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Abstract

We present a new approach for motion planning and
maintainability studies in complex 3D CAD environments.
It automatically computes a collision-free path for moving
objects among stationary and completely known obstacles.
Our framework uses a combination of analytic, criticality-
based and probabilistic techniques to compute the path. It
starts with an global strategy, which uses an approximate
Voronoi diagram of the workspace, computed using graph-
ics hardware, and combines it with bridges computed by a
localized path planner. The resulting system has been used
for planning the path of free-flying rigid as well as articu-
lated bodies. Applications of our system include robot mo-
tion planning, part removal, and assembly planning. We
have implemented a simple planner within this framework
and tested it on a number of benchmarks.

1 Introduction

The problem of autonomous motion planning deals with
computing collision-free paths for moving objects in an
environment composed of obstacles. Besides robotics,
this problem arises in solid modeling, molecular model-
ing, computer animation, maintainability studies, assembly
planning, radiotherapy planning etc. [Lat91, Lat99]. For
example, in assembly maintainability studies, motion plan-
ning is used to find whether it is possible to remove a par-
ticular part from an assembly, and if so, to find one pos-
sible removal path [CL95]. Earlier, such tasks were per-
formed by using a physical mock-up of the assembly being
designed. The paths were computed by physically mov-
ing the mock-up part. As more and more assemblies are
being designed using CAD systems, the trend is moving
away from physical mock-ups and towards the use of mo-
tion planning tools for automatic path computation and re-

finement. Many of the commonly used computer-aided
manufacturing and simulation packages like IGRIP from
Delmia Inc., CimStation from Adept Technologies, THOR
Arc Weld from Amrose Inc., PDMS from CADCENTER,
ProductVision from GE Corporate R & D, etc. include
support for motion planning. These packages are widely
used for pipe routing for plant design, arc welding of com-
plex assemblies, spot welding of car bodies as well as using
robots to automate the manufacturing processes.

Motion planning has been extensively studied in
robotics, computational geometry, solid modeling and
computer-aided manufacturing for more than three
decades. However, it is still considered difficult to
solve the problem in its most basic form, e.g., to find a
collision-free path for a rigid or articulated object among
static obstacles. The best known complete algorithm
for computing a collision-free path has complexity ex-
ponential in the number of degrees of freedom (dof) of
the robot or the moving object [Can88]. Such planners,
also called criticality-based planners, rely on an explicit,
global geometric analysis to generate a provably complete
representation of the configuration space for the robot so
that it can be effectively searched for a path. In practice,
these planners are challenging to implement and slow
during execution. The theoretical and practical complexity
of complete planners has motivated the development of
planners that rely on approximate or heuristic methods
[GdPe88, Lat91]. Such planners are relatively simple to
implement. However, they are not always guaranteed
to find a path, if one exists. Examples of such planners
include those based on cell decomposition approaches or
potential field methods. In practice, these planners can
work well for simple motion planning problems or for
robots with less than four or five degrees of freedom.
Over the last decade, a more promising approach based
on randomized sampling of robot’s configuration space
has been proposed [KSLO96]. It builds a probabilistic



roadmap (PRM) in the configuration space of the robot.
The resulting planner has been shown to work well in
many scenarios, including high-dof robots. However,
these planners may not work well when the robot’s free
configuration space has narrow corridors or narrow
passages. Such cases frequently arise in maintainability
studies or assembly planning [CL95, VJA00]. Most
planners used in commercial systems are based on cell
decomposition or randomized approaches.

Main Contributions: We present a novel framework for
motion planning that is based on a Voronoi diagram of
the workspace of an environment. The framework uses a
hybrid approach that combines some aspects of criticality
based methods along with randomized sampling. In a pre-
processing step, it computes a discrete approximation of
the generalized Voronoi diagram (GVD) of the workspace
using graphics hardware. Intuitively speaking, the GVD
corresponds to the set of points that are farthest from the
obstacle boundaries and have maximum clearance. We use
it to generate an estimated path for the robot through the
environment. In our framework, we identify invalid seg-
ments of this path, which correspond to configurations that
do not lie in the free space. We use randomized sampling or
other localized approaches to compute a path in the regions
corresponding to invalid segments. Moreover, where pos-
sible we use geometric information from the GVD to guide
the localized planner, for example to bias the sampling in a
randomized planner.

