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Abstract— We present a novel approach to automatically
identify driver behaviors from vehicle trajectories and use them
for safe navigation of autonomous vehicles. We propose a novel
set of features that can be easily extracted from car trajectories.
We derive a data-driven mapping between these features and six
driver behaviors using an elaborate web-based user study. We
also compute a summarized score indicating a level of awareness
that is needed while driving next to other vehicles. We also
incorporate our algorithm into a vehicle navigation simulation
system and demonstrate its benefits in terms of safer real-
time navigation, while driving next to aggressive or dangerous
drivers.

I. INTRODUCTION

Identifying dangerous drivers is crucial in developing
safe autonomous driving algorithms and advanced driving
assistant systems. The problem has been extensively studied
in transportation and urban planning research [1]. However,
prior work usually correlates driver’ behaviors with their
backgrounds (e.g., driver age, response to questionnaires,
etc.). On the other hand, to develop autonomous vehicle
systems, we need to understand the behavior of surrounding
drivers using only the sensor data. As with to a human driver,
an autonomous navigation algorithm that can predict other
vehicle’s driving behavior can navigate safely and efficiently
avoid getting near dangerous drivers.

Prior work in transportation research [2], [1] often charac-
terizes drivers using their levels of aggressiveness and care-
fulness. Several works in modeling pedestrian trajectories
[3] and navigation [4] algorithms have applied psychological
theory to capture human behavior. Current autonomous driv-
ing systems uses a range of different algorithms to process
sensor data. Object detection and semantic understating
methods are applied to obtain trajectory data [5]. Some work
[6] uses end-to-end approaches to make navigation decisions
from the sensor inputs (e.g. camera images, LIDAR data,
etc.).

Main Results: We present a novel approach to automat-
ically identifying driver behaviors from vehicle trajectories.
We perform an extensive user study to learn the relationship
and establish a mathematical mapping between extracted
vehicular trajectories and the underlying driving behaviors:
Trajectory to Driver Behavior Mapping (TDBM). TDBM
enables a navigation algorithm to automatically classify the
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driving behavior of other vehicles. We also demonstrate
simulated scenarios where navigating with our improved
navigation scheme is safer.

Our approach takes into account different trajectory fea-
tures. We use five different features, which can be easily ex-
tracted from vehicle trajectories and used to classify driving
behaviors. We show that selecting a subset of these features
is more favorable than selecting the currently used ones
to produce a strong regression model that maps to driving
behaviors.

As compared to prior algorithms, our algorithm offers the
following benefits:

1. Driving Behavior Computation: We present a data-
driven algorithm to compute TDBM. We conducted a com-
prehensive user survey to establish a mapping between five
features and six different driving behaviors. We further
conduct factor analysis on the six behaviors, which are de-
rived from two commonly studied behaviors: aggressiveness
and carefulness. The results show that there exists a latent
variable that can summarize these driving behaviors and that
can be used to measure the level of awareness that one should
have when driving next to a vehicle. In the same study, we
examine how much attention a human would pay to such a
vehicle when it is driving in different relative locations.

2. Improved Realtime Navigation: We compute the
features and identify the driving behaviors using TDBM.
We enhance an existing Autonomous Driving Algorithm [7]
to navigate according to the neighboring drivers’ behavior.
Our navigation algorithm identifies potentially dangerous
drivers in realtime and chooses a path that avoids potentially
dangerous drivers.

An overview of our approach is shown in Figure 1. The
rest of the paper is organized as follows. We give a brief
overview of prior work in Section II. We introduce the
new trajectory features that are used to identify the driver
behaviors in Section III. We present our data-driven mapping
algorithm (TDBM) in Section IV and use it for autonomous
car navigation in Section V.

II. RELATED WORKS

A. Studies on Driving Behaviors
There has been a wide range of work studying drivers’

behaviors in Social Psychology and Transportation. Feng
et al. [2] proposed five driver characteristics (age, gender,
year of driving experience, personality via blood test, and
education level) and four environmental factors (weather,
traffic situation, quality of road infrastructure, and other cars’
behavior), and mapped them to 3 levels of aggressiveness



Fig. 1. Overview of our Algorithm: During the training of TDBM, we extract features from the trajectory database and conduct a user evaluation to find
the mapping between them. During the navigation stage, we compute a set of trajectory and extract the features, then compute the driving behavior using
TDBM. Finally, we plan for real-time navigation, taking into account these driver behaviors.

