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1. Statistics

Table 1 summarizes the simulation condition and performance for
all the results. We note that the computational overhead for our ge-
ometrically consistent volume estimation is relatively small com-
pared to the inconsistent volume estimation and the supersampling.
Similarly, our strong two-way coupling requires almost the same
amount of time for one-way and weak two-way coupling methods.
Our position-correction method can better enforce the uniform dis-
tributions of particles leading to the smaller number of neighbor
particles, and consequently, our method is at least 6 times faster
than the distance-based position correction and is 2.5 times faster
than the density-based position correction.

2. Derivation of Terminal Velocity for Solid Spheres

The analytical solution for the terminal velocity of a spherical solid
in viscous fluids can be derived by equating the drag, buoyant, and
gravity forces. When the Reynolds number Re = 2 ρ f ||V||2r

η
(ρ f :

fluid density, V: solid velocity, r: solid radius, η: dynamic viscos-
ity of fluids) is sufficiently low (typically Re � 1) and the domain
is open boundaries (i.e., domain boundaries are far apart, and their
influence to the solid is negligible), the drag force due to the viscos-
ity Fd is Fd = 6πηrV according to the Stokes’ law. Since the sum
of buoyant and gravity forces is Fg = 4

3 (ρs − ρ f )gπr3 (ρs: solid
density, g: gravity), the analytical terminal velocity V̂∞ is given by

V̂∞ =
2
9

ρs −ρ f

η
gr2.

We note that this equation is valid only with a sufficiently low
Reynolds number and open boundaries.

3. Two-Way Fluid-Solid Coupling

To validate the accuracy of the two-way fluid-solid coupling
method compared to one-way coupling and weak two-way cou-
pling in a wide range of viscosity values, we performed several
experiments using a scenario, where a solid ball is falling inside
of viscous fluids. In this experiment, we use η = 1.0× 101,1.0×
102,1.0× 103,1.0× 104, and 1.0× 105 kg/(s ·m), and visual re-
sults and solid velocity profiles are shown in Figures 1, 2, 3, 4, and
5, respectively.

Except for the case with viscosity η = 1.0×101 kg/(s ·m) (Fig-

ure 1), where the Stokes’ law and thus the analytical terminal ve-
locity are not valid due to the high Reynolds number, the velocities
of the solid balls simulated with strong two-way coupling are in
good agreement with the analytical solutions. We note that while
it requires a small amount of time for the simulated solid balls to
reach the equilibrium, the solid ball for the analytical solution is
directly moved from the beginning with the velocity given by the
Stokes’ law. As such, the height of the balls can be different for the
simulation and analytical solution (e.g., in Figure 2).

By contrast, the velocities of solid balls simulated with one-way
coupling and weak two-way coupling significantly deviate from the
analytical solutions, unnaturally oscillate, and do not sufficiently
reflect the differences of viscosity values. In addition, the incorrect
behaviors of the solid ball with one-way and weak two-way cou-
pling unnaturally deform the viscous fluid blocks (see the top of
the blocks in the figures).

4. Position Correction

Figure 6 compares our position-correction method with methods
using no position corrections and distance-based position correc-
tions, and we use up to 50 iterations for our method and the
distance-based position correction method. In this scene, a bulk of
highly viscous fluids is successively compressed by circular plates
with multiple holes.

The method with no position corrections can easily lose fluid
volumes, and the viscous fluid does not reach the top. While the
method with the distance-based position correction can preserve the
volume better reaching the top, our method enables more volumes
to reach the top. The color-coding for simulation particles also clar-
ify that our method can resolve the compression of particles better
compared to the distance-based position corrections. Additionally,
we note that compared to our method, the distance-based position
correction method can be more costly due to the large number of
neighboring particles.
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Table 1: Simulation conditions and performance results. “Volume” represents which method is used for volume computation. “Coupling”
represents a scheme used for the fluid-solid coupling. “Uniform” represents a scheme used to enforce the uniform distributions of particles,
and the number of maximum iterations. tvol, tpres, tvisc, tdens, trest, and ttotal represent computation time in seconds per frame for volume fraction
computation, pressure solve, viscosity solve, density solve, rest (e.g., data transfers, particle advection, velocity extrapolation), and total,
respectively. * indicates figure numbers in the main paper. The computational time for the inconsistent volume estimation, supersampling,
and consistent volume estimation are comparable (in orange). Our strong two-way coupling requires about the same amount of time for
one-way and weak two-way coupling (in cyan). Our position-correction method is at least 6 times faster than distance-based and 2.5 times
faster than density-based position corrections (in magenta).