Our framework has been applied to different environ-
ments and maintainability applications, including ones
with narrow passages or large CAD environments, for both
articulated and rigid robots.

Organization: The rest of the paper is organized in the
followingmanner. We briefly survey previous work on mo-
tion planning in Section 2. Section 3 presents an overview
of our approach. We describe the preprocessing steps and
algorithms for Voronoi computation in Section 4. The plan-
ning algorithm is presented in Sections 5 and 6 and we de-
scribe its implementation and performance in Section 7.

2 Background and Related Work

In this section, we provide some background information
related to motion planning and provide a brief survey of re-
lated work in this area.

2.1 Notation and Representation

We briefly introduce the notation used in the rest of the pa-
per. We will denote the robot or the moving object asR and
the union of the set of obstacles as O. We assume that the

robot and each obstacle is a closed and bounded set whose
geometry and location are both accurately known. We also
assume that the obstacles remain fixed. The robot is mov-
ing in a Euclidean space W, called the workspace. The
robot may be a free-flying rigid object or an articulated ob-
ject. A free-flying object has no kinematic constraints that
limit its motion. On the other hand, an articulated objectR
is made of several moving rigid objects R1;R2; : : : ;Rn,
called links, connected by joints. Each joint constrains the
relative movements of the two objects it connects. The ba-
sic motion planning problem that we address in this paper
is: Given an initial position and orientation and a goal po-
sition and orientation of R in W, generate a path P from
the initial configuration to the goal configuration. The path
P is a continuous sequence of positions and orientations of
R avoiding contact with O.

We use the configuration space formulation [LPW79] in
this paper to solve the planning problem. In this formula-
tion, the robot is represented as a point in a higher dimen-
sional space, called the configuration space of the robot. In
this way any planning task can be interpreted in terms of a
point robot, so that the problem of characterizing the con-
straints on the robot’s motion is isolated from that of find-
ing a path that satisfies those constraints. For a rigid body,
the configuration, denoted by c, is specified by six coor-
dinates, three determining the position of some fixed ref-
erence point on R (its origin), and three determining the
robot’s orientation. An articulated object can be interpreted
as a set of n moving rigid objects connected by joints. By
convention, each joint affords a single degree of freedom,
and a physical joint that allows more than one degree of
freedom is represented by multiple joints at a single lo-
cation, so that there can be more joints than links. With
this convention, a configuration c for an articulated body
is specified by six coordinates determining the position and
orientation of a given link, the base link, along with an ad-
ditional coordinate for each joint. The configuration space
C is the set of all possible configurations c. Furthermore,
C can be partitioned into the free space F and the blocked
space B. The blocked space is the set of configurations for
which the robot R collides with at least one of the obsta-
cles. The rest of the configuration space is the free space.
In other words, F = CnB.

2.2 Voronoi Diagrams in Motion Planning

Generalized Voronoi diagrams have long been used as a ba-
sis for motion planning algorithms [ÓSY83, CD88, CB95,
CB96, WAS99a]. The GVD represents the connectivity of
a space but has a dimension lower by one, and (in three
dimensions) it is composed of surfaces of maximal clear-
ance. Unfortunately, no good and practical algorithms are
known for computing the Voronoi diagrams of large envi-
ronments. In the worst case the complexity of Voronoi di-
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agram is O(n
2
), where n is the number of polygons in the

environment. Moreover, the Voronoi diagram of a polyg-
onal environment is composed of quadric surfaces and de-
gree four curves that meet at junctions whose algebraic de-
gree is eight. It is hard to accurately compute an arrange-
ment of these curves and surfaces using fixed precision
arithmetic.

