
Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Linear Algebra on
GPGPUs - II

Suddha Kalyan Basu

Comp 790-058 (Class Lecture)

February 28, 2007 Image: Kolman and Hill, Introductory Linear Algebra, 8th

edition

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Outline

1 Recap

2 Memory Requirements in Balanced Architectures

3 Sparse Matrix Representations on GPUs
Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

4 Conclusions and Summary

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Outline

1 Recap

2 Memory Requirements in Balanced Architectures

3 Sparse Matrix Representations on GPUs
Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

4 Conclusions and Summary

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Recap from last lecture..

Why Linear algebra on GPUs.
Parallelizable operations
High GPU performance in parallel and streaming
computations.

Matrix Multiplications.
CPU and GPU-friendly methods.

GPU programming
CUDA - access to shared memory, block threading.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Outline

1 Recap

2 Memory Requirements in Balanced Architectures

3 Sparse Matrix Representations on GPUs
Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

4 Conclusions and Summary

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Balanced Architectures

Processing Elements (PEs) are characterized by the
following:

Computational bandwidth (C)
I/O bandwidth (IO)
Size of local memory (M)

Balanced PE
A PE is balanced if the I/O time equals computation time.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Balanced Architectures

Processing Elements (PEs) are characterized by the
following:

Computational bandwidth (C)
I/O bandwidth (IO)
Size of local memory (M)

Balanced PE
A PE is balanced if the I/O time equals computation time.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Challenges

Making use technological advances such as high
computational bandwidth of CPUs, high I/O bandwidth of
GPUs.
Keeping architectures balanced.

NC

C
=

NIO

IO

NC , NIO are the total number of operations and word
exchanges for a computation, respectively.

If C/IO increases by α (as when using an array of PEs),
NC/NIO must also increase by the same ratio.
NC/NIO is often a function of the size of local memory M .

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Challenges

Making use technological advances such as high
computational bandwidth of CPUs, high I/O bandwidth of
GPUs.
Keeping architectures balanced.

NC

C
=

NIO

IO

NC , NIO are the total number of operations and word
exchanges for a computation, respectively.

If C/IO increases by α (as when using an array of PEs),
NC/NIO must also increase by the same ratio.
NC/NIO is often a function of the size of local memory M .

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Matrix Multiplication

Multiply two matrices A and B, each of size N ×N . Local
memory size is M .

Multiply a
√

M ×N submatrix of A with N ×
√

M .
Compute

√
M ×

√
M submatrices of the product matrix.

NC = Θ(N ·M)
NIO = Θ(N ·

√
M)

NC

NIO
= Θ(

√
M)

If NC
NIO

increases by α, M has to increase by a factor of α2.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Matrix Multiplication

Multiply two matrices A and B, each of size N ×N . Local
memory size is M .

Multiply a
√

M ×N submatrix of A with N ×
√

M .
Compute

√
M ×

√
M submatrices of the product matrix.

NC = Θ(N ·M)
NIO = Θ(N ·

√
M)

NC

NIO
= Θ(

√
M)

If NC
NIO

increases by α, M has to increase by a factor of α2.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Grid Computations

Consider a grid of dimension d, size Nd. Every grid cell is
updated with the weighted average of cells in a surrounding
window. An array of PEs to perform grid operations, each
having memory of size M . Let l = M1/d.

Local memory stores a l × . . .× l subgrid.
I/O fetches the neighboring elements at boundaries. Size
of boundary is ld−1.

NC = Θ(ld) = Θ(M)
NIO = Θ(ld−1)
NC

NIO
= Θ(l) = Θ(M1/d)

If NC
NIO

increases by α, M has to increase by a factor of αd.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Grid Computations

Consider a grid of dimension d, size Nd. Every grid cell is
updated with the weighted average of cells in a surrounding
window. An array of PEs to perform grid operations, each
having memory of size M . Let l = M1/d.

Local memory stores a l × . . .× l subgrid.
I/O fetches the neighboring elements at boundaries. Size
of boundary is ld−1.

NC = Θ(ld) = Θ(M)
NIO = Θ(ld−1)
NC

NIO
= Θ(l) = Θ(M1/d)

If NC
NIO

increases by α, M has to increase by a factor of αd.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

More Results

FFT:
Mnew = (Mold)α

Matrix Triangularization:
Mnew = α2Mold

Sorting:
Mnew = (Mold)α

Matrix-vector Multiplication, solving triangular linear
systems:
Not possible - system cannot be rebalanced merely by
increasing the memory size of PEs.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Implications for Parallel Architectures

Comparing memory requirements of an architecture with
single-PE and one with an array of p PEs.
Computational power of the new system is p times that of
the old one.
To maintain a balanced architecture, the parallel system
must have a larger local memory than the single PE in the
original system.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

1-D Array of Processors

merge we maintain a heap of M elements which are the first

elements of the current M ~rted lists. -The heap can be imple-

mented in a memory of size O (M), and for each I/O operation to

the heap there are O(Iog2M) comparisons to be performed.

Therefore for both phases, we have

c ~ = o (log 2 u)
c~

Like the IFI" case, this implies that for sorting,

M,~ = (Mota) a. (5)

Using an information-theoretic argument, it is easy to show

[9] that the result of (5) is the best' possible among all sorting

methods, as far as minimizingMn~is concerned.

3.6. I / 0 Bound Computations

All the computations considered so far have been computation

bound, in the sense that computation takes more operations than

I/O in order of magnitude. Computations that are not computa-

tion bound are called//O bound. Matrix-vector multiplication

and solution of triangular linear systems are examples of l/O

bound computations. For I/O bound computations, after an

increase of ClIO for a PE, there is no way to rehalance the PE by

merely enlarging its local memory without increasing 10. The

reason is that for these computations, inputs and intermediate

results are not used more than a constant number of times on the

average, so having a local memory to buffer data will not reduce

the overall I/O requirement of the PE after the size of the

memory exceeds certain constant.

4, Classifying Computations by their
Memory Requirements

The results summarized in the beginning of Section 3 sugsests a

classification of computations in terms of their memory require-

ments in achieving balanced architectures.

Consider, for instance, scientific computing. It typically involves

matrix triangularization, matrix multiplication, grid computations

of various dimensionalities, and also sparse matrix operations that

have relatively high I/O requirements. Therefore in view of the

results of Section 3, it is reasonable to classify scientific comput-

ing as a set of computations with the property:

M ~ > a2Mdd. (6)
Thus for scientific computing, if the computational bandwidth of

a PE is increased by a factor of a relative to its I/O bandwidth,

then the size of the PE's local memory must be increased by s

factor of at least a 2. When properties like (6) are explicitly stated

for targeted computations, we will be able to evaluate architec-

turea analytically as shown in the next section.

5. Implications for Some Parallel Computer
Architectures

In this ,section, we consider designing mesh-connected parallel

computers for computations for which (6) holds.

On a parallel computer, a computation that is usually performed

by one PE in a conventional serial machine is carried out by a

collection of, say, p PEs. We can view this collection ofp PEs as a

new processing element that has p times as much computational

bandwidth as the old PE. With this viewpoint, parallel processing

is just a particular method of increasing the computational

bandwidth of a PE. Therefore our methodology of rebalancing a

PE by increasing the size of its local memory applies directly to

parallel architectures. This is shown in the following subsections.

5.1.1 -dimensional Processor Array

We want to use p linearly connected PESto perform computa-

tions that were formerly done by a single PE, as depicted in

Figure 5-1.

