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Figure 1: A wooden honey dipper in the honey. (Left to right): simulated honey with one-way coupling, weak two-way coupling, strong
two-way coupling, and the real honey. While the simulated honey using one-way and weak two-way coupling cannot sufficiently support the
honey dipper, the simulated honey using our strong two-way coupling can keep the honey dipper standing, as observed in the real phenomena.

Abstract
We present a grid-based fluid solver for simulating viscous materials and their interactions with solid objects. Our method
formulates the implicit viscosity integration as a minimization problem with consistently estimated volume fractions to account
for the sub-grid details of free surfaces and solid boundaries. To handle the interplay between fluids and solid objects with
viscosity forces, we also formulate the two-way fluid-solid coupling as a unified minimization problem based on the variational
principle, which naturally enforces the boundary conditions. Our formulation leads to a symmetric positive definite linear
system with a sparse matrix regardless of the monolithically coupled solid objects. Additionally, we present a position-correction
method using density constraints to enforce the uniform distributions of fluid particles and thus prevent the loss of fluid volumes.
We demonstrate the effectiveness of our method in a wide range of viscous fluid scenarios.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction
Viscous fluids, such as honey, molten chocolate, paint, oil, and
shampoo, are common materials as frequently seen in daily life.
These viscous materials exhibit characteristic behaviors includ-
ing damped and sticky motions and buckling phenomena, both of
which are not observed for inviscid fluids. Because of the ubiquity
of viscous fluids and their fascinating behaviors, simulating vis-
cous fluids has been needed in a variety of applications e.g., video
games, feature films, and virtual reality. Various researchers have
proposed simulation methods specifically designed for viscous
fluids [CMVHT02, REN∗04, BB08, BAV∗10, BUAG12, ZLQF15,
TDF∗15, PICT15, LBB17].

In the previous works, several compelling viscous fluid behav-
iors have been demonstrated focusing primarily on simulating the
intriguing behaviors of viscous fluids induced by the gravitational
forces with static or prescribed solid boundaries. However, mutual
interactions between viscous fluids and solid objects are essential,

and thus it is necessary to correctly handle such interactions. In the
literature, there are various approaches presented to simulate the in-
teractions of inviscid fluids and solids objects [CMT04, KFCO06,
CGFO06, BBB07, RMSG∗08, LJF16, TLK16, ZB17]. These ap-
proaches enable the two-way interactions between fluids and solid
objects with pressure forces, which play roles of drag and buoyancy
forces. The pressure forces can be sufficient to describe the inter-
actions between nearly inviscid fluids and solid objects. However,
simulating the interactions between highly viscous fluids and solid
objects with only pressure forces leads to fluid and solid behaviors
significantly different from those observed in the real world, and it
is necessary to consider viscosity forces to correctly account for the
two-way interactions.

In this paper, we present a grid-based fluid solver that can han-
dle two-way interactions of fluids and solid objects with viscos-
ity forces. Our method formulates the dynamics of viscous fluids
and solid objects as a unified minimization problem based on the
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variational principle, and thus achieves the correct behaviors for
both fluids and solids. To improve the accuracy even on relatively
coarse grids, we estimate volume fractions of free surfaces and
solid boundaries in a geometrically consistent way and formulate
our method with these fractions accounting for the sub-grid level
details. In our method, we use Lagrangian particles to discretize
the fluid volumes and address the advection by moving particles.
While the combination of particles and a grid is proven to be ef-
fective [Bri15], one known issue is that the distributions of par-
ticles would be non-uniform leading to the loss of fluid volumes
and producing gaps and holes in the fluids. In addition, the inter-
actions with solids can make the particle distributions even more
non-uniform further causing undesirable volume changes. To ad-
dress this issue, we propose a position-correction method based on
density constraints at the particle level to enforce the uniform parti-
cle distributions. In summary, our method offers the following key
contributions:
• A geometrically consistent volume fraction estimation that

utilizes the supersampling technique to improve the accuracy of
the simulation and avoids dangling artifacts near free surfaces
and solid boundaries (§ 3.3).
• A two-way fluid-solid coupling using viscosity force that ro-

bustly and correctly accounts for the dynamics of viscous fluids
and solid objects through their interactions (§ 3.4).
• A position-correction method using density constraints with a

position-correction scaling that enforces the uniform particle dis-
tributions avoiding non-physical volume changes (§ 3.5).

We integrate these techniques with a viscous fluid solver. Figure 1
demonstrates complex interactions of viscous fluids and solid ob-
jects simulated with our method.

2. Related Work
In this section, we discuss previous works closely related to ours.
We refer to [Bri15] for the literature and fundamentals.