2.3 Randomized Planning

Recently a class of randomized algorithms known as Prob-
abilistic Roadmap Methods (PRMs) have been shown to
be very successful for many planning scenarios [KL94,
HLM99]. The original PRM planner [KL94] generates
samples at random in configuration space and tries to con-
nect them by collision-free local paths. By using a collision
checker, the planner avoids the prohibitive computation of
an explicit representation of the free space. Ultimately the
graph produced by a PRM planner will tend to represent the
connectivity of the C-space reasonably well, and a query
can be rapidly performed by linking the search points to
the graph and then searching the graph. Under reason-
able geometric assumptions on the free space, it can be
shown that the probability that a PRM planner fails to find a
path while one exists decreases exponentially towards zero
with the number of samples. Experiments with PRM have
been quite successful in many situationsand they have been
shown to handle robots with many degrees of freedom.

2.3.1 Narrow Passages

The PRM planners work well in general, except when there
are narrow passages in the configuration space. This can
happen when the environment is cluttered or the obstacles
are close to each other or have small tolerances between
them. The performance of PRM planners degrades in such
cases as the sampling algorithms are unlikely to generate
configurations in the narrow regions of the C-space. One
such example is shown in Fig. 1. Many modifications to the
basic PRM algorithm have been proposed to handle narrow
passages. These include:

� Dilating the Free Space [HKL+98]: The main idea
is to dilate the free space by allowing the rigid body
to penetrate the obstacles by a small amount. How-
ever, dilation can alter the topology of the free space.
Furthermore, no good practical algorithms are known
for penetration depth computation between polyhe-
dral models.

� Sampling near Obstacle Boundaries [ABD+98]:
This approach samples the nodes from the contact
space, the configurations where the robot just touches
one of the obstacles. It works well in many cases, but
its performance is difficult to analyze.

Figure 1. The rectangular robot must tra-
verse the narrow passage in order to move
from the initial position to the goal position.

� Analysis of the Environment [HST94, OŠ95]: These
algorithms make use of information known about the
environment. These include executing random reflec-
tions at the C-obstacle surfaces [HST94] and adding
“geometric” nodes for non-articulated robots near the
boundaries of the obstacles in the workspace [OŠ95].

� Sampling Based on the Medial Axis [WAS99b,
WAS99a, GHK99, PHLM00]: The main idea is
to generate nodes that lie on the medial axis of
the workspace or the free space. Wilmarth et al.
[WAS99b, WAS99a] generate random configurations
and retract them onto the medial axis without ex-
plicitly computing the medial axis. Guibas et al.
[GHK99] compute Voronoi diagrams of points on the
boundary of the obstacles used them for generating the
samples. Pisula et al. [PHLM00] used the approxi-
mate medial axis, computed using graphics hardware,
to bias the sampling.

2.4 Other Motion Planning Algorithms

Many other motion planning algorithms have been devel-
oped for different applications. These include part orien-
tation and positioning, assembly sequencing and maintain-
ability studies.

2.4.1 Part Orientation and Positioning

Different motion planning algorithms have been developed
for part feeding. These include algorithms that plan the
tiling motions of a tray containing a planar part of known
shape to orient it to a desired position [EM88] or that com-
pute a sequence of squeezes by a frictionless, sensorless
gripper to achieve a single orientation of a polygonal part
[Gol93].
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2.4.2 Assembly Sequencing and Planning

Assembly planning is the problem of finding a sequence of
motions to assemble a product from its parts. An assembly
planner must compute both an order in which the parts can
be assembled and the motions of the individual parts. Plan-
ning algorithms include those used to compute the cone of
possible motions of a part in contact with another [dMS91].
Other techniques focus on capturing the (de)assembly se-
quencing information that is implied by existing surficial
contact information [LPW93]. More recently, Halperin et
al. [HLW99] have presented a framework based on the mo-
tion space approach, which is similar in spirit to the config-
uration space framework for motion planning.