Scene Grid resolution Particles η kg/(s ·m) Volume Coupling Uniform tvol tpres tvisc tdens trest ttotal

Fig. 1* (leftmost) 128×128×128 2,798.2k 1.0×103 Ours One-way Ours/3 11.2 2.2 26.0 16.2 10.1 65.7
Fig. 1* (left) 128×128×128 2,798.2k 1.0×103 Ours Weak Ours/3 10.1 2.0 20.4 15.3 8.6 56.4
Fig. 1* (right) 128×128×128 2,798.2k 1.0×103 Ours Strong Ours/3 8.9 1.8 20.4 9.0 5.7 45.7
Fig. 4* (left) 192×192×192 800.5k 1.0×101 Inconsistent N/A Ours/3 11.0 4.7 49.5 5.5 19.4 90.2
Fig. 4* (middle) 192×192×192 800.5k 1.0×101 Supersampling N/A Ours/3 11.0 5.7 47.1 5.3 19.9 89.0
Fig. 4* (right) 192×192×192 800.5k 1.0×101 Ours N/A Ours/3 12.5 5.2 51.7 5.4 19.6 94.5
Fig. 5* (left) 144×96×96 3,721.8k up to 1.0×108 Ours One-way Ours/3 12.3 3.3 32.7 23.8 32.6 104.7
Fig. 5* (middle) 144×96×96 3,721.8k up to 1.0×108 Ours Weak Ours/3 15.3 4.1 44.0 33.3 40.3 137.0
Fig. 5* (right) 144×96×96 3,721.8k up to 1.0×108 Ours Strong Ours/3 11.2 3.0 42.2 21.3 26.7 104.4
Fig. 6* (middle) 128×128×128 up to 344.2k 1.0×103 Ours N/A Dist/50 12.9 0.6 5.9 75.6 3.8 98.8
Fig. 6* (middle) 128×128×128 up to 344.2k 1.0×103 Ours N/A Dens/50 15.3 0.7 7.0 29.7 4.7 57.4
Fig. 6* (right) 128×128×128 up to 344.2k 1.0×103 Ours N/A Ours/50 11.7 0.6 5.6 11.7 3.5 33.1
Fig. 7* (left) 64×128×64 2,405.0k 1.0×103 Ours One-way Ours/3 3.3 1.3 10.6 16.9 9.2 40.7
Fig. 7* (middle) 64×128×64 2,405.0k 1.0×103 Ours Weak Ours/3 3.0 1.2 9.6 16.2 3.5 33.5
Fig. 7* (right) 64×128×64 2,405.0k 1.0×103 Ours Strong Ours/3 2.7 1.1 9.7 7.3 2.9 23.7
Fig. 8* (left) 128×128×128 1,891.5k 1.0×108 Ours N/A None/0 43.4 6.6 38.6 0.0 71.5 160.1
Fig. 8* (middle) 128×128×128 1,891.5k 1.0×108 Ours N/A Dist/3 42.3 9.3 46.5 39.3 74.2 211.6
Fig. 8* (right) 128×128×128 1,891.5k 1.0×108 Ours N/A Ours/3 39.8 8.6 43.6 22.1 72.9 187.1
Fig. 9* (left) 192×384×192 up to 1,805.0k 1.0×101 Ours Strong Ours/3 152.1 13.5 81.8 11.5 82.8 341.8
Fig. 9* (middle) 192×384×192 up to 1,805.0k 1.0×102 Ours Strong Ours/3 129.6 11.0 95.4 9.4 69.9 315.2
Fig. 9* (right) 192×384×192 up to 1,805.0k 1.0×103 Ours Strong Ours/3 84.8 6.7 101.1 9.6 45.1 247.1
Fig. 10* 128×128×128 2,756.6k 1.0×102 Ours Strong Ours/3 30.0 5.5 70.8 28.4 43.5 178.2
Fig. 11* (left) 128×128×128 258.5k 3.0×102 Ours Strong Ours/50 17.1 1.5 11.9 16.1 10.8 57.4
Fig. 1 (left) 64×128×64 2,405.0k 1.0×101 Ours One-way Ours/3 4.4 1.8 9.7 21.0 12.5 49.5
Fig. 1 (middle) 64×128×64 2,405.0k 1.0×101 Ours Weak Ours/3 3.0 1.2 6.4 16.3 5.7 32.6
Fig. 1 (right) 64×128×64 2,405.0k 1.0×101 Ours Strong Ours/3 2.8 1.1 5.9 15.1 4.1 29.0
Fig. 2 (left) 64×128×64 2,405.0k 1.0×102 Ours One-way Ours/3 4.3 1.7 9.3 22.3 10.2 47.8
Fig. 2 (middle) 64×128×64 2,405.0k 1.0×102 Ours Weak Ours/3 3.0 1.2 7.6 16.0 3.5 31.3
Fig. 2 (right) 64×128×64 2,405.0k 1.0×102 Ours Strong Ours/3 2.8 1.2 7.7 8.1 2.9 22.8
Fig. 3 (left) 64×128×64 2,405.0k 1.0×103 Ours One-way Ours/3 3.3 1.3 10.6 16.9 9.2 40.7
Fig. 3 (middle) 64×128×64 2,405.0k 1.0×103 Ours Weak Ours/3 3.0 1.2 9.6 16.2 3.5 33.5
Fig. 3 (right) 64×128×64 2,405.0k 1.0×103 Ours Strong Ours/3 2.7 1.1 9.7 7.3 2.9 23.7
Fig. 4 (left) 64×128×64 2,405.0k 1.0×104 Ours One-way Ours/3 3.7 1.4 13.2 17.6 10.5 46.3
Fig. 4 (middle) 64×128×64 2,405.0k 1.0×104 Ours Weak Ours/3 3.1 1.1 11.3 16.8 3.7 36.0
Fig. 4 (right) 64×128×64 2,405.0k 1.0×104 Ours Strong Ours/3 2.6 1.0 11.8 6.9 2.7 24.9
Fig. 5 (left) 64×128×64 2,405.0k 1.0×105 Ours One-way Ours/3 3.6 1.6 20.0 18.0 9.3 52.5
Fig. 5 (middle) 64×128×64 2,405.0k 1.0×105 Ours Weak Ours/3 3.2 1.2 13.1 17.6 3.8 39.0
Fig. 5 (right) 64×128×64 2,405.0k 1.0×105 Ours Strong Ours/3 2.8 1.0 11.8 7.4 2.9 25.8
Fig. 6 (left) 128×128×128 1,891.5k 1.0×108 Ours N/A None/0 43.4 6.6 38.6 0.0 71.5 160.1
Fig. 6 (middle) 128×128×128 1,891.5k 1.0×108 Ours N/A Dist/50 45.7 10.5 54.7 538.6 87.1 735.5
Fig. 6 (right) 128×128×128 1,891.5k 1.0×108 Ours N/A Ours/50 39.7 10.2 48.3 190.9 78.8 367.8
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Figure 1: A solid ball falling inside of fluids with viscosity η =
1.0× 101 kg/(s ·m). (Top) From left to right, one-way coupling,
weak two-way coupling, and strong two-way coupling. Red, green,
and blue particles represent large, medium, and small velocity
magnitudes, respectively. (Bottom) Profile of the y-directional ve-
locity of the solid balls. Note that due to the high Reynolds number,
the analytical solution is not valid and thus the figure and plot for
the analytical solution is excluded.
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Figure 2: A solid ball falling inside of fluids with viscosity
value η = 1.0× 102 kg/(s ·m). (Top) From left to right, one-way
coupling, weak two-way coupling, and strong two-way coupling.
(Bottom) Profile of the y-directional velocity of the solid balls. Our
strong two-way coupling gives solid velocities very close to the an-
alytical solution while the solid velocities given with one-way and
weak two-way coupling significantly deviate from the analytical so-
lution.