2.1. Viscous Fluids
In the Eulerian framework, an early work, stable fluid method
[Sta99] solved the Navier-Stokes equations with implicit viscosity
integration for numerical stability while focusing on fluids with-
out free surfaces. Carlson et al. [CMVHT02] proposed the first
method for simulating highly viscous fluids with free surfaces by
using a simplified, Laplacian-based viscosity model with implicit
integration. However, the Laplacian-based formulation immedi-
ately damps the rotational velocity fields due to incorrect free sur-
face boundary conditions. Later, Rasmussen et al. [REN∗04] aug-
mented the Laplacian-based formulation by adding off-diagonal
components with explicit integration while sacrificing the robust-
ness. Batty and Bridson [BB08] proposed a fully implicit inte-
gration scheme for the full form of viscosity with correct free
surface boundary conditions and made it possible to simultane-
ously take larger time steps, handle variable viscosity, and gener-
ate rotational fluid motions. Later, this method was extended for
an adaptive tetrahedral fluid simulator [BH11]. Recently, Larionov
et al. [LBB17] proposed a pressure-viscosity coupled solver to
further improve the accuracy in the free surface handling. While
Robinson-Mosher et al. [RMSF11] also presented a pressure-
viscosity coupled solver, their approach focused on fluids without

free surfaces adopting the Laplacian-based viscosity formulation
with the voxel-based discretization. Although the previous meth-
ods [BB08, LBB17] used volume fractions for the sub-grid level
accuracy, they did not address how to consistently estimate control
volumes of fluids and solids for velocity and viscous stress.

To simulate more general fluids, e.g., viscoelastic fluids and non-
Newtonian fluids, various approaches were also proposed. Gok-
tekin et al. [GBO04] presented a method for simulating viscoelas-
tic fluids by adding an extra term for elastic forces. Recently,
to handle fluid-like materials with a variety of properties in a
unified way, material point methods (MPM) have been widely
adopted with some specialized extensions for snow [SSC∗13],
foams [YSB∗15], melting solids [SSJ∗14], and granular materi-
als [DBD16,KGP∗16,JGT17,TGK∗17,GPH∗18,HFG∗18]. While
these approaches allow us to simulate a wide range of materials,
the constitutive laws adopted in these works typically involve the
non-linearity which would cause stability issues with explicit in-
tegration or requires expensive non-linear solves for implicit inte-
gration. Thus, in this paper, we focus on purely Newtonian viscous
fluids, whose dynamics on viscosity can be simulated with only
linear solves.

In the Lagrangian framework, various approaches have been also
proposed to simulate viscous fluids. Specifically, particle-based
methods based on Smoothed Particle Hydrodynamics (SPH) have
been widely used, and recently, various extensions were presented
to improve the robustness and efficiency of the viscosity integra-
tion [TDF∗15, PICT15, BK16, PT17, BGFAO17, WKBB18]. In the
Lagrangian setting, some researchers proposed dimension-reduced
representations to capture the detailed dynamics of viscous threads
and sheets [BAV∗10, BUAG12, ZLQF15]. While our method em-
ploys Lagrangian particles for advection, surface tracking, and vol-
ume preservation, the dynamics is computed on a grid unlike these
purely Lagrangian approaches.

2.2. Two-Way Fluid-Solid Coupling
For coupling of Eulerian fluids with Lagrangian solids, early works,
e.g., [GSLF05] achieved the two-way coupling with pressure forces
by alternatively solving one-way fluid-to-solid and solid-to-fluid
coupling, which is known as weak two-way coupling. While the
weak coupling would work in certain scenarios, the stability of the
simulation is not guaranteed, and it is generally necessary to take
very small time steps with many alternate one-way solves. Carson
et al. [CMT04] presented a two-way coupling method that tem-
porarily treats solid objects as fluids in the pressure solve sacrific-
ing the robustness. Chentanez et al. [CGFO06] presented a two-
way coupling method that simultaneously considers both dynamics
of fluids and deformable solids, which is known as strong two-way
coupling. While their method improves the stability, the resulting
linear system is not symmetric. Klingner et al. [KFCO06] also pro-
posed a two-way coupling approach with dynamic meshes. While
their linear system is symmetric positive definite (SPD), the com-
putational cost is likely to be expensive due to the dynamic meshes.
Batty et al. [BBB07] presented a strong two-way coupling method
with the Cartesian grid based on the variational principle and sig-
nificantly improved the efficiency. Later, this method was extended
for frictional forces [NGL10]. Robinson-Mosher et al. [RMSG∗08]
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also presented a two-way coupling approach with a more accurate
momentum handling than [BBB07]. Later, they extended their ap-
proach to improve the accuracy of tangential velocities [RMEF09]
and to generate an SPD system with the Laplacian form of viscos-
ity [RMSF11], and the performance of this approach was improved
with a multigrid preconditioning [Aan18]. Recently, strong two-
way coupling was employed for interactions between deformable
solids and fluids [LJF16,TLK16,ZB17], interactions between rigid
bodies and fluids simulated using a vorticity-based fluid solver
[VHLL14] and a stream function solver [ATW15], while weak two-
way coupling was augmented with the reduced model interface to
improve the stability [ANZS18].

In the MPM framework, collisions between fluids and other ob-
jects can be naturally handled at the grid level. Because of this
advantage, MPM is widely adopted to simulate two-way interac-
tions with rigid bodies [DBD16, HFG∗18] and with deformable
solids [KGP∗16,JGT17]. Since solid objects are typically described
in a Lagrangian setting, Lagrangian particle-based methods are also
extensively used, and the two-way coupling can be achieved in a
unified way [SSP07, AIA∗12, MMCK14].

