz) and 4GB of RAM running
Windows Vista. We report timings for all 4
cores since MKL automatically parallelizes our
matrix operations over all cores of the test
machine. We have benchmarked our imple-
mentation on three scenes whose complexity is
typical of scenes encountered in acoustics ap-
plications. Figure 5 shows these scenes along
with some details.

For comparison, we chose the state-of-the-
art frequency-domain acoustic radiance trans-
fer algorithm [22]. To the best of our knowl-
edge, the only other algorithms that model dif-
fuse sound reflections are time-domain radios-
ity and path tracing. Since time-domain ra-
diosity requires a prohibitive amount of mem-
ory, we chose not to compare against it. Path



Fig. 5. Benchmark scenes. From left to right: (a) Room (252 samples), (b) Hall (177 samples),

(c) Sigyn (1024 samples).

Scene Surface = Precomputation Time = Modes Runtime
Samples T SVD Initial Scatter ~ Transfer Operator ~ Final Gather
10 43.2 ms 24.0 ms 33.7 ms
Room 252 142 s 945 s 25 45.8 ms 43.8 ms 35.0 ms
50 42.4 ms 84.3 ms 36.4 ms
10 37.8 ms 26.8 ms 31.5 ms
Hall 177 13.1s 93.1s 25 37.1 ms 45.5 ms 30.2 ms
50 36.6 ms 79.7 ms 31.2 ms
Sigyn 1024  6.31 min  50.9 min 50 164.1 ms 218.1 ms 109.9 ms

TABLE 1

Performance characteristics of our algorithm. For each scene, we present the precomputation
time required by our algorithm for 1K Fourier coefficients. Under precomputation time, we show
the time required to compute the transfer operator, T, and the time required to compute its SVD

approximation. We also compare running times for varying numbers of modes from the SVD.

The table shows the time spent at runtime in initial shooting from the source, applying the
transfer operator, and gathering the final IR at the listener position.

tracing, while well-suited for dynamic scenes,
requires even static scenes to be traversed
millions of times per frame for higher-order
reflections. Part of the reduction in complexity
(and the memory usage) for the frequency-
domain approach, is due to the restriction to a
relatively small number of Fourier coefficients.

Frequency-domain acoustic radiance trans-
fer (ART) [22] computes the transfer operator
(without any SVD approximation) and itera-
tively applies it to the direct acoustic response
until the solution converges. In order to per-
form a fair comparison, we restrict ART to
computing as many orders of reflection as our
algorithm.

Table 1 summarizes the performance of the
precomputation and run-time stages of our al-
gorithm. The run-time complexity depends on
the number of modes retained during the SVD
approximation; the table clearly highlights this
dependency. As shown by the table, our al-
gorithm very efficiently updates IRs when
the source position changes at run-time. Note
that we precompute a one-bounce transfer

operator, and use the approach described in
Section 4.2 to compute higher-order reflections
at run-time. Depending on the application, we
could also precompute a multi-bounce opera-
tor and apply it directly at run-time, further
improving our performance. Our implementa-
tion uses the more flexible approach of vary-
ing the orders of reflection at runtime. As a
result, it is possible to further improve the
performance of our implementation.

Table 2 shows the benefit of the SVD in
compressing the transfer operator. The table
shows that without using SVD, the transfer
operators may be too large to be used on
commodity hardware. For the uncompressed
(“reference”) case, the transfer operator size is
p X p, for each Fourier coefficient (1K in our
case). For the compressed (“50 Modes”) case,
the transfer operator size is px k for U, kxk for
D and k x p for §\~7T, where k is the number
of modes retained. In the table, £k = 50, and p
is the number of surface samples in the scene.

Table 3 compares the run-time performance
of our method and ART. The table shows



Scene  Samples Reference 50 Modes

Hall 177 250.6 161.6

Room 252 508.0 221.6

Sigyn 1024 8388.6 839.2
TABLE 2

Memory requirements of the transfer operators
computed by our algorithm with (column 4)
and without (column 3) SVD compression.

Note that since the entries of each matrix are
complex numbers, each entry requires 8 bytes
of storage. All sizes in the table are in MB.

the time required to update IRs at the lis-
tener when the source is moved. The table
clearly shows the advantage of our approach.
Since our precomputed transfer operator is
decoupled from the source position, moving
the source does not require recomputing the
transfer operator, allowing the source position
to be updated much faster than would be
possible with ART.