(driving safely, verbally abusing other drivers, and taking
action against other drivers). Aljaafreh et al. [8] categorized
driving behaviors into 4 classes: Below normal, Normal, Ag-
gressive, and Very aggressive, in accordance to accelerometer
data. Social Psychology studies [9], [10] have examined the
aggressiveness according to the background of the driver,
including age, gender, violation records, power of cars,
occupation, etc. Mouloua et al. [11] designed a questionnaire
on subjects’ previous aggressive driving behavior, and con-
cluded that these drivers also repeated those behaviors under
a simulated environment. Meiring et al. [1] used several
statistical reports to conclude that distracted behaviors and
drunk behaviors are also serious threats to road safety. Many
of the driver features used by these prior methods cannot
be easily computed in new, unknown environments using
current sensors. Our work uses trajectory data which can
be extracted from sensor data in most autonomous driving
systems.

B. Trajectories Features

Murphey et al. [12] conducted an analysis on the aggres-
siveness of drivers and found that longitudinal (changing
lanes) jerk is more related to aggressiveness than progressive
(along the lane) jerk (i.e. rate of change in acceleration).
Mohamad et al. [13] detected abnormal driving styles using
speed, acceleration, and steering wheel movement, which
indicate direction of vehicles. Aufrere et al. [14] proposed a
model-driven based approach to detect and track road edges.
Qi et al. [15] studied driving styles with respect to speed
and acceleration. Shi et al. [16] pointed out that deceler-
ation is not very indicative of aggressiveness of drivers,
but measurements of throttle opening, which is associated
with acceleration, is more helpful in identifying aggressive
drivers. Wang et al. [17] classified drivers into two categories,

aggressive and normal, using speed and throttle opening
captured by a simulator. There are also some other works
[18], [19] that leverage massive simulated data for training
algorithms to extract trajectories of other obstacles (e.g.
pedestrian).

Sadigh et al. [20] proposed a data-driven model based on
Convex Markov Chains to predict whether a driver is paying
attention while driving. There are considerable works on
development of in-car smart systems to alert users when they
are found driving distracted by indicating nearby vehicles
[21], departures from lane markers and drivers’ appearances
and road conditions [22], and trajectories computed by
camera, IMU and GPS [23].

Instead of directly analyzing real-world data, many meth-
ods model driving behaviors as input parameters to generate
driving simulations. Treiber et al. [24] proposed a lane
following model, that controls the speed of the car using
desired velocity, minimum spacing, desired time headway,
acceleration, and maximum breaking deceleration. Kesting
et al. [25] proposed a lane changing model, that makes lane
changing decisions based on the speed advantage gained
and the speed disadvantage imposed on the other vehicles,
using a franticness and a politeness factor. Choudhury et al.
[26] proposed a complex lane changing model, composed
of desired speed, desired time gap, jam distance, maximum
acceleration, desired deceleration, coolness factor, minimum
acceptable gap, etc.

We combine a set of selected features proposed by pre-
vious works in terms of behavior mapping and simulation
with two new trajectory features, lane following metric and
relative speed metric. Then, we use variable selection to
select a subset of features that can produce a good regression
model.



C. Autonomous Car Navigation
There is substantial work on autonomous vehicle navi-

gation [27], [28], [29], [30], [31], [32]. Ziegler et al. [33]
presented a navigation approach that is capable of navi-
gating through the historic Bertha Benz route in Germany.
Numerous navigation approaches [34], [35], [36], [37] have
been proposed in the DAPRA Urban Grand Challenge and
the Grand Cooperative Driving Challenge. Recent work
proposed by Best et al. [7], AutonoVi, presented an improved
navigation algorithm that takes into account dynamic lane
changes, steering and acceleration planning, and various
other factors. Our approach is complimentary to these meth-
ods and can be combined with them.

D. Adaptation to Human Drivers’ Behavior
Sadigh et al. [38] observed that an autonomous car’s action

could also affect neighboring human drivers’ behavior, and
studied how humans will react when the autonomous car
performs certain actions [39]. Huang et al. [40] presented
techniques for making autonomous car actions easily under-
standable to humans drivers. They also proposed an active
learning approach [41] to model human driving behavior by
showing examples of how a human driver will pick their
preference out of a given set of trajectories. While this stream
of work went further to take into account how humans would
react to an autonomous car’s action, it also emphasized the
importance of a robot navigating according to other drivers’
behavior.