While there are various two-way coupling methods proposed for
Eulerian fluids and Lagrangian solids, most of these approaches
focus on two-way coupling with pressure forces, but not viscos-
ity forces. Although Robinson-Mosher et al. [RMSF11] presented
a two-way coupling method with viscosity force, their formulation
relies on the Laplacian form of viscosity (which precludes rota-
tional behaviors of viscous fluids) and focuses on voxel-based dis-
cretization with no free surfaces. In contrast to these approaches,
our method focuses on two-way coupling with viscosity forces for-
mulated using the full form of viscosity with free surfaces taking
volume fractions into account for sub-grid details.

3. Our Method
In this section, we describe our fluid solver using the implicit vis-
cosity integration. We formulate the viscosity integration as a min-
imization problem based on the variational principle (§ 3.1) so that
the minimization problem can be naturally discretized with vol-
ume fractions to account for the sub-grid level details (§ 3.2). To
avoid dangling artifacts, we describe our geometrically consistent
volume estimation (§3.3). Next, we present a two-way coupling
formulation, which can be efficiently solved with the minimization
problem in a unified way (§ 3.4). Then, we describe a position-
correction method using density constraints to enforce the uniform
distributions of particles (§ 3.5). Finally, we discuss previously pro-
posed methods vs. ours to clarify key differences (§ 3.6).

3.1. Implicit Viscosity Formulation
The incompressible Navier-Stokes equations are given by

Du
Dt

=− 1
ρ
∇p+

1
ρ
∇· s+ 1

ρ
f, s = η

(
∇u+(∇u)T

)
,

∇·u = 0,

where t denotes time, D
Dt material derivative, u velocity, ρ density, p

pressure, s symmetric viscous stress tensor, f external force, and η

dynamic viscosity. We address the advection term with the affine
particle-in-cell (APIC) approach [JSS∗15] and take the operator

ΩF

ΩS1

ΩS2

ΩL

ΩA

Figure 2: Domain illustration. (Left) The simulation domain Ω is
filled with viscous fluids (cyan), solid objects (gray), and the rest
(white). (Middle) The simulation domain is separated by the solid
boundaries into multiple solid (brown) and fluid (blue) domains.
(Right) The simulation domain is separated by the free surfaces
into liquid (light blue) and air (light gray) domains.

splitting method to handle external force, pressure, and viscosity
terms, applying solid boundary condition ut+1 = usolid (usolid: solid
boundary velocity) and free surface boundary condition sn = 0 (n:
outward unit normal of the free surface) for the viscosity solve
[BB08].

The viscosity update with backward Euler can be written as

ut+1−u∗

∆t
=

1
ρ
∇· st+1, st+1 = η

(
∇ut+1 +

(
∇ut+1

)T
)
,

where u∗ denotes intermediate velocity after advection, external
force, and first pressure projection steps [BB08], and ∆t time step
size. In the following, we omit superscript t + 1 for readability.
These formulations can be cast as a minimization problem due to
the variational principle [BBB07, BB08, LBB17]:

s = argmin
s

∫
ΩF

(
ρ

2
‖u∗+ ∆t

ρ
∇· s‖2 +

∆t
4η
‖s‖2

F

)
dΩ, (1)

where ΩF denotes the fluid domain (see Figure 2), ‖·‖F the Frobe-
nius norm. When dynamic viscosity η approaches to 0, viscous
stress s (which includes η) also approaches to 0, and this mini-
mization preserves intermediate velocity u∗ (i.e., no viscosity force
applied). On the other hand, when η approaches to∞, optimal vis-
cous stress are sought by minimizing the sum of these two terms.
This will eventually prioritize the first term due to s’s quadratic
property with respect to η and make the term 0, giving certain vis-
cous stress which leads to u (= u∗+ ∆t

ρ
∇· s) = 0.

3.2. Discretization
To discretize Eq. (1), we approximate the integral in the min-
imization with fractions of cell-sized control volumes. Given
solid boundaries defined with signed distance functions (SDF),
simulation domain Ω is divided into multiple solid domains
ΩS1,ΩS2, . . . ,ΩSn (n: number of solid objects) and fluid domains
ΩF , (i.e., ∪n

i ΩSi ∪ΩF = Ω, ΩSi ∩ΩS j = φ, and ΩSi ∩ΩF = φ,
where i, j (i 6= j) denote an index for solid domains), as illustrated
in Figure 2. Following the notations in [LBB17], we denote volume
fractions for solid and fluid domains as diagonal matrices Wu

S and
Wu

F , respectively. We note that Wu
S is defined for each solid object,

i.e., Wu
S1, . . . ,W

u
Sn and ∑i Wu

Si +Wu
F = I. As for viscous stress de-

fined in a staggered manner [GBO04], we also compute volume
fractions for solid domains Ws

S and fluid domains Ws
F .