2.4.3 Maintainability Studies

The main goal in a maintainability study is to determine
whether a part or the line replaceable unit (LRU) can be
removed form an assembly, and, if so, by what sequence
of movements [CL95]. Some of the commonly used sys-
tems, like ProductVision from GE, utilize randomized mo-
tion planning techniques.

3 Overview

We propose a general framework for free-flying rigid and
articulated models. It is a hybrid approach that incorporates
some features of criticality based approaches along with
randomized and other methods. The framework decom-
poses the planning problem into a global analysis based on
the Voronoi diagram of the workspace, followed by a se-
ries of localized planning queries, as shown in Figure 2 The
overall algorithm proceeds as follows:

1. Construct a discrete approximation to the generalized
Voronoi diagram (GVD) of the workspace.

2. Use the geometric information encoded in the GVD to
generate an estimated path for the robot in the config-
uration space C. Points on the GVD are used to place
the origin of the robot, and the shape or local topology
of the GVD is used to orient the robot along the path.

3. Determine portionsof the estimated path for which the
robot is colliding with any of the obstacles in O. We
call these portions invalid segments of the estimated
path.

4. Use randomized and localized approaches to replace
each invalid segment with a path in the free space F .

The idea of using randomized planning method to cor-
rect an estimated path is the key to our hybrid approach.
The use of randomized planners to correct invalid segments
allows us to use simple methods for global analysis, since
we need not ensure that our global analysis initiallygives us

Figure 2. A block diagram showing how our
approach breaks the motion planning prob-
lem into a global planning phase, which gen-
erates an estimated path, and a series local
planning steps with domains restricted to ar-
eas where the estimated path leads to colli-
sion (shown in the two marked rectangular
areas).

a complete and correct path. Conversely, the global analy-
sis and the estimated path helps us in identifying potential
narrow passages in the configuration space. As a result, the
randomized approaches can restrict the sampling to local-
ized regions, as opposed to searching and sampling in the
entire configuration space.

4 Preprocessing

In this section, we describe the algorithm used to compute
the discretized Voronoi diagram. The resulting graph is
used in computing the initial estimated path for the plan-
ner.

4.1 Generalized Voronoi Diagram

The generalized Voronoi diagram [OBS92] is defined in
terms of a set fs1; : : : ; sng of geometric objects, called
sites. For each site si we can define a distance function di

on R3 by di(x) = dist(si;x). The Voronoi region of si is
the set is the set Vi of points at least as close to si as to any
other site. That is, Vi = fx j di(x) � dj(x)8j 6= ig. In
three dimensions, the intersection of two Voronoi regions
is called a Voronoi face. Similarly, an intersection between
Voronoi faces is called a Voronoi edge, and an intersection
between Voronoi edges is a Voronoi vertex. The collection
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Figure 3. The Voronoi edges for a simple rect-
angular box. The interior of the box is di-
vided into six regions, each of which is clos-
est to one of the faces.

of Voronoi regions fVig is the GVD of the sites Si. Of-
ten we will also use the term “GVD” to refer to the union
of the Voronoi faces. The Voronoi vertices and edges form
the generalized Voronoi graph (GVG) of the sites. See Fig-
ure 3 for a simple example. The GVD is a deformation re-
tract of the workspace [CD88] which ensures that it reflects
the topology of the workspace. The GVG, however, can be
disconnected even if the workspace is connected [CB96].

4.2 Computation Using Graphics Hardware

Our method for computing the generalized Voronoi di-
agram is based on the algorithm presented by Hoff et
al. [HCK+99], and it uses standard polygon rasterization
hardware. We compute the discrete Voronoi diagram in
slices. For each slice Lz determined by a given z value,
and each site si, there is a real-valued distance function
d

z

i
given by d

z

i
(x; y) = di(x; y; z). In words, the value

of dz
i
(x; y) is the distance in 3-space from (x; y; z) to si.