Before: 1 PE Now: p PES

Figure 5-1: Using p PEs to perform computation formerly

done by one PE

The collection of p PEs can be viewed as a "new processing

element" that has p times .as much computational b~ndwidth as

the original PE. The I/O bandwidth of this "new processing

element" is the same as that of the original PE, as only the two

boundary PEs in the PE collection can communicate with the

outside world. Therefore with respect to this "new processing

element", the ClIO is increased by a factor of a =p. This implies

from (6) that the "new processing element" should have a total of

at least/~ times as much local memory as the original PE. That is,

in the parallel arrangement, each PE should have at least p lhnes

as much local memory as the original PE. This translates to the

following result:

When using an array of linearly connected PEs for

computations for which (6) holds, the size of each

PE's local memory should grow at least linearly with

the number of PEs in the array, to keep the array

balance~

5.2.2-dimensional Processor Array

We want to use pxp 2-dimensioually connected PEs to perform

computations that were formerly done by a single PE, as il-

lustrated in Figure 5-2.

We assume that only the 4p-4 PEs on the boundary of the

processor array can communicate with the outside world, By

arguments .similar to those used for the case of 1-dimensional

processor array above, the computational and I/O bandwidths of

this 2-dimensional array of PEs are p2 and p times larger than

52

Cnew = p · C
IOnew = IO

Cnew/IOnew = p · (C/IO)

For scientific computations like matrix multiplication, grid
computation and triangularization, Mnew = p2M . Thus, each of
the PEs must have a local memory p times larger than the
original PE.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

2-D Array of Processors

those of the original PE, respectively. "lherefore, C/IO is in-
creased by a factor of a =p. For computations such as matrix

multiplication where (6) holds with equality, the parallel arrange-

ment should have a total ofp 2 times as much local memory as the

original PE. This is automatically satisfied, since there are p2 pea

in the parallel setup. Therefore, we have the following result:

When using a square array of mesh-connected PEs

for computations for which (6) holds with equality, it

is possible t o make the size of each PE's. local

memory to be independent of the number of PEs in

the array, while keeping the array balanced. That is,

the processor array is automatically balancedas more

PEa with local memories of the same size are .added

to the array.

The possibility referred to above depends on whether or not the

computation can actually be decomposed for the parallel execu-

tion on the processor array. This is possible, for example, for

matrix multiplication and triangularization, as demonstrated by

various 2-dimensional systolic arrays for these computations [2, 6].

However, for computations (such as the d-dimensional grid com-

putation with d> 2)where (6) holds with a strict inequality, an

automatically rebalanecd, square processor array is never pos-

sible. For these computations, the size of each PE's local memory

must be increased as the size of the army increases.

Be~'ore: 1 PE NOW: p x p PEs

Figare 5-2: Using p x p PEs to perform computation formerly

done by one PF.

5.3. Multi .dimensional Processor Array

Above results generalize in a straightforward way W

d-dimensional processor arrays with d> 2. For example, one can

show that for computations with the property that

M ~,~ = a a M aa ,

s d-dimensional array of mesh-connected PEs is automatically

balanced as more PEa with local memories of the same size are

added to the array.

6 . Summary and Concluding Remarks
For most of the computations considered in this paper, to

rebalance a PE, the size of its local memory must be increased

much more rapidly than its computational bandwidth, i f the 1 / 0

bandwidth is kept constant. For some computations such as. FFF

and sorting, the local memory size must be increased exponen-

tially as computational bandwidth increases. In this case, the size

of the local memory may become unrealisticaUy large, and the

size of the application may also have to become unrealistically

large in order to take advantage of the large size of memory.

Therefore, for these computations one should not expect any

substantial speedup without a significant increase in the PE's I/O

bandwidth. Since increasing I/O bandwidth is difficult in prac-

tice, this partially explains why the performance of computer

systems in general has not kept up with the rapid improvement in

the computational bandwidth of processing elements.

In parallel architectures, a set of PEs are used to perform a given

computation. For this set of PEa, the total amount of local

memories and the aggregate I/O bandwidth bandwidth with the

outside world should be balanced with the total computational

bandwidth. We have shown configurations where the size of each

PE's local memory should increase as the number of PEs devoted

to a given computation increases.

The Carnegie Mellon Warp machine[i] consists of a 1-

dimensional systolic array, which is an array of linearly con-

neeted, programmable PEa. With a local memory of up to 64K

32-bit words, each PE can perform 10 million 32-bit floating-

point operations per second, and transfer 20 million words per

second to and from its neighboring PEa. In particular the array

(:an communicate with the outside world, via the PEa at the two

ends, at a rate of 20 million words per second. Having a rather

large I/O bandwidth and a relatively large local memory for each

PE of the Warp machine reflects the results of this paper.

The methodology and analysis techniques of this paper can be

used for many other computations and architectures in addition

to those considered here. Further work in characterizing other

computations, in terms of their memory requirements for achiev-

ing balanced architectures, and in analyzing the impact of these

results to various architectures, will certainly provide addilional

insights to the design of high-performance computerr~

Acknowledgments
Comments from Duane Adams, Allan .Rsher, Monica I.am, Onat

Menzilcioglu and Alan Su~T~m of Carnegie Mellon are ap-

preciated.

R e f e r e n c e s

I. Annaratone, M., Amould, E, Gross, T., Kung, H,T., Lain, M.,

Menzilciogiu, O., Sarocky, K. and Webb, J.A. Warp Architecture

and Implementation. Conference Proceedings of the 13th Annual

International Symposium on Computer Architecture, June, 1986.

53

Cnew = p2 · C
IOnew = p · IO

Cnew/IOnew = p · (C/IO)

To meet the condition Mnew = p2M for the system, the local
memory for each PEs can be independent of p. Such a
system is automatically balanced.

For d-dimensional array of processors, computations with the
property that Mnew = αdM is automatically balanced.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

CPU-GPU comparison

CPU- high computational b/w, GPU- high I/O b/w.

If, for some β > 1,

CCPU

IOCPU
=

CGPU

IOGPU
· β

To perform a given computation with same performance, CPU
cache size must be altleast β2 times larger than the GPU cache
size.

Pentium 4 - Cache: 2 MB (single core), 4 MB (Dual Core)
GPU - Cache: 128 KB.
However for 3GHz P4 vs. 7800 GTX, β ≈ 3/0.5

10/100 = 60.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

CPU-GPU comparison

CPU- high computational b/w, GPU- high I/O b/w.

If, for some β > 1,

CCPU

IOCPU
=

CGPU

IOGPU
· β

To perform a given computation with same performance, CPU
cache size must be altleast β2 times larger than the GPU cache
size.

Pentium 4 - Cache: 2 MB (single core), 4 MB (Dual Core)
GPU - Cache: 128 KB.
However for 3GHz P4 vs. 7800 GTX, β ≈ 3/0.5

10/100 = 60.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Outline

1 Recap

2 Memory Requirements in Balanced Architectures

3 Sparse Matrix Representations on GPUs
Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

4 Conclusions and Summary

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Sparse Matrices: Problems

Suffers due to random accesses to memory (cache
unfriendly).
Important to represent sparse matrices in a way so that
cache misses are reduced.
Large linear systems often have sparse matrices.

Fluid equations, wave equations.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Dense Matrix Representation

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Banded Matrix Representation

Why do this? Cache Efficiency.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Banded Matrix Representation

Why do this? Cache Efficiency.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Random Sparse Matrix Representation

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Sparse Matrix - Vector Multiply
2D wave equation

! 2u

! t2
= c2(

! 2u

!x2
+
! 2u

!y2
)

on a grid of resolution 512 x 512 has to be computed numerically
(including boundary points). If first and higher order partial deriva-
tives are approximated by finite differences, the partial difference
equation writes as a set of finite difference equations for each grid
point (ij):

ut+1i j −2uti j +ut−1i j

"t2
= c2(

uti+1 j +uti−1 j +uti j+1+uti j−1−4u
t
i j

"x"y
)

Using the implicit Crank-Nicholson scheme, where the aver-
age of the right-hand side is taken, i.e. for all grid points we set

uti, j = 0.5(ut+1i, j + uti, j), the difference equation contains more than
one unknown and the system of algebraic equations has to be solved
simultaneously.