Similar to [LBB17], we can formulate a minimization problem
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Figure 3: (Left) Illustration for inconsistent volumes with the inde-
pendent volume estimation. Red and green squares represent u- and
v-cells, respectively, and orange filled square represents an over-
lapping region between u- and v-cells. Red and green dots represent
cell nodes, where SDF are evaluated for the volume computation of
u- and v- cells, respectively. + and - represent signs of SDF at the
node positions. (Middle) Simulation grid, where SDF for both solid
boundaries and free surfaces are defined on the grid nodes (blue
dots). (Right) Double-resolution grid, where volumes of each cell
consistently contribute to the volume summation of u- (red) and v-
(green) cells on the simulation grid.

for liquid domains (Figure 2), corresponding to Eq. (1). For dis-
cretization, as done for solid/fluid volume fractions, we can con-
sider air/liquid volume fractions. Since free surfaces separate the
simulation domain Ω into liquid domains ΩL and air domains ΩA,
we also compute volume fractions for velocity components of liq-
uid domains Wu

L and air domains Wu
A (Wu

L +Wu
A = I), and viscous

stress components of liquid and air domains as Ws
L and Ws

A, re-
spectively.

Combining the minimization formulations for fluid domains and
liquid domains [LBB17], we obtain the following discretized min-
imization problem:

s = argmin
s

(1
2
‖(PWu

F Wu
L)

1
2 (u∗−∆tP−1Wu

L
−1DT Ws

Ls‖2

+
∆t
4

N−1‖(Ws
F Ws

L)
1
2 s‖2

)
, (2)

where P denotes a diagonal density matrix, D a discrete finite-
difference operator, N a diagonal dynamic viscosity matrix.

3.3. Geometrically Consistent Volume Estimation

While we can compute volume fractions Wu
F ,W

u
L,W

s
F , and Ws

L
for each cell independently, we found that evaluating these volume
fractions in this way causes some artifacts near solid boundaries
and free surfaces (e.g., dangling fluid particles in the air) due to the
inconsistency of the estimated volumes over the domain. For exam-
ple, as illustrated in Figure 3 (left), since volumes for u-cell (red)
and v-cell (green) are independently evaluated with SDF at their
cell nodes (red and green dots for u- and v-cells, respectively), it
would happen that the u-cell has zero volumes (all signs of SDF
are plus) while the v-cell has non-zero volumes leading to the vol-
ume inconsistency at the overlapping region (orange filled square).

To avoid this issue, we evaluate volume fractions in a geomet-
rically consistent manner. We first construct a grid with a doubled
resolution compared to the simulation grid, and evaluate volume
fractions of the cells on the double-resolution grid with SDF de-
fined on each node of the simulation grid (see Figure 3). Next, we

Figure 4: A viscous ball dropped onto a static, tilted solid dragon.
The independent volume estimation causes artifacts that particles
unnaturally float under the dragon due to the inconsistent volumes
(left), and the supersampling method similarly suffers from the ar-
tifacts due to the inaccurate volume estimation (middle), whereas
our geometrically consistent volume estimation method does not
have such issues (right).

sum up these volume fractions computed on the double-resolution
grid to account for one volume fraction for the simulation grid, i.e.,
in 2D, we sum up four volume fractions on the double-resolution
grid to account for u- and v- cells emphasized by red and green
squares, respectively, in Figure 3 (right). Since volume fractions of
each cell on the double-resolution grid consistently contribute to
the volume summation on the simulation grid, this approach en-
forces the volume consistency over the domain.

The volume fractions for viscous stress can be similarly es-
timated by summing up the fractions computed on the double-
resolution grid, and these computations can be naturally extended
into 3D. In 2D, we evaluate the volume fractions using a marching-
squares-style area computation method. In 3D, we use a volume
computation algorithm using the divergence theorem [Wan13],
which was around five times faster than the volume computation
based on the tetrahedral decomposition [MG07].

Our volume estimation approach can be considered as a gener-
alized version of the volume estimation using the supersampling
method that determines the fluid volumes based on level-set values
at specific points [Bri15], and we found that a similar consistent
volume computation method was recently used in [Bat08] employ-
ing the volume computation based on [MG07], unlike our method
based on [Wan13].

3.4. Strong Two-Way Fluid-Solid Coupling
Similar to [NGL10], we can describe a rigid body update due to the
viscous stress applied from fluids with volume fractions by

Vt+1 = Vt +∆tM−1Wu
SJWs

Ls, (3)

where V ∈ R6 denotes a generalized rigid body velocity, M a di-
agonal, generalized rigid body mass matrix, and J a linear operator
which integrates viscous stresses over the surface of the rigid body
to give viscosity forces. The rigid body update can be also cast as a
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Figure 5: Multiple solid bunnies dropped onto fluids with spatially
different viscosity values η = 1.0×101,1.0×102,1.0×103,1.0×
104, and 1.0×108 kg/(s ·m). From left to right, one-way coupling,
weak two-way coupling, and our strong two-way coupling, for ren-
dered fluid surfaces (Top) and particle view, color-coded based on
viscosity values (Bottom), where white and purple represent low
and high viscosity values, respectively. Fluids simulated with one-
way coupling and weak two-way coupling do not sufficiently reflect
different viscosity values, whereas fluid simulated with strong two-
way coupling correctly does.

minimization problem [BBB07,NGL10], and due to the minimiza-
tion problem for fluids (Eq. (2)), we can naturally integrate these
problems into the following, which monolithically couples viscous
fluid and rigid body dynamics:

s = argmin
s

(1
2
‖(PWu

F Wu
L)

1
2 (u∗−∆tP−1Wu

L
−1DT Ws

Ls‖2

+
∆t
4

N−1‖(Ws
F Ws

L)
1
2 s‖2 +

1
2
‖M

1
2 (Vt +∆tM−1Wu

SJWs
Ls)‖2

)
.

