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ABSTRACT
We present a novel acoustic optimization algorithm to synthesize
dynamic sound fields in a static scene. Our approach places new ac-
tive loudspeakers or virtual sources in the scene so that the dynamic
sound field in a region satisfies optimization criteria to improve
speech and music perception. We use a frequency domain formula-
tion of sound propagation and reduce the computation of dynamic
sound field synthesis to solving a linear least squares problem, and
do not impose any constraints on the environment or loudspeakers
type, or loudspeaker placement. We highlight the performance on
complex indoor scenes in terms of speech and music improvements.
We evaluate the performance with a user study and highlight the
perceptual benefits for virtual reality and multimedia applications.

KEYWORDS
Sound propagation; acoustic optimization; virtual environments;
speech improvement; music reinforcement

ACM Reference Format:
Zhenyu Tang, Nicolas Morales, and Dinesh Manocha. 2018. Dynamic Sound
Field Synthesis for Speech andMusic Optimization. In 2018 ACMMultimedia
Conference (MM ’18), October 22–26, 2018, Seoul, Republic of Korea. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3240508.3240644

1 INTRODUCTION
Recreating an immersive environment that combines both video
and audio rendering to simulate the experience of exploring a
three-dimensional virtual environment is important for games, vir-
tual/augmented reality (VR/AR), and multimedia applications. Over
the last few decades, most of the work has focused on improving the
visual fidelity of such environments using multimedia techniques
or high quality graphical rendering. Current 3D multimedia or VR
content creation tools can generate photo-realistic rendering and
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also provide capabilities for automatic placement of real or virtual
lights. As compared to visual rendering, the state of the art in audio
rendering or generation of 3D audio content lags behind. We need
better capabilities in terms of algorithms and tools to automatically
generate desirable sound fields in virtual environments.

The notion of generating or modifying the sound field is widely
studied in the context of sound field synthesis (SFS) for decades [28,
41]. The SFS problem can be formulated as finding the driving
signal of a given ensemble of elementary sound sources (usually
loudspeakers) such that the superposition of their emitted indi-
vidual sound fields constitutes a common sound field with given
desired properties over an extended area [1]. This problem calls
for a new reproduction technique which allows the synthesis of
physically correct wave fields of three-dimensional acoustic scenes.
Previous works include many audio rendering techniques, where
new and artificial wavefronts are synthesized by a large number of
active loudspeakers or virtual sources in the environment. The most
widely used methods are based on wave-field synthesis, which is
based on the Huygens-Fresnel principle, and deals with the use of
loudspeaker arrays to control the sound field over an extended area
of the environment. In practice, prior methods do not accurately
model sound wave propagation or generate reverberation effects.
As a result, it is hard to provide guarantees on the performance of
current sound field synthesis methods in arbitrary environments.

The sound field is governed by various factors or scene parame-
ters. These include the geometric shape and material representation
of the 3D virtual world, the location(s) of audio source(s), the lis-
tener location, and input (dry) audio signal(s). Acoustic propagation
algorithms simulate the propagation of sound waves through an
environment for given source and listener positions and compute
the impulse responses (IRs) using geometric or wave-based propa-
gation algorithms. Recent developments in sound propagation and
auralization have enabled the generation of environmental acoustic
effects and spatial sound at interactive rates for immersive envi-
ronments. These methods are also used to provide aural cues to a
user about the environment and can lead to an improved sense of
presence in VR applications [19, 39]. Although these propagation
techniques can evaluate the sound field for a given scene configu-
ration or parameters, they have not been used to actively modify
or change the sound field to generate desired acoustic effects.

One of the driving applications of our work is to develop tech-
niques that can improve the understanding or perception of speech
or music effects. SFS has been shown to be useful in recreating
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acoustic environments for communication (e.g. teleconferencing)
and in the entertainment industry based on digital signal process-
ing. With the recent advances in speech understanding and use
of voice interfaces for IOT (Internet of Things) devices, there is
considerable interest in developing robust SFS methods that can
improve the intelligibility of speech in noisy/reverberant environ-
ments. Similarly, there is some work on improving the quality of
music sound in all types of acoustic environments.
Main Results: We present a novel algorithm for dynamically syn-
thesizing the sound field using a combination of sound propagation
and acoustic optimization. Given a static virtual environment with
known sound sources, our approach automatically computes the
driving signals for a set of active loudspeakers to generate the
desired dynamic sound field. We use the frequency domain formu-
lation of the acoustic wave equation and sound propagation, and
reduce the dynamic SFS problem to solving a linear least-square
system. Our algorithm uses precomputed IRs in the virtual scene for
different locations of active loudspeakers. Our approach is general
and makes no assumption about the environment, sound sources
or their locations. Furthermore, we can provide guarantees on the
resulting sound field based on our acoustic optimization.We demon-
strate the benefits of our approach in two driving applications:

• Speech Improvement:Wedynamically synthesize the sound
field for speech improvement in indoor scenes. We use the
well-known speech transmission index (STI) metric [16] as
an indicator to reduce the reverberation effects in an envi-
ronment using virtual sources. This can be used to improve
the quality of far-field speech intelligibility for automated
speech recognition (ASR).