If initial and boundary conditions are specified, the set of equa-
tions can be written in matrix from as Ax = b, where A is a 5122

x 5122 matrix, and both b and the solution vector x are of length

5122. Here, x contains the unknowns ut+1i j to be solved for. In the

particular example, A is a banded matrix (a triangular matrix with
fringes) with a maximal bandwidth of six. Obviously, storing the
matrix as a full matrix is quite inefficient both in terms of mem-
ory requirements and numerical operations. In order to effectively
represent and process general sparse N x N matrices, in which only
O(N) entries are supposed to be active, an alternative representation
on the GPU needs to be developed.

4.1 Banded Matrices

With regard to the internal representation of matrices as a set of
diagonal vectors, we can effectively exploit the existence of a
banded matrix with only a few non-zero off-diagonals. Zero off-
diagonals are simply removed from the internal representation, and
off-diagonals that do not have a counterpart on either side of the
main diagonal are padded with zero entries.

In the above example, where the 2D wave equation has been
discretized by means of finite differences, only six diagonals have
to be stored internally. As a consequence, the product of this matrix
times a vector costs no more than six vector-vector products.

In the general setting, however, were non-zero entries are posi-
tioned randomly in the matrix, the diagonal layout of vectors does
not allow for the exploitation of the sparseness in a straight forward
way.

4.2 Sparse Random Matrices

To overcome this problem, we use vertices to render the matrix
values at the correct position. For each non-zero entry in a column
vector one vertex is generated. The coordinate of each vertex is
chosen in such a way, that it renders at exactly the same position as
the respective vector element if it was rendered via the 2D texture
used to represent the vector. For each column we thus store as many
vertices as there are non-zero entries. Matrix values are stored as
colors associated with the respective vertices.

Vertices and corresponding colors are stored in a vertex array on
the GPU. As long as the matrix is not going to be modified, the
internal representation does not have to be changed. Note that in
case of a banded matrix, where apart from start and end conditions
for each NxN block in the matrix the same band is present in every
row, it is sufficient to store one representative set of vertices for in-
ner grid points. Then, this set can be rendered using the appropriate

offset with respect to the current column. Most effectively, the off-
set is specified in a vertex shader program, by means of which each
vertex compute the exact 2D position in screen space.

Sparse�Matrix
Iterations

n

n

Vector

vertex�array�1
vertex�array�2

vertex�array�n-1
vertex�array�n

.
.
.

texture

bind�buf fer�as�texture

color,�position,�texture�coordinate

Figure 5: This image illustrates the computation of a sparse-
matrix-vector product based on the internal representation of ma-
trix columns as sets of vertices.

For the multiplication of a matrix times a vector, the color of
each vertex has to be multiplied with the color of the corresponding
entry in the vector. The vector, however, is not static and can thus
not be coded into the vertex array. As a matter of fact, we associate
with each vertex a texture coordinate, which is used to access the
vector via the 2D textures used to represent it. Fortunately, these
texture coordinates can also be stored on the GPU, so that only the
appropriate textures have to be bound during matrix-vector compu-
tations (see Figure 5)

It is a nice feature of the described scheme, that the realization of
matrix-vector operations on the GPU as it was proposed in Chap-
ter 3 is not affected by the graphical primitives we use to internally
represent and render matrices. The difference between sparse and
full matrices just manifests in that we render every diagonal or col-
umn vector as a set of vertices instead of set of 2D textures. In this
way, a significant amount of texture memory, rasterization opera-
tions and texture fetch operations can be saved in techniques where
sparse matrices are involved. For instance, to compute the prod-
uct between the sparse matrix described above and a vector only
5122x6 textured vertices have to be rendered.

5 Examples

We will now exemplify the implementation of general techniques
of numerical computing by means of the proposed basis operations
for matrix-vector and vector-vector arithmetic.

5.1 Conjugate Gradient Method

The conjugate gradient (CG) method is an iterative matrix algo-
rithm for solving large, sparse linear system of equations Ax = b,
where A ∈ Rnxn. Such systems arise in many practical applications,
such as computational fluid dynamics or mechanical engineering.
The method proceeds by generating vector sequences of iterates
(i.e. successive approximations to the solution), residuals r corre-
sponding to the iterates, and search directions used in updating the
iterates and residuals. The CG algorithm remedies the shortcom-

ings of steepest descent by forcing the search directions p(i) to be

A-conjugate, that is p(i)T Ap(i) = 0, and the residuals to be orthog-
onal. Particularly in numerical simulation techniques, where large
but sparse finite difference equations have to be solved, the CG-
algorithm is a powerful and widely used technique.

In the following, pseudo code for the unpreconditioned version
of the CG algorithm is given. Lower and upper subscripts indicate
the values of scalar and vector variables, respectively, in the speci-
fied iteration. For a good introduction to the CG method as well as

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Conjugate Gradient Method

to other solution methods for linear system equations let us refer to
[Press et al. 2002].

Unpreconditioned CG

1 p(0) = r(0) = b−Ax(0) for some initial guess x(0)

2 for i← 0 to #itr

3 !i = r(i)
T

r(i)

4 q(i) = Ap(i)

5 "i = !i/p(i)T q(i)

6 x(i+1) = x(i) +"i p
(i)

7 r(i+1) = r(i)−"iq
(i)

8 #i = r(i+1)
T

r(i+1)/!i
9 p(i+1) = r(i+1) +#i p

(i)

10 convergence check

The CG method can effectively be stated in terms of the de-
scribed building blocks for GPU implementation of numerical tech-
niques (Note that using a preconditioner matrix, for instance the
diagonal part of A stored in the first diagonal vector in our inter-
nal representation, only involves solving one more linear system in
each iteration):

Unpreconditioned GPU-based CG

1 clMatVec(CL SUB,A,x(0),b,r(0)) initial guess x(0)

2 clVecOp(CL ADD,−1,0,r(0),NULL,r(0))
3 clVecOp(CL ADD,1,0,r(0),NULL, p(0))
4 for i← 0 to #itr

5 !i = clVecReduce(CL ADD,r(i),r(i))
6 clMatVec(CL ADD,A, p(i),NULL,q(i))

7 "i = clVecReduce(CL ADD, p(i),q(i))
8 "i = !i / "i
9 clVecOp(CL ADD,1,"i,x

(i), p(i),x(i+1))
10 clVecOp(CL SUB,1,"i,r(i),q(i),r(i+1))
11 #i = clVecReduce(CL ADD,r(i+1),r(i+1))
12 #i = #i / !i
13 clVecOp(CL ADD,1,#i,r(i+1), p(i), p(i+1))
14 convergence check

In the GPU implementation, the application program only needs
to read single pixel values from the GPU thus minimizing bus trans-
fer. All necessary numerical computations can be directly per-
formed on the GPU. Moreover, the final result is already in place
and can be rendered as a 2D texture map.

5.2 Gauss-Seidel Solver

Next, let us describe the GPU implementation of a Gauss-Seidel
solver. Denoting with L andU the strict lower and upper triangular
sub-matrices, and withD the main diagonal of the matrix A, we can
rewrite A as L+D+U . In one iteration, the Gauss-Seidel method
essentially solves for the following matrix-vector equation:

x(i) = Lx(i) +(D+U)x(i−1)

where x(k) is the solution vector at the k-th iteration.
r(i) = (D+U)x(i−1) can be derived from the previous time step

by one matrix-vector product. To compute Lx(i), however, updates

of x(i) have to be done in place. Based on the representation of
matrices as set of column vectors, we sweep through the matrix in a

column-wise order, using the result vector x(i) as the current render
target as well as a currently bound texture. Initially, the content of

r(i) is copied into x(i). When the j-th column of L is rendered, each
element is multiplied with the j-th element in x(i), and the result is

added to x(i). We thus always multiply every column with the most

recently updated value of x(i).