III. METHODOLOGY

In this section, we present the two novel trajectory features
that are used to identify driver behaviors. We also compare
their performance with other features and give an overview
of driver behavior metrics used in our navigation algorithm.

A. Features
The goal of our work is to extract a set of trajectory

features that can be mapped properly to driving behaviors.
We assume that the trajectories have been extracted from the
sensor data. Many of the previous works deal with different
driver characteristics: driver background, accelerometer use,
throttle opening, etc., which may not be available for an
autonomous vehicle in new and uncertain environments.
Moreover, in the simulation models described in Section II-
B, a lot of features cannot be measured from trajectories
with insufficient lane-changing samples: comfortable break-
ing deceleration, desired time headway, etc. Therefore, we
derive some variants of features that can be easily extracted
from the trajectories and summarize them in Table I. These
features are further shortlisted with the results from a user
study described in the next section.

1) Acceleration: As pointed out in several prior works
[12], [13], [16], [17], acceleration is often correlated with
driver aggressiveness. While previous studies [12] concluded
that longitudinal jerk can reflect aggressiveness better than
progressive jerk, our goal is to use features that also correlate
with all the driving styles, instead of just aggressiveness.
Therefore, we include both longitudinal jerk jl and progres-
sive jerk jp in our computations.

Symbol Notation Description
f0 vfront Average relative speed to the car in front
f1 vback Average relative speed to the car in the back
f2 vleft Average relative speed to cars in the left lane
f3 vright Average relative speed to cars in the right lane
f4 vnei Relative speed to neighbors
f5 vavg Average velocity
f6 sfront Distance with front car
f7 jl Longitudinal jerk
f8 jp Progressive jerk
f9 scenter Lane following metric

TABLE I
WE CONSIDERED TEN CANDIDATE FEATURES f0, .., f9 FOR SELECTION.

FEATURES HIGHLIGHTED IN GREEN ARE SELECTED FOR MAPPING TO

BEHAVIOR-METRICS ONLY, AND THOSE IN BLUE ARE SELECTED FOR

MAPPING TO BOTH BEHAVIOR-METRICS AND ATTENTION METRICS.

2) Lane following: Previous work [23] proposed a metric
measureing the extent of lane following that depends on the
mean and standard deviation of lane drifting and lane weav-
ing. We propose a feature that also depends on lane drifting,
but distinguishes between drivers who keep drifting left and
right within a lane and those who are driving straight but not
along the center of the lane. Moreover, we compensate for
the extent of lane drifting while performing lane changing
to avoid capturing normal lane changing behaviors into this
metric.

Given yl, which is the center longitudinal position of
the lane that the targeted car is in, and y(t), which is the
longitudinal position of the car at time t, we detect a lane
changing event when the car has departed from one lane
to the another and remained in the new lane for at least k
seconds.

With a set of changing lane events happened at time ti,
C = {t1, t2, ..., tn}, the lane drift metric sC(t) is measured
as below:

sC(t) =

{
0, if ∃t ∈ C s.t. t ∈ [t− k, t+ k],

y(t)− yl, otherwise.
(1)

We use a term that measures the previous τ seconds of
rate of change in drifting to differentiate lane drifts from
those drivers who are driving straight but off the center of
the lane. Our overall lane following metric is illustrated in
Figure 2 and defined as:

scenter =

∫
|sC(t)|

[
µ+

∫ t

t−τ
|s′∅(t)|dt

]
dt, (2)

where µ is a parameter that distinguish drivers who are
driving off the center of the lane and those who are along.