As an example, consider the case of a Voronoi site si that
is the single point (0; 0; 1), and the slice L0. In this case,
d

0
i
(x; y) =

p
x
2 + y

2 + 1.
The graph of dz

i
is a surface for which we generate a tri-

angular approximation called a distance mesh. We assign
each site si a unique identifying color, and we render its
distance mesh d

z

i
in that color by using a parallel projec-

tion. After all the distance meshes are rendered, we have,
for each pixel, the identityof the nearest site, determined by
the color, and the distance to that site recorded in the depth
buffer. The algorithm reads back the color buffer and the
depth buffer. The depth buffer contains the distance field,
i.e. closest distance to one of the obstacle for each pixel in
the slice.

In our discrete representation of the GVD, we regard
the Voronoi boundaries as lying between neighboring pix-
els. A discrete Voronoi edge consists of a sequence of
pixel edges, with each pixel edge bounded by four pix-
els. The endpoints of pixel edges are pixel vertices. If
each pixel is regarded as filling a small solid cube, then
the pixel edges and vertices are the edges and vertices of
the cube. We compute the GVD by scanning the 3-D pixel

map, two slices at a time, seeking pixel edges whose neigh-
boring pixels are not all the same color. A pixel edge whose
neighboring pixels exhibit exactly two different colors rep-
resents a portion of a Voronoi face, and one whose neigh-
boring pixels have at least three colors lies on a Voronoi
edge. A pixel vertex lying on at least three such edges
represents a Voronoi vertex, and a chain of pixel edges
linking two such vertices represents a Voronoi edge. To-
gether, all of these pixel edges and vertices make up a dense
graph, which fairly closely represents the structure of the
GVD, and which can be searched for a path through the
workspace. The complexity of this graph can be reduced by
choosing a subset of the pixel vertices, and linking them by
graph edges to retain the essential topological information.
In a further reduction, we may consider only the Voronoi
graph, with a small number of additional edges added to
preserve the proper connectivity. We will refer to the par-
ticular graph that we construct as the Voronoi roadmap.

One possiblity to compute the GVD is to use an in-
cremental marching algorithm. Rather, we scan through
each pixel on a slice-by-slice basis. In practice, we have
found that this approach works better because of its supe-
rior memory coherence.

As we construct the diagram, we construct a list for each
Voronoi site recording all the Voronoi vertices to which that
site is a nearest neighbor. When a Voronoi vertex is found,
its nearest neighbors are determined by the colors in the ad-
jacent pixels. We add a pointer to that vertex to the lists as-
sociated with those neighboring sites.

5 Estimation Phase

In this section, we present our algorithm to compute the
estimated path in the configuration space. After comput-
ing the discretized GVG, we use it to generate an estimated
path for the robot in the configuration space. This path is
not guaranteed to lie in the free space of the robot and is
only used as an initial approximation to the final path com-
puted by our framework.

5.1 Generating a Path in the Workspace

The first step in generating the estimated path is to find
a path through the workspace suitable for a single point
robot. The origin of the robotRwill follow this workspace
path, and we will use other techniques to determine the
orientation of the robot and the position of its joints as it
moves.

Define a query configuration to be an initial or goal
configuration, and a query location to be the location in
W � R

3 determined by a query configuration. Then the
workspace path links the initial and goal query locations.

To compute the workspace path, we first modify the
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Figure 4. A simple 2D example showing how
a query location is linked to the GVD.

roadmap by adding the query locations as nodes in the
graph, and connecting them to the rest of the graph by sim-
ple edges.

To link a query location p, we first determine the
Voronoi region containingp, and then we compute line seg-
ments from p to each Voronoi vertex of the region as shown
in Fig. 4. These vertices are read off from the list made
during construction of the roadmap. Using a collision de-
tection package, we check these segments for intersection
with the obstacles, and discard those that intersect. The re-
maining edges we add to the graph. Each newly added edge
contains a list of points and the value of the minimum dis-
tance to the environment.

