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Figure 1: These 800× 800 resolution images show the benefit of combining shadow map warping and frustum partitioning

algorithms on a powerplant model with a high depth range. Left: A 2K × 2K shadow map generated with only a warping

algorithm (LSPSM) has high aliasing error is concentrated near the viewer. Middle: The largest allocatable resolution of

4K × 4K still has severe aliasing. Right: Warping combined with four frustum partitions produces low aliasing error with a

total resolution of 2K×2K with only a 30% drop in frame rate. The aliasing error is distributed more uniformly over the scene.

Abstract

We evaluate several shadow map algorithms based on warping and partitioning using the maximum perspective

aliasing error over the entire view frustum. With respect to our error metric, we show that a range of warping

parameters corresponding to several previous warping algorithms have the same error. We also analyze several

partitioning schemes to determine which produces the least maximum error using the least number of partitions.

Finally, we show how warping and partitioning can be combined for interactive rendering of low error shadows

in scenes with a high depth range.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism – Color, Shading, Shadowing and Texture

1. Introduction

Shadows are an important component of an interactive ren-

dering system. Shadow maps are one popular technique for

rendering shadows. The standard shadow map algorithm as

proposed by Williams [Wil78] is a two pass algorithm that

first creates a depth map by rendering the scene from the

light’s view. In the second pass, the depth map is used to

determine which surfaces lie in shadow. Shadow maps are a

particularly attractive algorithm because they are easy to im-

plement, they support a wide variety of geometry representa-

tions, and there exists wide support for shadow maps in cur-

rent graphics hardware. The main drawback of shadow maps

is aliasing errors at shadow edges. Aliasing occurs when the

local sampling density in the shadow map is too low. The

aliasing errors are worst for scenes with a high depth range

because samples in the shadow map must cover larger re-

gions.

Two main approaches are used to address the sampling

problem: warping and partitioning. Warping algorithms ren-

der a reparameterized shadow map that leads to increased
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sampling resolution where it is needed [SD02, WSP04,

MT04, CG04]. Since warping algorithms simply change the

4 × 4 matrix used to render a standard shadow map, they

incur almost no performance penalty and can be easily im-

plemented on current GPUs. Partitioning algorithms take

a different approach. These algorithms partition the scene

and use a separate shadow map for each partition [TQJN99,

FFBG01, Arv04, LKS∗06]. For example, one shadow map

may be used for areas close to the viewer and another for the

rest of the scene. While partitioning can reduce aliasing er-

ror, rendering shadow maps for too many partitions may be

expensive. Some algorithms combine warping and partition-

ing [Koz04, CG04].

It is often difficult to determine which algorithm is best

for a given situation. Moreover, it is not clear how and when

to switch between different techniques. We seek a single

shadow map algorithm that has low aliasing error and main-

tains high performance for complex models with high depth

range.

Main Results: In this paper we present an error metric

for evaluating shadow map algorithms based on the maxi-

mum perspective aliasing error over the entire view frustum.

Aliasing error can be decomposed into two parts [SD02]:

perspective aliasing, which depends only on the position

of the light relative to the camera, and projection aliasing,

which depends on the orientation of surfaces in the scene.

We base our error metric on perspective aliasing because it

is scene independent. Though we deal only with directional

light sources in this paper, the error metric analysis can be

extended to point lights.

Using our error metric we investigate how to combine

warping and partitioning to obtain a low error shadow map

solution with good performance and guarantees on the alias-

ing error. Warping algorithms based on perspective projec-

tions, such as perspective shadow maps (PSMs) [SD02],

light-space perspective shadow maps (LSPSMs) [WSP04],

and trapezoidal shadow maps (TSMs) [MT04] differ primar-

ily in the way the perspective parameter is chosen. We show

that when the aliasing errors in both shadow map dimensions

are combined, the total error for a range of parameter values

is the same. The equivalent parameter range corresponds to

these algorithms.

We also consider two kinds of view frustum partitioning:

• Face partitioning splits the view frustum at the edges of

its faces as seen from the light’s point of view. Face par-

titioning allows warping to be used when it could not be

used otherwise (e.g. when the light direction is parallel to

the view direction) leading to reduced error.

• z-partitioning subdivides the view frustum or its face par-

titions along their length. z- partitioning provides error re-

ductions for all light directions.

Frustum partitioning and z-partitioning can also be com-

bined. We show that for a given number of partitions, z-

partitioning combined with warping delivers the least max-

imum error over the entire view frustum. We demonstrate

the performance of this hybrid algorithm on a small model,

typical of a game-like environment, and on massive models

rendered by a view-dependent rendering algorithm.

The rest of this paper is organized as follows. In Section

2 we briefly discuss work related to shadow map computa-

tion. In Section 3, we discuss how aliasing error should be

measured and justify our choice of error metric. We analyze

shadow map warping algorithms in Section 4 and frustum

partitioning schemes in Section 5. We describe various im-

plementation details for partitioned shadow maps in Section

6. In Section 7, we show some experimental results for com-

binations of partitioning and warping that lead to low alias-

ing error. Finally, we conclude with some ideas for future

work.

2. Previous Work

Many techniques have been proposed for shadow generation.