3) Relative Speed: Relative speed has been used to eval-
uate the aggressiveness of drivers [15]. However, directly
measuring the relative speed using vfront, vback, vleft and
vright has many issues. First, such a feature sometimes
does not exist as there may be no car next to the target
car. Second, these features might not be directly related to
the driving behavior of the car. While driving substantially
faster than other cars would be perceived as aggression,



Fig. 2. Illustration of the lane drift metric (|sc(t)|), and the lane following
metric (scenter). The lane following metric for the trajectories above is
the sum of the area under the plot of s′center . The first example shows
that our lane following metric (scenter) captures the ‘drifting behavior’ in
the top example. The second example shows that our metric deliberately
neglected the ‘lane changing’ phase, and has a significant lower magnitude
for ‘driving straight off the center’, since this metric is designed to merely
capture the dangerous ‘drifting behavior’.

driving slower might not necessarily imply that the driver is
non-aggressive. Third, computing such an average velocity
requires knowledge about the trajectories and range of speeds
of the neighboring vehicles. Given these considerations,
we design the following metric to capture the relationship
between the driving behavior and the relative speed with
respect to neighboring cars:

vnei =

∫ ∑
n∈N

max(0,
v(t)− vn(t)

dist(x(t), xn(t))
)dt, (3)

where N denotes the set containing all neighboring cars
within a large range (e.g., a one-mile radius). x(t), v(t),
xn(t), vn(t) denote the position and the speed of the target-
ing car, and the position and the speed of the neighbor n,
respectively.

B. Driving Behavior Metrics

As discussed in Section II-A, aggressiveness [2], [8],
[42] and carefulness [1], [20], [43] are two metrics that
have been used to identify road safety threats. Typically,
social psychologists add related items into studies to leverage
robustness and the observed effects. Therefore, we would
like to evaluate four more driving behaviors: Reckless,
Threatening, Cautious, and Timid. They are listed in Table
II.

C. Attention Metrics
Observing different maneuvers of other drivers on the

road can result in paying more attention to those drivers.
However, the relative position of such drivers (with respect
to the targeted vehicle) would affect the level of attention
that one is paying to them. For instance, one would pay more
attention to a vehicle in the front making frequent stops, as
opposed to a following vehicle. We would like to understand
how much attention a driver will pay to the targeted car
when the user assumes that he or she is driving in different
relative positions than the target. We study four different
relative positions: preceding, following, adjacent to and far
away from the targeted vehicle, also listed in Table II. These
positions affect the level of attention one would pay when
driving in that relative position.

Symbol Description Symbol Level of Attention when
b0 Aggressive b6 following the target
b1 Reckless b7 preceding the target
b2 Threatening b8 driving next to the target
b3 Careful b9 far from the target
b4 Cautious
b5 Timid

TABLE II
SIX DRIVING BEHAVIOR METRICS (b0 , b1 , ...,b5) AND

FOUR ATTENTION METRICS (b6 , b7 , b8 , b9) USED IN TDBM

IV. DATA-DRIVEN MAPPING

We designed a user study, involving 100 participants to
identify driver behaviors from videos rendered from the In-
terstate 80 Freeway Dataset [44]. The video dataset consists
of 45 minutes of vehicle trajectories, captured in a 1650
feet section on I-80 in California, US. The videos were first
annotated automatically using a proprietary code developed
in the NGSIM program, and then manually checked and
corrected. The raw videos provided in the dataset are low
in quality and divided into seven different segments with
different camera angles. Therefore, we have rendered the
videos using a game engine, Unreal Engine, to provide a
stable and consistent view for the users in the survey. The
virtual cameras have a fixed transform to the targeted car,
which is highlighted in red, and will follow it throughout
the video.

Figure 3 shows snapshots of the videos used in the user
study. The participants were asked to rate the six behaviors
we described in Section III-B on a 7-point scale: {Strongly
disagree, Disagree, Somewhat disagree, Neither agree or
disagree, Somewhat agree, Agree, Strongly agree}. This was
followed by another question on how much attention they
would be paying if they were in different positions relative
to the targeted car, as described in Section III-C, on a 5-point
scale, where -2 indicates not at all, 0 indicates a moderate
amount and 2 indicates a lot.

A. Data Pre-Processing
We perform data augmentation to make sure that the

dataset has a sufficiently wide spectrum of driving behaviors
corresponding to lane changes, fast moving cars, passing



Fig. 3. Two example videos used in the user study. Participants are asked
to rate the six driving behavior metrics and four attention metrics of the
target car colored in red.

cars, etc. In addition, the features described in Table I
are measured using different units. To improve numerical
stability during the regression analysis, we scale the data
linearly using the 5th and the 95th percentile samples to
minimize the effects of extreme values.

