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Abstract— We present a novel technique for synthesizing tex-
tures over dynamically changing fluid surfaces. We use both
image textures as well as bump maps as example inputs. Image
textures can enhance the rendering of the fluid by either
imparting realistic appearance to it or by stylizing it, whereas
bump maps enable the generation of complex micro-structures
on the surface of the fluid that may be very difficult to synthesize
using simulation. To generate temporally coherent textures over
a fluid sequence, we transport texture information, i.e. color and
local orientation, between free surfaces of the fluid from one
time step to the next. This is accomplished by extending the
texture information from the first fluid surface to the 3D fluid
domain, advecting this information within the fluid domain along
the fluid velocity field for one time step, and interpolating it back
onto the second surface – this operation, in part, uses a novel
vector advection technique for transporting orientation vectors.
We then refine the transported texture by performing texture
synthesis over the second surface using our “surface texture
optimization” algorithm, which keeps the synthesized texture
visually similar to the input texture and temporally coherent
with the transported one. We demonstrate our novel algorithm
for texture synthesis on dynamically evolving fluid surfaces in
several challenging scenarios.

Index Terms— Texture Synthesis, Fluid Simulation, Surfaces,
Vector Advection.

I. I NTRODUCTION

REALISTIC modeling, simulation, and rendering of fluid
media have applications in various domains, including

special effects, computer animation, electronic games, en-
gineering visualization, and medical simulation. Often the
computational expense involved in simulating complex fluid
phenomena limit the spatio-temporal resolution at which these
simulations can be performed. This limitation makes it ex-
tremely difficult to synthesize complex fine-resolution micro-
structures on the free surface of the fluid, that are usually
present in many commonly occurring fluid phenomena. Ex-
amples of such micro-structures include small-scale waves in
a river stream, foam and bubbles in turbulent water, patterns
in lava flow, etc. Even with a highly robust and sophisticated
fluid simulation system capable of modeling such structures,
it is quite difficult to control the shape and appearance of
these structures within the simulation. We explore an alter-
native approach which makes use of examples or samples of
fluid shape and appearance to aid and complement the fluid
simulation process.

An important aspect of synthesizing fluid animations is the
rendering and visualization of the fluid. In order to render
the desired appearance of the fluid, one needs to accurately
model the material properties of the fluid. In general, it is non-
trivial to model these properties, since they depend on multiple
factors like density, temperature, viscosity, turbulence, etc.

Additionally, these properties tend to vary across the surface
of the fluid as well as over time. Typically, these material
properties behave like a texture,i.e., the fluid appearance
consists of local features that are statistically self-similar over
space and time. Even though these features diffuse as they
move along with the fluid, they also re-generate over time,
ensuring that, statistically, the appearance of the fluid features
remains the same. We exploit this property of fluid behavior
by obtaining example textural images of the fluid of interest,
and using them to render the appearance of the fluid. Figure 1
demonstrates an example where the appearance of lava flowing
over a mountain is made much more interesting by rendering
it with texture. Our technique also provides a new way of
visualizing surface properties of the fluid like flow and shape
by exposing them using the appearance and evolution of the
synthesized texture.

Textures have been extensively used to impart novel appear-
ance to static surfaces, either by synthesizing texture over a
plane and wrapping it over the surface, or by directly syn-
thesizing the texture over surfaces. However, extending these
techniques for texturing a surface that is dynamically changing
over time is a non-trivial problem. This is so because one
needs to maintain temporal coherence and spatial continuity
of the texture over time, while making sure that the textural
elements or features that compose the texture maintain their
visual appearance even as the entire texture evolves. Such a
general technique would also aid in creation of special effects
with fluid phenomena, where the effect involves texturing a
fluid surface with arbitrary textures (as shown in Figure 9).
Additionally, it has potential applications in the visualization
of vector fields and motion of deformable bodies,e.g., the
velocity field of the fluid near its free surface is made apparent
by the continuously evolving texture.

A. Main Results

In this paper, we present a novel texture synthesis algorithm
for fluid flows. We assume that we have available a fluid
simulator, which is capable of generating free surfaces of the
simulated fluid medium as well as providing the fluid velocity
field. We develop a technique for performing texture synthesis
on the free surface of the fluid by synthesizing texture colors
on pointsplaced on the surface. This is motivated by previous
methods for synthesizing texture directly on surfaces [1]–
[3]. However, these approaches typically grow the texture
point-by-point over the surface. We extend and generalize the
idea of texture optimization [4] to handle synthesis over 3D
surfaces. Consequently, ours is a global technique, where the
texture over the entire surface is evolved simultaneously across
multiple iterations.
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Fig. 1

LAVA SCENE RENDERED WITH AND WITHOUT FLUID TEXTURING. (A) SHOWS A FRAME FROM A LAVA ANIMATION RENDERED WITHOUT ANY TEXTURE

SYNTHESIZED OVER IT, WHILE (B) AND (C) SHOW THE SAME FRAME RENDERED AFTER TEXTURING USING TWO DIFFERENT LAVA TEXTURES.

In order to maintain temporal coherence between moving
surfaces in different time steps, we need to ensure that the
texture synthesized on consecutive surfaces is similar to each
other. We achieve this goal by first transporting the texture on
the surface in the first time step to the next using the velocity
field of the fluid that was responsible for the transport of the
surface in the first place. The transported surface texture is then
used as asoft constraintfor the texture optimization algorithm
when synthesizing texture over the second surface. The trans-
port of texture across 3D surfaces is not as straightforward as
advecting pixels using 2D flow fields in the planar case, since
there is no obvious correspondence between points on the two
surfaces. We establish the correspondence by first transferring
texture information (color andlocal orientation) from the first
surface onto a uniform 3D grid, followed by advection of
texture information on this grid using the velocity field of
the fluid. The advected texture is then interpolated back on
the second surface to complete the transport.

