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Abstract

We present a novel technique for synthesizing textures over dynamically changing fluid surfaces. We transport
texture information, i.e. color and local orientation, between fluid free surfaces from one time step to the next.
This is accomplished by extending the texture information from the first fluid surface to the 3D fluid domain,
advecting this information within the fluid domain using fluid velocity for one time step, and interpolating it back
onto the second surface. We then refine the transported texture by performing texture synthesis over the second
surface using our “surface texture optimization” algorithm, which keeps the synthesized texture visually similar
to the input texture and temporally coherent with the transported one. We use both image textures as well as
displacement textures as example inputs. Image textures can enhance rendering of the fluid by imparting novel
realistic appearance to it; whereas displacement textures enable the generation of complex micro-structures on
the surface of the fluid that may be very difficult to synthesize using simulation. We demonstrate our novel texture
synthesis algorithm on dynamically moving fluid surfaces in several challenging scenarios.

1. Introduction

Realistic modeling, simulation, and rendering of fluid me-
dia have applications in various domains, including special
effects, computer animation, electronic games, engineering
visualization, medical simulation, and many more. Often the
computational expense involved in simulating complex fluid
phenomena limit the spatio-temporal resolution at which
these simulations can be performed. This limitation makes
it extremely difficult to synthesize complex fine-resolution
micro-structures on the free surface of the fluid, that are
usually present in many commonly occurring fluid phenom-
ena. Examples of such micro-structures include small-scale
waves in a river stream, foam and bubbles in turbulent wa-
ter, patterns in lava flow, etc. Even with a highly robust and
sophisticated fluid simulation system capable of modeling
such structures, it is quite difficult to control the shape and
appearance of these structures within the simulation. We ex-
plore an alternative approach which makes use of examples
or samples of fluid shape and appearance to aid and comple-
ment the fluid simulation process.

An important aspect of synthesizing fluid animations is

the rendering of the fluid. In order to render the desired ap-
pearance of the fluid, one needs to accurately model the ma-
terial properties of the fluid. In general, it is non-trivial to
model these properties, since they depend on multiple fac-
tors like density, temperature, viscosity, turbulence, etc. Ad-
ditionally, these properties tend to vary across the surface
of the fluid as well as over time. One way of circumvent-
ing these problems is to obtain example images of the fluid
of interest and use them as texture to render the fluid. We
explore such an approach in this paper. Textures have been
extensively used to impart novel appearance to static sur-
faces, either by synthesizing texture over a plane and wrap-
ping it over the surface, or by directly synthesizing the tex-
ture over surfaces. However, extending these techniques for
texturing a surface that is dynamically changing over time is
a non-trivial problem. This is so because one needs to main-
tain temporal coherence and spatial continuity of the texture
over time, while making sure that the textural elements that
compose the texture maintain their visual appearance even
as the entire texture evolves. Such a general technique would
also aid in creation of special effects with fluid phenomena,
where the effect involves texturing a fluid surface with ar-
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bitrary textures. Additionally, it has potential applications in
the visualization of vector fields and motion of deformable
bodies,e.g., the velocity field of the fluid near its free surface
is made apparent by the continuously evolving texture.

1.1. Main Results

In this paper, we present a novel texture synthesis algorithm
for fluid flows. We assume that a fluid simulator is given,
which is capable of generating free surfaces of the sim-
ulated fluid medium as well as providing a fluid velocity
field. We develop a technique for performing texture syn-
thesis on the free surface of the fluid by synthesizing tex-
ture colors onpoints placed on the surface. This is moti-
vated by previous methods for synthesizing texture directly
on surfaces [Tur01, WL01, YHBZ01]. However, these ap-
proaches typically grow the texture point-by-point over the
surface. We extend and generalize the idea of texture opti-
mization [KEBK05] to handle synthesis over 3D surfaces.
Consequently, ours is a global technique, where the texture
over the entire surface is evolved simultaneously across mul-
tiple iterations.

In order to maintain temporal coherence between moving
surfaces in different time steps, we need to ensure that the
texture synthesized on consecutive surfaces is similar to each
other. We achieve this goal by first transporting the texture
on the surface in the first time step to the next using the ve-
locity field of the fluid that was responsible for the transport
of the surface in the first place. The transported surface is
then used as asoft constraintfor the texture optimization al-
gorithm when synthesizing texture over the second surface.
The transport of texture across 3D surfaces is not as straight-
forward as advecting pixels using 2D flow fields in the pla-
nar case, since there is no obvious correspondence between
points on the two surfaces. We establish the correspondence
by first transferring texture information (color andlocal ori-
entation) from the first surface onto a uniform 3D grid, fol-
lowed by advection of texture information on this grid us-
ing the velocity field of the fluid. The advected texture is
then interpolated back on the second surface to complete the
transport.