B. Feature Selection

In Section III-A and Table I, we cover a wide range
of features used in previous studies that can be extracted
from trajectories, along with two new metrics that attempt to
summarize some of these features to avoid strong correlation
between independent variables during regression analysis. In
this section, we apply feature selection techniques to find out
which features are most relevant to the driving behaviors.

We perform least absolute shrinkage and selection operator
(LASSO[45]) analysis on six driving behaviors b0, b1, ...,
b5 and four attention metrics, b6, b7, b8, b9, from the
user responses. The objective function for Lasso analysis
conducted on bi is:

min
β′
i,βi

[ 1
N

N∑
j=1

(bi−βi′−fTj βi,j)
]

, subject to
F∑
j=1

|βi,j | ≤ αi,

(4)
where N is the number of survey responses and F is the
number of features.

Lasso analysis performs regularization and feature selec-
tion by eliminating weak subsets of features. The parameter
αi determines the level of regularization that Lasso analysis
imposes on the features. As we increase αi, features fj will
be eliminated in a different order. Unlike regular regression
analysis on a single dependent variable, our goal is to select
two sets of features: one that can produce a strong regression
model for all six driving behavior metrics, and one for all
four attention metrics. We sample different values of αi for
all responses bi, and record the values of αi at which the
component βi,j (which mapping feature fj to response bi)
converges to 0. The results are shown in Figure 4, where
converging values of βi,j are presented in the power of 10.

The directly computed relative speeds of the cars sur-
rounding the targeted car are least favorable for selection for
both regressions for behavior-metrics and attention-metrics.

Fig. 4. The converging value (in the power of 10) of βi,j which maps a
feature fj to a behavior/attention metric bi while performing Lasso analysis.
A larger converging value indicates a higher likelihood that the feature is
favourable in regression analysis, and therefore we select that value for
TDBM.

However, our relative speed metric proposed to capture the
correlation between surrounding cars and the targeted car,
vnei (Equation 3), is more favorable in terms of being
selected. Moreover, our lane following metric, scenter (Equa-
tion 2), tends to be the last one eliminated as a feature in
the variable selection stage.

Our goal is to find two αbehavior and αattention that
shortlist a subset of features for behavior-metric and
attention-metric respectively. Note that αbehavior = αi, ∀i ∈
[0, 5], and αattention = αi, ∀i ∈ [6, 9] for αi defined
in Equation 4. In terms of behavior, we can either pick
{scenter, vnei, sfront} or {scenter, vnei, sfront, vavg, jl}.
Given that the mapping component between vavg and jl
has high converging values, they can produce a stronger
regression model for aggression, and that aggressiveness is
one of the common behaviors as studied in prior literature
discussed in Section II-A. We therefore select the latter set
of features for behavior mapping. For mapping features with
attention regions metrics, we select {scenter, vnei, vavg}.

C. Feature-Behavior Mapping

Using {scenter, vnei, sfront, vavg, jl} and
{scenter, vnei, vavg} as the features, we perform linear
regression to obtain the mapping between these selected
features and the drivers’ behavior. We normalize the data
as described in Section IV-A to increase the numerical
stability of the regression process. The results we obtained
are below. For Bbehavior = [b0, b1, ..., b5]

T , we obtain

Bbehavior =


1.63 4.04 −0.46 −0.82 0.88 −2.58
1.58 3.08 −0.45 0.02 −0.10 −1.67
1.35 4.08 −0.58 −0.43 −0.28 −1.99
−1.51 −3.17 1.06 0.51 −0.51 1.39
−2.47 −2.60 1.43 0.98 −0.82 1.27
−3.59 −2.19 1.75 1.73 −0.30 0.61




scenter
vnei
sfront
vavg
jl
1

 (5)

Moreover, for Battention = [b6, b7, b8, b9]
T ,

Battention =

 Bback
Bfront
Badj
Bfar

 =

 0.54 1.60 0.11 −0.8
−0.73 1.66 0.63 −0.07
−0.14 1.73 0.25 0.15
0.25 1.47 0.17 −1.43


scentervnei

vavg
1

 (6)

We further apply leave-one-out cross-validation to the
set of samples S: enumerate through all samples si ∈ S
and leave si as a validation sample, and use the remaining
samples S − si to produce regression models Mi,j for each
behavior bi,j . Using Mi,j , we predict the behaviors bi,j of



si. The mean prediction errors of bi,j using Mi,j are listed
in the table below. The mean prediction error in the cross-
validation is less than 1 in a 7-point scale for all behaviors
and attention metrics predicted, showing that our mappings
described in Equation 5 and 6 are not over-fitted.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9
0.75 0.94 0.78 0.7 0.6 0.89 0.2 0.49 0.38 0.23

TABLE III
MEAN ERROR IN A 7-POINT SCALE WHEN APPLYING CROSS VALIDATION

OF LINEAR REGRESSION TO MAP FEATURE TO BEHAVIOR AND

ATTENTION METRICS SHOWING OUR MAPPING IS NOT OVER-FITTED.