Our approach has the following characteristics:

• It can work with any fluid simulator that provides the
3D velocity fields and free surfaces of the fluid at each
iteration as output.

• It can take image textures, bump/displacement maps, as
well as alpha maps as input.

• It performs texture synthesis ondynamically evolving 3D
surfaces, as opposed to just 2D flow fields.

• It can handle significant topological changes in the sim-
ulated fluids, including merge and separation of multiple
fluid volumes.

• It preserves thevisual similarity1 of the synthesized tex-
ture to the input texture, even while advecting both scalar
(e.g. color) and vector quantities (local orientations) de-
scribing the texture, to maintain temporal coherence with
respect to the motion of the 3D fluid.

Our technique for advection of vector quantities through a
velocity field is a novel contribution which may have other
applications as well. It takes into account rotation undergone
by the vector when traveling through the velocity field in
addition to the translation. We demonstrate our algorithm using

1Visual similarity refers to the spatial continuity and the resemblance of
visual appearance between the input and synthesized textures. See Section V-B
for more details.

a variety of textures on several scenes, including a broken dam,
a river scene, and lava flow, as shown in Figures 9 – 14.

B. Organization

The rest of the paper is organized as follows. In Section II,
we briefly summarize the related work in relevant areas.
In Section III, we present an overview of our approach.
We describe the pre-computation required to construct the
necessary data structures in Section IV and our generalized
texture optimization technique on 3D surfaces in Section V.
We then explain how we maintain temporal coherence of the
resulting texture sequence by transporting texture information
between successive time steps in Section VI. We show the
results of our system in Section VII. Finally, we conclude
with some possible future research directions.

II. RELATED WORK

In this section, we briefly summarize recent advances in the
research areas relevant to our work.

A. Example-based Texture Synthesis

Texture synthesis has been widely investigated in computer
graphics. Various approaches are known, including pixel-
based [5], [6], patch-based [7]–[9], and global synthesis [4],
[10]–[12] techniques. Patch-based techniques usually obtain
higher synthesis quality than pixel-based methods. Global
techniques provide the most control, especially when coupled
with an intuitive cost metric, and are therefore most desirable
for fluid texturing. Our synthesis algorithm is based on a
global texture optimization technique [4] which achieves a
nice blend of quality and flexibility by working with patch
sizes of varying degree from large to small.

An important class of texture synthesis techniques relevant
to our work is that concerned with surface texture synthesis,
where texture is synthesized directly over a 3D surface. The
primary issues that arise here include representation of the
texture and neighborhood construction and parameterization
for performing search in the input texture. Turk [1] and
Wei and Levoy [2] represent texture by storing color and local
surface orientation on points uniformly distributed over the
surface. Ying et al. [3] parameterize the surface locally onto
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the plane to compute a texture atlas, which is then used to
perform synthesis in the plane. Praun et al. [13] also perform
local patch parameterizations for generating lapped textures.
The technique of Maillot et al. [14] is significant in the
context of surface parameterization for texture mapping. For
point based representations, texture neighborhoods need to be
constructed on the fly. While in [1], surface marching is used to
compute the neighborhood, in [2], the mesh vertices are locally
parameterized onto the plane to form each neighborhood. We
use both kinds of neighborhoods in our work (see Section V-A
for more details).

B. Flow-Guided Texturing and Visualization

Kwatra et al. [4] introduced a new technique for 2D
texture synthesis based on iterative optimization. They also
demonstrate how the same technique can be used for flow-
guided texture animation, where a planar flow field is used
to guide the motion of texture elements in a synthesized
2D texture sequence. We solve the fluid texturing problem
by adapting ideas from the texture optimization technique to
perform texture synthesis directly on a dynamically changing
triangulated surface in 3D – the motion of the surface being
guided by a 3D fluid simulation as opposed to a planar
flow field. Recently, Lefebvre and Hoppe [15] have also
demonstrated texture advection on the plane and on static
surfaces using appearance-space texture synthesis.

Bhat et al. [16] presented a flow-based video synthesis
technique by enforcing temporal continuity along a set of user-
specific flow lines. While this method focus on stationary flow
fields with focuses on video editing, our algorithm is applica-
ble to any time-varyingdynamicflow fields generated by fluid
simulators and use image textures as input. In addition, we
use the simulated flow fields as a mechanism to automatically
control and guide constrained texture synthesis, while theirs
requires user input to specify the flow lines to edit the video
sequences.

Wiebe and Houston [17] and Rasmussen et al. [18] perform
fluid texturing by advecting texture coordinates along the flow
field using level sets and particles, respectively. However,
they do not address the issue of regeneration of texture
at places of excessive stretch or compression. Neyret [19]
proposed a method for applying stochastic textures to fluid
flows that avoids a variety of visual artifacts, and demonstrated
interesting 2D and 3D animations produced by coherent ad-
vection of the applied texture. This approach works in regular
domains (2D or 3D) and the textures employed are primarily
stochastic or procedural in nature to avoid blending artifacts.
Our technique, on the other hand, is concerned with synthesis
on thefree surfaceof the fluid, and can handle a wider variety
of textures.

There has been work in the scientific visualization commu-
nity that makes use of texture for visualization and represen-
tation of vector fields [20] as well as shape [21]. We observe
that, in a similar spirit, our technique can also be used for
visualization of surface velocity fields as well as motion of
deformable bodies, usingarbitrary textures.

