
Image processing on GPUs

Rahul Narain

COMP790-058: GPGP

March 7, 2007



2

Image processing

• Image = 2D array of color values (1D or 3D)

• Most image processing algorithms are 
inherently parallel

Do “the same thing” for every pixel

• Memory intensive with coherent lookups



3

Image processing

2D image

Per-pixel operations

Memory intensive

Accuracy is not critical

2D texture

Fragment program

Fast texture lookup

Good!

Image processing maps well to GPUs



4

Image processing on GPUs

Screen-aligned quad
of output image size

Input image
bound to texture

Vertices Pixels processed
using fragment shader

Read input pixels
via texture lookup

Output in texture
or framebuffer

CPU



5

Topics

• Color correction

• Convolution

• Wavelet transforms

• Anisotropic diffusion and depth of field

• HDR and tone mapping



6

Color correction

• Brightness/contrast, hue/saturation, gamma, 
thresholding, Levels and Curves, …



7

Color correction

• Process each pixel independently

t : ℝ3→ ℝ3

• Usually process each channel independently

tR, tG, tB : ℝ→ ℝ

• Pass three lookup tables as a 1D RGB texture

gR[x,y] = tR[fR[x,y]]



8

Convolution

g[x,y] = ∑ f[x+i,y+j] h[i,j]

• Pass kernel h and sampling coordinates [i,j] as 
uniform data arrays

• Requires N or N2 texture lookups per pixel
Used to be a problem on old graphics cards

EXT_convolution is only supported by SGI



9

Convolution

Convolution with limited texture lookups:

1. Clear output buffer

2. For each pass:
1. In vertex program, generate k texture 

coordinates corresponding to adjacent pixels

2. In fragment program, compute partial sum of k
terms and add to output buffer

Requires N/k passes



10

Convolution

• Now only limited by fragment program 
instruction length

• All texture lookups access nearby pixels
Very fast due to cache coherence



11

Convolution

• Fialka and Čadík: NVIDIA GeForce 6600

• GPU outperforms CPU in all cases



12

Convolution

• 3D convolution for volume data

• Current GPUs don’t allow high-precision 3D 
textures

Load slices into several 2D textures instead

• Multiple passes to loop over slices

• Only 16 textures can be bound at a time
Use multi-pass algorithm if kernel is wider in z



13

Non-linear filtering

• Median filter

g[x,y] = median { f[x+i,y+j] }

• Can be done naïvely for smallish filter sizes
Known fast algorithms are not parallelizable

• Even then, naïve GPU is faster than fast CPU

• Viola et al: 1.17× speedup on 5×5×5 volume 
filter using NVIDIA GeForce FX 5800



14

Non-linear filtering

• Bilateral filter

g[x] = k−1 ∑ f[x′] hs[x′−x] hr[f[x′]−f[x]]

k = ∑ hs[x′−x] hr[f[x′]−f[x]]

• Naïve approach: 1.52× speedup [Viola et al]

• Paris and Durand’s fast approximation [2006] 
should be parallelizable on GPU



15

Wavelet transforms

• Multi-resolution 
decomposition of a 
signal

• Basis functions are 
localized in both 
position and frequency



16

Wavelet transforms

f cj cj−1 cj−2 cj−3

dj−1 dj−2 dj−3

…

…

∗h ↓2 ∗h ↓2 ∗h ↓2 ∗h ↓2

∗g ↓2 ∗g ↓2 ∗g ↓2 ∗g ↓2

fcjcj−1cj−2cj−3…

dj−1dj−2dj−3…

↑2 ∗h ↑2 ∗h ↑2 ∗h ↑2 ∗h

↑2 ∗g ↑2 ∗g ↑2 ∗g ↑2 ∗g

Decomposition

Reconstruction



17

Wavelet transforms

• All wavelet coefficients stored in a texture
Two for ping-pong

• Each pass reads/writes
a subset of the texture

• Convolutions are
separable



18

Wavelet transforms

• Forward DWT:
cj−1[n] = ∑ h[k] cj[2n−k], dj−1[n] = ∑ g[k] cj[2n+1−k]

zzzzj−1 = [ccccj−1 ddddj−1]

• Boundary extension using indirection texture



19

Wavelet transforms

• Inverse DWT:
cj[n] = ∑ h[k] c′j−1[(n−k)/2] + ∑ g[k] d′j−1[(n−k)/2]

• Two cases depending on whether n is even

• Avoid conditionals using precomputed
indirection texture



20

Wavelet transforms



21

Wavelet transforms

• Wong et al: NVIDIA GeForce 7800 GTX

• Performance gain over CPU for large images



22

Diffusion

• Diffuse intensities over image at varying rates

• Anisotropic diffusion
low diffusion at edges

• Depth of field
radius of confusion



23

Diffusion

u′ = ∇·(g ∇u)