D. Factor Analysis
Previous studies on mapping walking behavior adjectives

with features used to simulate crowds [3], have applied factor
analysis to find smaller numbers of primary factors that
can represent the personalities or behaviors. We can apply
Principal Component Analysis (PCA) to the survey response.
The percentages of variance of the principal components
are 73.42%, 11.97%, 7.78%, 2.96%, 2.30% and 1.58%. The
results indicate that the Principal Component 1, which has
variance of 73.43%, can model most of the driving behaviors.

We represent each entry of the user study response with
the highest rated behavior and transform these entries into
the space of the Principal Components as shown in Figure
5. If the user did not fully agree to any behavior for a video
(i.e. responses to all questions are below ‘Somewhat agree’),
we consider that there to be no representative behavior from
this entry (i.e. undefined). Also, if a response indicates more
than one behavior as the strongest, then we label those
behaviors as undefined if those adjectives contradict each
other (i.e. one from negative adjectives {Aggressive, Reck-
less, Threatening} and one from positive adjectives {Careful,
Cautious, Timid}). As observed in Figure 5, the distribution
of the data on Principal Component 1, the three negative
behavior adjectives we used in the user study, represented
in warmer colors, are distributed on the negative side, while
the three positive behavior adjectives are distributed on the
positive side. Furthermore, the entries that suggest the users’
responses were ‘Strongly agree’, represented by solid color
plots in Figure 5, have significantly higher magnitudes in
terms of value along Principal Component 1. However, for
Principal Components 2 and 3, such a relationship is not
observed.

Our studies show that there could be one latent vari-
able that is negatively correlated with aggressiveness and
positively correlated with carefulness. We further verify
these results by analyzing the correlation of the Principal
Components with the amount of awareness that the users
indicated they would pay to the targeted car. We take the
average of the level of attention, b6+b7+b8+b9

4 , recorded for
each response and plot these averages as the color on the
PCA results in Figure 6. Similar results have been observed
from this user evaluation, where the drivers worth more
attention have a lower value of Principal Component 1, and
those who worth less attention tend to have a higher value.

Fig. 5. Principal Component Analysis results for {Principal Components
1(PC1), PC2} (left) and {PC1, PC3} (right). The color of the data point
indicates the highest rated driving behavior adjective as shown in the
legends, and the alpha value indicates the rating of this behavior (solid
for ‘Strongly agree’, and half-transparent for ‘Somewhat agree’). If a user
did not agree to any of the behaviors or indicated multiple contradicting
behaviors, the data point is marked as undefined in green.

Moreover, there is no clear evidences pointing to correlation
between the level of awareness the user rated and Principal
Component 2 or 3.

Fig. 6. Principal Component Analysis results for {PC1, PC2} (left) and
{PC1, PC3} (right). The color of the data point indicates the average amount
of awareness the user rated on a 5 point scale (-2 for not paying any attention
at all, and 2 for paying a lot of attention).

Therefore, we consider the Principal Component 1 as a
safety score reflecting the amount of attention awareness that
a driver or an autonomous navigation system should take into
account. TDBM is therefore computed as below:

STDBM =
(
−4.78 −7.89 2.24 1.69 −0.83 4.69

)

scenter
vnei
sfront
vavg
jl
1

 (7)

V. NAVIGATION

In this section, we highlight the benefits of identifying
driver behaviors and how these ensure safe navigation. We
extend an autonomous car navigation algorithm, AutonoVi
[7], and show improvements in its performance by using
our driver behavior identification algorithm and TDBM.
AutonoVi is based on a data-driven vehicle dynamics model
and optimization-based maneuver planning, which generates
a set of favorable trajectories from among a set of possible
candidates, and performs selection among this set of trajecto-
ries using optimization. It can handle dynamic lane-changes
and different traffic conditions.