• Music Reinforcement: We use our dynamic sound field
synthesis algorithm for music reinforcement to maintain
a desirable frequency transmission in an acoustic environ-
ment. Our formulation computes the appropriate frequency
component transmission compensation for sources and min-
imizes the unwanted frequency distortions due to sound
propagation in poorly treated acoustic environments.

We have evaluated our algorithm in different indoor scenes. We use
ray tracing based geometric propagation algorithm to accurately
compute the IRs and combine them with optimization algorithms.
We highlight the improvements in the sound fields based on differ-
ent metrics for speech and music improvement. Overall, we present
first set of dynamic SFS algorithms that use sound simulation tech-
niques to modify the sound field to satisfy given metrics.

The rest of the paper is organized as follows.We give an overview
of prior work in sound field synthesis and acoustic optimization in
Section 2. We introduce our notation and describe the underlying
representation used to synthesize the sound field in Section 3. We
present our dynamic synthesis algorithm in Section 4 along with
the metrics used for speech improvement and music reinforcement.
We describe our implementation in Section 5, and highlight the
performance on different benchmarks, as well as a perceptual user
study in Section 6.

2 RELATEDWORK
In this section, we give a brief overview of prior work on SFS, sound
propagation, and acoustic optimization.

2.1 Sound Field Synthesis
SFS deals with generating a defined sound field in an extended
area that is surrounded by loudspeakers. The idea of SFS was first
introduced by Jessel [28] and based on the theoretical assumption
of a continuous layer of loudspeakers. In early work on Ambisonics
[20], several loudspeakers were placed around one location where
the sound field was synthesized. This early work on Ambisonics
systems evolved into Higher Order Ambisonics (HOA), which ac-
counts for higher order modes [4, 11], and Near-field Compensated
Higher Order Ambisonics (NFC-HOA) [11, 12], where sources are
assumed to be monopoles that emit omnidirectional waves [35].
One of the limitations of Ambisonics systems is that they can only
be used with spherical and circular loudspeaker distributions.

Wave Field Synthesis (WFS) is another popular approach for
SFS. It can be regarded as an audio rendering method where the
wavefronts originate from virtual sources. Its formulation can be
derived from the Rayleigh I integral or the Kirchhoff-Helmholtz
integral [6, 41]. While WFS is equivalent to a high-frequency ap-
proximation of infinite order HOA [2], it can be applied to any
arbitrary convex loudspeaker placement problem. However, dense
loudspeaker spacing and the loudspeaker type (monopole, dipole,
or linear array type) [14] are needed to compute a solution. Other
techniques are based on digital signal processing [26, 27]. In these
methods, sound pressure at certain frequencies is matched with the
desired sound field by solving for loudspeaker driving signals using
least squares techniques. However, the resulting algorithms do not
accurately model the room acoustics or reverberation effects in an
environment. While complimentary technique of using compensa-
tion filters exists [9], it requires a high number of filters (L2 filters
for L loudspeakers) for non-stationary virtual sources as well as
tedious measurements.

Our approach for dynamic SFS is complimentary to these tech-
niques and is more general. We try to model the room acoustics
using sound propagation and precompute the IRs in preprocessing.
Furthermore, we do not impose any constraints on the environment,
loudspeaker type, or loudspeaker placement.

2.2 Sound Propagation
Sound propagation methods compute the reflection and diffraction
paths from the sound sources to a listener in the virtual environ-
ment. Prior algorithms for sound propagation can be classified
into two categories: geometric techniques and wave-based tech-
niques. Geometric methods work on the underlying assumption
of sound wave propagating in the form of a ray, where the wave-
length of the sound is smaller than the size of the obstacles in
the environment [19]. These methods include image source meth-
ods [3], ray tracing methods [38–40, 43], and beam or frustum
tracing methods [8, 18]. They are mostly accurate for higher fre-
quencies and can be used for interactive applications. Wave-based
sound propagation methods directly solve the wave equation for
sound propagation (see Equation 1). These methods are based on
Finite Element Methods (FEM), Boundary Element Methods (BEM),
finite-difference time domain (FDTD) approaches [36] and Adaptive
Rectangular Decomposition (ARD) methods [32]. Wave-based tech-
niques are accurate, but are only practical for low frequencies and



small scenes. When combining geometric and wave-based meth-
ods, a huge amount of precomputation would be required for each
scattering object [34].