In this section, we limit ourselves to shadow maps and some

hybrid combinations with object-space techniques. Shadow

maps were first introduced by Williams [Wil78]. Segal et

al. [SKv∗92] later implemented them on standard graphics

hardware. In order to hide shadow map aliasing, Reeves et

al. [RSC87] filtered depth values to blur shadow map edges.

Recently Donnelly and Lauritzen [DL06] introduced a way

to use depth variance to facilitate better filtering of shadow

depth maps.

Other algorithms seek to remove aliasing by locally in-

creasing the shadow map resolution where it is needed, ei-

ther through warping or partitioning, or both:

• Partitioning algorithms. Tadamura et al. [TQJN99] use

z-partitioning for rendering scenes illuminated with sun-

light. Adaptive shadow maps [FFBG01] use a quadtree

that is refined in areas with high aliasing error. Increased

programmability of GPUs has facilitated implementa-

tions of adaptive shadow maps for hardware rendering

[LKS∗06], but performance can be slow. Tiled shadow

maps [Arv04] partition a shadow map into tiles of dif-

ferent sizes guided by an aliasing measurement heuristic.

• Warping algorithms. Shadow map warping was intro-

duced with perspective shadow maps (PSMs) [SD02].

PSMs use the camera’s perspective transform to warp the

shadow map. A singularity may arise with PSMs that re-

quires special handling [Koz04]. Light-space perspective

shadow maps (LSPSMs) [WSP04] are a generalization of

PSMs that do not have the singularity problem because

they use a perspective projection that is oriented perpen-

dicular to the light direction. Trapezoidal shadow maps

(TSMs) [MT04] are similar to LSPSMs, except that they

use a different formulation for the perspective parameter.

• Combined algorithms. Chong and Gortler [CG04] use a

general projective transform to ensure that there is a one-

to-one correspondence between pixels in the image and

the texels in the shadow map on a single plane within the
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Figure 1: Shadow map aliasing. An image beam through a

pixel and a light beam through a shadow map texel project

onto a surface (left). When the light beam footprint is larger

than the image beam footprint (upper-right), the light beam

footprints can be distinguished as a jagged shadow edge

(lower-right).

scene. They use a small number of shadow maps to cover

a few large surfaces. Kozlov [Koz04] proposed using a

cube map in the post-perspective space of the camera.

This corresponds to combining warping with face parti-

tioning.

Irregular shadow maps [JMB04, AL04] avoid the aliasing

problem altogether by storing shadow map samples that cor-

respond exactly to the image samples for the eye. However,

irregular shadow maps are difficult to implement on current

graphics hardware.

Pure object-space shadow algorithms, such as shadow

volumes, do not have aliasing problems. Some hybrid algo-

rithms combine object-space techniques with shadow maps

to reduce aliasing. McCool et al. [McC00] construct shadow

volumes from a shadow map. Sen et al. [SCH03] create a

shadow map that more accurately represents shadow edges.

Both of these techniques, while generating better looking

shadow edges, may miss small features if the shadow map

resolution is inadequate. Chan and Durand [CD04] use

shadow maps to restrict shadow volume rendering to the

shadow edges. Govindaraju et al. [GLY∗03] use shadow

polygons for the most aliased areas and a shadow map ev-

erywhere else.

3. Measuring aliasing error

This section provides an overview of shadow map aliasing

and introduces our error metric. We first review how shadow

map aliasing occurs. Then we justify why we ignore projec-

tion aliasing and discuss the use of maximum perspective

aliasing error over the whole frustum for evaluating shadow

map algorithms.

3.1. Shadow map aliasing

Figure 1 offers geometric intuition of how shadow map alias-

ing occurs. A beam emanates from the eye through a pixel on

the image plane and projects onto a surface in the scene with

a footprint of width w′
i at the intersection point. A beam from

the light through a shadow map texel projects onto the same

location with a footprint of width w′
l . When w′

l > w′
i , the light

beam footprint is covered by multiple image beams and be-

comes distinguishable as a jagged, aliased edge at shadow

boundaries.

Following Stamminger and Drettakis [SD02], the aliasing

error can be quantified as the mismatch ratio of the beam

footprint widths:

m =
w′

l

w′
i

≈ wl

wi

cosθi

cosθl

, (1)

where wi and wl are the widths of the image and light beams

at the point of intersection and θi and θl are the angles

between the surface normal and the beam directions. The

wl/wi term is referred to as perspective aliasing. Perspective

aliasing depends solely on the relative positions of the light

and camera. It is independent of the scene geometry. The

cosθi/cosθl term is referred to as projection aliasing. This

term depends on the orientation of the surfaces in the scene

relative to the camera and the light. Perspective aliasing van-

ishes when the beam widths are the same, i.e. wi = wl . Pro-

jection aliasing vanishes when the surface is oriented with

its normal parallel or perpendicular to the half-way vector

between the beam directions, i.e. θi = θl .