This minimization problem is quadratic, and its optimality condi-
tion leads to the following symmetric positive definite (SPD) linear
system for s: (1

2
N−1Ws

F Ws
L +∆tWs

LDP−1Wu
L
−1Wu

F DT Ws
L

+∆tWs
LJT Wu

SM−1Wu
SJWs

L

)
s = Ws

LDWu
F u∗−Ws

LJWu
SVt . (4)

Although this system is SPD, the size of the system is very large
(approximately 6H × 6H ignoring the relatively small number of
DOFs for rigid bodies, where H denotes number of total simulation
voxels), and partly dense due to the two-way coupled solid objects
[BBB07, RMSG∗08, Bri15]. Given u = u∗−∆tP−1Wu

L
−1DT Ws

Ls
and Eq. (3), we can reformulate the system above with unknown
variables u, s, and V as(

P
∆t Wu

F Wu
L Wu

F DT Ws
L 0

Ws
LDWu

F − 1
2 N−1Ws

F Ws
L −Ws

LJT Wu
S

0 −Wu
SJWs

L
M
∆t

)(
u
s
V

)
=

( P
∆t Wu

F Wu
Lu∗

0
M
∆t Vt

)
.

From this system, we can reduce the system size by taking the
Schur complement of the diagonal block matrix for the viscous
stress (eliminating s from the system), and we obtain the follow-

ing linear system for u and V:(
A11 A12
AT

12 A22

)(
u
V

)
=

( 1
∆t PWu

F Wu
Lu∗

M
∆t Vt

)
,

A11 =
1
∆t

PWu
F Wu

L +2Wu
F DT Ws

LNWs
F
−1DWu

F .

A12 =−2Wu
F DT Ws

LNWs
F
−1JT Wu

S.

A22 =
M
∆t

+2Wu
SJNWs

F
−1Ws

LJT Wu
S.

This linear system can be more efficiently solved than Eq. (4) be-
cause the resulting system is still SPD, the system size is much
smaller (approximately 3H×3H), the system matrix is sparser due
to V treated as unknown variables even though fluid and solid dy-
namics are monolithically coupled [RMSG∗08, Bri15].

3.5. Position Correction
The divergence-free velocity fields enforce the constant volumes
of fluids in the continuous setting. In practice, however, fluid vol-
umes can change due to the spatial and temporal discretization in-
volving numerical errors, as a volume correction method was pro-
posed to address this issue for Eulerian fluid simulation with the
level-set surface tracking [KLL∗07]. Given Lagrangian particles
used for tracking surfaces in our method, to preserve the fluid vol-
umes, it is necessary to enforce the uniform distribution of particles,
which also addresses the gap and holes caused by non-uniform par-
ticle distributions [Bri15]. While some position-correction meth-
ods have been previously proposed [AT11, UBH14], we found that
damped motions of viscous fluids make the volume changes no-
ticeable more easily and require more uniform particle distribu-
tions. To this end, we present a position-correction method us-
ing density constraints motivated by the purely Lagrangian SPH
work [MMCK14].

We define the density constraint per particle with particle density
ρi and the rest density ρ0 as

Ci = max
(

ρi

ρ0
−1,0

)
,

where ρi is computed by ρi = mi ∑ j wi j(x) with particle mass m
and position x and the smoothing kernel w using the traditional
summation approach in SPH. Solving the constraints by correcting
particle positions can be formulated as a minimization problem:

∆x = argmin
∆x

1
2

∆xT A∆x, subject to C(x+∆x) = 0,

where ∆x denotes the position correction, A mass matrix for par-
ticles, and we can compute the position correction locally follow-
ing [MMCK14] by

∆xi =−
CiA−1∇CT

i
∇CiA−1∇CT

i
.

Although correcting particle positions with this correction vec-
tor would work, many iterations are necessary in most cases. This
is because this method tries to satisfy the constraints by pushing
particles into the solids although these particles are again projected
back to the solid surfaces using the level-set φ by x := x−φ

∇φ

‖∇φ‖
without caring about the particle density at the projected position.
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Figure 6: (Top) Pileup of multiple viscous bunnies simulated us-
ing the distance constraint (left), density constraint without (mid-
dle) and with (right) the scaling based on the distance to solid
boundaries. (Bottom) Profiles of the iteration counts (left) and max-
imum density (right). The density constraint converges faster, and
the scaling accelerates the convergence of the density constraints.