C. Fluid Simulation and Flows on Arbitrary Surfaces

Simulation of fluids and various related natural phenomena
have received much recent attention. Foster and Metaxas [22]
and Stam [23] were among the pioneers in using full 3D
Navier-Stokes differential equations for generating fluid ani-
mations in computer graphics. Level set methods [24], [25]
have been developed for tracking and rendering the free
surface of the fluid. Specialized techniques for synthesizing
detailed fluid phenomena like drops, bubbles, and foam etc,
directly through simulation, have also been researched [26]–
[28]. In the context of our work, fluid simulation is treated as
a black box, where its outputs, namely the 3D velocity field
and the free surface, are used by our algorithm to transport
texture information between successive frames and synthesize
the texture on the fluid surface, respectively.

Recently Stam [29], Shi and Yu [30] have proposed methods
to simulate Navier-Stokes flows on 2D meshes. Stam’s method
requires the surface to be a regular quadrilateral mesh, while
Shi and Yu’s technique works on any triangulated mesh.
Both focused on the goal of generating plausible 2D flows
on surfaces embedded in 3D space. In contrast, we present
techniques for performingtexture synthesison dynamically
moving 3D surfaces. Our approach can alleviate common
artifacts that occur in simple passive advection of texture
coordinates and color as detailed in [19].

Bargteil et al. [31] present a semi-Lagrangian surface track-
ing method for tracking surface characteristics of a fluid,
such as color or texture coordinates. In a similar manner, our
work also relies on fluid surface transport to advect color and
other texture properties. However, in addition to these scalar
quantities, we also track the orientation vectors on the fluid
surface through the velocity field. These vectors are tracked to
ensure that the synthesized texture has consistent orientation
across (temporally) nearby free surfaces.

In work concurrent to ours, Bargteil et al. [32], [33] have
also developed a similar technique for texturing liquid anima-
tions. Our neighborhood construction and search techniques
as well as our orientation advection method are different from
their work. Our work was also presented as atechnical sketch
in SIGGRAPH 2006 [34].

III. OVERVIEW

We couple controllable texture synthesis with fluid simu-
lation to perform spatio-temporally coherent fluid texturing.
The main elements of our system include (i) a fluid simulator
for generating the dynamic surface with velocity information,
(ii) a technique for performing texture synthesis on the fluid
surface, coherent with temporally neighboring surfaces, and
(iii) a method for transporting texture information from one
surface to the other. Figure 2 shows a flow chart of how
these three components interact with each other for fluid
texturing. The surface texture synthesis module hands the
textured surface over to the texture transporter, which in turn,
transports texture information along the velocity field for a
single time step, and hands this information back to the
synthesis module.

The only requirements for a fluid simulator to work with
our system are that it should be able to output the 3D fluid
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Fig. 2

OVERVIEW OF OUR FLUID TEXTURE SYNTHESIS SYSTEM.

velocity field at each iteration, and that the surfaces generated
during each iteration should be a consequence of transporting
the surface at the previous iteration through the fluid velocity
field over a single time step. In our simulator, the surfaces are
generated as the level set of an advected distance function.

We start by obtaining the free surface of the fluid for the first
time step and then texture this surface using our surface texture
optimization algorithm (explained in Section V). We then
transport the texture to the fluid surface for the second time
step using our texture transport technique. The transported
quantities include the texture colors (and any other associated
properties like surface displacement, transparency, etc.) as well
as local orientation vectors that are needed to synthesize the
texture on the 3D surface.

This transported texture serves two purposes. Firstly, it acts
as an initialization for the texture on the surface for the second
time step. Secondly, it is treated as asoft constraintwhich
specifies that the synthesized texture on the second surface
should stay as close as possible to this initialized texture. Our
surface texture optimization technique can naturally handle
this constraint by plugging it into a texture cost function. These
two operations of transport and synthesis are then repeated for
each time step of the simulation.

IV. SURFACE PREPARATION

To perform texture synthesis on a 3D surface, one needs
to take into account the fact that there is no regular grid
of pixels available as is the case in an image. Hence, we
represent the texture on a surface by assigning color values
to points placed on the surface. These points serve the same
purpose on a surface as pixels do in an image. However, in
the case of an image, pixels lie on a uniform grid. On the
other hand, it is impossible to specify a single uniform grid of
points on an arbitrary surface. Even so, we want the points to
be as uniformly spaced as possible to ensure uniform texture
sampling on the surface.

Before we begin synthesis, we prepare the surface for
synthesis by having the following constructs in place. Firstly,
we place the desired number of points on the surface in a
way that they sample the surface uniformly. These points
are connected to form an auxiliary triangle mesh that aids
in interpolation and neighborhood construction. Secondly, a

smooth vector field is computed over this mesh that defines
the local orientation (2D coordinate system) at each point
on the surface2. The orientation field is used to map 3D
points on the surface onto 2D points in a plane. This mapping
is later used for comparing a surface patch against a pixel
neighborhood in the input image. These operations are mostly
similar to previous work, but we describe them here briefly
for completeness.