Our approach has the following characteristics:

• It can work with any fluid simulator that provides 3D fluid
velocity fields and fluid free surfaces at each iteration.

• It can take image textures, displacement textures, as well
as alpha maps as input.

• It performs texture synthesis ondynamically moving 3D
surfaces, as opposed to just 2D flow fields.

• It can handle significant topological changes in the sim-
ulated fluids, including merge and separation of multiple
fluid volumes.

• It preserves thevisual similarity† of the synthesized tex-

† Visual similarity refers to the spatial continuity and the resem-

ture to the input texture, even while advecting both scalar
(e.g. color) and vector quantities (local orientations over
the free surface) relevant to the texture, to maintain tem-
poral coherence with respect to the motion of the 3D fluid.

Our technique for advection of vector quantities through
a velocity field is a novel contribution which may be useful
in other applications as well. We demonstrate our algorithm
using a variety of textures on several scenes, including a bro-
ken dam, a river scene, and lava flow, as shown in Figures5
– 7.

1.2. Organization

The rest of the paper is organized as follows. In Section2, we
briefly summarize the related work in relevant areas. In Sec-
tion 3, we present an overview of our approach. We describe
the pre-computation required to construct the necessary data
structures in Section4 and our generalized texture optimiza-
tion technique on 3D surfaces in Section5. We then explain
how we maintain temporal coherence of the resulting texture
sequence by transporting texture information between suc-
cessive time steps in Section6. We show the results of our
system in Section7. Finally, we conclude with some possi-
ble future research directions.

2. Related Work

In this section, we briefly summarize recent work on tex-
ture synthesis and flows on surfaces. For a comprehensive
overview of techniques for procedural texturing and model-
ing, we refer the readers to [EMP∗98]. Below we describe
recent work on texture synthesis using image textures as in-
put.

2.1. Texture and Video Synthesis

Texture synthesis has been widely investigated in com-
puter graphics. Various approaches are known, including
pixel-based methods [DeB97, EL99, WL00], patch-based
techniques [EF01,LLX ∗01,CSHD03,KSE∗03,WY04], and
global synthesis [HB95,PS00,PL98,FJP02,JFK03,WSI04].
The existing work focuses mostly on synthesis over static
2D planar or 3D surfaces. While some of the global meth-
ods (e.g. Markov Random Fields) could be considered for
our problem, they are fully discrete optimizations, which are
less flexible and suitable than semi-discrete-continuous tech-
niques (e.g. [KEBK05]).

blance of visual appearance between the input and synthesized tex-
tures. We measure visual similarity in terms of the similarity be-
tween local neighborhoods of the input and the output, which is
quantified by our cost function in performing surface texture op-
timization.
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Kwatra et al. [KEBK05] recently introduced a new tech-
nique for 2D texture synthesis based on iterative optimiza-
tion. They also demonstrate how the same technique can be
used for flow-guided texture animation, where a planar flow
field is used to guide the motion of texture elements in a
synthesized 2D texture sequence. We solve the fluid textur-
ing problem by adapting ideas from the texture optimization
technique to perform texture synthesis directly on a dynam-
ically changing triangular surface in 3D – the motion of the
surface being guided by a 3D fluid simulation as opposed to
a planar flow field.

Other researchers have also extended texture synthesis
techniques to video editing. Schödl et al. [SSSE00] con-
catenating multiple videos to synthesize a longer sequence.
Doretto and Soatto [DS03] edit videos of complex fluid
motions by modeling them as Linear Dynamical Systems.
Graph cut algorithms have also been used to create novel
images and video sequences by minimizing errors along the
seams. Bhat et al. [BSHK04] presented a flow-based video
synthesis technique by enforcing temporal continuity along
a set of user-specific flow lines. While this method focus on
stationary flow fields with focuses on video editing, our algo-
rithm is applicable to any time-varyingdynamicflow fields
generated by fluid simulators and use image textures as in-
put. In addition, we use the simulated flow fields as a mech-
anism to automatically control and guide constrained texture
synthesis, while theirs requires user input to specify the flow
lines to edit the video sequences.