6 Discussion and Performance Evalua-

tion

To verify the effectiveness of the proposed framework for the im-
plementation of numerical simulation techniques we have imple-
mented two meaningful examples on the graphics processor. All
our experiments were run under WindowsXP on a P4 2.8 GHz pro-
cessor equipped with an ATI 9800 graphics card.
With regard to the realization of methods of numerical comput-

ing on graphics hardware, limited accuracy in both the internal tex-
ture stages and the shader stages is certainly the Achilles´ heel of
any approach. In many cases, numerical methods have to be per-
formed in double precision to allow for accurate and stable compu-
tations. As a matter of fact, our current target architecture does not
provide sufficient accuracy in general. Other graphics cards, on the
other hand, like NVIDIAs GeForceFX, already provide full IEEE
floating point precision in both the shader and texture stages. Thus,
it will be of particular interest to evaluate this GPU in particular
as well as other near-future graphics architectures with regard to
computation accuracy.
Let us now investigate the performance of our approach as well

as the differences to CPU implementations of some of the described
basic operations. In our experiments the resolution of vectors and
matrices was chosen such as to avoid paging between texture mem-
ory and main memory and between main memory and disk. All our
operations were run on vectors and matrices of size 5122 to 20482.
We have also not considered the constant time to initially load tex-
tures from main memory to texture memory. The reason is, that we
predominantly focus on iterative techniques, where a large number
of iterations have to be performed until convergence. Supposedly,
in these particular applications the time required to setup the hard-
ware is insignificant compared to the time required to perform the
computations. During all iterations the data resides on the GPU and
it has neither to be reloaded from main memory nor duplicated on
the CPU. In other scenarios, e.g. if frequent updates of a matrix
happen, this assumption may not be justifiable anymore. In this
case, also the time needed to transfer data between different units
has to be considered.
On vectors and full matrices the implementation of standard

arithmetic operations, i.e. vector-vector arithmetic and matrix-
vector multiplication, was about 12-15 times faster compared to
an optimized software implementation on the same target architec-
ture. A considerable speed-up was achieved by internally storing
vectors and matrices as RGBA textures. Sets of 4 consecutive en-
tries from the same vector are stored in one RGBA texel. Thus, up
to four times as many entries can be processed simultaneously. We
should note here, that operations on vectors and matrices built upon
this particular internal format perform in exactly the same way as
outlined. Just at the very end of the computation need the vector
elements stored in separate color components to be rearranged for
rendering purposes. We can easily realize this task by means of a
simple shader program that for each pixel in the result image fetches
the respective color component.
On average, the multiplication of two vectors of length 5122 took

0.2 ms. Performance dropped down to 0.72 ms and 2.8 ms for
vectors of length 10242 and 20482, respectively. Multiplication of

to other solution methods for linear system equations let us refer to
[Press et al. 2002].

Unpreconditioned CG

1 p(0) = r(0) = b−Ax(0) for some initial guess x(0)

2 for i← 0 to #itr

3 !i = r(i)
T

r(i)

4 q(i) = Ap(i)

5 "i = !i/p(i)T q(i)

6 x(i+1) = x(i) +"i p
(i)

7 r(i+1) = r(i)−"iq
(i)

8 #i = r(i+1)
T

r(i+1)/!i
9 p(i+1) = r(i+1) +#i p

(i)

10 convergence check

The CG method can effectively be stated in terms of the de-
scribed building blocks for GPU implementation of numerical tech-
niques (Note that using a preconditioner matrix, for instance the
diagonal part of A stored in the first diagonal vector in our inter-
nal representation, only involves solving one more linear system in
each iteration):

Unpreconditioned GPU-based CG

1 clMatVec(CL SUB,A,x(0),b,r(0)) initial guess x(0)

2 clVecOp(CL ADD,−1,0,r(0),NULL,r(0))
3 clVecOp(CL ADD,1,0,r(0),NULL, p(0))
4 for i← 0 to #itr

5 !i = clVecReduce(CL ADD,r(i),r(i))
6 clMatVec(CL ADD,A, p(i),NULL,q(i))

7 "i = clVecReduce(CL ADD, p(i),q(i))
8 "i = !i / "i
9 clVecOp(CL ADD,1,"i,x

(i), p(i),x(i+1))
10 clVecOp(CL SUB,1,"i,r(i),q(i),r(i+1))
11 #i = clVecReduce(CL ADD,r(i+1),r(i+1))
12 #i = #i / !i
13 clVecOp(CL ADD,1,#i,r(i+1), p(i), p(i+1))
14 convergence check

In the GPU implementation, the application program only needs
to read single pixel values from the GPU thus minimizing bus trans-
fer. All necessary numerical computations can be directly per-
formed on the GPU. Moreover, the final result is already in place
and can be rendered as a 2D texture map.

5.2 Gauss-Seidel Solver

Next, let us describe the GPU implementation of a Gauss-Seidel
solver. Denoting with L andU the strict lower and upper triangular
sub-matrices, and withD the main diagonal of the matrix A, we can
rewrite A as L+D+U . In one iteration, the Gauss-Seidel method
essentially solves for the following matrix-vector equation:

x(i) = Lx(i) +(D+U)x(i−1)

where x(k) is the solution vector at the k-th iteration.
r(i) = (D+U)x(i−1) can be derived from the previous time step

by one matrix-vector product. To compute Lx(i), however, updates

of x(i) have to be done in place. Based on the representation of
matrices as set of column vectors, we sweep through the matrix in a

column-wise order, using the result vector x(i) as the current render
target as well as a currently bound texture. Initially, the content of

r(i) is copied into x(i). When the j-th column of L is rendered, each
element is multiplied with the j-th element in x(i), and the result is

added to x(i). We thus always multiply every column with the most

recently updated value of x(i).

6 Discussion and Performance Evalua-

tion

To verify the effectiveness of the proposed framework for the im-
plementation of numerical simulation techniques we have imple-
mented two meaningful examples on the graphics processor. All
our experiments were run under WindowsXP on a P4 2.8 GHz pro-
cessor equipped with an ATI 9800 graphics card.
With regard to the realization of methods of numerical comput-

ing on graphics hardware, limited accuracy in both the internal tex-
ture stages and the shader stages is certainly the Achilles´ heel of
any approach. In many cases, numerical methods have to be per-
formed in double precision to allow for accurate and stable compu-
tations. As a matter of fact, our current target architecture does not
provide sufficient accuracy in general. Other graphics cards, on the
other hand, like NVIDIAs GeForceFX, already provide full IEEE
floating point precision in both the shader and texture stages. Thus,
it will be of particular interest to evaluate this GPU in particular
as well as other near-future graphics architectures with regard to
computation accuracy.
Let us now investigate the performance of our approach as well

as the differences to CPU implementations of some of the described
basic operations. In our experiments the resolution of vectors and
matrices was chosen such as to avoid paging between texture mem-
ory and main memory and between main memory and disk. All our
operations were run on vectors and matrices of size 5122 to 20482.
We have also not considered the constant time to initially load tex-
tures from main memory to texture memory. The reason is, that we
predominantly focus on iterative techniques, where a large number
of iterations have to be performed until convergence. Supposedly,
in these particular applications the time required to setup the hard-
ware is insignificant compared to the time required to perform the
computations. During all iterations the data resides on the GPU and
it has neither to be reloaded from main memory nor duplicated on
the CPU. In other scenarios, e.g. if frequent updates of a matrix
happen, this assumption may not be justifiable anymore. In this
case, also the time needed to transfer data between different units
has to be considered.
On vectors and full matrices the implementation of standard

arithmetic operations, i.e. vector-vector arithmetic and matrix-
vector multiplication, was about 12-15 times faster compared to
an optimized software implementation on the same target architec-
ture. A considerable speed-up was achieved by internally storing
vectors and matrices as RGBA textures. Sets of 4 consecutive en-
tries from the same vector are stored in one RGBA texel. Thus, up
to four times as many entries can be processed simultaneously. We
should note here, that operations on vectors and matrices built upon
this particular internal format perform in exactly the same way as
outlined. Just at the very end of the computation need the vector
elements stored in separate color components to be rearranged for
rendering purposes. We can easily realize this task by means of a
simple shader program that for each pixel in the result image fetches
the respective color component.
On average, the multiplication of two vectors of length 5122 took