A. Point Placement and Mesh Hierarchy

As discussed above, we store texture information (color
and local orientation) in points placed on the surface being
textured. Hence, the number of points will determine theres-
olution of the synthesized texture. For example, a surface with
10,000 points will be equivalent to an image of size 100×100
pixels. An important thing to note is that the resolution of the
surface changes from frame to frame. If the area of the surface
increases, the points also increases in number proportionally
and vice-versa. The starting number of points is a user-defined
parameter, but it is computed automatically for subsequent
frames. We want the points to be spaced as uniformly as
possible over the surface so that the synthesized texture also
has a uniform quality throughout. A consequence of this need
for uniformity (and the non-constant nature of the number of
points over time) is that the points for each free surface (in
time) are generated independently. Fortunately, our grid-based
texture color and orientation advection techniques obviate the
need to track the points explicitly.

We generate the points in a hierarchical fashion to represent
the texture at varying resolutions. We follow the procedure of
Turk [1]. At each level, we initialize the points by placing them
randomly over the surface mesh, and then use the surface-
restricted point repulsion procedure of Turk [35] to achieve
uniform spacing between these points. Once we have placed
the points, we connect them to generate a triangulated mesh
for each level of the hierarchy. We use the mesh re-tiling
procedure of [36] for re-triangulating the original surface mesh
using the new points. We use the Triangle library [37] for
triangulation at each intermediate step.

B. Local Orientation

The next step is the computation of a local orientation at
each point placed on the surface. We want these orientations to
vary smoothly over each mesh in the hierarchy. We use a polar
space representation of the orientation field, as proposed by
Zhang et al. [38]. Firstly, a polar map is computed for each
point on the mesh. A polar map linearly transforms angles
defined between vectors on the surface of the mesh to angles
between vectors in a 2D polar space. The transformation is
simply φ = θ ×2π/Θ, whereθ is the angle in mesh space,
Θ is the total face angle around a point, andφ is the polar

2The curved nature of the surface implies that a unique vector cannot be
used to define the 2D coordinate system at each point on the surface – unlike
the case with a plane. This is due to the fact the coordinate system needs
to lie in the tangent plane of the surface which itself changes from point to
point. Consequently, we need to define an orientation vectorfield spread over
the entire surface.
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space angle (shown in the Figure 3A). The orientation vector at
each point can now be represented as an angle in polar space.
This representation allows us to easily smooth the orientation
field by diffusion across adjacent points: for two points on
the mesh connected by an edge, we want their orientations to
make the same polar angle with the common edge between
them, as shown in Figure 3B. Thus, each diffusion operation
averages the current orientation angle of a point with the
angles determined through the points connected to it. In a
mesh hierarchy, this diffusion is performed at the coarsest level
first and then propagated up the hierarchy. The orientation
field is initialized to be the zero polar angle everywhere, after
which multiple iterations of smoothing are performed. Note
that an orientation angle can be converted into a 3D orientation
vector by first applying the reverse transformation (of the
one described above) to obtain a mesh space angle. The 3D
orientation vector at the point is then obtained by rotating a
pre-definedreferencevector, stored at that point, by this mesh
space angle. This reference vector sits in the tangent plane of
the point, i.e., lies perpendicular to thenormal at the point,
and is designated as having azeropolar angle.
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Fig. 3

(A) M APPING ANGLES FROM MESH SPACE TO POLAR SPACE.

(B) ORIENTATIONS d1 AND d2 SHOULD MAKE SIMILAR polar ANGLES (α

AND β RESPECTIVELY) WITH THE COMMON EDGE BETWEEN THEM.

V. SURFACE TEXTURE SYNTHESIS

Once we have constructed the mesh hierarchy and the
orientation field, we are ready to perform synthesis. In this
section, we will describe the two essential steps in perform-
ing surface texture synthesis: neighborhood construction and
surface texture optimization.

A. Neighborhood Construction

Texture synthesis operations primarily require matching
input and output pixel neighborhoods with each other. As
we discussed in the previous section, a uniform grid of

pixels is not always available on the surface. All we have
is a unstructured mesh of points. Therefore, we need to
match unstructured point neighborhoods against gridded pixel
neighborhoods.

In earlier approaches for surface texture synthesis, this
problem is solved by either pre-computing a mapping from the
surface to a plane using texture atlases [3], or by construct-
ing local neighborhoods over the surface on the fly throuh
either surface marching [1] or construction of local parame-
terizations [2]. Pre-computing the mapping from surface to
plane gives nicer neighborhoods, but is tedious to compute,
especially for a sequence of surfaces. We favor anon the fly
approach because of its simplicity and scalability in handling
a sequence of meshes.

We construct two types of neighborhoods on the mesh,
which we refer to aspixel neighborhoodsand vertex neigh-
borhoodsrespectively. These two types of neighborhoods are
used to interpolate color information back and forth between
vertices3 on the mesh and pixels in the (image) plane. Pixel
neighborhoods are used to transfer information from mesh
space to image space, while vertex neighborhoods perform the
reverse operation, transferring information from image space
to mesh space.

1) Pixel Neighborhood:A pixel neighborhood is defined
as a set of points on the mesh whose 2D coordinates in the
local orientation space around a central point map to integer
locations in the plane; also, the neighborhood is bounded by a
width w, which implies that if(i, j) are the 2D coordinates of a
point in the neighborhood, then−w/2≤ i, j ≤w/2. Given the
orientation field, we have a coordinate system in the tangent
plane of the surface mesh that we can use to march along the
surface. The orientation directiond defines one axis of the
coordinate system while the second axist (orthonormal tod)
is obtained as the cross product between the normal at the
surface point andd4. We use this coordinate system to march
along the surface in a fashion similar to [1], adding all surface
points corresponding to valid integer pixel locations to the
pixel neighborhood. Once a pixel neighborhood is constructed,
it can be used to interpolate colors from mesh space to image
space. For example, the color of the pixel at(i, j) is computed
using barycentric interpolation of colors associated with the
corners of the triangle in which the corresponding point lies.
Figure 4 shows a pixel neighborhood mapped onto the surface
of a triangle mesh.