After linking the query locations to the GVG, we use
a generalized single-source shortest paths algorithm. The
path “length” metric we use is chosen so that a path will al-
ways be shorter than another if it has a greater clearance
(measured to the nearest obstacle) at its narrowest point.
If two paths have equal clearance (as will happen if they
both pass through the same bottleneck), then paths are com-
pared by a weighted length that takes into account the ac-
tual length of the path along with the reciprocals of path

width measured at all points along the path.
The rationale for the choice of this metric is that the nar-

rowest point on a path throughW is likely to determine the
difficulty of finding a valid path for the robot through that
approximate route. Since there will be many paths shar-
ing the same narrowest point, it is essential that there be a
method for breaking ties, and the appropriate criterion will
reward paths that are both wide and short.

5.2 Orientation and Joint Positions

After finding the workspace path, we must choose an ori-
entation for the robot at each point on the path. If it is an
articulated robot, we must also choose joint positions for
each joint. We propose two approaches to this problem.

The first approach is most effective for a rigid robot. We
determine a major axis for the robot, and align it with the
tangent vector of the path, as determined by a finite differ-
ence estimate. For a complex shape, there are many reason-
able definitions of the “major axis.” For our purposes, we
want an axis around which the robot fits as tightly as possi-
ble. To determine such an axis, we use linear regression to
fit a line to the vertices of the robot. This line is chosen to
minimize the root mean square of the (Euclidean) distances
of the vertices to the line. The origin of the robot is defined
to be the center of gravity of the vertices. This method can
be applied in a very elementary way to an articulated robot
by aligning the major axis of the base link with the tangent
to the workspace path, and simply interpolating the joint
positions between the initial and goal configurations.

Once we have determined how to align the specified ma-
jor axis of the robot, it is still free to rotate about that axis.
The choice of orientation about the major axis (i.e., the
“roll”) is made arbitrarily. We simply make sure that the
orientation varies continuously as the robot traverses the
path.

A more sophisticated approach, that applies to articu-
lated robots as well as rigid ones, is to allow the workspace
path to define a potential field that behaves as a force at-
tracting points on the robot towards the path. One can use a
simple physical simulation to find the orientation and joint
positions that approximately minimize the potential for the
robot. Similar approaches have been taken by Holleman
and Kavraki [HK99] and Hoff et al. [ICK+00].

6 The Localized Planning Phase

The estimated path computed for the robot may not lie in
the free space. As a result, our framework uses a vari-
ety of local or randomized approaches to correct the path
or locally recompute portions of that path to compute a
collision-free path from the initial to the goal configuration.
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6.1 Finding Invalid Segments

The first step in completing the path is to check the esti-
mated path for validity. We attempt to connect each con-
figuration to its successor by a straight line in configuration
space, using an algorithm given in [HLM99]. Configura-
tions for which the robot is in collision, or which cannot be
connected to a neighbor, are marked “invalid”. We define
a sequence of consecutive invalid configurations between
two valid configurations as an invalid segment, and simi-
larly a maximal consecutive sequence of valid configura-
tions is a valid segment. By endpoints of an invalid seg-
ment, we mean the immediately adjacent valid configura-
tions.

6.2 Bridging Invalid Segments

The estimated path has now been decomposed into valid
and invalid segments. For each invalid segment, we per-
form a query with a different planner, which might be, for
instance, a randomized planner or a potential field planner.
The initial and goal configurations for this query are sim-
ply the valid endpoints bounding the invalid segment. The
choice of local planner can be made at run time, similarly
to the approach of Vallejo, Jones, and Amato [VJA00].

We have found the planner of Hsu, Latombe, and Mot-
wani [HLM99] to be useful here. This planner is a PRM
planner designed for single-shot queries. It maintains trees
of free configurations rooted at the start and finish. At each
iteration (called an expansion iteration), it chooses a con-
figuration c from one of the trees, generates new configu-
rations in a neighborhood of c, and retains those which can
be linked to c by a straight-line path in F . The local plan-
ner terminates when the two trees are connected. This al-
gorithm automatically biases sampling towards configura-
tions known to be free.

