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Navier-Stokes Equations for 
Fluid Simulation on the GPU



Navier-Stokes Equations

Macroscopic behaviors of incompressible fluids
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Notation—Vector Calculus



Derivation of Navier-Stokes Equations

Eq. 1: conserve mass
The integral over the mass of the fluid = constant, 
and the density is constant
So the amount of flux = 0, therefore the flux in 
each small area = 0
By divergence theorem, flux density is div(u)
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Derivation of Navier-Stokes Equations

Eq. 2: conserve momentum

Newton’s second law: 
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Derivation of Navier-Stokes Equations

There are two kinds of acting forces
Body force: given by the force density per unit 
volume f(x, t)

Surface force (e.g. pressure):  represented by 
stress tensor σ
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Derivation of Navier-Stokes Equations

Transport theorem

So Newton’s second law says (here f=ρu)
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Derivation of Navier-Stokes Equations

So the equation depends on the stress tensor
For viscous fluids, σdepends on pressure 
and internal friction

Some applications also include boyancy in σ
For more detail, see [Griebel et al. 98]
Finally we have
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in the momentum



Helmholtz-Hodge Decomposition
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Decomposes a vector field w into a divergence-free 
vector field u and another gradient field
Define an operator P such that P(w) = u

Project any vector field to its divergence-free part
P(gradient field) = 0
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Helmholtz-Hodge Decomposition

Apply P() to both sides of (2), we get

Since P(u) = u and P(del(p)) = 0
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Outline of Solution

Start from the solution of previous time step (t) and 
add each term on the right hand side of Eq.4, and 
them perform the projection to satisfy Eq.1

w can be stored in one RGBA texture
2D case: 2D texture using 2 channels
3D case: 3D texture using 3 channels
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Storage

2D example:



3D Textures vs. Flat 3D Textures

According to [Harris 03], flat 3D textures have 
performance advantage over true 3D textures 
on current graphics hardware



External Force
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An approximation over the time step ∆t
Easy to implement on GPU once we have w0 and f
as input texture

For each cell (fragment), lookup textures w0 and f and add 
them.



Advection [Stam 99]
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Advection

When p(x, ∆t) is between the 
grids, interpolate it
Can also be easily done on 
GPU, for each cell,

w1 as input texture
Compute p(x, ∆t) in fragment 
shader
Perform 4 texture look-ups on 
w1 and interpolate

Use built-in function in Cg, 
f4texRECTbilerp()



Diffusion [Stam 99]
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Projection to Divergence-Free Vectors

Solve for q and subtract it from w3
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Poisson Equation as Linear System

So the key to solving N-S equation is solving the 
Poisson equations
For example, one-dimensional version:

Discretize the space into N+1 grids
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Poisson Equation Solvers

It can be extended to 2D or 3D
TN, TNxN, TNxNxN are symmetric banded matrices
Direct methods to solve linear systems: O(N3) time

impossible for 2D or 3D cases

Need iterative methods
Please refer to previous lectures on linear algebra and 
banded matrices [Sashi, Suddha]
Conjugate gradient [Krüger and Westermann 03], [Boltz et 
al. 03]
Multigrid [Boltz et al. 03]: O(N) time for N samples



Poisson Equation as Linear System

It can be shown that [Demmel 97]

Truncation error approaches zero proportional to h2

But the condition number of TN is [Demmel 97]

Larger N makes the system more sensitive to FP errors
Remember: only 32-bit floating point numbers on GPU
N should be large enough, but not too large
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Boundary Conditions

To solve the Poisson equation, we still need 
boundary values that satisfy boundary 
conditions

No-slip condition: velocity goes to zero at the 
boundaries

Resolution of boundary is limited by the size 
of grids



Boundary Conditions

The boundary lies on the edge between the 
boundary cell and its nearest interior cell

Assign imaginary velocity value to boundary cells 
so that the average of itself and its nearest interior 
cell should satisfy the condition
For example, on the left side,
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Boundary Conditions

To update the boundary cells after solved the 
velocity field:

Draw lines on the boundary
In the shader: lookup texture u at the coordinate 
of nearest interior cell and return the negative of 
the value.