0.2 ms. Performance dropped down to 0.72 ms and 2.8 ms for
vectors of length 10242 and 20482, respectively. Multiplication of

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Performance

Graphics card used: ATI 9800
Vector-vector multiply:

5122: 0.2 ms, 10242: 0.72 ms, 20482: 2.8 ms.
Dense Matrix-vector:

4096× 4096: 230 ms.
Sparse Matrix-vector:

(Banded, 10 non-zero diagonals) 4096× 4096: 0.72 ms,
(Random) 10242 × 10242: 4.54 ms.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Discussion

Data resides on GPU memory during all iterations.
Possible because matrix A is static.

Only the final result needs to be passed to the application.
Considerable speed-up due to use of RGBA texels for storing 4
vector entries.
Contribution:

Vector/Matrix representation
Basis linear algebra operators

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Discussion

Data resides on GPU memory during all iterations.
Possible because matrix A is static.

Only the final result needs to be passed to the application.
Considerable speed-up due to use of RGBA texels for storing 4
vector entries.
Contribution:

Vector/Matrix representation
Basis linear algebra operators

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Discussion

Data resides on GPU memory during all iterations.
Possible because matrix A is static.

Only the final result needs to be passed to the application.
Considerable speed-up due to use of RGBA texels for storing 4
vector entries.
Contribution:

Vector/Matrix representation
Basis linear algebra operators

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Discussion

Data resides on GPU memory during all iterations.
Possible because matrix A is static.

Only the final result needs to be passed to the application.
Considerable speed-up due to use of RGBA texels for storing 4
vector entries.
Contribution:

Vector/Matrix representation
Basis linear algebra operators

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Alternate Sparse Matrix Representation

1 Vector x in texture X x

2 Matrix A stored in 2 textures:
diagonal and off-diagonal
non-zero entries separately.

3 Indirection texture Rx.
4 Column indices Ca, laid out

exactly as Aa
j , having

pointers to corresponding
entries in X x.

. . .

-- off-diagonal matrix entries

 - pointers to segments

Aa
j

Rx

0

BBBB@

* * *

* *

* * * *

* *

* * *

* *

1

CCCCA

Figure 1: Off-diagonal elements of each row are compacted into
segments which are tightly packed into Aa

j . A pointer to the begin-
ning of each segment is stored in Rx.

inner product kernel between a sparse matrix row and the vector of
unknowns becomes

j = Rx[i]

Yx[i] = Ax
i [i] ∗ X x[i] +

ki−1∑

c=0

Aa
j [j + c] ∗ X x[Ca[j + c]],

here Yx denotes a destination texture with the same layout as
X x. By rendering appropriate rectangles into Yx—each bound
to a fragment program with the appropriate upper bound on the
above sum—we can perform the desired sparse matrix vector prod-
uct y = Ax (Figure 2).
Notes The indirection texturesRx and Ca depend only on the mesh
connectivity and can be initialized at the time a mesh is first con-
structed. The separate storage for Ax

i and Aa
j is advantageous for

diagonal preconditioning—division of the residual vector by the di-
agonal entries—as well as the generally different methods by which
diagonal and off-diagonal entries are computed in the first place.
With the setup we have given for sparse matrix vector product,
transpose products require an explicit representation of AT . In the
case that A and AT have differing numbers of non-zero entries
per row, the lesser should be padded with zeros so that they have
the same size. The number of texture indirections that can be per-
formed in a fragment program limits the number of non-zero entries
per row that can be processed without additional passes. For the
GeForce FX rows with up to 200 non-zero entries can be processed
in a single pass.

3.1.2 Computing Matrix Entries

Principle In the case that the entries of A depend on x we require
two additional kernels. One to update Ax

i and another for Aa
j . In

traditional FEM codes this is typically done by an iteration over all
elements computing local stiffness matrices, i.e., the linear opera-
tor relating all DOFs incident on the element. These local stiffness
matrices are then accumulated into a global stiffness matrix. Un-
fortunately this requires a scatter operation which is not available
on current generation GPUs. Instead we must compute the non-
zero entries directly. We have two types of non-zero entries, those
associated with verticesAx

i and edgesAa
j . We begin with the latter.

Details The coefficient associated with a given edge is controlled
by the two incident triangles, which in turn are completely de-
scribed by their incident vertices—a total of four. Consider for
example the coefficients which arise in the geometric flow prob-
lem. Aside from Ca this requires three additional textures: Ia, N a

(next), and Pa (previous), layout out like Ca. Together, these four

 - diagonal matrix entriesAx
i

 - pointers to segmentsRx

 - vertex positionsX x

 - pointers into XCa

 - off-diagonal matrix entriesAa
j

xj

xi

aii

aij

Figure 2: When the fragment program executes on the pixel corre-
sponding to row i, the window position is used as a texture coor-
dinate to fetch xi in X x and aii in Ax

i . The window position also
identifies the segment pointer inRx, which points to the location of
non-zero elements aij in Aa

j corresponding to row i. Finally, us-
ing the segment pointer fromRx we can access entries in Ca which
reveal the addresses of xj in X x corresponding to non-zero aij .

textures identify the vertices incident on the two triangles associ-
ated with edge eij . Computation of Aa

j can now be performed by
the fragment program

cot(a, b, c) =
(a− b) · (c− b)

‖(a− b)× (c− b)‖
xi = X x[Ia[j]] xj = X x[Ca[j]]

xjp = X x[Pa[j]] xjn = X x[N a[j]]

Aa
j [j] = −λ∆t(cot(xj , xjp , xi) + cot(xi, xjn , xj)).

The Ax
i are computed with the same overall structure as a sparse

matrix vector multiply and the following fragment program

Ax
i [i] =

ki−1∑

c=0

4A(xi, xjp , xj)−Aa
j [Rx[i] + c].

Boundaries In geometric flow one can either fix vertices on the
mesh boundaries (as we do in the examples), or let them flow under
a length minimizing curvature flow. The latter requires its own tri-
diagonal linear system, which can be implemented on the GPU as
well. Fixed boundaries effectively remove some vertices from the
list of degrees of freedom, though they still enter into the matrix
coefficient computations. So while they are stored in X x, they are
not assigned to a rectangle with a fragment program: there are no
corresponding rows in the matrix.

3.1.3 Reduction Operators

Reduction operators apply a binary associative1 operator to all ele-
ments of a vector returning the result r = v1 ◦ v2 ◦ · · · ◦ vn. The
operator is not required to be commutative, e.g., the vector could
contain matrices and ◦ may be matrix multiplication. We require
only sum-reduction and will take advantage of the fact that addition
is commutative, i.e., we will not require any particular order. This
allows us to perform reduction for vectors, such as X x, indexed
by two indices without regard to the order2. To compute the inner

1Real addition associates, floating point addition does not. We will ig-
nore this distinction.