Table 3 can also be used to derive the per-
formance of our algorithm for the case when
a multi-bounce transfer operator is precom-
puted. For example, suppose we precompute
a transfer operator with 10 orders of reflection
for the Sigyn scene. Then the run-time cost
would be the same as that of the one-bounce
operator, i.e., 468.5 ms. The difference, i.e.
(512.8ms — 468.5ms) x 1024 = 45.4s would
be the additional time spent during prepro-
cessing to derive the multi-bounce operator
from the one-bounce operator (the factor of
1024 arises due to the fact that the timings
in Table 3 are for matrix-vector multiplication,
whereas precomputing the multi-bounce op-
erator from the one-bounce operator requires
matrix-matrix multiplications).

Figure 6 compares the output of our al-
gorithm and ART. The figure shows squared
IRs, smoothed using a moving-average low-
pass filter, for different numbers of modes.
As the figure shows, reducing the number
of modes significantly (down to 50 modes)
has very little effect; however, if far fewer
modes are used, significant errors appear in
the energy decays, as expected. Coupled with
the memory savings demonstrated in Table 2
and performance advantage demonstrated in
Table 3, we see that using the SVD allows us

to significantly reduce memory requirements
and increase performance without significant
degradation of the computed IRs. Along with
the plots, Figure 6 shows RTg, (reverberation
time) values estimated from the decay curves.
The data demonstrates that SVD approxima-
tion upto 50 modes does not lead to significant
change in reverberation time. Of course, the
best way to demonstrate the benefit of our
approach is by comparing audio clips; for
this we refer the reader to the accompanying
video.

7 CONCLUSION

We have described a precomputed direct-
to-indirect transfer approach to solving the
acoustic rendering equation in the frequency
domain for diffuse reflections. We have
demonstrated that our approach is able to
efficiently simulate diffuse reflections for a
moving source and listener in static scenes.
In comparison with existing methods, our ap-
proach offers a significant performance advan-
tage when handling moving sources.

7.1 Analysis

Our algorithm is designed to model purely
diffuse reflections of sound. However, it is
also important to model specular reflections
and diffraction of sound in order to render
plausible audio. Our algorithm is intended to
be used in tandem with existing algorithms for
modeling specular reflections and diffraction.
Another important design decision is how
we compute the transfer operator. There are
several possible use-cases:

1) Precompute a multi-bounce transfer op-
erator, using multi-bounce path tracing
from each surface sample. This is the
most accurate option, but requires high
precomputation time. The run-time cost
is equal to that of applying a one-bounce
operator.

2) Precompute a multi-bounce transfer op-
erator by multiplying a one-bounce op-
erator with itself repeatedly (before com-
puting an SVD).

3) Precompute the SVD approximation of
the one-bounce transfer operator. Use
the method described in Section 4.2
to quickly precompute an approximate
multi-bounce operator.
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Scene  Orders Radiance Transfer  Direct-to-Indirect Transfer
(50 modes)
2 11.7 s 131.8 ms
Room 5 11.8 s 154.4 ms
10 12.0s 179.3 ms
2 10.6 s 116.5 ms
Hall 5 10.7 s 147.3 ms
10 109 s 170.5 ms
2 185.3 s 468.5 ms
Sigyn 5 186.7 s 491.2 ms
10 188.7 s 512.8 ms

TABLE 3

Comparison of our approach with ART. We compare the time required by our algorithm to
update the source position and recompute the IR at the listener position after a varying number
of diffuse reflections. Since ART does not decouple the transfer operator from the source
position, it needs to perform a costly recomputation of the transfer operator each time the source
moves. On the other hand, our algorithm quickly updates the direct IR at all surface samples,
then applies the precomputed transfer operator. This allows our approach to handle moving
sources far more efficiently than ART.

Room

1 (]Icug1 D(En ergy) (dB)

—--Reference (RT;, =570 ms)

——50 modes (RTEEI =486 ms)
25 modes (RTEEI =348 ms)

—— 10 modes (RTBEI =252 ms)
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Hall
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015 02

Fig. 6. Comparison of diffuse IRs (30 orders of reflection, absorption coefficient 0.2) computed
by our system with and without SVD compression, for some of our benchmark scenes. The plots
show squared IRs, smoothed using a moving-average low-pass filter.