2.2. Flows on Arbitrary Surfaces

Fluid simulations and various related natural phenomena
have received much recent attention. Foster and Metaxas
[FM96] were among the first to present the use of the full
3D Navier-Stokes differential equations for generating fluid
animations. The “stable fluids” method of Stam [Sta99] in-
troduced stable semi-Lagrangian advection combined with
an implicit viscosity solver to arrive at a completely stable
method, more amenable to use in animation. Level set meth-
ods [FSJ01,FF01,EMF02,LGF04,CMT04] and other mesh-
free methods [SF95,DG96,MCG03,Liu02,LL03] have also
been proposed to simulate fluid dynamics. We refer the read-
ers for more detailed survey in [LY05,SSK05]. Specialized
techniques for synthesizing detailed fluid phenomena like
drops, bubbles, and foam etc, directly through simulation,
have also been developed [HK03,TFK∗,WMT05].

Neyret [Ney03] proposed a method of stylizing fluid flows
using stochastic textures that avoids a variety of visual arti-
facts, and demonstrated interesting 2D animations produced
by advection. Recently Stam [Sta03], Shi and Yu [SY04]
have proposed methods to simulate Navier-Stokes flows on
2D meshes. Stam’s method requires the surface to be a reg-
ular quadrilateral mesh, while Shi and Yu’s technique works
on any triangulated mesh. Both focused on the goal of gener-
ating plausible 2D flows on surfaces embedded in 3D space.

In contrast, we present techniques for performingtexture
synthesison dynamically moving 3D surfaces. Our approach
can alleviate common artifacts that occur in simple pas-
sive advection of texture coordinates and color as detailed
in [Ney03].

Bargteil et al. [BGOS06] present a semi-Lagrangian sur-
face tracking method for tracking surface characteristics of
a fluid, such as color or texture coordinates. However, they
do not perform texture synthesis on the fluid free surface. In
a similar manner, our work also relies on the fluid surface
transport to advect color and textures. In addition to these
scalar quantities, we also track orientation vectors over the
fluid free surface through the velocity field. These vectors
are tracked to ensure that the synthesized texture has consis-
tent orientation across (temporally) nearby free surfaces.

Finally, there has been work in the scientific visualiza-
tion community that makes use of texture for visualiza-
tion and representation of vector fields [TA03] as well as
shape [GIS03]. We observe that, in a similar spirit, our tech-
nique can also be used for visualization of surface velocity
fields as well as deformable bodies, usingarbitrary textures.

3. Overview

We couple controllable texture synthesis with fluid simula-
tion to perform spatio-temporally coherent fluid texturing.
The main elements of our system include (i) a fluid simula-
tor for generating the dynamic surface with velocity infor-
mation, (ii) a technique for performing texture synthesis on
the fluid surface coherent with neighboring surfaces, and (iii)
a method for transporting texture information from one sur-
face to the other. Figure1 shows a flow chart of how these
three components interact with each other for fluid texturing.

Fluid 
Simulator

Texture 
Transporter

Surface Texture
Synthesis

SurfaceVelocity Field

Initialization/
Constraint

Textured
Surface

Figure 1: An overview of our fluid texture synthesis system.

The only requirements for a fluid simulator to work with
our system are that it should be able to output the 3D fluid
velocity field at each iteration, and that the surfaces gener-
ated during each iteration should be a consequence of trans-
porting the surface at the previous iteration through the fluid
velocity field over a single time step. In our simulator, the
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surfaces are generated as the level set of an advected dis-
tance function.

We start by obtaining the free surface of the fluid for the
first time step and then texture this surface using our sur-
face texture optimization algorithm (explained in Section5).
We then transport the texture to the fluid free surface for the
second time step using our texture transport technique. The
transported quantities include the texture colors (and any
other associated properties like alpha mask or displacement
values) as well as local orientation vectors that are needed to
synthesize the texture on the 3D surface.

This transported texture serves two purposes. Firstly, it
acts as an initialization for the texture on the second sur-
face. Secondly, it is treated as asoft constraintwhich speci-
fies that the synthesized texture on the second surface should
stay as close as possible to this initialized texture. Our sur-
face texture optimization technique can naturally handle this
constraint by plugging it into a texture cost function. These
two operations of transport and synthesis are then repeated
for each time step of the simulation.

4. Surface Preparation

To perform texture synthesis on a 3D surface, one needs to
take into account the fact that there is no regular grid of pix-
els available as is the case in an image. Hence, we represent
the texture on a surface by assigning color values topoints
placed on the surface. These points serve the same purpose
on a surface as pixels do in an image. However, in the case
of an image, pixels lie on a uniform grid. On the other hand,
it is impossible to specify a single uniform grid of points on
an arbitrary surface. Even so, we want the points to be as
uniformly spaced as possible to ensure uniform texture sam-
pling on the surface.