2The traditional way of dealing with higher-D is to perform reductions
in each dimension in order [Blelloch 1990; The C* Team 1993].

Storing diagonal and off-diagonal entries separately help in
preconditioning for C-G method.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Alternate Sparse Matrix Representation

1 Vector x in texture X x

2 Matrix A stored in 2 textures:
diagonal and off-diagonal
non-zero entries separately.

3 Indirection texture Rx.
4 Column indices Ca, laid out

exactly as Aa
j , having

pointers to corresponding
entries in X x.

. . .

-- off-diagonal matrix entries

 - pointers to segments

Aa
j

Rx

0

BBBB@

* * *

* *

* * * *

* *

* * *

* *

1

CCCCA

Figure 1: Off-diagonal elements of each row are compacted into
segments which are tightly packed into Aa

j . A pointer to the begin-
ning of each segment is stored in Rx.

inner product kernel between a sparse matrix row and the vector of
unknowns becomes

j = Rx[i]

Yx[i] = Ax
i [i] ∗ X x[i] +

ki−1∑

c=0

Aa
j [j + c] ∗ X x[Ca[j + c]],

here Yx denotes a destination texture with the same layout as
X x. By rendering appropriate rectangles into Yx—each bound
to a fragment program with the appropriate upper bound on the
above sum—we can perform the desired sparse matrix vector prod-
uct y = Ax (Figure 2).
Notes The indirection texturesRx and Ca depend only on the mesh
connectivity and can be initialized at the time a mesh is first con-
structed. The separate storage for Ax

i and Aa
j is advantageous for

diagonal preconditioning—division of the residual vector by the di-
agonal entries—as well as the generally different methods by which
diagonal and off-diagonal entries are computed in the first place.
With the setup we have given for sparse matrix vector product,
transpose products require an explicit representation of AT . In the
case that A and AT have differing numbers of non-zero entries
per row, the lesser should be padded with zeros so that they have
the same size. The number of texture indirections that can be per-
formed in a fragment program limits the number of non-zero entries
per row that can be processed without additional passes. For the
GeForce FX rows with up to 200 non-zero entries can be processed
in a single pass.

3.1.2 Computing Matrix Entries

Principle In the case that the entries of A depend on x we require
two additional kernels. One to update Ax

i and another for Aa
j . In

traditional FEM codes this is typically done by an iteration over all
elements computing local stiffness matrices, i.e., the linear opera-
tor relating all DOFs incident on the element. These local stiffness
matrices are then accumulated into a global stiffness matrix. Un-
fortunately this requires a scatter operation which is not available
on current generation GPUs. Instead we must compute the non-
zero entries directly. We have two types of non-zero entries, those
associated with verticesAx

i and edgesAa
j . We begin with the latter.

Details The coefficient associated with a given edge is controlled
by the two incident triangles, which in turn are completely de-
scribed by their incident vertices—a total of four. Consider for
example the coefficients which arise in the geometric flow prob-
lem. Aside from Ca this requires three additional textures: Ia, N a

(next), and Pa (previous), layout out like Ca. Together, these four

 - diagonal matrix entriesAx
i

 - pointers to segmentsRx

 - vertex positionsX x

 - pointers into XCa

 - off-diagonal matrix entriesAa
j

xj

xi

aii

aij

Figure 2: When the fragment program executes on the pixel corre-
sponding to row i, the window position is used as a texture coor-
dinate to fetch xi in X x and aii in Ax

i . The window position also
identifies the segment pointer inRx, which points to the location of
non-zero elements aij in Aa

j corresponding to row i. Finally, us-
ing the segment pointer fromRx we can access entries in Ca which
reveal the addresses of xj in X x corresponding to non-zero aij .

textures identify the vertices incident on the two triangles associ-
ated with edge eij . Computation of Aa

j can now be performed by
the fragment program

cot(a, b, c) =
(a− b) · (c− b)

‖(a− b)× (c− b)‖
xi = X x[Ia[j]] xj = X x[Ca[j]]

xjp = X x[Pa[j]] xjn = X x[N a[j]]

Aa
j [j] = −λ∆t(cot(xj , xjp , xi) + cot(xi, xjn , xj)).

The Ax
i are computed with the same overall structure as a sparse

matrix vector multiply and the following fragment program

Ax
i [i] =

ki−1∑

c=0

4A(xi, xjp , xj)−Aa
j [Rx[i] + c].

Boundaries In geometric flow one can either fix vertices on the
mesh boundaries (as we do in the examples), or let them flow under
a length minimizing curvature flow. The latter requires its own tri-
diagonal linear system, which can be implemented on the GPU as
well. Fixed boundaries effectively remove some vertices from the
list of degrees of freedom, though they still enter into the matrix
coefficient computations. So while they are stored in X x, they are
not assigned to a rectangle with a fragment program: there are no
corresponding rows in the matrix.

3.1.3 Reduction Operators

Reduction operators apply a binary associative1 operator to all ele-
ments of a vector returning the result r = v1 ◦ v2 ◦ · · · ◦ vn. The
operator is not required to be commutative, e.g., the vector could
contain matrices and ◦ may be matrix multiplication. We require
only sum-reduction and will take advantage of the fact that addition
is commutative, i.e., we will not require any particular order. This
allows us to perform reduction for vectors, such as X x, indexed
by two indices without regard to the order2. To compute the inner

1Real addition associates, floating point addition does not. We will ig-
nore this distinction.

2The traditional way of dealing with higher-D is to perform reductions
in each dimension in order [Blelloch 1990; The C* Team 1993].

Storing diagonal and off-diagonal entries separately help in
preconditioning for C-G method.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Computing Matrix Entries

Result of matrix-vector multiplication: Yx (texture).

. . .

-- off-diagonal matrix entries

 - pointers to segments

Aa
j

Rx

0

BBBB@

* * *

* *

* * * *

* *

* * *

* *

1

CCCCA

Figure 1: Off-diagonal elements of each row are compacted into
segments which are tightly packed into Aa

j . A pointer to the begin-
ning of each segment is stored in Rx.

inner product kernel between a sparse matrix row and the vector of
unknowns becomes

j = Rx[i]

Yx[i] = Ax
i [i] ∗ X x[i] +

ki−1∑

c=0

Aa
j [j + c] ∗ X x[Ca[j + c]],

here Yx denotes a destination texture with the same layout as
X x. By rendering appropriate rectangles into Yx—each bound
to a fragment program with the appropriate upper bound on the
above sum—we can perform the desired sparse matrix vector prod-
uct y = Ax (Figure 2).
Notes The indirection texturesRx and Ca depend only on the mesh
connectivity and can be initialized at the time a mesh is first con-
structed. The separate storage for Ax

i and Aa
j is advantageous for

diagonal preconditioning—division of the residual vector by the di-
agonal entries—as well as the generally different methods by which
diagonal and off-diagonal entries are computed in the first place.
With the setup we have given for sparse matrix vector product,
transpose products require an explicit representation of AT . In the
case that A and AT have differing numbers of non-zero entries
per row, the lesser should be padded with zeros so that they have
the same size. The number of texture indirections that can be per-
formed in a fragment program limits the number of non-zero entries
per row that can be processed without additional passes. For the
GeForce FX rows with up to 200 non-zero entries can be processed
in a single pass.