This approach applies equally well to articulated and
rigid robots. In each case, a configuration is represented as
a tuple of floating point numbers, representing a position,
an orientation, and the joint positions if the robot is articu-
lated. A neighborhood of a configuration is just a cartesian
product of intervals.

The configuration space for the localized query is de-
fined so that the orientation and any joint positions are un-
restricted, and the position in 3-space is restricted to the
tightest axis-aligned box that contains bounding balls for
the robot at both query locations. See Figure 5.

This restriction of the configuration space limits the re-
gion that the randomized planner can explore, and hence
the time taken.

It can happen that the restricted configuration space for
the PRM query is too small, so that there is not enough
room for the robot to traverse the invalid segment. To han-
dle such situations we use a simple expedient: If, after a

Figure 5. The two marked rectangular areas
indicate the restricted configuration space
for randomized sampling.

fixed number of expansion iterations, the planner has not
linked the two ends of the invalid segment, the planner’s
configuration space is enlarged to the full original C-space,
and randomized planning is resumed. If this is not success-
ful after another predetermined number of iterations, then
it is assumed that the heuristics guiding the initial path es-
timate have failed, and the planner simply uses other plan-
ning methods (i.e., PRM in our current implementation) to
link the original start to the original finish.

6.3 Narrow Passages

Narrow passages arise frequently in maintanability appli-
cations, and they cause particular problems for randomized
planners. The difficulty is that the probabilityof generating
a configuration at random in the narrow passage is low. Ob-
serve that the planner of [HLM99] improves this situation
if either of the query configurations is in or near the nar-
row passage—since new configurations are generated near
old ones, they are more likely to be in the narrow passage.
However, if the query configurations are not near a narrow
passage through which the robot must pass, then the plan-
ner will spend a great deal of time fruitlessly searching ir-
relevant parts of the free space.

Our planner alleviates this problem by calling the PRM
planner only when needed. Whenever the PRM planner
performs a query, the initial and goal configurations are ad-
jacent to configurations for which the workspace was con-
stricted enough so that the estimated path caused the robot
to collide with the obstacles. Since the initial and goal con-
figurations are near the entrance to a narrow passage or in
the narrow passages, and the configuration space for sam-
pling is restricted, the likelihood of finding samples in the
narrow passages is much increased.
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7 Implementation and Performance

7.1 Implementation

We have implemented an algorithm following our frame-
work in a preliminary form. The program was written in
C++, and runs on a PC running Windows as well as an SGI
running Irix. We discuss each phase of the algorithm, fo-
cusing on details specific to our implementation.

7.1.1 Computing the Voronoi Roadmap

In our implementation, we simply use the GVG as our
Voronoi-based roadmap because of its simplicity. If the
GVG fails to connect the query locations then the planner
can stillfind a path using the planningmethod that it applies
to correct invalid paths.

7.1.2 Constructing the Estimated Path

We determine the orientation of the robot by aligning the
major axis with the tangent to the workspace path, as de-
scribed in Section 6.2. To determine the joint positions of
an articulated robot, we currently simply retain the initial
positions for all but the final configuration. We use Magic
Software by D. Eberly to compute the major axis and center
of the robot.

7.1.3 Localized Planning

We use the PRM planner of [HLM99], described in Sec-
tion 6.2, as our only localized planner. We use PQP
[LGLM99] for collision detection and distance computa-
tions during randomized planning

7.2 Performance

We have tested the performance of our framework on a
number of benchmarks. These include:

� Walls-Stick (Image 1): A series of six walls, four of
which have small holes through which the robot must
pass. We require the robot to pass from one end of
the maze to the other, through all four holes. This
benchmark was designed at Texas A & M university
[VJA00].

� Crane (Image 2): A CAD model of a crane complex
composed of more than 128;000 triangles. The model
contains 143 separate polyhedral parts, which are ren-
dered in distinct colors in the figure. We performed
queries with two free-flying robots: a synthetic dart
shape, and an articulated robot arm part with 10 de-
grees of freedom.