Before we begin synthesis, we prepare the surface for syn-
thesis by having the following constructs in place. Firstly,
we place the desired number of points on the surface in a
way that they sample the surface uniformly. We then con-
nect these points to form an auxiliary triangle mesh that aids
in interpolation between points and neighborhood construc-
tion. A smooth vector field is then computed over this mesh
that defines the local orientation (2D coordinate system) at
each point. This orientation field is used to map points in a
neighborhood onto a plane. This mapping is then used for
comparing a surface patch against a pixel neighborhood in
the input image. These operations are now described in more
detail.

4.1. Point Placement

As discussed above, we store texture information in points
placed on the surface being textured. These points will store
the texture color at the location represented by the point as
well as the local orientation over the surface at that point.

Hence, the number of points will determine theresolutionof
the synthesized texture. The more the number of points, the
higher the resolution. For example, a surface with 10,000
points will be equivalent to an image of size 100×100 pix-
els. An important thing to note is that the resolution of the
surface changes from frame to frame. This happens because,
we want the inter-point distance on the surface to roughly
stay equivalent throughout the sequence. Hence, if the area
of the surface increases, the points also increases in number
proportionally and vice-versa. The starting number of points
is a user-defined parameter, but it is computed automatically
for subsequent frames. We want the points to be spaced as
uniformly as possible over the surface so that the synthe-
sized texture also has a uniform quality throughout. A con-
sequence of this need for uniformity (and the non-constant
nature of the number of points over time) is that the points
for each free surface (in time) are generated independently.
Fortunately, our grid-based texture color and orientation ad-
vection techniques obviate the need to track the points any-
ways.

Note that the points being generatedsit on the surface;
hence, even though the points are in 3D, the distance be-
tween two points is not the straight line distance between
them. Instead, we need to march along the surface to move
from one point to another. This is where the local sur-
face orientation is required in order to define displacements
when moving on the surface (Section5.1 explains this step
in more detail). It also requires us to maintain neighbor-
hood/connectivity information at each point for interpolat-
ing orientations (and later on, color and point locations). We
maintain this information by building an auxiliary mesh hier-
archy, that connects these points to form a set of triangulated
meshes. The hierarchy is obtained by using different number
of points to represent different resolutions which is helpful
in multi-resolution texture synthesis.

We start by generating the points hierarchically. We fol-
low the same procedure as adopted by Turk [Tur01]. We first
placen points at the coarsest level of the hierarchy. Then, at
the next finer level, we add 3n more points, also keeping
the n points from coarser level, and repeat this procedure
up the hierarchy. At each level, we initialize the points by
placing them randomly over surface mesh. We then use the
surface-restricted point repulsion procedure of Turk [Tur91]
to achieve uniform spacing between these points. Note that
then points from the coarser level are copied over and stay
fixed when applying point repulsion at a finer level.

4.2. Mesh Hierarchy

Once we have placed the points, we connect them to generate
a triangulated mesh for each level of the hierarchy. We use
the mesh re-tiling procedure of [Tur92] for re-triangulating
the original surface mesh using the new points. This time,
we start at the finest level of the hierarchy and work our way
downward. We use the Triangle library [She96] for trian-
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gulation at each intermediate step. Each point in the hierar-
chy maintains a reference to its corresponding point in the
coarser level (if one exists). For synthesizing texture on a
stand-alone surface, we use three levels of hierarchy. How-
ever, when texturing a fluid sequence, only the first frame re-
quires three levels. Subsequent frames only use one level of
hierarchy because a good starting texture is easily obtained
by advecting the texture from the previous frame.

4.3. Local Orientation

The next step is the computation of a local orientation at each
point placed on the surface. We want these orientations to
vary smoothly over each mesh in the hierarchy. We use a po-
lar space representation of the orientation field, as proposed
by Zhang et al. [ZMT04]. Firstly, a polar map is computed
for each point on the mesh. A polar map linearly transforms
angles defined between vectors on the surface of the mesh to
angles between vectors in a 2D polar space. The transforma-
tion is simplyφ = θ ×2π/Θ, whereθ is the angle in mesh
space,Θ is the total face angle around a point, andφ is the
polar space angle. An orientation at each point is now de-
fined as an angle in polar space. This representation allows
us to easily smooth the orientation field by diffusion across
adjacent points: for two points on the mesh connected by
an edge, we want them to make the same polar angle with
the common edge between them. Thus, each diffusion oper-
ation averages the current orientation angle of a point with
the angles determined through the points connected to it. In
a mesh hierarchy, this diffusion is performed at the coars-
est level first and then propagated up the hierarchy. Note
that an orientation angle can be converted into a 3D orien-
tation vector by first applying the reverse transformation (of
the one described above) to obtain a mesh space angle. We
then compute the final orientation at a point by rotating a
pre-definedreferencevector stored at that point by this mesh
space angle. This reference vector sits in the tangent plane of
the point,i.e., lies perpendicular to thenormalat the point,
and is designated as having azeropolar angle.