Considering this fact, to reduce necessary iterations, we allow par-
ticles farther from solid boundaries to move more distances. This
approach is motivated by the mass-splitting [TBV12] and mass-
scaling [MMCK14]. We define the scaling factor α based on the
distance to solid boundaries clamping it to avoid instability as

αi = clamp(φ(xi)/θ,αmin,αmax),

where θ denotes the grid width and αmin and αmax the mini-
mum and maximum values for α, respectively. We typically use
αmin = 1.0 and αmax = 5.0. With the scaling, we correct the parti-
cle positions by

xl+1
i = xl

i +αi∆xl
i ,

where l denotes an iteration index. The effectiveness of the scaling
is demonstrated in Figure 6, which compares our method with the
distance and density constraints based on [AT11] and [MMCK14],
respectively.

3.6. Discussions
At the continuous formulation level, the resulting system of our
method for viscous fluid dynamics is closely related to the work
of [BB08], and our method can be considered as an augmented
version of their method with geometrically consistent volume frac-
tions for both solid boundaries and free surfaces to more accurately
account for sub-grid details. In addition, we proposed the two-
way coupling method to achieve interactions between highly vis-
cous fluids and solid objects, and presented the position-correction
method to address the non-uniform particle distributions.

While our formulation and its interpretation are inspired by
the work of [LBB17], these formulations are different in that our
method decouples the pressure and viscosity solves while their
method couples these. As reported in [LBB17], these different for-
mulations have advantages and disadvantages. For example, the de-
coupled approach is more efficient whereas this approach cannot

faithfully reproduce coiling phenomena nor preserve surface de-
tails, and vice versa. In this work, we chose the decoupled approach
mainly for efficiency. However, our position-correction method can
be naturally integrated into the coupled solver [LBB17], and the
two-way coupling method can be unified as well forming an SPD
system with dense blocks for stress variables or a sparse indefinite
system for pressure and velocity variables.

4. Results and Discussions
All the examples are executed on a Linux machine with 24-core
2.50GHz Intel Xeon and 256GB RAMs. For the viscosity solve, we
use Modified Incomplete Cholesky Conjugate Gradient (MICCG)
and set the convergence criterion as the infinity norm of the relative
residual 1.0× 10−10. We used the CFL number of 3.0 with the
adaptive time stepping. We performed the position correction once
per frame with the termination criteria (tolerance) as 10% of the rest
density. Simulation conditions and performance are summarized in
the supplementary material.

4.1. Volume Estimation
We compared our geometrically consistent volume evaluation
method with a method that independently estimates volume frac-
tions and the supersampling-based method [Bri15]. We use a sce-
nario, where a viscous ball is dropped onto a static, tilted dragon,
as shown in Figure 4. With the independent volume estimation,
the estimated volumes can be inconsistent over the domain, and
fluid/solid and liquid/air domains can be erroneously evaluated.
Consequently, the viscosity solve would generate non-physical ve-
locity fields leading to the artifacts that particles unnaturally float
in the air. With the supersampling method, although the volume
estimation can be consistent over the domain, the estimated vol-
umes are not accurate enough since this approach relies on volume
estimation at specific points only. Consequently, similar to the in-
dependent volume estimation, particles can be unnaturally left in
the air. In contrast, our method enforces the volume consistency
over the domain achieving more accurate estimations and does not
suffer from the artifacts with a little additional cost (approximately
13% more costly for the volume computation than the inconsistent
version and the supersampling method leading to only about 5%
overhead for the total computation time).

4.2. Two-Way Fluid-Solid Coupling
To validate the accuracy of our strong two-way coupling for vis-
cosity, we first experimented with a simple scenario, where a solid
ball is falling inside of viscous fluids, so that analytical solu-
tions of the solid velocity can be computed. We use fluid vis-
cosity values η = 1.0× 101,1.0× 102,1.0× 103,1.0× 104, and
1.0× 105 kg/(s ·m) with fluid density ρ f = 1.0× 103 kg/m3,
solid density ρs = 3.0× 103 kg/m3, and the radius of the solid
ball r = 5.0× 10−2 m. We compare our method with one-way
coupling from solid-to-fluid, weak two-way coupling (viscosity
solve followed by an implicit solid velocity update), and the an-
alytical solution derived from the Stokes’ law. As for pressure
forces, we achieve strong two-way coupling based on the works
of [BBB07,NMG09]. Figure 7 shows the comparison executed with
η= 1.0×103 kg/(s ·m). For one-way and weak two-way coupling,
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Table 1: Simulation conditions and results for Figure 7. Re: Reynolds number, V̂∞: analytical terminal velocity magnitude of the ball,
V∞oneway, V∞weak, V∞strong: averaged terminal velocity magnitude at equilibrium from the simulation with one-way, weak two-way, and strong two-
way coupling, respectively. εoneway, εweak, εstrong: relative errors for one-way, weak two-way, and strong two-way coupling, respectively. The
gray row means that Stokes’ law is invalid because of the high Reynolds number. Our strong two-way coupling achieves up to approximately
10% errors and is several orders of magnitude more accurate than one-way and weak two-way coupling.