2.3 Acoustic Optimization
Acoustic optimization methods mainly deal with improving the
acoustic characteristics of a space using optimization algorithms by
changing the scene parameters. Previous work in acoustic optimiza-
tion techniques includes modifications to the shape, materials, or
topology of the 3D environment. Work in this area includes Audiop-
timization, a framework for optimizing the shape and materials [30],
absorbent optimization [37], continuous optimization approaches
for material design [31], shape optimization approaches [17, 33],
and topology optimization approaches [15]. In the area of SFS, differ-
ent methods have been proposed for the placement of loudspeakers
and microphones [25]. SFS methods are also useful in the field of
noise control [42, 44]. Our optimization approach is more general
and is complimentary to these acoustic optimization algorithms
and uses sound propagation algorithms.

3 SOUND FIELDS

Table 1: Notation and symbols used throughout the paper.

P(x, t) Sound pressure at point x at time t
S(x,ω) Sound pressure at point x of angular frequency ω
D(x,ω) Driving signal at point x of angular frequency ω
IR(xs , xl , t) Impulse response at time t from point source at Loca-

tion xs to the listener at Location xl
G(xs , xl ,ω) Frequency response atω from point source at Location

xs to the listener at Location xl
In this section, we give background on properties of sound field

and on sound propagation. These are used in our approach to per-
form dynamic SFS in an uncontrolled environment with arbitrary
loudspeaker distribution.

3.1 Sound Field as 4D Pressure Field
A sound field is defined in a spatial volume V ⊂ R3 that has no
sources or sinks. Moreover, we assume that sound sources are
placed outside the volume, as in prior work in sound field synthesis.
For a listener at location xl ∈ V and a source placed at xs , the
sound pressure at time t at the listener induced by the source is
denoted by P(xs , xl , t), which is a 7D pressure field. However, when
dealing with multiple sound sources, our goal is to compute the
combined sound field at the listener from all the sources. Therefore,
we fix xl and sum up the sound from all the sources, yielding
P(xl , t) =

∑
s P(xs , xl , t), which characterizes our sound field as a

4D pressure field.

3.2 Sound Propagation in Frequency Domain
The process of sound propagation can be described using the wave
equation:

∂2

∂t2
P(x, t) − c2P(x, t) = f (x, t), (1)

where c is the speed of sound in a homogeneous medium, which
we assume to be 343m/s , and f (x, t) is the forcing term at location
x at time t .

Impulse Response (IR) is the most widely used representation
to model sound propagation in the time domain. In practice, an IR
sequence is convolved with the source signal sequence to compute
the propagated signal and auralization. In this work, we mainly
work with the complex frequency domain. Let IR(xs , xl , t) denote
the IR for source-listener pair xs and xl , the frequency response is
the Fourier transform of the IR:

G(xs , xl ,ω) = F {IR(xs , xl , t)} =
∫ ∞

−∞

IR(xs , xl , t)e−iωt dt , (2)

where ω is evenly discretized in a frequency range. Similarly, we
transform the sound field to the frequency domain as: S(x,ω) =
F {P(x, t)}. Let the source signal at location xs be given asD(xs ,ω),
then the propagated sound from all known sources to xl can be
represented as:

S(xl ,ω) =
∑
s

D(xs ,ω)G(xs , xl ,ω), (3)

for all ω in our interested frequency range. This is converted using
ω = 2π f , with f normally taken from a subset of the human
hearing range 20Hz ∼ 20000Hz.

3.3 Dynamic Sound Fields
There are many factors that affect the steady state of a sound field,
and therefore making the field change continuously. These include:
source movement - a change in source location results in changes in
sound propagation paths; 3D environment change - when dynamic
objects are present in the scene (e.g. a door that might be open or
closed) or a change in the environment material, the sound field can
also change; source signal change - fast changing source signals
will make the sound field more dynamic. In addition, when a source
signal becomes zero, it contributes nothing to the sound field and
is equivalent to being removed from the system. In this paper, we
limit ourselves to static scenes with fixed source locations. We
mostly account for changes in the sound field due to the source
signal change. Specifically, we place active loudspeaker or virtual
sources outsideV , which can change the sound field insideV based
on certain metrics or criteria. Our two main metrics are based on
speech intelligibility and music reinforcement requirements.