Arbitrary boundaries is complicated
For each boundary cell, need to determine the 
direction of the face
More computation in the shader, more lines



Results [Krüger and Westermann 03]

1024x1024, 
13 fps

1024x1024, 9 
fps



Performance

The performance should be governed by the 
Poisson solver since other parts require little 
effort
[Krüger and Westermann 03] reported a 2D 
N-S equation solver has 9 fps on a 10242 grid

using P4 2.8GHz with ATI 9800 graphics card
but did not compare with performance on CPU



Results [Harris et al. 2003]

128x128 grid, 30 fps



Performance [Harris et al. 2003]

[Harris et al. 2003] reported 3D cloud 
simulation results on Geforce FX Ultra

32x32x32: 27 iterations per second
64x64x64: 3.6 iterations per second

(I’m not sure if they include rendering time)
Not compared to CPU
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Lattice Boltzmann Method for 
Fluid Simulation on the GPU



Two Different Strategies

Top-down: solving differential equations by 
discretizing the space

Be aware of truncation error when using finite 
difference!
Navier-Stokes equations

Bottom-up: start from a discretized
microscopic model that conserves desired 
quantities

Lattice Gas Automata, Lattice Boltzmann Model



Lattice Boltzmann Model

Simulate microscopic behaviors of particles
Streaming: each particle moves to the nearest 
node in the direction of its velocity
Collision: particles arriving at a node interact and 
change their velocity directions

Averaged microscopic properties obey the 
desired macroscopic properties (conservation 
of mass and momentum)



Lattice Geometry—D3Q19



Lattice Gas Automata

The space is divided into a lattice of nodes 
with particles resides on them
Each node has a set of directions of velocity

ei, i = 0, 1, …, M
Each velocity vector is coupled with a 
boolean variable

ni(x, t), i = 0, 1, …, M
x: location of the node; t: time
true iff there is a particle moving in this direction



Lattice Gas Automata

At each time step, evolve each node with

Streaming: each particle moves to the nearest 
node in the direction of its velocity
Collision: particles arriving at a node interact and 
change their velocity directions

No more than one particle is allowed in a node with 
a given velocity

43421321
collisionstreaming
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Lattice Boltzmann Method (LBM)

Now replace the particle occupation variables 
ni with single-particle distribution functions

fi = <ni>
The density of particles that have a given velocity



Lattice Boltzmann Equations (LBE)

increments space and  time: and 
collision from resulting  of change                            

of rate  therepresentshich operator wcollision  :)),((
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Discretized space is consistent with the equation
The nearest neighbors of x are x + ei, i = 0, 1, …, M



Lattice Boltzmann Equations (LBE)

The density and momentum density of a 
node are

So we can compute velocity field u
Ωi is required to satisfy conservation of total 
mass and total momentum at each node
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Two-Step Update of LBE

How to compute the collision term?
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Collision

The distribution function fi can be expanded 
about the local equilibrium distribution 
function fieq, which satisfies

fieq only depend on ρ and u
Equilibrium means that forces in all directions are 
balanced
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Collision

The nonequilibrium (“unbalanced”) part is 
resulted from collision

How to find fieq?
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Equilibrium Distribution Function

Bhatnager, Gross, Krook (BGK) model [Wolf-
Gladrow 2000]
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Boundary Condition

For simple boundary (box aligned with axes), 
the “bounce-back” method we mentioned 
before is enough
For arbitrary boundary, LBM becomes easier 
than N-S based methods since the vectors 
are fixed to a certain directions

f for boundary nodes can be interpolated



Arbitrary Boundary [Mei et al. 2000]

Boundary nodes are given a imaginary f
value so that the interpolated value at the 
boundary satisfies the no-slip condition
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The packet distribution at xf is streamed 
from xb, so we need to define an 
imaginary distribution for xb



Arbitrary Boundary [Mei et al. 2000]

Post-collision value of fi(xb, t) is
Velocity of 

the wall

Constant 
determining 

viscosity



GPU Implementation [Li et al. 2003]

Flow chart



GPU Implementation—Storage 

Group the distribution functions into arrays 
according to their velocity vectors

Also density, velocity, and equilibrium distribution



GPU Implementation—Storage

To exploit 4 channels, pack four arrays into 
one texture
For 3D case, the volume is treated as slices 
of 2D textures 

Flat volume, [Harris et al. 2003]



GPU Implementation—Collision & 
Streaming

Collision term is computed from texture uρ
and added to textures f0-f4
Streaming: fetch neighboring texels and copy 
the corresponding f

fi
new (x)= fi(x-ei)