2) Vertex Neighborhood:A vertex neighborhood in a mesh
is defined as the set of vertices connected to each other and
lying within a certaingeodeisc distance– distance measured
in the local orientation space of the mesh – to a central vertex.
Given the vertexc as the center, the 2D location of a vertex
in its neighborhood is computed as its displacement fromc
along the orientation field on the mesh. For a givenpixel
neighborhood widthw, we include only those vertices inc’s

3we use the termvertex here to distinguish it from the termpoint used
earlier. A point can be any point on the surface, where asverticesrefer to
the set of points that are part of a triangle mesh that is being used to sample
and represent the surface.

4vertex normals areinterpolatedfrom incident faces and the normal at a
point is interpolated from vertex normals of the containing face.
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PIXEL NEIGHBORHOOD CONSTRUCTION: A 2D PIXEL NEIGHBORHOOD IS MAPPED ONTO POINTS ON THE TRIANGLE MESH. THE RED ARROW IS THE

ORIENTATION VECTOR, WHILE THE BLUE ARROW IS ITS ORTHONORMAL COMPLEMENT. THE POINT CORRESPONDING TO ANY GIVEN PIXEL IN THE

NEIGHBORHOOD, LIKE THE ONE SHOWN AS A GREEN CIRCLE, LIES ON A SINGLE TRIANGLE OF THE MESH AS SHOWN ON THE RIGHT. THIS TRIANGLE IS

USED TO DETERMINE TEXTURE INFORMATION AT THE GIVEN PIXEL THROUGH BARYCENTRIC INTERPOLATION.

neighborhood whose displacement vector(l1, l2), measured
starting atc, is such that−w/2 < l1, l2 < w/2. To compute
displacements of vertices in the neighborhood ofc, we employ
a local mesh flattening procedure similar to the one used
in [2], [13]. We first consider all vertices in the 1-ring ofc,
i.e., vertices that are directly connected toc. If d represents
the orientation vector atc and t represent its orthonormal
complement, then the displacement vector of a vertexv in
the 1-ring ofc is (v ·d,v · t), wherev = (v−c)/σ . Here,σ is
the scaling factor between mesh space and image space. We
then keep moving outwards to the 2-ring and so on until all
neighborhood vertices are exhausted. Generally, on a curved
surface, the displacement vector computed for a vertex will
depend on the path one takes to reach that vertex. Hence, for
each vertex, we compute its displacement as the average of
those predicted by its neighbors, and also run a relaxation
procedure to ensure an even better fit for the displacements.

Once a point neighborhood is constructed, it can be used to
interpolate colors from image space to mesh space. Since the
displacement of each vertex in the neighborhood corresponds
to real-valued 2D coordinates, we use bilinear interpolation
of colors at nearby integer locations in the image space to
determine the color of the vertex. Figure 5 shows a vertex
neighborhood where a set of connected points on the mesh
are mapped onto the 2D plane.

B. Surface Texture Optimization

Our approach for synthesizing texture on a 3D surface
is motivated by the texture optimization algorithm proposed
by Kwatra et al. [4]. Their formulation is valid only on a
2D plane. We extend that formulation to handle synthesis
on a arbitrary 3D surface. The reason for using such an
optimization algorithm for synthesis is that we want it to
naturally handle synthesis on a dynamic surface, maintaining
temporal coherence between consecutive surfaces and spatial
coherence with the texture for each individual surface. We can
incorporate the transported texture from the previous surface
as a soft constraint with the optimization approach.

The optimization proceeds by minimizing an energy func-
tion that determines the quality of the synthesized texture
with respect to the input texture example as well as the

transported texture from previous surface. We first consider
the energy with respect to just the input example. This energy
is defined in terms of the similarity between localvertex
neighborhoods of the textured surface andimage-space pixel
neighborhoods of the input texture example. To compare these
two incongruous neighborhoods, we first interpolate colors
from the image-space pixel neighborhood onto real-valued
2D locations corresponding to the vertex neighborhood, as
described in Section V-A.2 . We then define the texture
energy for a single vertex neighborhood to be the sum of
squared differences between the colors of mesh vertices and
the interpolated input colors at the vertex locations. The total
energy of the textured surface is equal to the sum of energies
over individual neighborhoods of the surface. IfS denotes the
surface being textured andZ denotes the input texture sample,
then the texture energy overS is defined as

Et(s;{zp}) = ∑
p∈S†

‖sp−zp‖2. (1)

Heres is the vectorized set of color values for all vertices of
the mesh.sp is the set of colors associated with vertices in a
vertex neighborhood around the vertexp. zp contains colors
from a pixel neighborhood inZ, interpolated at 2D locations
corresponding to the vertex neighborhood aroundp. The input
texture neighborhood from whichzp is interpolated is the one
that appears most similar to thepixel neighborhood around
p – which is constructed as explained in Section V-A.1 –
under the sum of squared differences. It should be noted that
even though our energy formulation is described completely
in terms of vertex neighborhoods, we need to resort to pixel
neighborhoods during search for efficiency.

The set of vertices,S†, around which neighborhoods are
constructed is a subset of the set of all vertices inS. S†

is chosen such that there is a significant overlap between
all neighborhoods,i.e., a single point occurs within multiple
neighborhoods. See Figure 6 for a schematic explanation of
how the texture energy is computed.