5. Surface Texture Synthesis

Once we have constructed the requisite data elements, we
are ready to perform synthesis. In this section, we will de-
scribe the two essential steps in performing surface texture
synthesis: neighborhood construction and surface texture op-
timization.

5.1. Neighborhood Construction

Texture synthesis operations primarily require matching in-
put and output pixel neighborhoods with each other. As we
discussed in the previous section, a uniform grid of pixels
is not always available on the surface. All we have is a un-
structured mesh of points. Therefore, we need to match un-
structured point neighborhoods against gridded pixel neigh-
borhoods.

In earlier approaches for surface texture synthesis, this
problem is solved by either pre-computing a mapping from
the surface to a plane using texture atlases [YHBZ01] or by
constructing pixel neighborhoods over the surface by march-
ing over it on the fly [Tur01, WL01]. Pre-computing the
mapping from surface to plane gives nicer neighborhoods,
but is tedious to compute, especially for a sequence of sur-
faces. We favor a marching based approach because of its
simplicity and scalability in handling a sequence of meshes.
However, marching can lead to inconsistencies among ad-
jacent neighborhoods due to curved nature of the surface
and non-uniform spacing between points. Note that previous
approaches use point-by-point synthesis algorithms where
each point is synthesized one at a time: the neighborhood
around each point is constructed once to determine its color
and then discarded before moving on the next point. Our
synthesis technique, on the other hand, uses a global opti-
mization algorithm that requires construction of all neigh-
borhoods on the mesh simultaneously. Consequently, incon-
sistencies between neighborhoods are of greater concern for
us.

Our neighborhood construction alleviates this inconsis-
tency problem by working with points directly, instead of
computing exact pixel locations on the surface. Recall that
in Section4, we described how a mesh hierarchy is con-
structed after distributing points over the free surface. We
will concentrate on a single mesh of the hierarchy. A point
neighborhood in a mesh is defined as a set of points con-
nected to each other and lying within a certaindistanceto a
central point (also called center). This distance is measured
in the local orientation space of the mesh and isnot the same
as the Euclidean distance between these points.

Treating the center as the origin, we first define a 2D lo-
cation for each point in its neighborhood. Given the pointp
as the center, the 2D location of a point in its neighborhood
is computed as its displacement fromp along the orientation
field on the mesh. For a givenpixel neighborhood widthw,
we include only those points inp’s neighborhood whose dis-
placement vector(d1,d2), measured starting atp, is such that
−w/2 < d1,d2 < w/2. To compute displacements of points
in the neighborhood ofp, we first consider all points in the
1-ring of p, i.e., points that are directly connected top. If
o represents the orientation vector atp and t represent its
orthonormal complement, then the displacement vector of a
point q in the 1-ring of p is (v · o,v · t), wherev = q− p.
Moving outwards, we next consider points in the 2-ring of
p, i.e., points that are in the 1-ring of immediate neighbors
of p, but have not been considered already. To compute the
displacement of a pointr in the 1-ring ofq (which in turn
is in the 1-ring ofp), we first compute the displacement of
r with respect toq and then add to it the displacement ofq
with respect top. We keep moving outwards in this manner,
until we exhaust all points that satisfy the criteria of being
part of the neighborhood aroundp.
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We eventually want to match this point neighborhood
against the pixel neighborhoods of the input image. We use
the 2D displacement vectors of the points in the neighbor-
hood toflattenthe neighborhood, with the displacement vec-
tors acting as the points’ 2D coordinates on the flattened
plane, which may be real-valued. When comparing this flat-
tened point neighborhood against a pixel neighborhood, we
first construct a new pixel neighborhood by interpolating
color values from the real-valued point locations to integer-
valued pixel locations, and then compare this newly con-
structed neighborhood against the pixel neighborhoods from
the image. Figure3 shows a schematic of the flattening
process.

(0,0) (1.2,0)

1.2

Figure 2: Centers of point neighborhoods are shifted from
origin because they may not perfectly align with pixel
boundaries. Here, the right (blue) pixel is 0.2 units away
from the pixel boundary. It will be assigned a shift of (0.2,0)
when a neighborhood is constructed around it.