4 DYNAMIC SOUND FIELD SYNTHESIS
In this section, we present our dynamic sound field synthesis al-
gorithm in its generalized form and reduce it to an optimization
problem. Moreover, we demonstrate the applications of our formu-
lation to two driving applications: speech improvement and music
reinforcement. Given an acoustic scene that has some existing static
sound sources, we add new loudspeakers that emit constructive
or destructive sound signals at multiple locations to change the
existing or original sound field to a new sound field we desire. In the
following context, we call these newly added loudspeakers as active
loudspeakers because they are actively driven by our algorithm.

4.1 Problem Formulation
Given a sound zoneV ⊂ R3, some known sound sources, and a set of
active loudspeakers with known positions, we compute the driving
signal for each individual loudspeaker so that the superposition of



Figure 1: Given a scenewith two static sources, S1 and S2. Our
algorithm manipulates the sound field within V by control-
ling the source signals at 4 active loudspeakers, Li .

all propagated signals constitutes a desired sound field Sd over V .
Such a setup is also illustrated in Figure 1.

Essentially, without the active loudspeakers, there is only the
sound field produced by original sources in the scene. Assume we
have NS known original sources at xs < V , s ∈ {1, ...,NS }, with
D(xs ,ω) being the emitted signal at xs which can be a dynamic
function, the resulting sound pressure at any position x ∈ V can be
expressed as:

So (x,ω) =
NS∑
s=1

D(xs ,ω)G(xs , x,ω). (4)

We use So to denote the original sound field. Equation 4 can be
compactly written as:

So (x,ω) = gT(ω; x)D(ω), (5)

where g(ω; x) = [G(x1, x,ω), ...,G(xNS , x,ω)]
T and

D(ω) = [D(x1,ω), ...,D(xNS ,ω)]
T, which are both NS × 1 complex

column vectors.
Next, assumewe haveNL active loudspeakers (or virtual sources)

at yl < V , l ∈ {1, ...,NL}, with D(yl ,ω) being the emitted signal at
yl which is driven by our algorithm, the sound field constructed
by all active loudspeakers denoted by Sa can be expressed as:

Sa (x,ω) =
NL∑
l=1

D(yl ,ω)G(yl , x,ω), (6)

at x ∈ V . As in Equation 5, we rewrite Equation 6 as:

Sa (x,ω) = g̃T(ω; x)D̃(ω), (7)

where g̃(ω; x) = [G(y1, x,ω), ...,G(yNL
, x,ω)]T and

D̃(ω) = [D(y1,ω), ...,D(yNL
,ω)]T. Finally, we can directly sum

up (5) and (7) to get the combined sound field. If our desired or
new sound field is Sd (x,ω), we want to compute D̃(ω) such that
So (x,ω) + Sa (x,ω) = Sd (x,ω).

4.2 Sound Field Synthesis: Objective
Our goal is to manipulate the continuous sound field. However,
the stated problem cannot be solved analytically. Therefore, we

instead select NM uniformly distributed internal monitor points
pm ∈ V ,m ∈ {1, ...,NM }, and make the sound field match the
desired one at these monitor points, indirectly constraining the
continuous sound field. The selection of these monitor points can
be based on other principles. To simplify our formulation, we define

Cm (ω) = Sd (pm ,ω) − gT(ω; pm )D(ω),

f (Xm , D̃(ω)) = g̃T(ω; pm )D̃(ω).
(8)

This boils down to solving the optimization problem that minimizes
the error between our constructed and desired sound fields by
choosing the appropriate driving signals. The resulting objective
function can be given as:

argmin
D̃(ω)

NM∑
m=1

[
Cm (ω) − f (Xm , D̃(ω))

]2
. (9)

4.3 General Solution
Equation (9) can be solved using linear least squares. Since D̃(ω)
is an unknown complex vector of length NL , and we have NM
observations, depending on the relative values ofNL andNM . Given
the linear dependency between active loudspeaker responses, the
resulting linear system could be determined, over-determined or
under-determined. To deal with the numeric instability of sound
propagation algorithms, we tend to choose more loudspeakers than
the monitor points. Thus, we turn our linear system into an over-
determined system by setting NL > NM . Moreover, we use ridge
regression to enforce a meaningful solution. Let us define the NM ×

NL frequency response matrix for all loudspeakers

Q(ω) =


G(y1, p1,ω) . . . G(yNL

, p1,ω)
...