3.2. Ignoring projection aliasing

Ideally, a shadow map algorithm should ensure that m = 1

everywhere in the scene. When m > 1 shadow map aliasing

can appear at shadow boundaries. When m < 1, no alias-

ing appears, but the shadow map is oversampled and resolu-

tion is wasted. In practice, an ideal shadow map is difficult

to compute due to the projection aliasing factor. Because of

projection aliasing, the local resolution needed for different

parts of the scene may vary dramatically depending on the

orientations of the surfaces in the scene. Computing the res-

olution needed for each part of the scene requires a poten-

tially expensive scene analysis, and storing an ideal shadow

map requires data structures more complex than a regular

grid. Adaptive shadow maps (ASMs) approach the ideal by

storing the shadow map in a quad-tree and refining where

more resolution is needed. But on current hardware, ASMs

are too slow to provide all but a fairly coarse level of subdi-

vision at high frame rates in a complex environment. Chong

et al. [CG04] compute an optimal shadow map for a few sur-

faces in the scene, but for other surfaces there are no guar-

antees on the aliasing error.

We choose to ignore projection aliasing and to minimize

perspective aliasing. This means that we can use a shadow

map parameterization that is both independent of scene com-

plexity and is simple and efficient to compute. In practice,

projection aliasing error might not ever be completely elim-

inated because it is potentially unbounded. However if per-

spective aliasing error is small, the projection aliasing that
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Figure 2: Visualizing aliasing error. These images show

shadow map texels projected onto a scene consisting of a

simple ground plane and an overhead directional light. The

LSPSM algorithm (left) appears to be inferior to the PSM

algorithm (right) due to projection effects. To see perspec-

tive aliasing more clearly, a plane is inserted on the left side

of each image into the area of maximum perspective alias-

ing for each algorithm and is oriented such that projection

effects are mostly removed. LSPSMs show error distributed

evenly in both directions, while the error for PSMs is con-

centrated in a single direction. Both images, in fact, have

the same total error.

does remain is much less visible for at least two reasons

First, when projection aliasing stretches light beam foot-

prints across a surface, the sampling resolution is reduced

only in the stretched direction. Second, surfaces which ex-

hibit high projection aliasing error are nearly parallel to the

light. For many surfaces, when the light angle is low, little

light is reflected, so the shadows are not as noticeable any-

way.

3.3. Maximum perspective aliasing error

For our error metric we minimize the L∞ norm of perspec-

tive aliasing error. Specifically, we seek to minimize the

maximum value the wl/wi term of m in Eq. (1) over the en-

tire view frustum. Other norms could be used such as the L1

or the L2 norms. These norms tend to ensure that the "av-

erage" error is low, but high error outliers may occur. (For

a more in-depth discussion of error measures in the context

of shadow map rendering see [Cho03].) For specific views,

where there are no surfaces or shadows in an area with high

error, it may be possible for one shadow map to appear to

have lower error than another, even if quantitatively it is in-

ferior (see Figure 2). But in an interactive application where

the view is unconstrained or the scene geometry is arbitrary,

there is no guarantee that the "bad areas" will not become

visible. Our metric gives guarantees on the worst case error

independent of the scene.

4. Shadow map warping with perspective projections

Perspective projections are used by prior warping techniques

to reduce aliasing. The aliasing error is affected by both the

warping parameter and the dimensions of the shadow map
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Figure 3: Perspective projection parameterization. Light

space is defined with the y-axis aligned with the light di-

rection, and the z-axis in the plane of the y-axis and view

direction. The t-axis of the shadow map is aligned with the

z-axis. The x and s axes point out of the page. The shadow

map is warped by placing a warping frustum along the z-axis

around the view frustum. The warp is controlled by varying

the parameter n′.

relative to the image. In this section, we show how the area

of the shadow map (in texels) can be used to measure error

independent of specific shadow map dimensions. This leads

to the surprising result that for a shadow map occupying a

fixed amount of memory, the warping parameters for PSMs,

LSPSMs, and some TSMs all yield the same maximum per-

spective aliasing error.

We first consider the specific configuration shown in Fig-

ure 3 with a directional light overhead. The coordinate sys-

tem for this figure is the light space defined by Wimmer et

al. [WSP04], except that we align the s and t directions of

the shadow map with x and z, respectively, instead of vice

versa as they do.

4.1. Maximum error for overhead light

A shadow map for an overhead directional light can be pa-

rameterized with low error using a perspective projection.

The projection is parameterized by n′, the distance from the

center of projection, c, to the view frustum near plane. For

this configuration, PSMs, LSPSMs, and TSMs all use a per-

spective projection which differs only by the value of n′.

PSMs use n′ = n, LSPSMs use n′ = n +
√

f n, and TSMs

use a value of n′ that maps a user selected focus point to the

line 80% of the way from the bottom of the shadow map.

Standard unwarped shadow maps use an orthogonal projec-

tion with n′ = ∞.

Figure 4 shows how the parameterization changes with

n′. The errors in both x and z change with n′ and cannot

be controlled independently. In this section, we extend the

analysis of Wimmer et al [WSP04] to compute maximum

error in x and z for all values of n′. The perspective aliasing
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Figure 4: Perspective projection warping. From left to right

the parameter n′ decreases from ∞ to n. Top: In light space,

the projected shadow map grid is compressed to match the

sides of the view frustum. Bottom: In the view of the scene

rendered into the shadow map, a tapered grid on the view

frustum is stretched to fill the shadow map.

error in each direction is given by the ratio of beam widths

wlx/wi and wlz/wi. We assume that the image is square so

that wix = wiy = wi. From Figure 3 we can see that the width

of an image beam through a single pixel is:

wi(z) =
2tanθ

resi

z

n
, (2)

where n is the distance to the near plane, 2θ is the field of

view of the camera, and resi is the resolution of the image.