As we will describe below, our synthesis algorithm con-
structs multiple neighborhoods simultaneously using multi-
ple points as centers. That has a potential pitfall due to the
fact that the input texture is available only as a discrete sam-
pled image,i.e., we do not have access to a continuous tex-
ture function. This can cause problems because until now,
we have decided to treat the central point of the neighbor-
hood as the origin of the neighborhood,i.e., it is assigned the
displacement vector(0,0). Consider two nearby points that
are both centers for different neighborhoods. For the sake of
clarity, lets assume that this point neighborhood is flat (as
shown in Figure2). The figure shows that the the two cen-
tral points are not an integer displacement apart from each
other. This means that thepixel grid will not align with one
of the centers if the other center is used as origin. Conse-
quently, there will always be disagreement between the pixel
neighborhoods that we would want to match with these point

neighborhoods. We alleviate this problem by pre-computing
a shift for each point that is used as the center of a point
neighborhood. This shift implies that instead of treating the
point as the origin of the pixel neighborhood, we consider
it to be slightly shifted from the origin. We determine this
shift by first computing displacements as we did for points
inside a neighborhood above and then taking the fractional
part of this displacement. For example, in Figure2, the shift
is (0.2,0). Of course, there may always be disagreement be-
tween some points due to the curved nature of a surface.
Hence, we diffuse these shifts over the points of the mesh
to mitigate the problem as much as possible.

5.2. Surface Texture Optimization

Our approach for synthesizing texture on a 3D surface is mo-
tivated by the texture optimization algorithm proposed by
Kwatra et al. [KEBK05]. Their formulation is valid only on
a 2D plane. We extend that formulation to handle synthesis
on a surface. The reason for using such an optimization al-
gorithm for synthesis is that we want it to naturally handle
synthesis on a dynamic surface, maintaining temporal co-
herence between consecutive surfaces and spatial coherence
with the texture for each individual surface. We can incor-
porate the transported texture from the previous surface as a
soft constraint with the optimization approach.

The optimization proceeds by minimizing an energy func-
tion that determines the quality of the synthesized texture
with respect to the input texture example as well as the trans-
ported texture from previous surface. We first consider the
energy with respect to just the input example. This energy
is defined in terms of the similarity between local neighbor-
hoods of the textured output surface and input texture ex-
ample. To compare output point and input pixel neighbor-
hoods, we first sample colors from the pixel neighborhood
at real-valued locations corresponding to the point displace-
ments (computed earlier as described above). We then define
the texture energy for a single output neighborhood to be
the sum of squared differences between the colors of output
points and the input colors at the sampled locations. The total
energy of the output surface is equal to the sum of energies
over individual neighborhoods of the surface. IfS denotes
the output surface being textured andZ denotes the input
texture sample, then the texture energy overS is defined as

Et(s;{zp}) = ∑
p∈S†

‖sp−zp‖2. (1)

Heres is the vectorized set of color values for all points on
the mesh.sp is the set of colors associated with points in a
neighborhood around the pointp. zp contains colors sam-
pled from a pixel neighborhood inZ, at 2D locations cor-
responding to the point neighborhood aroundp. The pixel
neighborhood from whichzp is sampled is the one that ap-
pears most similar tosp under the sum of squared differ-
ences. For searching this neighborhood inZ , we apply the
opposite sampling operation to the point neighborhood: we
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construct a query pixel neighborhood by interpolating colors
from the point neighborhood at integer pixel locations and
then search for the input neighborhood closest to this query
neighborhood. The set of points,S†, around which neigh-
borhoods are constructed is a subset of the set of all points
in S. S† is chosen such that there is a significant overlap be-
tween all neighborhoods,i.e., a single point occurs within
multiple neighborhoods. Figure3 shows how point neigh-
borhoods are flattened and matched against pixel neighbor-
hoods.

Surface

Point 
Neighborhood

on Surface

Flattened Point
Neighborhood

Figure 3: Point neighborhoods on the surface are mapped
onto a 2D plane in order to compare against pixel neighbor-
hoods.

The energy function defined above measures the spatial
consistency of the synthesized surface texture with the in-
put texture example. To ensure that the synthesized texture
is temporally coherent as well, we add another term which
measures the proximity of the output texture with the tex-
ture transported from the previous time step. The transported
texture already specifies a color value vector, denoted asc,
corresponding to each point location inS. We treatc as a
soft constraint ons, i.e., we want the color of the transported
texture and synthesized texture to be close to each other. The
corresponding energy function is

Ec(s;c) = ∑
k∈S

λk(s(k)−c(k))2, (2)

wherek iterates over all points on the surface andλk is a
weighting factor that controls the influence of transported
texture color at a point over its synthesized value. We typi-
cally use a gradient based weighting scheme, where a larger
weight is given to the transported texture color at a point
that has greater color gradient in its vicinity. Note that we
also usec as an initialization fors. The total energy of the
textured fluid surface is

E(x) = Et(x;{zp})+Ec(x;c).