The approach used in AutonoVi is summarized below: The
algorithm takes a graph of roads from a GIS database, and



applies A* algorithm to compute the shortest global route
plan. The route plan consists of a sequence of actions that is
composed of {Drive Straight, Turn Left, Turn Right, Merge
Left, and Merge Right}. The plan is translated to a static
guiding path that consists of a set of way-points, that exhibits
C1 continuity, and that takes Traffic Rules into account (e.g.,
making a stop at an intersection). AutonoVi then samples the
steering angle and velocity in a desirable range of values to
compute a set of candidate trajectories, and eliminates the
trajectories that lead to possible collisions based on Control
Obstacles [46].

Among the set of collision-free trajectories, AutonoVi
selects the best trajectory by optimizing a heuristic that
penalizes trajectories that lead to: i) deviation from global
route; ii) sharp turns, braking and acceleration; iii) unneces-
sary lane changes; and iv) getting too close to other vehicles
and objects (even without a collision).

To avoid getting too close to other neighboring entities,
AutonoVi proposed a proximity cost function to differentiate
entities only by its class. That is, it considers all vehicles as
the same and applies the same penalization factor, Fvehicle,
to them. Further, it applies a higher factor : Fped and Fcyc to
pedestrians and cyclist respectively. The original proximity
cost used in AutonoVi is:

cprox =

N∑
n=1

Fvehicle e
−d(n) (8)

This cost function has two issues: i) it cannot distinguish
dangerous drivers to avoid driving too close to them, and
ii) it diminishes too rapidly due to its use of an exponential
function. We propose a novel proximity cost that can solve
these problems:

c′prox =

N∑
n=1

c(n) (9)

c(n) =


0 if d ∈ [dt2, inf),

STDBMBfar
dt2−d(n)

dt2
if d ∈ (dt, dt2],

STDBM
[ (dt−d(n))(Br−Bfar)

dt
+Bfar

]
if d ∈ (0, dt].

(10)
where d(n) is the distance between the car navigating with
our approach and the neighbor n, dt is a threshold distance
beyond which neighbors are considered as far away, and dt2
is a threshold distance beyond which neighbors would no
longer have impact on our navigation. STDBM is derived
from Equation 7, Bfar and Br are the attention metrics
computed using the features extracted from the features using
the mapping in equation 6, for r = {back, front, adj} if
the neighboring car is following, preceding, and next to the
navigating car, respectively.

Using this new cost function, we can avoid drivers that
are potentially riskier, and select a safer navigation path.
Examples of scenarios are illustrated in Figure 7 and the
attached video.

Fig. 7. Examples of our approach making better navigation decision than
AutonoVi. The red route is the one selected by our approach while white
is the one selected by AutonoVi. The cost map c(n) is also shown for
each neighbor car n indicating the amount of attention needed. In (a), our
algorithm chooses to switch lane and keep a distance from the car require
more attention. In (b), a car requiring high level of attention tailgates the car
running our approach, and we switch to a slower lane to give way. In (c),
a heavy traffic ahead causing all four lanes move at a similarly low speed,
and our algorithm chooses to the follow the car with the lowest attention
required.

VI. CONCLUSION AND FUTURE WORKS

We present a novel data-driven approach to enable safer
real-time navigation by identifying human drivers who are
potentially hazardous. Our studies and findings are based on
a data-driven mapping computation (TDBM). We conclude
that although humans use different adjectives when describ-
ing driving behavior, there is an underlying latent variable,
STDBM (Equation 7), that reflects the level of attention
humans pay to other vehicles’ driving behavior. Moreover,
we can estimate this variable by a set of novel trajectory
features and other existing features.

Current trajectory data tends to be limited due to human
labeling or the fact that extra efforts may be needed to extract
such annotated data from raw images. With advancement
in object detection and other work in computer vision, one
can expect more trajectory data would be made available
to the autonomous driving research community. Given more
data in urban environments (e.g. status of traffic signal,
pedestrian/cyclist trajectories, and etc.) , we would like to
apply our approach to analyzing and developing different
navigation strategies that adapt to these new situations and
local driving styles. Preliminary results of extending TDBM
to take pedestrians and cyclists into account has been de-
scribed in a recent work [47].
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