4) Precompute the SVD approximation of
the one-bounce transfer operator. At run-
time, the orders of reflection can be eas-
ily adjusted, perhaps based on compute
budget or sound quality.

Use-case (3) allows sound designers to
rapidly adjust the orders of reflection baked
into the precomputed transfer operator. For
example, one could first compute a multi-
bounce operator with 3 orders of reflection.
If the resulting audio at run-time sounds un-
satisfactory, the precomputed data can quickly
be updated with additional orders of reflection
without any further ray tracing or SVD com-
putation.

In all other use-cases besides (3), the SVD

allows the IR accuracy to be traded off for per-
formance, providing adjustable level-of-detail
for sound rendering.

7.2 Limitations

Since ours is a precomputation-based algo-
rithm, it cannot be used for scenes with dy-
namic objects. In such situations, ray-tracing-
based algorithms are the best available choice.
However, in many applications, including
games and virtual environments, scenes are
mostly static, with relatively few moving
parts, hence our algorithm can be used to
model reflections within the static portions of
the scene.



Our algorithm performs matrix-vector mul-
tiplications on large matrices at runtime. The
matrix size depends on the size and com-
plexity of the scene. Therefore, our method
is useful mainly for scenes of low to medium
complexity.

Another limitation arises from the approach
we use [22] to reconstruct the energy response
from the subsampled Fourier coefficients. The
replication of Fourier coefficients leads to
comb-filter artifacts in the final audio, and
is an inherent limitation of the reconstruction
approach. An alternative would be to treat the
Fourier coefficients as defining the envelope
of a noise process [36]. Both these approaches
are prone to errors; further study is needed to
determine the suitability of one over the other
based on empirical and perceptual error.

Finally, the transfer matrix is computed
using the acoustic rendering equation [21],
which has its own limitations, in that it is
an energy-based approach (and hence cannot
easily model interference) and is based on ge-
ometric approximations to the acoustic wave
equation (and hence cannot easily model low-
frequency wave effects such as diffraction).

7.3 Future Work

It is crucial to develop an approach to reduce
the storage requirements of IRs in order to
make it feasible to implement our algorithm
on hardware such as video game consoles.
Moreoever, the Fourier domain representation,
and the replication-based inverse transform
we use to reconstruct IRs [22] lead to errors
in the high-frequency component of the final
audio. Specifically, the high frequencies do not
decay as quickly as they should relative to
the low frequencies. It would be very use-
ful to determine alternative IR representations
that are both memory-efficient and permit a
more accurate reconstruction. The reconstruc-
tion process can also lead to some noise and
other artifacts. While these can be cleaned up
in a post-processing step, preliminary research
on using alternative IR representations such
as wavelets has given us results without these
artifacts. However, the use of wavelets to rep-
resent IRs requires some further research.
Our direct-to-indirect transfer approach is
intended to be used in tandem with existing
algorithms (such as ray tracing, image source
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method, or numerical methods) for modeling
specular reflections and edge diffractions. We
are currently researching into ways of model-
ing paths involving both diffuse and specular
reflections by modifying our initial shooting
and final gathering steps to include specular
reflections. We also hope to model paths in-
cluding diffractions using a similar approach,
since we believe that a tight integration be-
tween existing algorithms for specular reflec-
tions and edge diffraction, and our direct-to-
indirect transfer approach will enable plausi-
ble sound propagation for interactive appli-
cations with moving sources and listeners at
near-interactive rates.

In most complex scenes, each surface sam-
ple may influence only a few other samples,
due to occlusions. We could subdivide the
scene into cells separated by portals, compute
transfer operators for each cell independently,
and model the interchange of sound energy at
the portal boundaries. Cells and portals have
been previously used to model late reverbera-
tion [36], and would be a promising research
direction for acoustic radiance transfer.

The acoustic response is typically a smooth
function over the surfaces of the scene. There-
fore, it would be beneficial to exploit spatial
coherence by projecting the transfer operator
into basis functions defined over the surfaces
of the scene.

Some radiance transfer algorithms in graph-
ics [4], [5] can model glossy reflections by
using a directional basis such as spherical
harmonics (SH) at each surface sample. Such
a strategy can also be applied to model glossy
reflections and diffraction of sound, however,
the memory requirements for such an ap-
proach might be prohibitive.

Note that we provide a framework which
allows the user to decide how many orders of
reflection to simulate; how to choose this pa-
rameter appropriately is an interesting avenue
for future work.
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