η kg/(s ·m) Re V̂∞ m/s V∞oneway m/s εoneway(%) V∞weak m/s εweak(%) V∞strong m/s εstrong(%)

1.0×101 1.09×101 1.09×100 1.65×100 51.3 0.94×100 13.6 0.64×100 41.1
1.0×102 1.09×10−1 1.09×10−1 1.28×100 1,073.2 0.52×100 375.0 0.98×10−1 10.3
1.0×103 1.09×10−3 1.09×10−2 0.57×100 5,173.4 0.45×100 4,018.5 1.01×10−2 6.9
1.0×104 1.09×10−5 1.09×10−3 0.94×100 86,403.3 0.44×100 40,085.9 1.11×10−3 1.5
1.0×105 1.09×10−7 1.09×10−4 0.67×100 616,315.8 0.43×100 396,816.0 1.12×10−4 2.3
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Figure 7: A solid ball falling inside of fluids with viscosity value
η = 1.0× 103 kg/(s ·m). (Top) From left to right, one-way cou-
pling, weak two-way coupling, and strong two-way coupling. Flu-
ids simulated with one-way and weak two-way coupling cannot suf-
ficiently support the solid ball due to the incorrect viscosity forces
while our strong two-way coupling method successfully supports
the solid ball. (Bottom) A profile for y-velocity of the solid balls
with the analytical solution. The resulting solid velocities with one-
way and weak two-way coupling significantly deviate from the an-
alytical solution, whereas the solid velocities given with our strong
two-way coupling are in good agreement with the analytical solu-
tion.

the solid ball is treated as prescribed (or kinematic) object in the
viscosity solve, giving rise to incorrect fluid and solid dynamics
even though viscosity force is applied in the case of weak two-way
coupling. On the other hand, the strong two-way coupling method
appropriately handles the interplay with viscosity forces between
the fluids and the solids in the viscosity solve, leading to the ter-
minal solid velocities close to the analytical solution. Although it-
erative refinements are possible to improve the accuracy with the
weak coupling as implied in [ANZS18], in this scene, the compu-
tation time for viscosity solve with one-way, weak two-way, and
strong two-way coupling is almost the same and occupies approxi-

mately 25–40% of the total simulation time. Thus, we believe that
the iterative refinement with weak two-way coupling will become
more costly than our strong two-way coupling.

Table 1 summarizes the simulation conditions and results. The
velocities of the solid ball simulated with the one-way and weak
two-way coupling methods significantly deviate from the analytical
solutions whereas our method generates the solid velocities very
close to the analytical solutions (relative errors are up to around
10%) except for the case of η = 1.0× 101 kg/(s ·m), where the
Stokes’ law is not valid due to the high Reynolds numbers.

We also compared our method with one-way and weak two-way
coupling in a more complex scenario, where multiple solid bunnies
are dropped onto fluid volumes with spatially varying viscosity val-
ues from η = 1.0×101 to 1.0×108 kg/(s ·m), as shown in Figure
5. One-way and weak two-way coupling methods do not gener-
ate plausible motions nor sufficiently reflect the different viscosity
values to the dynamics, whereas our method produces natural be-
haviors of solid objects as expected with different viscosity values.

4.3. Position Correction
To demonstrate the effectiveness of our position-correction method,
we experimented with a scene, where a bulk of viscous fluids is
successively compressed by prescribed, solid circular plates with
multiple holes, as shown in Figure 8. In this scene, we compared
our method with previous approaches using no position correction
and position correction based on distance constraints [AT11]. The
previous approach without any position corrections easily loses the
fluid volumes. While the distance-based position correction better
preserves the fluid volumes, still some volumes are lost because
this approach is not designed to preserve particle density (and vol-
umes). By contrast, our method directly enforces the uniform parti-
cle distributions leading to particle densities closer to the rest den-
sity (see particles color-coded based on their densities in Figure 8)
and preserving the fluid volumes. This enables fluid volumes to be
sufficiently pushed by the solid plates and come out from the holes,
reaching the top of the plates.

4.4. Complex Examples
Figure 9 demonstrates three gears two-way coupled with viscous
fluids. In this scene, only one rotational DOF for each gear is effec-
tive in the viscosity solve, and two rotational and three translational
DOFs are eliminated from the system. We note that the two-way
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Figure 8: (Top) A viscous fluid volume successively compressed
by prescribed circular plates with several holes. From left to right,
no position correction, distance-based position correction, and our
method for surface rendering and particle view with color coding
(white: low density, red: high density). Because of the density con-
straint, our method can better preserve the volume of the viscous
fluids reaching the top of the plates while other approaches fail to
reach the top due to the volume loss. (Bottom) Profile of the maxi-
mum particle density, which indicates the inverse of local volumes.
Compared to other approaches, our method preserves the density
closer to the original one.

Figure 9: Three gears interacting with viscous fluids with η =
1.0×101,1.0×102 and 1.0×103 kg/(s ·m) from left to right. Dif-
ferent viscosity values induce distinct fluid behaviors and solid ro-
tations.

coupling with viscosity forces accounts for the dragging effects,
which can accelerate and decelerate the angular velocities of the
gears.

Figure 10 demonstrates complex two-way interactions between
multiple solid bunnies and viscous fluids in a rotating drum. Be-
cause of the two-way fluid-solid coupling followed by the collision

Figure 10: Multiple solid bunnies interacting with viscous fluids in
a rotating drum. Simultaneous one-way (between the bunnies and
rotating drum) and two-way (between the bunnies) solid collisions
can be addressed by combining our fluid solver with a rigid body
solver. Front and back sides are clipped for visualization.