. . .
...

G(y1, pNM
,ω) . . . G(yNL

, pNM
,ω)

 , (10)

andC(ω) = [C1(ω), ...,CNM (ω)]T. For brevity we omitω and derive
the optimal solution in the least-squares sense as:

D̃ = (Q
T
Q + λI)−1Q

T
C, (11)

where (·) denotes the complex conjugate of matrices and I is an
identity matrix in the complex domain. The regularization weight
λ is typically decided from the experiments or the 3D environment.
The regularization term is helpful in constraining the absolute
loudspeaker power and making the solution more robust. Note that
the right side of Equation (11) can be decoupled so that (QT

Q +
λI)−1Q

T should only be solved once for the system, and only the
observation part C needs to be updated for specific applications.

4.4 Dynamic SFS for Speech Improvement
One of the driving applications of our work is to improve the speech
understandability in an indoor scene. Human speech understanding
has been an important task for some smart devices that use Auto-
mated Speech Recognition (ASR) [5, 23]. In an indoor environment,
even without the presence of mechanical noise, reverberation of
the speech signal itself can negatively affect the understanding of
spoken phrases [21].

Our formulation is based on the observation that reducing rever-
beration in the environment can improve the speech intelligibility.
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By using sound field synthesis (equivalently adding virtual sources),
we can significantly reduce the reverberation of speech. We are
given a 3D environment along with the location of the sound speech
sources. Therefore, for a monitor point pm in our target sound zone
in the 3D environment and a speech signal from xs , our goal is
to model only the direct response and denote it as GD (xs , pm ,ω),
which only contains the first impulse of G(xs , pm ,ω). And this im-
pulse can be easily located in the temporal domain. In this case, the
desired sound field becomes:

Sd (pm ,ω) =
NS∑
s=1

D(xs ,ω)GD (xs , pm ,ω). (12)

Typically we expect only one of the NS sources to emit a non-zero
signal because it is difficult for someone to listen to two different
speech signals at the same time, even if both are very clear. There-
fore, we can substitute Equation (12) into Equation (8) and solve
for the resulting system.

4.5 Dynamic SFS for Music Reinforcement
A music sound reinforcement system often uses loudspeakers, sig-
nal processors, equalizers and amplifiers to distribute live or pre-
recorded music to the audience. These systems are more sophisti-
cated than modern stereo sound systems at home, and require the
user to have a higher level understanding of acoustical signal char-
acteristics to operate [13]. In live music performance, even though
the soundtracks are mixed by an expert, as the sound propagates
in the environment, the resulting soundtrack tends to experience
distortion in its frequencies [10]. In many cases, high frequency
signals are attenuated more than low frequency signals. With our
dynamic sound field synthesis, we can simulate the propagation
effect the environment has on the resulting music soundtrack and
negate the distortion. By using sound field synthesis in music re-
inforcement systems, we can control the transmission of spatial
music sound with higher precision.

We use a stage setting to demonstrate the benefits of our ap-
proach. During a music performance, input sound streams are cap-
tured with one microphone per performer/instrument. Our loud-
speakers are located around the ceiling. We want the sound per-
ceived by the audience to have no undesired distortions due to
propagation. Therefore, we set the filtered sound field as our de-
sired sound field at each monitor position pm :

Sd (pm ,ω) =
NS∑
s=1

D(xs ,ω)F (xs ,ω), (13)

where xs represents the location of one performer on stage, and
F is the frequency dependent filter as tuned by a sound expert for

each audio stream. Equation (13) is substituted back into Equation
(8) to compute the solution.

4.6 Performance Metrics
We introduce two commonly used metrics we will use in following
sections as our metrics for speech and music tasks.

4.6.1 Speech Metric. To measure speech intelligibility quantita-
tively, we use the STI metric [16] to evaluate the performance. STI
is computed from a weighted average of the Modulation Transfer
Function (MTF) of an impulse response. MTF can be derived as:

mk (fm ) =
|
∫ ∞

0 rk (t)
2e−j2π fm tdt |∫ ∞

0 rk (t)
2dt

, (14)

where rk (t) is our impulse response filtered to octave band k . The
left hand sidemk (fm ) is the modulation transfer ratio at fm . For
evaluating the STI in full range, we use 14 modulation frequencies
(0.63Hz to 12.5Hz, 1/3 octave spaced) per band, which gives us 98
samples ofmk (fm ). The STI value is bounded within [0, 1]. Larger
STI values indicate better speech intelligibility.