The energy function defined above measures the spatial
consistency of the synthesized surface texture with respect
to the input texture example. To ensure that the synthesized
texture is temporally coherent as well, we add another term
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Fig. 5

VERTEX NEIGHBORHOOD CONSTRUCTION: A SET OF CONNECTED POINTS ON THE MESH ARE MAPPED ONTO THE2D PLANE. THE ORIENTATION

VECTOR AT THE CENTRAL VERTEX ALIGNS ITSELF WITH THE PRIMARY AXIS OF THE PLANE. EACH VERTEX MAPS TO A REAL-VALUED 2D LOCATION, AS

SHOWN EXPLICITLY FOR THE YELLOW CIRCLED VERTEX. GIVEN A PLANAR PIXEL NEIGHBORHOOD, THE COLOR AT A MESH VERTEX IS DETERMINED

THROUGH BILINEAR INTERPOLATION OF THE FOUR PIXELS THAT ITS2D MAPPED LOCATION LIES BETWEEN.

which measures the similarity of the textured surface to the
texture transported from the previous time step. The trans-
ported texture already specifies a color value vector, denoted
asc, corresponding to each vertex location inS. We treatc as
a soft constraint ons, i.e., we want the color of the transported
texture and synthesized texture to be close to each other. The
corresponding energy function is

Ec(s;c) = ∑
k∈S

λk(s(k)−c(k))2, (2)

where k iterates over all vertices in the mesh andλk is a
weighting factor that controls the influence of transported tex-
ture color at a vertex over its synthesized value. We typically
use a gradient based weighting scheme, where a larger weight
is given to the transported texture color at a vertex that has
greater color gradient in its vicinity. Note that we also usec
as an initialization fors. The total energy of the textured fluid
surface is

E(x) = Et(x;{zp})+Ec(x;c).

The algorithm proceeds by optimizing this total energy of
the surface being textured, in an iterative fashion. Given an
initialization of the texture – random for the first frame, and
transported from the previous surface for the remaining – the
following steps are repeated until convergence:

1) For each vertexp∈ S†, construct a vertex neighborhood
sp and a pixel neighborhoodxp in the vicinity of p
from the current surface textures. Assign colors to the
pixels in xp through barycentric interpolation on the
mesh (Section V-A).

2) Find the closest input texture neighborhood, sayx′p,
for each pixel neighborhoodxp constructed above, and
interpolatex′p at real-valued 2D locations corresponding
to the vertices insp to obtain the interpolated input
neighborhoodzp.

3) Re-compute the surface texture colorss by minimizing
the total energyE(s;{zp}) with respect tos, keeping the
set of interpolated input neighborhoods{zp} fixed. For
the squared energy function used here, this corresponds
to simply taking a weighted average of the colors
predicted by the different neighborhoods affecting a

point, as well as the colors obtained from the transported
texture.

Note that when performing synthesis in a multi-resolution
fashion, the optimization first proceeds at the coarsest level of
the mesh hierarchy. This is followed by an up-sampling step, in
which the finer level mesh vertices copy the color values from
their coarser level counterparts, followed by diffusion of these
color values at the finer level. This acts as the initialization for
the finer mesh, after which optimization proceeds as earlier.
Also, we typically use more than one neighborhood size at
each level. In our experiments, we run three optimization
passes that use neighborhoods of size 33×33, 17×17, and
9×9 pixels respectively, in that order.

VI. T EXTURE TRANSPORT

We now describe the texture transport procedure which
transports texture information from the currently synthesized
surface to the next surface in the time sequence. The texture
information being transported includes two quantities: (i) the
texture color (or any other properties being synthesized, like
displacement, transparency, etc.) and (ii) the orientation vector
field on the surface. While the texture color is what we really
want to transport, it is necessary to transport the orientation
field also because that determines how the texture neighbor-
hoods are oriented on the surface when synthesis is performed.
If the orientation fields on two consecutive surfaces are not
consistent, it would be very difficult to find neighborhoods in
the input texture that match the transported texture.

A. Color Advection

Our approach for transporting the texture color is based
on standard advection techniques that have been well studied
in the level set literature. The basic idea is to perform the
transfer on a volumetric grid as opposed to directly between
surfaces. This volumetric grid is the same as that used by
the fluid simulation to represent the velocity field. One might
be tempted to simply advect the texture colors from the first
surface to the next. However, since the resolution of the grid
is typically much smaller than the number of points used in
synthesis, this will result in loss of texture resolution. Hence,
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Texture Energy
(Single Neighborhood)

(A)

Total Texture Energy = Σ Individual Neighborhood Energy
(B)

Fig. 6

TEXTURE ENERGY: (A) SHOWS THE TEXTURE ENERGY FOR A SINGLE VERTEX NEIGHBORHOOD. IT IS THE SQUARED COLOR-SPACE DISTANCE BETWEEN

THE GIVEN VERTEX NEIGHBORHOOD AND ITS CLOSEST MATCH IN THE INPUT IMAGE TEXTURE. (B) SHOWS THE TOTAL TEXTURE ENERGY FOR THE

SURFACE TEXTURE. IT IS SIMPLY THE SUM OF ENERGIES OF INDIVIDUAL NEIGHBORHOODS.

we advect 3D vertex coordinates instead of texture color
because vertex coordinates can usually be safely interpolated
without loss of resolution. Advection of 3D coordinates is
conceptually equivalent to back-tracking each point in the
volumetric grid to its source location in the previous time-step.
For a given vertex in the new mesh, one can obtain its back-
tracked location by interpolating from nearby grid points. Its
texture color is then obtained through barycentric interpolation
over the triangle closest to this back-tracked location. The
various steps are enumerated in order below:

1) The first step is to determine the 3D coordinates at grid
locations. This is quite simple: the coordinates are the
location of the grid point itself, since the surface and
the grid sit in the same space.