The light beams are defined by texels in the shadow map. For

a ress × rest resolution shadow map, the size of each texel

is 1/ress × 1/rest . A texel sized step in the shadow map is

related to a step in world space by the derivatives dx/ds and

dz/dt for the x and z directions, respectively. Thus the width

of the shadow beams in both directions can be written as:

wlx =
1

ress

dx

ds
, (3)

wlz =
1

rest

dz

dt
. (4)

Expressions for s and t are given by the perspective projec-

tion. Using a standard OpenGL frustum matrix and trans-

forming the result to the range [0,1]× [0,1] we have:

s(x,z′) =
x

z′ tanθ′
+

1

2
, (5)

t(z′) =
( f ′ +n′)

2( f ′−n′)
+

f ′n′

z′( f ′−n′)
+

1

2
, (6)

where tanθ′ = ( f ′/ f ) tanθ. Since the derivatives of s and t

are monotonic over the view frustum, the derivatives in Eqs.

3 and 4 can be evaluated as:

dx

ds
=

1

ds/dx
and

dz

dt
=

1

dt/dz
.

Putting all of this together and substituting z′ = n′ + z− n
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Figure 5: Error distribution. These plots show how perspec-

tive aliasing error is distributed along the view frustum for

various values of n′. (n = 1 and f = 20.)

and f ′ = n′ + f − n, we obtain the equations for error in

both directions:

mx(z,n
′) =

wlx

wi
=

resi

ress
f

(

(n′ + z−n)

z(n′ + f −n)

)

, (7)

mz(z,n
′) =

wlz

wi
=

resi

rest

( f −n)

2tanθ

(

(n′ + z−n)2

zn′(n′ + f −n)

)

. (8)

The last term of each of these equations determines the over-

all distribution of error over the length of the frustum. Plots

of these terms are shown for several values of n′ in Figure 5.

The maximum error for x always occurs at z = n. For z,

the maximum error is at z = n for n′ > n′LSPSM and at z = f

for n′ ≤ n′LSPSM . Plugging these values into Eqs. 7 and 8 we

get the equations for maximum error for all z over the whole

frustum which we denote as Mx and Mz:

Mx(n
′) =

resi

ress
f

n′

(n′ + f −n)
, (9)

Mz(n
′) =

resi

rest
n
( f −n)

2tanθ

{

(n′+ f−n)
n′ f n′ ≤ n′LSPSM ,

n′

n(n′+ f−n)
n′ > n′LSPSM .

(10)

Parameterizing n′. The semi-infinite range of n′ ∈ [n,∞) is

inconvenient for analysis of these equations. We introduce a

new parameter η ∈ [−1,1] in place of n′:

n
′ = n







√
α+1−η(α−1)

η+1 , −1 ≤ η ≤ 0,
√

α+1

η
√

α+1
, 0 < η ≤ 1.

(11)

α = f /n.

(see Appendix B for derivation.) Over the range η ∈ [−1,0],
n′ moves from n′ = ∞ to n′ = n′LSPSM . Over the range

η ∈ [0,1], n′ continues decreasing down to n. Plugging this

equation for n′ into Eqs. 9 and 10 we can now more easily

plot the behavior of the maximum error in x and z over the

entire range of warping parameters (see Figure 6).

4.2. Using storage to measure error

From Eqs. 9 and 10 we can see that for a given view frustum

there are only two quantities that are used to control the per-

spective aliasing error: the resolution of the shadow map and
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Figure 6: Varying n′. This plot shows the maximum error in

x and z (Mx and Mz) and the storage (S) of a critical res-

olution shadow map over all values of n′, parameterized in

terms of η. n′(−1) =∞, n′(0) = n′LSPSM , and n′(1) = n. The

plots have been normalized to fit on the same scale (Frustum

parameters: n = 1 and f = 100).

the n′ parameter. Perspective aliasing error vanishes when

the resolution is chosen such that Mx = Mz = 1. We call this

the critical resolution, res∗s ×res∗t . The total storage in texels

required for a critical resolution shadow map is:

S
∗ = res

∗
s × res

∗
t = res

2
i S̄,

S̄ =
( f /n−1)

2tanθ

{

1 n′ ≤ n′LSPSM ,
n′2 f

n(n′+ f−n)2 n′ > n′LSPSM .
(12)

Typically we have a fixed budget of texture memory S0. In

this case, we should choose the resolution subject to the con-

straints:

ress × rest = S0 and
ress

rest
=

res∗s

res∗t
.

The second equation ensures that error is equally divided

between x and z. Solving these equations we get:

ress =

√

S0
res∗s

res∗t
, (13)

rest =

√

S0
res∗t
res∗s

. (14)

Storage factor. We call S̄ the storage factor for a critical

resolution shadow map. It represents how many times larger

than the image the shadow map must be (in texels) in order

to eliminate perspective aliasing. S̄ is useful as an aggregate

measure of error in both x and z that is independent of spe-

cific shadow map and image resolutions. We will use S̄ for

the analysis in the rest of this paper.

4.3. Equivalence of PSMs, LSPSMs, and TSMs

We note that for values of n′ ≤ n′LSPSM in Eq. 12, S̄ is min-

imal and does not depend on n′. The value of n′ chosen by

PSMs, LSPSMs, and some TSMs all fall within this range.