4.6.2 Music Metric. To measure the effectiveness of music rein-
forcement at each listening position, we evaluate the normalized
cross-correlation between the actual and desired sound field to
evaluate the effect of distortion compensation. Assuming we have
obtained the propagated sound field Sp from Sp (x,ω) = So (x,ω) +
Sa (x,ω), the correlation can be computed as

corr (Sp , Sd ) =

∑
ω S

p
(x,ω)Sd (x,ω)√∑

ω |Sp |2
∑
ω |Sd |2

. (15)

The correlation value will be in the range [−1, 1] and the larger the
absolute correlation is, the better our propagated music frequencies
match with the desired one.

5 IMPLEMENTATION
In this section, we give details of our implementation. Figure 2
shows our algorithm pipeline, which is explained in detail below.

5.1 Acoustic Scene Configuration
The input to our algorithm is an acoustic scene configuration. A
complete scene configuration includes: the acoustic materials of
each object in the scene, the geometry of the scene as a 3-D mesh,
the locations of loudspeakers as 3D coordinates, and the desired
sound field. The first two components are treated as fixed proper-
ties of the environment. As indicated in Section 4.3, the locations
of loudspeakers have some freedom over the space, so they can



simply be placed at convenient locations near the target region.
The computation of the desired sound field depends on the specific
application, and we highlight different scenarios in Section 6. For
example, we use different metrics for speech improvement and
music reinforcement detailed in Section 4.6.

5.2 Monitor Point Sampling & Precomputation
We generate a set of monitor points by uniformly sampling the
target sound zone in 3D according to any weighted or probabilistic
distribution. This yields monitor points p1, ..., pNM

described in
Section 4.2. Then the impulse responses between all pairs of moni-
tor and loudspeaker locations (i.e. NM × NL pairs) are computed
using a sound propagation algorithm and subsequently converted
to frequency responses. In our current implementation, we use a ray
tracing based geometric propagation algorithm. It traces specular
and diffuse rays [43] and performs up to 200 bounces to accurately
compute the reverberation effects. To approximate low frequency
diffraction effects, we model first order diffraction based on the
Uniform Theory of Diffraction [39]. Since these computations are
performed as a preprocess, we use a sufficient number of ray sam-
ples (e.g., 10K) to compute accurate IRs.We use these IRs to compute
the solution using our optimization algorithm described in Section
4. We parallelize these computations on a cluster and it can take
a few hours for each scene to compute these large number of IRs,
depending on the size and complexity of the scene.

5.3 Real-time Computation of Sound Fields
Since our algorithm deals with dynamic sound fields generated
using active loudspeakers, we need to monitor and handle existing
sources in the scene in real-time. Temporal signals are treated as
discrete temporal sound pressure sequences P(x, t). Because the
monitored signal sequences might be very long, we need to segment
these signals based on the sampling rate and allowed delay time
before processing. For convenience of implementation, we segment
any sequence according to our fixed sampling rate 44.1kHz, which is
beyond the Nyquist frequency regarding the human hearing range
of 20Hz ∼ 20kHz. And we perform short-time Fourier transform
(STFT) for each segment of length 65536. Note that the segment
length can be arbitrary, depending on the allowable processing
delay. At each processing step, the optimization problem is formu-
lated, shown as Equation (9), and we solve for a segment. Moreover,
we set the active loudspeakers or virtual sources as their driving
functions, while the next segment is being prepared. The complex
regularized least squares problem in Equation (11) is efficiently
solved using the Eigen library [22]. In this way we can achieve
real-time processing rate for any scene under stable sensing.

6 RESULTS AND ANALYSIS
In this section, we evaluate the performance of our dynamic sound
field manipulation algorithm for the two applications described
in Section 4. We also demonstrate how the desired sound field is
computed based on these scenarios and the metrics. Given the input
scene, we do not make any changes to the environment in terms of
object positions or the underlying materials. Our goal is to add more
virtual sound sources to the environment so that we can change
the sound field in a given region.

Table 2: Improvements on the STI metric (Sec 4.6.1) ranging
from [0, 1], and a larger value indicates better quality. We
observe considerable improvements in the resulting sound
fields corresponding to speech sources.

Scene Number of
Loudspeakers (NL )

Number of
Monitors (NM )

Average STI

Before After

Trinity 14 12 0.525 0.734
Berlin 11 10 0.602 0.724

Table 3: Improvements on the correlation metric (Sec 4.6.2)
ranging from [−1, 1], and a larger absolute value indicates
better quality. We observe considerable improvements in
the resulting sound fields corresponding to music sources.