50 100 150 200 250 300
Frames

−0.6

−0.4

−0.2

0.0

Y-
ve

lo
cit

y 
(m

/s
)

One-way
Weak two-way
Strong two-way
Analytical solution

Figure 3: A solid ball falling inside of fluids with viscosity val-
ues η = 1.0 × 103 kg/(s ·m). (Top) From left to right, one-way
coupling, weak two-way coupling, and strong two-way coupling.
(Bottom) Profile of the y-directional velocity of the solid balls. Our
strong two-way coupling gives solid velocities very close to the an-
alytical solution while the solid velocities given with one-way and
weak two-way coupling significantly deviate from the analytical so-
lution.
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Figure 4: A solid ball falling inside of fluids with viscosity val-
ues η = 1.0 × 104 kg/(s ·m). (Top) From left to right, one-way
coupling, weak two-way coupling, and strong two-way coupling.
(Bottom) Profile of the y-directional velocity of the solid balls. Our
strong two-way coupling gives solid velocities very close to the an-
alytical solution while the solid velocities given with one-way and
weak two-way coupling significantly deviate from the analytical so-
lution.
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Figure 5: A solid ball falling inside of fluids with viscosity val-
ues η = 1.0 × 105 kg/(s ·m). (Top) From left to right, one-way
coupling, weak two-way coupling, and strong two-way coupling.
(Bottom) Profile of the y-directional velocity of the solid balls. Our
strong two-way coupling gives solid velocities very close to the an-
alytical solution while the solid velocities given with one-way and
weak two-way coupling significantly deviate from the analytical so-
lution.
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Figure 6: (Top) A viscous fluid volume successively compressed
by prescribed circular plates with several holes. From left to right,
no position correction, distance-based position correction, and our
method for surface rendering and particle view with color cod-
ing (white and red represent low and high densities, respectively).
(Bottom) Profile of the maximum particle density, which indicates
the inverse of local volumes. Compared to other approaches, our
method preserves the density closer to the original one.
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5. Implementation Details on J