Scene Res GVG Query
Walls 128 2.98 0.55
Crane (Rigid) 64 138.22 17.53
Crane (Art.) 64 138.65 334.71
Maze 128 5.73 59.66

Table 1. Benchmark timings in seconds. Res:
Voronoi resolution. GVG: Voronoi graph
computation. Query: query phase, after
Voronoi computation.

� Maze (Image 3): A simple maze with an articulated,
free-flying robot. The robot is a series of boxes with
9 degrees of freedom.

The results of the benchmarks are summarized in Ta-
ble 7.2. Res gives the resolution, along the largest axis of
the scene, at which the Voronoi graph was computed. GVG
is the time (in seconds) for computing the Voronoi graph.
Query represents the time (in seconds) for the query phase,
including both the path estimation and localized planning,
after the Voronoi graph was constructed.

7.3 Analysis

Our framework is intended to acquire as much informa-
tion as possible from a global geometric analysis that can
be performed relatively quickly. From our experience with
our basic implementation, we have been able to determine
the types of environments for which the Voronoi-based in-
formation is particularly helpful, and those environments
for which it is not. In particular, we can make the follow-
ing observations:

� This framework will perform well when the robot is
small relative to the entire workspace. In such cases,
a robot placed on the Voronoi graph has a high likeli-
hood of being free, whatever its orientation or the po-
sition of its joints.

� If the robot is a rigid stick-like object, then our current
heuristic does a good job of choosing orientations. In
general, articulated chains or other shapes that can be
made to fit tightly around the workspace path should
do well under our framework.

� Our use of the Voronoi diagram provides relatively lit-
tle benefit if the robot is large compared to the entire
scene and has a highly complex shape.

We make an additional observation about narrow pas-
sages. Narrow passages provide two kinds of problems for
a planner. The planner must determine that the robot needs
to go through a particular narrow passage, and it must then
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find a path for the robot through the passage. These two
challenges are different. When the robot is already in a nar-
row passage, the planner of Hsu et al. works reasonably
well, because newly generated configurations, being near
free configurations, are likely to be free themselves. Sim-
ilarly, a potential field planner, which relies on simulated
forces directing the robot away from obstacles and roughly
towards the goal, can do well if there is essentially only one
way for the robot to go.

However, both of those methods fare poorly if, for in-
stance, the robot must pass from an open space, through a
narrow passage, to another open space. In such a situation
the PRM planner can spend much time fruitlesslyexploring
the open spaces, while in a potential field planner the robot
will tend to be “repelled” from the narrow passage, because
the value of the potential field will be higher near the mouth
of the passage than in the middle of the open space. In this
kind of situation the determination of a workspace path pro-
vided by our approach is very helpful in forcing the robot
to enter the narrow passage.

8 Conclusion and Future Work

In conclusion, we have proposed a framework for motion
planning that combines a large-scale geometric analysis
with the use of local planners in constrained areas. We have
implemented a planner within this framework for both rigid
and articulated free-flying robots that performs well in a
number of benchmarks.

There are a number of areas of potential future work:

� It would be worthwhile to study the effectiveness of
localized planners other than the PRM planner we
have used in our implementation. There are many
planners that show promise of working well in this
context, including potentialfield approaches and other
randomized approaches. Vallejo, Jones, and Amato
[VJA00] propose a framework for adaptively select-
ing different local planners based on inferred proper-
ties of the scene; it would make sense to adapt that ap-
proach to our setting.

� We have already noted that our current method of gen-
erating initialorientationsand jointpositions by align-
ing the major axis of the robot with the workspace path
is of limited generality. We would like to implement
and test more sophisticated approaches, perhaps using
potential fields as described in Section 5.2.

� The GVD of the robot can provide useful information
about the robot’s geometry. We intend to investigate
how that information can be used.

� We would like to apply our framework to more real-
istic benchmarks, including assembly maintainability

studies.
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