Scene Number of
Loudspeakers (NL )

Number of
Monitors (NM )

Average Correlation

Before After

Elmia 14 12 0.039 0.786
Sibenik 12 12 0.040 0.786

6.1 Benchmarks
We used four different 3D environments to evaluate our algorithm.
Detailed parameters and results are shown in Table 2 and 3.

• The Trinity scene comes from direct measurement of a real
architecture. This environment (Figure 3(a)) has a long re-
verberation time, which can considerably affect the speech
intelligibility especially when the listener is far from the
source. In this scene, a speech sound source in placed on the
stage, corresponding to a talking human voice. The listener
is assumed to be 10 meters away from that source.

• The Berlin scene (Figure 3(b)) corresponds to a small apart-
ment complex. In this scene, a noise source is placed in the
room and a listener is set above the bed in the same room.

• The Elmia scene (Figure 3(c)) is a concert hall with measured
acoustic material properties that matches to a real-world
scene. In this benchmark, we assume that a live music show
is played on the stage, and loudspeakers installed across the
hall are used to amplify the music played at stage.

• The Sibenik scene (Figure 3(d)) is modeled from the real-
world Sibenik Cathedral. Material properties are mannually
assigned to the model. In this scene, a piano is played on
the stage in the cathedral and the sound undergo certain
distortion in its frequency. Loudspeakers are installed on
pillars in the cathedral.

6.2 Speech Improvement
Figure 4 shows the distribution of STI values before and after our
optimization algorithm on the Trinity benchmark. Before our op-
timization, the reverberation effect is significant and the average
STI value is 0.525. After we reduce the reverberation using active
loudspeakers, the average STI becomes 0.734, whereas human’s just
noticeable difference (JND) for STI is 0.03 [7]. A higher value of STI
indicates higher quality of speech understanding or intelligibility.

6.3 Music Reinforcement
In the Elmia benchmark, the desired sound field corresponds to the
field generated by propagating the music signal from the performer



(a) Trinity (b) Berlin (c) Elmia (d) Sibenik

Figure 3: Different benchmarks used to evaluate our dynamic SFS algorithm. We highlight the 3D CAD models with colored
sound source and loudspeaker placement: the green spheres represent active loudspeakers; the red spheres represents original
sound source(s) in the scene. We drive the signals from active loudspeakers to manipulate the sound field along with original
sound sources using the acoustic metrics corresponding to music and speech improvement.
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(b) Fields in Berlin scene

Figure 4: We highlight the STI distribution corresponding to the speech sources in the Trinity and Berlin models. Our opti-
mization algorithm significantly improves the speech understanding as shown by high values (right) as compared to the low
values (left) of STI metric. This highlight the benefits of our dynamic SFS algorithm in terms of speech intelligibility, and it
makes no assumption about the model or the sound source.
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(a) Sound fields in Elmia scene
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(b) Sound fields in Sibenik scene

Figure 5: We highlight the frequency compensation effects of music sound fields using our dynamic SFS algorithm in two
benchmark scenes. The left figure in each scene shows the cross-correlation between the original distorted sound field and
the desired sound field, while the right one shows the cross-correlation between our synthesized sound field and the desired
sound field. We observe that our optimization algorithm results in sound fields that have the desired sound characteristics in
terms of high correlation values (right) over low correlation values (left).

location on the stage with a flat frequency response. Note that in
actual performances, users tend to emphasize some components of
the frequency, while attenuate the other parts. Our approach can
also account for these effects. We show the desired and synthesized
sound signal at the listener location in Figure 5.

6.4 User Evaluation
In addition to the numeric results (of sound fields) shown in Section
6.2, we also conducted a user study to evaluate the perceptual
benefits of our algorithm for speech improvement.

6.4.1 Study Goal. We aim to demonstrate the effectiveness of
our dynamic SFSmethod to improve speech intelligibility. Moreover,
we also compare the perceptual benefits on results generated from
the commercial software Era-R developed by Accusonus Inc, [24].
Our hypothesis is that our method performs no worse than Era-R.

6.4.2 Study Design. Our study was based on pairwise compar-
isons. We prepared three reverberant speech clips that were 11
seconds long. By using reverberant clips as the reference, we per-
formed dereverberation on these clips separately using Era-R and
our method. Next, we obtained audio clips corresponding to the



Figure 6: Subject scores for speech intelligibility in the three
processing categories: original clip, Era-R [24] and our dy-
namic SFS algorithm. The score 1 indicates worst intelligi-
bility while 7 indicates the best intelligibility. We observe
higher speech intelligibility using ourmethod in these tests.

three categories (original, Era-R, our method) of 3 different speech
clips. We randomly ordered the 9 clips for each participant.