Figure 11: (Left) Yogurt smoothie overflowing from a cocktail
glass because of the dropped strawberry. (Right) Real yogurt
smoothie.

handling between solid objects, interactions between the solid bun-
nies and the drum in viscous fluids are naturally simulated.

Figure 11 demonstrates the yogurt smoothie interacting with
dropped fruits. The yogurt smoothie is pushed by the dropped
strawberry and thus overflows from the cocktail glass, as observed
in the real phenomena.

4.5. Discussions, Limitations, and Future Work
Volume fractions. In the viscosity solve, we account for the sub-
grid geometry with volume fractions based on the variational ap-
proach [LBB17]. In the pressure solve, it is known that using the
cut-cell method for the fluid-solid interface [NMG09] and ghost
fluid method for the liquid-air interface [GFCK02] generally gives
more accurate results. However, it is not straightforward to employ
these approaches in the viscosity solve, e.g., because the cut-cell
methods cannot consistently define the area fractions for velocity
components due to changing flux directions with the diagonal and
off-diagonal components of the viscous stress. We tested the cut-
cell method with a fixed flux direction respecting the diagonal vis-
cous stress components. Although we achieved better accuracy sup-
pressing non-physical oscillations of the solid ball velocities in the
scenario shown in Figure 4, we found that neglecting the flux direc-
tions of the off-diagonal components leads to popping visual arti-
facts of particles. Thus, it would be necessary to investigate how to
consistently account for the sub-grid geometries to achieve higher
accuracy without the artifacts.

Boundary condition. When we consider viscosity formulations
with solid objects, it is common to use the no-slip boundary condi-
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tion because boundary layers, where viscous forces become domi-
nant, are formed at the proximity of solids in reality. Although this
approach works well for fluids with relatively high viscosity val-
ues, when fluids are less viscous, the effect of the no-slip boundary
condition is magnified up to the scale of simulation cells (which
are generally much larger than the thickness of the actual bound-
ary layers) exhibiting excessively viscous behaviors on the bound-
aries. Using higher resolutions to resolve these issues drastically
increases the simulation cost and thus is impractical. One approach
to simulating less viscous fluids with solid boundaries is to use fluid
velocities instead of solid velocities at the boundaries. In this case,
however, the stability of the viscosity solve is not guaranteed, and
we encountered the stability issues in our early experiments. Al-
though the use of the free-slip condition or Navier-slip boundary
condition for friction is suggested in [Bri15], formulations and im-
plementation become more complex. It would be worthwhile to ex-
plore efficient approaches to enforcing these boundary conditions
for fluid simulation with a wide range of viscosity values.

Density constraint. The density constraint can resolve the com-
pression of fluids as shown in Figure 8. However, since the density
constraint does not attract particles each other, when particles are
separating from the others, fluid volumes would suffer from bumps
and holes at the limit of the particle resolution. Although attraction
forces can be used, we found that the attraction forces cause par-
ticle clustering, which is known as the tensile instability in SPH.
To address this issue, techniques, such as particle split and merge
operations [NGL10], particle sampling [YSB∗15], a narrow band
approach using the level-set [SWT∗18] might be helpful.

Unified solve. While we preferred to decouple pressure and
viscosity solves for efficiency, there are certain scenarios, where
pressure-viscosity coupled solvers are preferable due to, e.g., capa-
bility of coiling, better energy preservation, and more surface de-
tails [LBB17]. In addition, the second pressure solve in the decou-
pled approach would affect the results of the viscosity solve, lead-
ing to artificial melting artifacts, e.g., the right most bunny grad-
ually sinking in fluids regardless of the very high viscosity value
(=1.0×108 kg/(s ·m)). Similarly, since our method separately ad-
dresses fluid-solid and solid-solid interactions, intensive solid-solid
collisions would cause various negative effects, e.g., oscillations of
velocity fields and the loss of fluid volumes, both of which can
be observed in Figure 5. For future work, we plan to develop a
solver that can simultaneously handle pressure and viscosity solves
and fluid-solid and solid-solid interactions for robust, accurate, and
consistent simulations.

5. Conclusions
We proposed an augmented viscous fluid solver to simulate a wider
range of viscous fluid scenarios. Our method offered three key con-
tributions. 1) To avoid the dangling artifacts, we presented a geo-
metrically consistent volume estimation method. 2) We also pro-
posed a new two-way coupling technique that can handle interac-
tions between fluids and solid objects with viscosity forces. Our
two-way coupling formulation can be seamlessly integrated into the
implicit viscosity solve and produces a sparse SPD system mono-
lithically unifying the dynamics of viscous fluids and solid objects.
3) We presented a position-correction method that enforces the uni-
form distributions of particles to address the volume loss issues, and

accelerated the convergence of position corrections with the scal-
ing scheme based on the distance to solid objects. We verified the
accuracy of our method by comparing the results with the analyt-
ical solutions and demonstrated the effectiveness of our solver in
various challenging scenarios.
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