2) Next, we treat each component of the coordinate field
as a scalar field. Each scalar field is advected along the
velocity field for a single time step. This step is done
by solving the following advection update equation:

∂ϕ

∂ t
=−u ·∇ϕ, (3)

whereϕ is the scalar being advected,u is the velocity
field obtained from the fluid simulation, and∇ϕ is the
spatial gradient of the scalar field. We save the fluid
velocity field at all intermediate time steps that the
simulation may have stepped through, and use those

steps while performing the advection update as well.
The update is performed using a first order upwind
scheme [39].

3) After the advection is complete, we have the advected
coordinates at each grid point. These coordinates are
interpolated onto the vertices of the new surface corre-
sponding to the next time step. Each new surface vertex
now knows which location it came from in the previous
time step, through these back-tracked coordinates.

4) Finally, we assign a color (or other property) value
to each new vertex as the color of the back-tracked
location. Letx be the back-tracked location. The color of
x is obtained by first finding the point,p, on the previous
surface that is nearest tox. We compute the color of
p through barycentric interpolation of the colors at the
corners of the triangle on whichp lies. This color is
then also used as the color for the back-tracked location
x. To speed up the search for the nearest surface points,
we use a hash table to store the triangles of the mesh.

It should be noted that the backtracked coordinates may not al-
ways be close to the surface, in which case the projection onto
the surface may return undesirable texture color values. How-
ever, our texture synthesis algorithm automatically handles this
by pastingover the bad regions with new input patches that
are visually consistent with the surrounding regions.
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B. Orientation Advection

Velocity
Field

Vector Advection
Scalar Advection

Original
Orientation

(A)

1

2

d

u1

u2

d + (u2- u1)∆t}

d.∇u

(B)

Fig. 7

(A) TRANSPORTING AN ORIENTATION VECTOR BY ONLY ADVECTING ITS

SCALAR COMPONENTS WILL(INCORRECTLY) ONLY TRANSLATE THE

VECTOR. OUR VECTOR ADVECTION TECHNIQUE CORRECTLY TRANSPORTS

THE VECTOR BY TRANSLATING AS WELL AS ROTATING IT. (B) THE

ORIENTATION VECTORd BETWEEN POINTS1 AND 2 GETS DISTORTED AS A

FUNCTION OF THE GRADIENT OF THE VELOCITY FIELD ALONGd.

The transport of orientations is not as straightforward as
the transport of color. This is because orientations are vectors
which may rotate as they move along the velocity field. If
we simply advect each scalar components of the orientation
vector independently, then it would only translate the vector.
Figure 7A shows the difference in the result obtained by
scalar vs. vector advection. Conceptually, to preform vector
advection, we can advect the tail and head of the orientation
vector separately through the field, and use the normalized
vector from the advected tail to the advected head as the new
orientation vector. This operation needs to be performed in
the limit that the orientation is of infinitesimal length,i.e., the
head tends to the tail. This results in a modified analytical
advection equation of the form

∂d
∂ t

=−u ·∇d+(I −ddT)d ·∇u. (4)

Here, the first term,−u ·∇d, is the scalar advection term as
applied to each component of the orientation vectord. The
term d ·∇u computes the derivative of velocityu along the
orientation d. As shown in Figure 7B,d gets distorted by
the velocity field, because its head and tail undergo different
displacements. This difference in displacements is governed
by the difference in the velocity values at the head and the
tail, which is simply the velocity field gradient∇u along
the orientationd. Finally, since we are only interested in the
direction of thed and not its magnitude, we need to normalize

the distortion so that it reduces to a rotation. This is achieved
through the term(I−ddT), which is a projection operator that
projectsd ·∇u to the plane perpendicular tod. This projection
essentially ensures that, in differential terms,d always stays a
unit vector.

To perform advection ofd, we follow similar steps as for
scalar advection, with the following changes. In step 1, we
extendthe orientation field from the surface onto the grid using
the technique of [40]. The orientation vectors are propagated
outwards from the surface along the surface normal onto the
grid. The advection update step 2 solves (4), again using
upwind differencing, this time alternating between the two
terms in the equation. For step 3, we directly interpolate the
advected orientations on new surface points and normalize
them. These vectors are then converted into the polar angle
representation described in Section IV. We typically, re-run the
diffusion algorithm to smoothen the orientation field. Note that
unlike texture color, the orientation field is smooth to begin
with, hence loss of resolution is not a concern. Therefore, we
interpolate it directly without any need to go through step 4.

VII. R ESULTS

We have implemented the techniques presented here in C++
and rendered the results using 3DelightR©. We use a grid-
based method for fluid simulation [23], [41], [42]. However,
our technique is general enough to work with other types
of simulators like finite volume based techniques [43]. We
applied our implementation on several challenging scenarios
with several different textures (shown in Figure 8).

Fig. 8

TEXTURE EXEMPLARS USED IN OUR RESULTS. LAST TWO ARE BUMP-MAP

TEXTURES USED WITH THE RIVER.