This means that from the stand-point of maximum perspec-

tive aliasing error, which n′ we choose makes little differ-

ence. The choice of n′ primarily affects where the maximum

error occurs within the view frustum and the relative dimen-

sions of the critical resolution shadow map.

The equivalence of warping parameters means that the

heuristic of "maximizing usage of the shadow map" that is

often used in shadow map warping algorithms is perhaps

too restrictive. For example, from Figure 4 it is clear that

LSPSMs do not use the entire area of the shadow map while

PSMs do. Yet S̄ for both the algorithms is the same.

We choose the warping parameter n′ = n′LSPSM for three

reasons. First, unlike the parameter computed by TSMs,

n′LSPSM is guaranteed to always lie within the minimal range.

Second, n′LSPSM distributes error more evenly between x and

z. This is important because GPUs currently impose limits

on the dimensions of a shadow map texture, and a squarish

texture is more likely to fit within those limits than a long

rectangular one with equal area. Finally, at n′LSPSM the max-

imum error in z occurs at both the near and far planes. This

is important for reasons which will be explained in Section

5.2.

4.4. Maximum error for general light directions

For a light in general position, not all of the equations we

have derived for perspective aliasing error can be used di-

rectly because the light and eye space coordinate systems

are no longer aligned. PSMs in particular require a new set

of equations because the warping frustum chosen by that al-

gorithm is no longer a simple one-point perspective projec-

tion.

We derive S̄ for general light directions from the beam

widths wi, wlx, and wlz computed directly at the vertices of

the view frustum. It is sufficient to check just the vertices

because the beam widths increase monotonically over the

convex view frustum. The maxima must lie at the vertices.

For a point p in the view frustum, we compute wi by replac-

ing z in Eq. 2 with p · v, where v is the view vector. We set

resi = 1. For the LSPSM or TSM algorithms, we transform

p into light space to get x and z and compute wlx, and wlz

from Eqs. 3 and 4 with the resolution terms set to 1. We then

compute mx and mz at the vertices and take the maximums

over the vertices, Mx and Mz. From these we get S̄ = MxMz.

Figures 7 shows S̄ over the entire hemisphere of light di-

rections above a viewer with and without warping (n′ = ∞
and n′ = n′LSPSM , respectively). Without warping, the error

is high over all light directions. With warping the error is

lowest for the overhead position at the center of the plot.

It is highest when the light comes from directly behind or

in front of the viewer. From these light directions, the view

frustum appears to be square. Since it does not have a trape-

zoidal shape, no warping can be performed. For this reason,

PSMs, LSPSMs, and TSMs all revert back to an orthogonal

projection with n′ = ∞ for these light directions.
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Figure 7: Storage factor. These plots show the storage factor over the hemisphere of light directions above the viewer. The

storage factor is directly related to maximum perspective aliasing error over the view frustum. The overhead direction is at the

center of the plot and behind and in front of the viewer are on the left and right sides, respectively. The plots use a log10 scale.

(a) (b)

Figure 8: Face partitioning. (a) From behind, the view frus-

tum is square and cannot be warped. (b) Partitioning along

the faces allows warping to be used. z-partitioning may also

be applied to face partitions.

5. Frustum partitioning

In this section we show how partitioning the view frustum

and applying a separate shadow map to each partition can

reduce perspective aliasing error. We consider two types of

partitioning: face partitioning, which splits the frustum ac-

cording to its faces, and z-partitioning, which splits the view

frustum along its length.

5.1. Face partitioning

Face partitioning has been suggested as a way to reduce error

for a light directions that are nearly aligned with the view di-

rection [For03,Ald04]. From these directions, the view frus-

tum has a square shape that is not amenable to warping with

a perspective projection. The solution is simply to partition

the frustum according to its faces (see Figure 8). The parti-

tions are defined by the planes passing through the edges of

the faces and the light (which is at infinity for a directional

light). Each of the resulting trapezoidal partitions can then

be warped independently, greatly reducing the error. Figure

7 shows how face partitioning reduces the error for the prob-

lematic light/camera configurations and leads to a more uni-

form error distribution over all light directions.

We use the LSPSM algorithm to fit a warping frustum to

light direction

0 n f

eye
2ș

f   ¼

z

y

n
n( ) f   ¾

n
n( )f   ½

n
n( )

Figure 9: z-partitioning. Choosing the partitioning where

the partitions are self-similar makes the error the same in

each partition and minimal over all possible partitionings.

face partitions. The normal algorithm uses the view vector

to align the light space z axis. For face partitions we first

project the vectors from the viewpoint through the two side

edges of the face, e0 and e1, into a plane perpendicular to

the light direction to obtain e′0 and e′1. We use the bisector

of the projected edge vectors e′0 +e′1 to align the z axis. This

ensures that the light beams have a cross-section that is as

square as possible.