For example, f new
(1, -1, 0)(x) = f(1, -1, 0)(x-(1, -1, 0))



GPU Implementation—Boundary

To handle the complex boundary, we need to 
compute the intersections of boundary 
surface with all the lattice links

For moving or deformable boundary, the 
intersection changes dynamically

Create voxelization for boundaries by 
rendering the scene several times with 
different near and far clipping planes

Boundary is sparse in the entire scene, thus does 
not need too many passes

Clipping 
plane



GPU Implementation—Boundary

When rendering the boundary voxels, apply 
the fragment shader to compute boundary 
conditions

We still need 

Each boundary distribution will have the velocity 
vector crossing the boundary surface
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Boundary

Suppose the boundary surface is defined by 
Ax + By + Cz + D = 0 [(A, B, C) is normalized]

Define

Each ei has its own flags
Need to make sure that each boundary node 
is covered by a fragment, so that boundary 
condition is computed for all boundary nodes
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Boundary

Three passes to cover boundary cells
First pass—just render the voxels
Second pass—only R and G channels are 
updated, ei is the vector corresponding to R 
channel, translate all voxels and render, with 
translation offsets decided by the rule:
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Boundary

Third pass—similar to second pass, but only B and 
A channels are updated, and ei is the vector 
corresponding to the blue channel
All boundary nodes will be covered by the voxels

Note that each pass will check for all four textures f0~f4
During the passes, compute in the fragment shader

If 1>=∆>=0, the voxel is a boundary node, and the 
boundary condition is computed for the voxel
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11
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Boundary

•The vectors in R and B 
channels are 
perpendicular

•Vectors in R is opposite 
to vectors in G;

•Vectors in B is opposite 
to vectors in A

ei

ei

ej
Ax+By+Cz+D=0

(A, B, C)

Flag1 < 0

Flag2 > 0

Flag1 < 0

Flag2 < 0

Flag1 > 0

Flag2 > 0

Flag1 > 0

Flag2 < 0

Outside voxels moves 
inward in passes 2 & 3

Inside voxels moves 
outward in passes 2 & 3

ej
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Results [Li et al. 2003]



Performance—2D [Li et al. 2003]

•0.16 seconds per frame on 
1024x1024 cell, including 
simulation and visualization

•[Kruger and Westermann 03] 
claimed 0.11 seconds per 
frame, but they did not deal 
with complex boundary

•Hardware used: P4 2.53 
GHz, 1GB PC800 RDRAM 
with GeForce FX 5900 
Ultra (256MB DDR RAM)



Performance—3D [Li et al. 2003]

•[Harris et al. 2003] 
reported 0.28 
sec/iteration on 
64x64x64 grids
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Li, W., Fan, Z., Wei, X., and Kaufman, A. GPU-Based Flow 
Simulation with Complex Boundaries. Technical Report 031105, 
Computer Science Department, SUNY at Stony Brook. Nov 2003.
Chen, S. and Doolean, G. D. Lattice Boltzmann Method for Fluid 
Flows. Annu. Rev. Fluid Mech. 30, 329-364. 1998.
Wolf-Gladrow, D. A. Lattice-Gas Cellular Automata and Lattice 
Boltzmann Models: An Introduction. Springer-Verlag. 2000.
Mei, R., Shyy, W., Yu, D., and Luo, L.-S. Lattice Boltzmann Method 
for 3-D Flows with Curved Boundary. Journal of Comp. Phys. 161, 
680-699. 2000.



Summary and Comparison

Navier-Stokes and LBM can be used to 
simulate fluids, and they are both 
parallelizable

Solving Poisson equations can be a bottle neck 
for N-S based methods (need more passes for 
iterative refinement)
N-S based method relies on numerical 
accuracy more than bottom-up methods

Sensitivity of linear systems can be critical
No double precision on current GPUs may become 
a major problem for large scale simulation



Summary and Comparison

Current work using N-S on GPUs only deal 
with simple boundary, while LBM on GPUs
can deal with complex boundary

LBM is easier for this because each node only 
have a set of vector directions

LBM has advantage of complex boundary 
and numerical sensitivity



Future Work

Simulation and visualization of liquid surface 
are still not solved on GPUs

Can we solve for isocontour of liquid grids on the 
GPU??
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