6.4.3 Metrics. During the study, participants were asked to lis-
ten to audio clips from our test sets. After listening to each one
clip, participants were asked to rate the intelligibility for these clips
using a 7-point Likert scale, with 1 indicating worst intelligibility,
and 7 indicating best intelligibility. Before listening to our test set,
they were presented with two extra audio clips (a reverberant clip
and a dereverberated clip) for familiarization with such clips and
the tasks, as well as the type of sound. The user responses to those
two training audio clips were not counted in the evaluation result.

6.4.4 Study Results. We recruited 40 students (17 females), with
a mean age of 23.9 (std=2.9), to take the study anonymously. All
participants reported to have normal hearing. The study took each
participant around 4 minutes to complete. We first performed two-
tailed tests on intelligibility scores between ours and other two
categories, with the null hypothesis that our method has the same
mean score as that from other two categories. Instead, these tests
rejected the null hypothesis and showed that the mean intelligibility
score from our method was significantly different from all other
two categories. Based on that, we performed one-tailed tests with
the null hypothesis that our mean score is not higher than the other
two. Further tests also rejected this hypothesis, and proved that our
method had higher mean intelligibility score than the other two.
All tests were run under a significance level of 0.05.

6.5 Benefits and Comparisons
Our approach is different from prior sound field simulation algo-
rithms based on digital signal processing methods. As compared to
prior methods, our approach offers the following benefits:

• Loudspeaker placement: We do not impose any restric-
tions on the placement of loudspeakers, except that they
need to be closer to the target sound zone than any other
sound sources. This gives much more flexibility.

• Arbitrary domain: We do not make any assumptions on
the size or shape of the geometric model (e.g. rectangular or
circular shape), and our approach is applicable to all models.
We highlight the performance on many complex models
shown in Figure 3.

• Stability: Our result is consistent with the multiple-input
multiple-output inverse theorem (MINT). But because our IR

computation considers the highly unsymmetrical complex
acoustic environment, we do not suffer from the location-
sensitivity issue in naive MINT implementations [29].

• Reverberation:Most existing work on sound field synthe-
sis are limited to direct sound or use simple, pre-computed
models of late reverberation. Instead, our approach tends to
compute the reverberation effects using accurate sound prop-
agation algorithms. As a result, our approach can reliably
model the sound effects in arbitrary domain and account for
these effects in terms of dynamic SFS.

• Dynamic sound signals: Our approach has the ability to
predict the impact of external source signals as we try to
manipulate the sound field. This property is useful when the
external source locations are known, but the actual audio
signal is unpredictable.

7 CONCLUSION, LIMITATIONS, AND
FUTUREWORK

We present a novel method of dynamically synthesizing the sound
field in a localized 3D environment by adding new loudspeakers
(equivalent to virtual sources) to the acoustic scene. We present
an optimization algorithm that uses precomputed IRs to compute
loudspeaker driving signals to form the desired sound field. As
compared to prior sound field synthesis methods, our approach is
more general and allows for arbitrary selection and placement of
loudspeakers. We highlight the performance of our algorithm on
two applications: speech improvement and music reinforcement.

Our approach has some limitations. We assume that an accurate
geometric and material model representation is given and do not
account for signal sensing delays. Our current implementation is
based on geometric ray tracing propagation and may not work well
for low-frequency sources. We can improve the accuracy using
hybrid wave-numeric methods. The trade-off between precompu-
tation cost in terms of computing all the IRs for source-listener
pairs and SFS accuracy remains as future research. Furthermore,
our formulation assumes that the input sound sources are static.
The resulting algorithms for speech improvement and music rein-
forcement make some assumptions about these applications.

There are many avenues for future work. In addition to address-
ing these limitations, we would like to further evaluate our algo-
rithm’s performance in various scenarios. It would be useful to
combine our algorithm with clustering methods to handle a large
number of active loudspeakers or monitoring points in large acous-
tic spaces. The IR computations between a large number of pairs
could be accelerated by exploiting the spatial coherence of the
sound field. While some of the metrics used in our formulation (e.g.,
STI) are based on psycho-acoustic criteria, it would be useful to
explore the use of psycho-acoustic metrics to handle large acoustic
spaces as part of our optimization algorithm.
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