Which faces to use for partitioning depends on the direc-

tion of the light. The goal of warping is to eliminate per-

spective aliasing by ensuring that light beams are as wide

as possible, but no wider than the narrowest image beams

they intersect as they traverse the view frustum. The narrow-

est images beams are those first encountered by a light beam

when v ·y < 0, where v is the view vector. Therefore the front

faces of the view frustum with respect to the light should be

used in this case. Likewise, when v · y > 0 the narrowest im-

age beams are encountered when the light beam exits the

view frustum, so the back faces should be used.
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5.2. z-partitioning

z-partitioning schemes [TQJN99], sometimes referred to as

cascaded shadow maps, split the view frustum into smaller

frusta along the eye space z-axis. z-partitioning is motivated

by the fact that projective transforms, like the perspective

transformation, can only approximate the optimal shadow

map parameterization. The optimal parameterization for an

overhead directional light should produce light beams with

widths wlz proportional to z. Projective transforms can only

generate light beam widths that are proportional to (z+c0)
2,

where c0 is a constant (see Appendix A). Since (z+c0)
2

≁ z,

the best we can do is a piecewise approximation.

The choice of partition locations affects the errors in each

partition. We can see from Eq. 12 that the storage (and thus

the error) grows with f /n. To minimize the maximum er-

ror over all partitions, we should therefore minimize f /n for

each partition and ensure that the maximum error of each

partition is the same. This can be accomplished by making

the partitions self-similar as shown in Figure 9. The near and

far planes of each partition i ∈ {1,2, ...,k} are given by:

ni = n

(

f

n

)(i−1)/k

, (15)

fi = n(i+1) = n

(

f

n

)i/k

. (16)

A warping frustum is then fit to each partition separately.

Seams. If we render the image using a shadow map with sub-

critical resolution, some perspective aliasing may be visible.

The more abrupt the change in local aliasing error is between

adjacent partitions, the more noticeable the seams between

them will become. Using n′ = n there is no change in x error

at a seam, but the change in z error is very large. With n′ =
n′LSPSM there is no change in z error at a seam, and the change

in x error is typically less drastic than that of n′ = n. For this

reason we use n′ = n′LSPSM .

Combining with face partitioning. z-partitioning can be

performed on face partitions for the frustum sides as shown

in Figure 8. There is no need to partition the near plane be-

cause the image beam widths are constant along this face. In

fact, for high depth ratios, the near plane is very small and

can be left out altogether. By stretching the sides slightly the

near plane be covered with only a slight increase in error.

If the resolution of the shadow map is not sufficiently

high, changing the partitioning scheme from frame to frame

can cause disturbing popping. For example, if we increase

the number of z-partitions for light directions with fewer face

partitions, there will be an abrupt shift in the distribution of

aliasing error. In general, it is best to use the same partition-

ing scheme for all light directions to avoid popping.
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Figure 10: Storage factor for varying number of z-

partitions for light overhead. The storage factor is an ag-

gregate measure of x and z error. This plot shows the stor-

age required for a varying number of z-partitions k. As k

increases, the storage factor approaches that of the optimal,

logarithmic parameterization.

5.3. Analyzing frustum partitioning

To analyze the effects of each type of partitioning on aliasing

error we consider two light directions relative to the viewer:

light overhead, and light behind.

Light overhead. The storage factor S̄ for z-partitioning (ZP)

as a function of the number of partitions, k, is computed by

plugging the partition locations from Eqs. 15 and 16 into Eq.

12. There are k shadow maps for k partitions, so the storage

factor is also multiplied by k. With no warping (n′ = ∞) the

storage factor is:

S̄
ZP

overhead = k( f /n)1/k

(

( f /n)1/k −1
)

2tanθ
. (17)

Warping (W ) with n′ ≤ n′LSPSM removes the ( f /n)1/k factor:

S̄
ZP+W

overhead = k

(

( f /n)1/k −1
)

2tanθ
. (18)

Face partitioning (FP) gives no benefit over warping alone

for a light overhead, since only one face is visible to the light:

S̄
FP+ZP+W

overhead = S̄
ZP+W

overhead . (19)

Wimmer et al. [WSP04] showed that the optimal parameter-

ization for an overhead light is logarithmic. Extending their

analysis yields the optimal storage factor:

S̄optimal =
ln( f /n)

2tanθ
.

(see Appendix C for derivation). Figure 10 shows that as k

increases, S̄ ZP+W
overhead approaches the optimal storage factor.

Light behind. Figure 11 shows the view frustum as seen

from a light behind the viewer. A ZP scheme cannot use
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n

f

2n 2f

Figure 11: View frustum as seen by the light behind the

viewer.

warping because the view frustum is square. A critical res-

olution shadow map will have the same texel spacing as the

image. Therefore the storage factor is simply the ratio of the

area covered by the shadow map to the area covered by the

image:

S̄
ZP

behind =
(2 f )2

(2n)2
= ( f /n)2

with k = 1

= k( f /n)2/k
with k ≥ 1. (20)

If we add frustum partitioning, we can use warping, but we

must use a shadow map for each of the side faces. In addition

we need to add in the near plane, for which the storage factor

is 1. The storage factor becomes:

S̄
FP+ZP+W

behind = 4S̄
ZP+W

overhead +1, with θ = 45
◦. (21)

The render time for these algorithms is related to the

number of shadow maps. We want to choose a partition-

ing scheme that will give us the greatest error reduction

for the fewest number of shadow maps. Figure 12 shows

ZP, ZP + W , and FP + ZP + W for a varying number of

shadow maps. Even ZP without warping does better than

FP + ZP +W in the overhead case. Since we must use a

fixed number of z-partitions over all light directions in order

to avoid popping, the FP + ZP +W scheme gets only one

z-partitioning for every four shadow maps. For large values

of ( f /n) we have:

S̄
ZP

overhead ∼ j( f /n)2/ j
(22)

S̄
FP+ZP+W

overhead ∼ j( f /n)4/ j, (23)

where j is the number of shadow maps. The storage factor

decreases more rapidly for ZP than for FP + ZP +W as the

number of shadow maps increases.