3.1.2 Computing Matrix Entries

Principle In the case that the entries of A depend on x we require
two additional kernels. One to update Ax

i and another for Aa
j . In

traditional FEM codes this is typically done by an iteration over all
elements computing local stiffness matrices, i.e., the linear opera-
tor relating all DOFs incident on the element. These local stiffness
matrices are then accumulated into a global stiffness matrix. Un-
fortunately this requires a scatter operation which is not available
on current generation GPUs. Instead we must compute the non-
zero entries directly. We have two types of non-zero entries, those
associated with verticesAx

i and edgesAa
j . We begin with the latter.

Details The coefficient associated with a given edge is controlled
by the two incident triangles, which in turn are completely de-
scribed by their incident vertices—a total of four. Consider for
example the coefficients which arise in the geometric flow prob-
lem. Aside from Ca this requires three additional textures: Ia, N a

(next), and Pa (previous), layout out like Ca. Together, these four

 - diagonal matrix entriesAx
i

 - pointers to segmentsRx

 - vertex positionsX x

 - pointers into XCa

 - off-diagonal matrix entriesAa
j

xj

xi

aii

aij

Figure 2: When the fragment program executes on the pixel corre-
sponding to row i, the window position is used as a texture coor-
dinate to fetch xi in X x and aii in Ax

i . The window position also
identifies the segment pointer inRx, which points to the location of
non-zero elements aij in Aa

j corresponding to row i. Finally, us-
ing the segment pointer fromRx we can access entries in Ca which
reveal the addresses of xj in X x corresponding to non-zero aij .

textures identify the vertices incident on the two triangles associ-
ated with edge eij . Computation of Aa

j can now be performed by
the fragment program

cot(a, b, c) =
(a− b) · (c− b)

‖(a− b)× (c− b)‖
xi = X x[Ia[j]] xj = X x[Ca[j]]

xjp = X x[Pa[j]] xjn = X x[N a[j]]

Aa
j [j] = −λ∆t(cot(xj , xjp , xi) + cot(xi, xjn , xj)).

The Ax
i are computed with the same overall structure as a sparse

matrix vector multiply and the following fragment program

Ax
i [i] =

ki−1∑

c=0

4A(xi, xjp , xj)−Aa
j [Rx[i] + c].

Boundaries In geometric flow one can either fix vertices on the
mesh boundaries (as we do in the examples), or let them flow under
a length minimizing curvature flow. The latter requires its own tri-
diagonal linear system, which can be implemented on the GPU as
well. Fixed boundaries effectively remove some vertices from the
list of degrees of freedom, though they still enter into the matrix
coefficient computations. So while they are stored in X x, they are
not assigned to a rectangle with a fragment program: there are no
corresponding rows in the matrix.

3.1.3 Reduction Operators

Reduction operators apply a binary associative1 operator to all ele-
ments of a vector returning the result r = v1 ◦ v2 ◦ · · · ◦ vn. The
operator is not required to be commutative, e.g., the vector could
contain matrices and ◦ may be matrix multiplication. We require
only sum-reduction and will take advantage of the fact that addition
is commutative, i.e., we will not require any particular order. This
allows us to perform reduction for vectors, such as X x, indexed
by two indices without regard to the order2. To compute the inner

1Real addition associates, floating point addition does not. We will ig-
nore this distinction.

2The traditional way of dealing with higher-D is to perform reductions
in each dimension in order [Blelloch 1990; The C* Team 1993].

. . .

-- off-diagonal matrix entries

 - pointers to segments

Aa
j

Rx

0

BBBB@

* * *

* *

* * * *

* *

* * *

* *

1

CCCCA

Figure 1: Off-diagonal elements of each row are compacted into
segments which are tightly packed into Aa

j . A pointer to the begin-
ning of each segment is stored in Rx.

inner product kernel between a sparse matrix row and the vector of
unknowns becomes

j = Rx[i]

Yx[i] = Ax
i [i] ∗ X x[i] +

ki−1∑

c=0

Aa
j [j + c] ∗ X x[Ca[j + c]],

here Yx denotes a destination texture with the same layout as
X x. By rendering appropriate rectangles into Yx—each bound
to a fragment program with the appropriate upper bound on the
above sum—we can perform the desired sparse matrix vector prod-
uct y = Ax (Figure 2).
Notes The indirection texturesRx and Ca depend only on the mesh
connectivity and can be initialized at the time a mesh is first con-
structed. The separate storage for Ax

i and Aa
j is advantageous for

diagonal preconditioning—division of the residual vector by the di-
agonal entries—as well as the generally different methods by which
diagonal and off-diagonal entries are computed in the first place.
With the setup we have given for sparse matrix vector product,
transpose products require an explicit representation of AT . In the
case that A and AT have differing numbers of non-zero entries
per row, the lesser should be padded with zeros so that they have
the same size. The number of texture indirections that can be per-
formed in a fragment program limits the number of non-zero entries
per row that can be processed without additional passes. For the
GeForce FX rows with up to 200 non-zero entries can be processed
in a single pass.

3.1.2 Computing Matrix Entries

Principle In the case that the entries of A depend on x we require
two additional kernels. One to update Ax

i and another for Aa
j . In

traditional FEM codes this is typically done by an iteration over all
elements computing local stiffness matrices, i.e., the linear opera-
tor relating all DOFs incident on the element. These local stiffness
matrices are then accumulated into a global stiffness matrix. Un-
fortunately this requires a scatter operation which is not available
on current generation GPUs. Instead we must compute the non-
zero entries directly. We have two types of non-zero entries, those
associated with verticesAx

i and edgesAa
j . We begin with the latter.

Details The coefficient associated with a given edge is controlled
by the two incident triangles, which in turn are completely de-
scribed by their incident vertices—a total of four. Consider for
example the coefficients which arise in the geometric flow prob-
lem. Aside from Ca this requires three additional textures: Ia, N a

(next), and Pa (previous), layout out like Ca. Together, these four

 - diagonal matrix entriesAx
i

 - pointers to segmentsRx

 - vertex positionsX x

 - pointers into XCa

 - off-diagonal matrix entriesAa
j

xj

xi

aii

aij

Figure 2: When the fragment program executes on the pixel corre-
sponding to row i, the window position is used as a texture coor-
dinate to fetch xi in X x and aii in Ax

i . The window position also
identifies the segment pointer inRx, which points to the location of
non-zero elements aij in Aa

j corresponding to row i. Finally, us-
ing the segment pointer fromRx we can access entries in Ca which
reveal the addresses of xj in X x corresponding to non-zero aij .

textures identify the vertices incident on the two triangles associ-
ated with edge eij . Computation of Aa

j can now be performed by
the fragment program

cot(a, b, c) =
(a− b) · (c− b)

‖(a− b)× (c− b)‖
xi = X x[Ia[j]] xj = X x[Ca[j]]

xjp = X x[Pa[j]] xjn = X x[N a[j]]

Aa
j [j] = −λ∆t(cot(xj , xjp , xi) + cot(xi, xjn , xj)).

The Ax
i are computed with the same overall structure as a sparse

matrix vector multiply and the following fragment program

Ax
i [i] =

ki−1∑

c=0

4A(xi, xjp , xj)−Aa
j [Rx[i] + c].

Boundaries In geometric flow one can either fix vertices on the
mesh boundaries (as we do in the examples), or let them flow under
a length minimizing curvature flow. The latter requires its own tri-
diagonal linear system, which can be implemented on the GPU as
well. Fixed boundaries effectively remove some vertices from the
list of degrees of freedom, though they still enter into the matrix
coefficient computations. So while they are stored in X x, they are
not assigned to a rectangle with a fragment program: there are no
corresponding rows in the matrix.