Given viscous stress s = (sxx,sxy,sxz,syy,syz,szz)
T defined on the

staggered grid, the translational viscosity forces (Fx,Fy,Fz) applied
from fluids to a rigid body can be written with grid indices i, j,k,
control volumes V and voxel size ∆x as

Fx = ∑
i, j,k

(Jxx,i, j,ksxx,i, j,k + Jxy,i−1/2, j−1/2,ksxy,i−1/2, j−1/2,k + Jxz,i−1/2, j,k−1/2sxz,i−1/2, j,k−1/2),

Fy = ∑
i, j,k

(Jyx,i−1/2, j−1/2,ksxy,i−1/2, j−1/2,k + Jyy,i, j,ksyy,i, j,k + Jyz,i, j−1/2,k−1/2syz,i, j−1/2,k−1/2),

Fz = ∑
i, j,k

(Jzx,i−1/2, j,k−1/2szx,i−1/2, j,k−1/2 + Jzy,i, j−1/2,k−1/2syz,i, j−1/2,k−1/2 + Jzz,i, j,kszz,i, j,k),

where

Jxx,i, j,k =
−Vi+1/2, j,k +Vi−1/2, j,k

∆x
,

Jxy,i−1/2, j−1/2,k =
−Vi−1/2, j,k +Vi−1/2, j−1,k

∆x
,

Jxz,i−1/2, j,k−1/2 =
−Vi−1/2, j,k +Vi−1/2, j,k−1

∆x
,

Jyx,i−1/2, j−1/2,k =
−Vi, j−1/2,k +Vi−1, j−1/2,k

∆x
,

Jyy,i, j,k =
−Vi, j+1/2,k +Vi, j−1/2,k

∆x
,

Jyz,i, j−1/2,k−1/2 =
−Vi, j−1/2,k +Vi, j−1/2,k−1

∆x
,

Jzx,i−1/2, j,k−1/2 =
−Vi, j,k−1/2 +Vi−1, j,k−1/2

∆x
,

Jzy,i, j−1/2,k−1/2 =
−Vi, j,k−1/2 +Vi, j−1,k−1/2

∆x
,

Jzz,i, j,k =
−Vi, j,k+1/2 +Vi, j,k−1/2

∆x
.

Ignoring the grid indices for readability (as of now), the rotational
forces Frx,Fry,Frz can be written with positions of viscous stress
defined on a grid x = (x,y,z)T and the center of mass for the rigid
body X = (X ,Y,Z)T as

Frx = ∑((y−Y )(Jzxsxz + Jzysyz + Jzzszz)− (z−Z)(Jyxsxy + Jyysyy + Jyzsyz)) ,

Fry = ∑((z−Z)(Jxxsxx + Jxysxy + Jxzsxz)− (x−X)(Jzxsxz + Jzysyz + Jzzszz)) ,

Frz = ∑((x−X)(Jyxsxy + Jyysyy + Jyzsyz)− (y−Y )(Jxxsxx + Jxysxy + Jxzsxz)) .

Since the viscous stresses are defined at different locations on the
grid in the staggered manner, in practice, we compute the rotational
forces above, e.g., for Frz by

Frz = ∑
i, j,k

(
(xi, j,k −X)Jyy,i, j,ksyy,i, j,k − (yi, j,k −Y )Jxx,i, j,ksxx,i, j,k

+
(
(xi−1/2, j−1/2,k −X)Jyx,i−1/2, j−1/2,k − (yi−1/2, j−1/2,k −Y )Jxy,i−1/2, j−1/2,k

)
sxy,i−1/2, j−1/2,k

+(xi−1/2, j,k−1/2 −X)Jyz,i, j−1/2,k−1/2syz,i, j−1/2,k−1/2

−(yi, j−1/2,k−1/2 −Y )Jxz,i−1/2, j,k−1/2sxz,i−1/2, j,k−1/2

)
.

Similarly, we can compute Frx and Fry. Given F =
(Fx,Fy,Fz,Frx,Fry,Frz)

T as the generalized six-dimensional

viscosity forces for a rigid body, by extracting coefficients for the
viscosity forces to assemble J, we obtain the following relation:

F = Js.
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