The first scene is a broken-dam simulation as shown in
Figure 9 and Figure 10, where a large volume of water is
dropped into a tank of water causing the invisible wall to break
and the simulated water to splash. The water surface is stylized
using various different textures in the shown examples. In the
accompanied video, note that the texture on the surface is split
and merged seamlessly, as the surface undergoes substantial
topological changes. Figure 11A shows a comparison of our
result for this simulation with the result obtained through
pure advection (i.e., no texture synthesis after the first frame).
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Fig. 9

BROKEN-DAM : A LARGE VOLUME OF WATER IS DROPPED INTO A BROKEN DAM, CAUSING THE WATER TO SPLASH. THE WATER SURFACE IS STYLIZED

USING A GREEN SCALES TEXTURE. THE TEXTURE FEATURES ON THE SURFACE SPLIT AND MERGE NICELY AS THE SURFACE UNDULATES. THE

VIEWPOINT IS ROTATING AROUND THE SCENE.

Even though advecting the texture ensures perfect temporal
coherence, the visual quality of the texture is lost due to
diffusion.

The second simulation is a river scene shown in Figure 12
and Figure 13, where the water flows down the stream and
carries the surface texture with it. In Figure 12A, we show the
river with a bump mapped texture which creates the impression
of small scale waves on the surface of the river. Figure 12B
shows the same scene with a different bump texture that gives
the impression of rocks floating in the river. Figure 12C uses
the same texture as Figure 12B but treats it as a transparency
texture coupled with color to give the impression of floating
leaves on the river surface. Figure 11B compares the rendering
of a frame of the bump mapped river with the rendering
of the original fluid surface generated by the simulation. It
should be easy to see that the texture adds a lot of detail and
micro-structure to the river, which is missing from the original
surface.

The third simulation is that of lava flow, shown in Figure 14
in which lava flows from the top of the mountain downwards
onto the walls. Results are shown for four different textures.
The first two examples are more realistic while the last two
are stylistic.

The computational complexity of our algorithm is dom-
inated by nearest neighbor search during texture synthesis,
and mesh hierarchy construction during surface preparation.
Depending upon the number of points used for the mesh, hi-
erarchy construction takes between 3−15 minutes per frame5.
However, the mesh hierarchy is computed offline for each
simulation, so that runtime costs include only surface texture

5Only one level of hierarchy is constructed for all frames of the animation
subsequent to the first one, which uses three levels.

synthesis and texture transport. We accelerate the nearest
neighbor search by using a hierarchical clustering of the image
neighborhoods. The synthesis times depend on the simulation,
because the number of points on the mesh change linearly with
the area of the mesh as it evolves. Our average synthesis times
are approximately 60 seconds per frame for the broken dam,
90 seconds per frame for the river scene, and 200 seconds
per frame for the lava flow. The number of points used for
storing texture pixels varied in the range of 100,000 points
and 500,000 points over the course of the simulation.

The supplementary videos include the results for river,
lava and broken dam examples. We also show a comparison
between the results of our technique and the results obtained
by using pure advection, as well as comparisons with results
obtained without using any texture synthesis at all. All our
results are also available online athttp://gamma.cs.
unc.edu/TexturingFluids/ .

VIII. D ISCUSSION& FUTURE WORK

We have presented a novel synthesis algorithm for advecting
textures on dynamically changing fluid surfaces over time.
Our work successfully demonstrates transport of textures along
3D fluid flows, which undergo complex topological changes
between successive frames, while preserving visual similarity
between the input and the output textures. We define visual
similarity through a cost function that then drives a surface
texture optimization process. We achieve fluid texturing by
combining this surface texture optimization process with an
advection scheme based on a level-set method for tracking
the surface characteristics. We also explicitly model and solve
for the advection of vector quantities like surface orientation
through the velocity field.

http://gamma.cs.unc.edu/TexturingFluids/
http://gamma.cs.unc.edu/TexturingFluids/
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Fig. 10

BROKEN-DAM RENDERED USING DIFFERENT TEXTURE EXEMPLARS.

One can envision using our technique as a rendering
mechanism in conjunction with fluid simulation techniques.
It can be used to enhance the complexity of the synthesized
fluid phenomena by adding surface micro-structures such as
waves, and eliminating the need to manually model photomet-
ric properties of materials such as lava. Another interesting
application is flow visualization. Our technique synthesizes
texture sequences that animate the input texture as controlled
by the fluid flows obtained from a fluid simulator. Hence, it
can facilitate flow visualization using a rich variety of textures.

A limitation of our technique, which is relevant to surface
texture synthesis in general, is that it is often impossible
to define an orientation vector field on the surface that is
smooth everywhere. Overlapping neighborhoods near singu-
larity points like sources, sinks and vortices of the field, may
not align well with each other, because computation of the
2D mapping of vertices becomes unstable in these regions.
This can sometimes cause excessive blurring near singularity
points.

Currently, the texture synthesis process is agnostic of any
properties of the fluid surface that may affect its appearance.
For example, one might want the appearance of the texture to
be affected in a certain way by vortices and high curvature
regions on the fluid surface. As part of future research, we
would like to add to our technique, the ability to incorporate
such relationships into the synthesis process. Among other
future directions, we would like to extend our approach to
handle 3D volume textures as well as video textures.
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Fig. 12

RIVER SCENE (SIDE-ON VIEW): RIVER SCENE WITH BUMP-MAP AND TRANSPARENCY TEXTURES CREATING THE IMPRESSION OF(A) SMALL SCALE

WAVES, (B) FLOATING ROCKS AND (C) FLOATING LEAVES ON THE SURFACE OF THE RIVER.
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Fig. 13

RIVER SCENE RENDERED WITH VARIOUS IMAGE TEXTURES.

Fig. 14

L AVA SCENE: LAVA FLOWING ALONG A MOUNTAIN , SHOWN WITH DIFFERENT TEXTURES.
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