3.1.3 Reduction Operators

Reduction operators apply a binary associative1 operator to all ele-
ments of a vector returning the result r = v1 ◦ v2 ◦ · · · ◦ vn. The
operator is not required to be commutative, e.g., the vector could
contain matrices and ◦ may be matrix multiplication. We require
only sum-reduction and will take advantage of the fact that addition
is commutative, i.e., we will not require any particular order. This
allows us to perform reduction for vectors, such as X x, indexed
by two indices without regard to the order2. To compute the inner

1Real addition associates, floating point addition does not. We will ig-
nore this distinction.

2The traditional way of dealing with higher-D is to perform reductions
in each dimension in order [Blelloch 1990; The C* Team 1993].

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Optimizations

Round-robin pipelining of texture access
Multithreading: q independent stream records, processed in
an interleaved manner.
Instructions I1, I2, . . ., Records R1, R2, . . . , Rq executed as
I1(R1), I1(R2), . . . , I1(Rq), I2(R1), I2(R2), . . . , I2(Rq),
Hides latency between two data-dependent instructions.

Making use of SIMD execution style:- Choose rectangle area
appropriately.

p parallel pipelines, q records, choose w · h ≈ p · q.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

Performance

Figure 4: On the upper left a cube with normal noise and to its
right a smoothed version. On the lower left a scanned mesh con-
taminated with acquisition noise. It is denoised through geometric
flow. Note that this mesh has complicated boundaries. For movies
see http://multires.caltech.edu/pubs/GPUSim.mpg

to rectangles R1, R2, . . ., filling each rectangle to capacity. Use the
least expensive program Pk valid for all elements of Rj .

Notes The layout is resolved when the mesh is first created. How-
ever, the entries in Aa

j , i.e., the length of each row segment, must be
appropriately padded. The corresponding entries in Ca should point
to a constant address in X x which contains the value zero (constant
to avoid unnecessary burden on the texture cache).

3.3 Performance

We have implemented all of the components of a general conjugate
gradient solver, as well as the specific matrices for geometric flow,
including their recomputation for each smoothing step. The most
performance critical functions are the matrix-vector multiply and
the sum-reduction. We performed timing tests on a GeForce FX
board using a mesh with 37k vertices (the scanner data in Figure 4).

The matrix-vector multiply takes 33 instructions on an average
row of the matrix (seven non-zero elements), 21 of which are tex-
ture fetches. At 500 MHz and 37k vertices, one could theoretically
perform over 500 matrix multiplies per second. In practice, we ob-
serve about 120 matrix multiplies per second. Further tests show
that the discrepancy is due to the random access pattern causing
cache thrashing.

A reduction, including out of bounds checking, requires ten in-
structions (four fetches, three adds, three compares) per destina-
tion fragment per pass. For a 200 × 200 layout to be reduced to
100×100, the cost of one pass of the reduction is 100k instructions.
Doing this at all levels of the hierarchy increases this by a factor of
4/3. Theoretically, the sum reduction can be performed over 15000
times per second. In practice our code executes at roughly 3400 re-
ductions per second.

The CG inner loop does a single matrix multiply and two reduc-
tions, as well as some significantly less costly operations that can be
considered free. This entire loop can be performed about 110 times
per second. The CG solver typically only needs a few iterations—

e.g., five—for each smoothing step, so an entire smoothing step can
be performed in less than 1/20th of a second.
Notes Current drivers have a performance penalty—revalidation of
the OpenGL pipeline state during pbuffer switches—which is un-
necessary for our computations. At present only about 200 pbuffer
switches per second are possible, severely limiting performance.
This limitation will be removed in the near future. Hence all tim-
ings are given with the pbuffer overhead removed. The movies were
produced from screen dumps running on actual hardware, in effect
simulating a setting with the pbuffer switch penalty removed.

4 Solver for Regular Grids
We now turn to a solver for discretizations of elliptic PDEs over
regular grids. In that case the sparse matrices have a very regular
structure enabling efficient implementation of multigrid solvers.

For the generic setup we consider the Helmholtz equation with
Dirichlet and/or Neumann boundary conditions on the unit square,
Ω = [0, 1]2

−∇2u(x) + σu(x) = g(x) x ∈ Ω ⊂ R2

u(x) = uD(x) x ∈ ∂Ω or

#n ·∇u(x) = uN (x) x ∈ ∂Ω,

where #n denotes the outward pointing normal on the boundary
of the domain whenever this quantity is well defined. This PDE
may be solved via discretization which leads to a matrix problem.
Whether one uses finite elements, volumes, or difference, the struc-
ture of the resulting matrices is essentially identical. For concrete-
ness we use a finite difference discretization as in [Stam 1999]
Linear System After discretization we have to solve a linear sys-
tem Ahuh = bh in (N + 1)× (N + 1) variables, not all of which
are free. The linear operator Ah acting on the 2D grid uh may be
described by a set of stencils, with possibly varying entries, each
of size no larger than 3 × 3 (2 × 3 at the boundary, 2 × 2 at the
corner). Care is required in the Neumann case as it has a non-trivial
null space [Briggs et al. 2000, pp. 113–119].

4.1 Incompressible Navier-Stokes
Fluid simulations are a typical representative of settings which give
rise to such systems. As a challenge problem we implemented
Stam’s solver for the incompressible viscous Navier-Stokes equa-
tions [1999]. The fluid is governed by a velocity field u which
satisfies

∇·u = 0 ρ
∂u
∂t

= −(u ·∇)u + ν∇2u + ρb

where b denotes external body force, ν the viscous drag, and the ρ
is the fluid density (we will assume it to be unity). Using a semi-
implicit time discretization as well as a projection step to ensure a
divergence free vector field, the update from time t(k) to t(k+1) =
t(k) + ∆t proceeds as

(ρI− ν∆t∇2)u∗ = ρu(k) + ∆t(ρb(k) − (u(k) ·∇)u(k)) (2)

∇2p = (ρ/∆t)∇·u∗ (3)

u(k+1) = u∗ − (∆t/ρ)∇p ,

where p is a pressure field which may be discarded at the end of
the time step. The first equation solves for a new velocity field
using a Helmholtz solver with zero Dirichlet boundary conditions,
while the second equation uses a Poisson solver with zero Neumann
boundary conditions. Implementing this time stepping requires two

CPU: 3GHz Pentium 4, GPU: nVIDIA GeForce FX
Unstructured matrix multiplications: (Size: 37k × 37k, Avg.
non-zero entries per row: 7)

CPU: 13.33 ms, GPU: 8.33 ms (theoretical bound: 2 ms)
Structured matrix multiplications: (Grid size - 257× 257)

CPU: 1.33 ms, GPU: 0.73 ms (theoretical bound: 0.21 ms)

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Outline

1 Recap

2 Memory Requirements in Balanced Architectures

3 Sparse Matrix Representations on GPUs
Krüger, Westermann
Bolz, Farmer, Grinspun, Schröder

4 Conclusions and Summary

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

Remarks

Combination of approaches:
Multi-threading to hide latency, along with Krüger’s
representation of sparse matrices.

Compare performances of CUBLAS on G80, with the above
results.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

Recap
Memory Requirements in Balanced Architectures

Sparse Matrix Representations on GPUs
Conclusions and Summary

References

1 Krüger and Westermann, ”Linear Algebra Operators for
GPU Implementation of Numerical Algorithms.” ACM
SIGGRAPH 2003.

2 Bolz, Farmer, Grinspun and Schröder, ”Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid”.
ACM SIGGRAPH 2003.

3 Kung, ”Memory Requirements for Balanced
Architechtures”, ISCA 1986: Proceedings of the 13th
annual international symposium on Computer
architectures.

Suddha Kalyan Basu Dept. of Computer Science, UNC Chapel Hill

	Recap
	Memory Requirements in Balanced Architectures
	Sparse Matrix Representations on GPUs
	Krüger, Westermann
	Bolz, Farmer, Grinspun, Schröder

	Conclusions and Summary