The algorithm proceeds by optimizing this total energy
of the output surface in an iterative fashion. Given an ini-
tialization of the texture – random for the first frame, and
transported from the previous surface for the remaining –
the following steps are repeated until convergence:

1. For each surface pointp∈S†, construct a point neighbor-
hood in the vicinity ofp from the current surface texture

s, and sample it at integer pixel locations by interpola-
tion (as described earlier). Lets call this constructed pixel
neighborhoodxp.

2. Find the closest input neighborhood for each output
neighborhoodxp constructed above, and sample it at real-
valued point locations to obtain the resampled neighbor-
hoodzp.

3. Re-compute the surface texture colorss by minimiz-
ing the total energyE(s;{zp}) with respect tos, keep-
ing the set of input point neighborhoods{zp} fixed. For
the squared energy function used here, this corresponds
to simply taking a weighted average between the col-
ors coming from the different neighborhoods affecting a
point, as well as the colors obtained from the transported
texture.

Note that when performing synthesis in a multi-resolution
fashion – this is done either for stand-alone surfaces or for
the first frame of a fluid sequence – the optimization first pro-
ceeds at the coarsest level of the mesh hierarchy. This is fol-
lowed by an up-sampling step, in which the finer level mesh
vertices copy the color values from their coarser level coun-
terparts, followed by diffusion of these color values at the
finer level. This acts as the initialization for the finer mesh,
after which optimization proceeds as earlier. Also, we typ-
ically use more than one neighborhood size at each level.
In our experiments, we first run an optimization pass using
17×17 pixels as the neighborhood size followed by a pass
with 9×9 pixels as the neighborhood size.

6. Texture Transport

We now describe the texture transport procedure which
transports texture information from the currently synthe-
sized surface to the next surface in the time sequence. The
texture information being transported includes two quanti-
ties: (i) the texture color (or any other properties being syn-
thesized, like displacement, alpha etc.) and (ii) the orienta-
tion field on the surface. While the texture color is what we
really want to transport, it is necessary to transport the ori-
entation field also because that determines how the texture
neighborhoods are oriented on the surface when synthesis is
performed. If the orientation fields on two consecutive sur-
faces are not consistent, it would be very diffult to find neigh-
borhoods in the input texture that match the transported tex-
ture.

6.1. Color Advection

Our approach for transporting the texture color is based on
standard advection techniques that have been well studied
in the level set literature. The basic idea is to perform the
transfer on a volumetric grid as opposed to directly between
surfaces. This volumetric grid is the same as that used by the
fluid simulation to represent the velocity field. One might
be tempted to simply advect the texture colors from the first



UNC-TR06-016 / Texturing Fluids

surface to the next. However, since the resolution of the grid
is typically much smaller than the number of points used in
synthesis, this will result in loss of texture resolution. Hence,
we advect point coordinates instead of texture color because
point coordinates can usually be safely interpolated without
loss of resolution. The texture color is then obtained by in-
terpolating from the closest point on the back-tracked point
coordinate. The various steps are enumerated in order be-
low:

1. The first step is to determine point coordinates at grid
locations. This is relatively simple: the coordinates are
the location of the grid point itself, since the surface and
the grid sit in the same space.

2. Next, we treat each component of the coordinate field as
a scalar field. Each scalar field is advected along the ve-
locity field for a single time step. This step is done by
solving the following advection update equation:

∂ϕ

∂ t
=−u ·∇ϕ, (3)

whereϕ is the scalar being advected andu is the velocity
field obtained from the fluid simulation. We save the fluid
velocity field at any intermediate time steps that the sim-
ulation may have generated and also use that while per-
forming the advection update. The update is performed
using a first order upwind scheme [Set98].

3. After the advection is complete, we have the advected co-
ordinates at each grid point. These coordinates are inter-
polated onto the points on the new surface corresponding
to the next time step. Each new surface point now knows
which location it came from in the previous time step,
through these back-tracked coordinates.

4. Finally, we assign a color (or other property) value to
each new point as the color of the back-tracked point
location on the previous surface. The color of the back
tracked point location is obtained by finding the nearest
point to that location on the previous surface and using
its color value. To speed up this search process we use a
hash table to store the points of the previous mesh.