With the light behind, the error for ZP schemes decreases

rapidly and then begins to grow slowly. This growth is

caused by the significant amount of overlap of the shadow

maps that occurs with this light direction. The FP+ZP+W

scheme has very little overlap and as the number of shadow

maps increases, it eventually has lower error than the ZP

schemes. Figure 13 shows where the cross over occurs be-

tween the two schemes.

Based on our analysis, we believe that z-partitioning with

warping (ZP +W ) is the best scheme to use for rendering

shadows with a low number of shadow maps in scenes with
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Figure 12: Storage factor for varying number of shadow

maps. The storage factor is shown for the light overhead and

behind the viewer for various combinations of z-partitioning

(ZP), face partitioning (FP), and warping (W). (View frus-

tum parameters: f /n = 1000 and θ = 30◦)
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Figure 13: Lowest error for light behind. This graph shows

the parameter values for which the z-partitioning (ZP, ZP+
W) schemes and face partitioning (FP + ZP +W) yield the

lowest error. z-partitioning is the best scheme for high depth

range with few shadow maps.

a high depth range. Most of the benefit comes from the par-

titioning. If we consider all light directions, the maximum

error is not affected much by the warping because it can-

not be used when the light direction is aligned with the view

vector. However, warping does reduce the average maximum

error. This is similar to the difference between warping and

no warping seen in Figure 7. Also the effect of warping is

diminished with an increased number of partitions because

the depth ratio of each partition decreases.

The analysis in this section is for only two light directions.

Closed form expressions for the error in the general case are

difficult to formulate because of the complex operation of

fitting a warping frustum with varying parameters to an ar-

bitrarily oriented view frustum. To get an idea of how the

general case compares to the special cases we have treated

here, we computed the maximum S̄ over all light directions

numerically using a dense sampling of light directions on
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the hemisphere. For all combinations of warping, partition-

ing, and number of partitions, we found that the worst case S̄

was within a factor of 2–3 times of that which we computed

analytically for the light behind case.

6. Implementation

This section addresses a few implementation details for par-

titioned shadow maps.

6.1. Shadow map texture layout

As the light moves relative to the camera, the number of

faces used for frustum partitioning will change. The sizes

of the partitions will also shrink and grow. The dimensions

of the corresponding shadow maps should change accord-

ingly. Some graphics hardware may not be optimized to han-

dle texture dimensions that change every frame. In this case,

the shadow maps can be packed into a fewer number of fixed

size textures.

6.2. Rendering multiple shadow maps

Partitioning requires that multiple shadow maps be rendered.

For applications where shadow map rendering is fill bound,

performance should not be impacted much. Partitioning will

consume the about same amount of fill-rate as a single,

warped shadow map.

If the entire scene is rendered for each shadow map and

the application is geometry bound, then rendering k shadow

maps will be k times slower than rendering only one. If in-

stead we cull portions of the scene that fall outside of each

shadow map’s partition, then the overall performance will

not change as much. Geometry bound applications typically

perform view-frustum culling already, so the same mecha-

nism used for that can be extended for use with partition

culling.

6.3. Rendering the image with multiple shadow maps

The final image can be rendered one partition at a time, with

all partitions in a single pass, or in multiple batches of par-

titions. The multi-pass algorithm can use clip planes or the

stencil buffer to restrict rendering to a single partition while

rendering with a single shadow map. Our current implemen-

tation of partitioned shadow maps performs the rendering

in a single pass. Though dynamic branching in a fragment

program could be used to select the proper shadow map,

we use an approach that works on older GPUs. We track

a set of texture coordinates for each partition. We pack all

of the shadow maps into a single texture and use a frag-

ment program to choose the appropriate set of texture coor-

dinates for each fragment. For z-partitioning with four parti-

tions we store the location of the partitions in two variables

ni= (n1,n2,n3,n4) and fi= ( f1, f2, f3, f4). For each frag-

ment we compute a mask that is 0 in every component but

the one which corresponds to the partition in which the frag-

ment lies:
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Figure 14: Render times for St. Matthew model. Culling

occluders that do not lie in each partition (SM cull) leads

to faster shadow map render times than with no culling (SM

no cull). The steps in image render time at 2 and 5 shadow

maps are due to changes in the fragment program. We get

from 25–75 FPS for this view, depending on the number of

shadow maps.

z = dot(fragment.pos, cameraZAxis);

mask = (ni < z) & (z < fi);

texCoord = mask.x * texCoord0 +

mask.y * texCoord1 +

mask.z * texCoord2 +

mask.w * texCoord3;

The texCoord variable can then be used to sample the ap-

propriate shadow map. For face partitioning we use a similar

method as described by Aldridge [Ald04].