6.2. Orientation Advection

The transport of orientations is not as straightforward as the
transport of color. This is because orientations are vectors
which may rotate (change orientation) as they move along
the velocity field. If we simply advect each scalar compo-
nents of the orientation vector independently, then it would
only translate the vector. Figure4 shows the difference in the
result obtained by scalar vs. vector advection. Conceptually,
to preform vector advection, we can advect the tail and head
of the orientation vector separately through the field, and use
the normalized vector from the advected tail to the advected
head as the new orientation vector. This operation needs to
be performed in the limit that the orientation is of infinites-
imal length,i.e., the head tends to the tail. This results in a

modified analytical advection equation of the form

∂d
∂ t

=−u ·∇d+(I −ddT)d ·∇u. (4)

Here, the first term is the scalar advection term as applied to
each component of the orientation vectord. The termd ·∇u
computes the derivative of velocityu along the orientationd
and(I −ddT) is a projection operator which projectsd ·∇u
to the plane perpendicular tod. This projection essentially
ensures that, in differential terms,d always stays a unit vec-
tor.

Original 
Orientation

New Orientation:
Scalar Advection
of Components

New Orientation:
Vector Advection

Velocity
 Field

Figure 4: Transporting an orientation vector by only ad-
vecting its scalar components will (incorrectly) only trans-
late the orientation vector. Our vector advection technique,
on the other hand, correctly transports the vector by trans-
lating as well as rotating it.

To perform advection ofd, we follow similar steps as
above with the following changes. In step 1, weextendthe
orientation field from the surface onto the grid using the
technique of [AS99]. The orientation vectors are propagated
outwards from the surface along the surface normal onto the
grid. The advection update step 2 solves (4), again using
upwind differencing, this time alternating between the two
terms in the equation. For step 3, we directly interpolate the
advected orientations on new surface points and normalize
them. These vectors are then converted into the polar angle
representation described in Section4. We typically, rerun the
diffusion algorithm to create a smooth orientation field.

7. Results

We have implemented the techniques presented here in C++
and rendered the results using POVRay and OpenGL. We
use a grid-based method for fluid simulation [GDN90,Sta99,
CMT04]. However, our technique is general enough to work
with other types of simulators like finite volume based tech-
niques [LC02]. We applied our implementation on several
challenging scenarios with several different textures.

The first scene is a broken-dam simulation as shown in
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Figure5, where a large volume of water is dropped into a
tank of water causing the invisible wall to break and the sim-
ulated water to splash. In the accompanied video, note that
the texture on the water is split and merged naturally, as the
water surfaces undergo substantial topological changes. The
second simulation is a river scene as in Figure6, where the
water flows down the stream and carries the surface texture
with it. We show the river with a displacement mapped tex-
ture in chocolate color. The third simulation is that of lava
flow, shown in Figure7 in which lava flows from the top of
the mountain downwards onto the walls.

The computational complexity of our algorithm is dom-
inated by nearest neighbor search during texture synthesis
and mesh hierarchy construction which is used for gener-
ating points on the surface that contain texture color infor-
mation. The mesh hierarchy is computed offline for a given
simulation, so that runtime costs include only surface texture
synthesis and texture transport. We accelerate the nearest
neighbor search by using a hierarchical clustering of the im-
age neighborhoods. The synthesis times depend on the sim-
ulation, because the number of points on the mesh change
linearly with the area of the mesh as it evolves. Our average
synthesis times are approximately 60 seconds per frame for
the broken dam, 90 seconds per frame for the river scene,
and 200 seconds per frame for the lava flow. The number of
points used for storing texture pixels varied in the range of
100,000 points and 500,000 points over the course of the
simulation.

The supplementary videos include the files for river, lava
and broken dam examples. It also includes flowing displace-
ment texture examples for the river and the broken dam. We
also show a comparison between the results of our technique
and the results obtained by using only texture transport (and
no texture synthesis) at each frame.

8. Discussion & Future Work

We have presented a novel synthesis algorithm for advecting
textures on dynamically changing fluid surfaces over time.
Our work is perhaps the first successful demonstration of
transporting textures along 3D fluid flows, that undergo com-
plex topological changes between successive frames, while
preserving visual similarity between the input and the output
textures. We define visual similarity through a cost function
that then drives a surface texture optimization process. We
achieve fluid texturing by combining this novel surface tex-
ture optimization process with an advection scheme based
on a level-set method for tracking the surface characteristics.

One can envision using our technique as a rendering
mechanism in conjunction with fluid simulation techniques.
Another interesting application is flow visualization using
arbitrary textures. Our technique synthesizes texture se-
quences that animate the input texture as controlled by the
fluid flows obtained from a fluid simulator. Hence, it can fa-
cilitate flow visualization using a rich variety of textures.

As for future research directions, we would like to extend
our approach to incorporate 3D volume textures and to han-
dle video textures. We would also like to explore other type
of control mechanisms besides motion, in guiding texture
synthesis.
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