6.4. Depth clamping for increased depth resolution

A common problem with shadow map warping is the loss

of depth precision. When the warping frustum is expanded

to include all objects that occlude the view frustum, it can

become very elongated, leading to a loss of depth preci-

sion. We note that depth values are only needed for occlud-

ers within the view frustum. It is sufficient to clamp the

depth of occluders between the view frustum and the light

to zero [BAS02]. The warping frustum need only be fit to

the view frustum. In practice, the warping frustum may need

to be expanded slightly for depth biasing to work correctly.

7. Results and discussion

We have implemented several warping and z-partitioning al-

gorithms on a GeForce 7800 GTX. We tested our system

on a game-like scene consisting of 15 airplanes (Figure 15),

each of which consists of 18K triangles. We also integrated

our system with a view dependent renderer [YSGM04] and

tested it with a power plant model consisting of 13M trian-

gles (see Figure 1) and the St. Matthew model consisting of

350M triangles. These models have a high depth range and

are therefore very susceptible to perspective aliasing error.

Figure 14 shows the time to render the image and a vary-

ing number of shadow maps for the St. Matthew model. The

view-dependent renderer reduces this to about 1M triangles
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Figure 15: Various warping and partitioning schemes. These image show the difference in quality using warping (W) with a

single shadow map (left), face partitioning (FP +W) (middle), and z-partitioning (ZP4 +W) (right). The shadow map texel

grid is projected onto the scene with grid lines 5 texels apart. Each image is 1K × 1K and uses a total for 1K × 1K texels for

the shadow maps. FP+W uses 3 shadow maps for this view while ZP4+W uses 4. The frame rates from left to right are 143,

115, and 107 fps. ( f /n = 500)

per frame. As expected, the shadow map rendering increases

linearly with the number of shadow maps. Partition culling

improves shadow map rendering performance.

One disadvantage of warping algorithms is that the

shadow map alignment depends on the view and the light. In

an animation this can cause the shadow edges to crawl. One

version of cascaded shadow maps solves this problem by us-

ing a ZP scheme and orienting the shadow map with respect

to a fixed vector in world space [Blo04]. This fixes the loca-

tion of the texels boundaries for a particular light direction.

As the view frustum moves, the shadow map is permitted to

move only in increments of a shadow texel, eliminating the

crawling.

Conclusion and Future Work

We have presented a technique for analyzing shadow map

warping and partitioning algorithms. For a warping frustum

oriented perpendicular to the light, We show that a range of

warping parameters corresponding to several previous warp-

ing algorithms are equivalent. We also show that a combina-

tion of z-partitioning and warping can deliver low aliasing

error with a small number of shadow maps.

We have shown that face partitioning is not as useful for

rendering shadows with a small number of shadow maps. If

we could use the optimal logarithmic parameterization, how-

ever, we would only need 4 shadow maps. We would like

to investigate further the use of the logarithmic parameter-

ization. We would also like to extend our analysis to point

lights.
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Appendix A

A parameterization t(z) using a general projective transform

on z is given by:

t =

[

a b

c d

][

z

1

]

=

[

az+b

cz+d

]

After the perspective divide we have:

t =
az+b

cz+d

dt

dz
=

ad −bc

(cz+d)2

A texel sized step in t results in a step in world space that

is proportional to dz/dt = 1/(dt/dz). Thus the light beams

generated by a projective transform have spacing propor-

tional to (z+ c0)
2, where c0 is a constant.

Appendix B

We define η based on the behavior of z error shown in Figure

5. We note that as n′ approaches n′ = n′LSPSM from n′ = ∞,

the maximum error over the whole frustum (Mz) occurs at

the near plane, moving from its highest value towards its

lowest value. As n′ continues from n′ = n′LSPSM down to

n′ = n, the maximum error switches to the far plane and

moves back up to it highest value again. We map η = −1

to maximum Mz on the near plane, η = 0 to minimum Mz,

and η = 1 to maximum Mz on the far plane. Mz is linearly

interpolated between these values:

η =







Mz(n
′

LSPSM)−Mz(n
′)

Mz(∞)−Mz(n′LSPSM)
n′ > n′LSPSM

M(n′)−M(n′LSPSM)
Mz(n)−Mz(n′LSPSM)

n ≤ n′ ≤ n′LSPSM

We arrive at Eq. 11 by solving this equation for n′.

Appendix C

The warping frustum of the optimal shadow map parame-

terization for an overhead directional light is identical to the

view frustum, like PSMs. Therefore mx = 1/ress. In the z

direction the light beam widths wlz should be proportional

to z. From Eq. 4 we see that this implies that dz/dt ∼ z. We
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solve for t by integrating dt/dz = 1/z over the view frustum

and normalizing the result to the range [0,1]:

t̃ =
∫ 1

0
dt =

∫ z

n

dt

dz
dz =

∫ z

n

1

z
dz = ln(z/n)

t =
t̃(z)

ln( f )− ln(n)
=

ln(z/n)

ln( f /n)
.

From this we can compute wlz and mz:

wlz =
1

rest

dz

dt
=

1

rest
z

log( f /n)

n

mz =
wlz

wi
=

1

rest

ln( f /n)

2tanθ

Both mx and mz are constant over the view frustum. The

value of S̄ is found by setting the resolution terms to 1:

S̄ =
ln( f /n)

2tanθ
.
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