• Discretize differential equation over pixel grid
Finite differences in space

Implicit 1st-order Euler in time

• Solve linear system of equations per iteration

AAAAk(uuuuk) uuuuk+1 = rrrrk(uuuuk)



24

Diffusion

• AAAA is sparse, banded with known structure

• Don’t want to represent whole matrix in 
memory

• Structure of AAAA allows simplification



25

Diffusion

Rumpf and Strzodka [2001]:

• Use Jacobi or conjugate gradient iterations

e.g. xxxxi+1 = F(xxxxi) = DDDD−1(rrrr − (A A A A − DDDD)xxxxi)

• Corresponds directly to image blending

• Can be implemented directly in OpenGL!

• NVIDIA GeForce 3: 8ms per iteration on 
256×256 image



26

Diffusion

1. Upload original image uuuu0 to texture
2. For each timestep k:

1. Initialize r.h.s. rrrrk (usually equals uuuuk)
2. (If necessary) calculate image of diffusion 

coefficients ggggk using lookup table
3. Initialize xxxx0 = rrrrk

4. For each iteration i:
Calculate xxxxi+1 = F(xxxxi) using image blending

5. Store the solution uuuuk+1 = xxxxi+1



27

Diffusion

Kass et al [2005]:

• Approximate by two 1D diffusions instead

• n linear systems for n rows, tridiagonal AAAA’s

• Represent AAAA’s using 3 channels of each row of 
2D texture

• Solve in parallel using cyclic reduction

• NVIDIA GeForce 7800: 0.15s for 1024×1024



28

Diffusion

1. Gaussian elimination on odd rows in parallel

2. Copy smaller system of even rows to new 
texture; solve recursively

3. Propagate solution to odd rows



29

HDR

• OpenEXR: half datatype = 16-bit floating point

• Identical to native half datatype on GPUs

• Floating-point textures allow HDR



30

Tone mapping

• Displaying HDR images on LDR devices

• Reduce the dynamic range of an HDR image 
while “looking the same”

• Several techniques

• Reinhard et al.’s method
has been implemented
in real-time on the GPU



31

Tone mapping

• Compute log average luminance

• Rescale pixel luminances by average

• Find local average luminance of each pixel
Convolve with Gaussian filters of various widths

Compare to find best scale for each pixel

• Apply transfer function based on per-pixel 
local average luminance



32

Tone mapping

First pass

• Compute log average luminance
Sum over entire image by repeated reduction

Several passes

• Convolve rescaled image with Gaussian filters of 
various widths and compare

Accumulate results for “best” scale in texture

Final pass

• Apply transfer function



33

Tone mapping

• Goodnight et al: ATI Radeon 9800

• GPU is faster that CPU in all cases



34

Conclusion

• GPUs significantly accelerate image processing
Pixel-level parallelism

High memory bandwidth

• Previously slow operations now run at 
interactive rates on GPU



35

References

• GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics. 
Edited by Randima Fernando. NVIDIA Corporation, 2004.

• Ondřej Fialka and Martin Čadík. “FFT and Convolution Performance in 
Image Filtering on GPU.” Proceedings of the Conference on Information 
Visualization, 2006.

• Ivan Viola, Armin Kanitsar, Eduard Gröller. “Hardware-Based Nonlinear 
Filtering and Segmentation using High-Level Shading Languages.”
Proceedings of IEEE Visualization 2003.

• Sylvain Paris and Frédo Durand. “A Fast Approximation of the Bilateral 
Filter using a Signal Processing Approach.” European Conference on 
Computer Vision, 2006.

• Matthias Hopf and Thomas Ertl. “Hardware Accelerated Wavelet 
Transformations.” Proc. EG/IEEE TCVG Symposium on Visualization, 
2000.



36

References

• Tien-Tsin Wong, Chi-Sing Leung, Pheng-Ann Heng, Jianqing Wang. 
“Discrete Wavelet Transform on Consumer-Level Graphics Hardware.”
IEEE Transactions on Multimedia, 2005.

• Michael Kass, Aaron Lefohn, John Owens. “Interactive Depth of Field.”
Pixar Technical Memo #06-01, 2006.

• Martin Rumpf and Robert Strzodka. “Nonlinear Diffusion in Graphics 
Hardware.” Proceedings of EG/IEEE TCVG Symposium on Visualization, 
2001.

• Nolan Goodnight, Rui Wang, Cliff Woolley, Greg Humphreys. “Interactive 
Time-Dependent Tone Mapping Using Programmable Graphics 
Hardware.” Eurographics Symposium on Rendering, 2003.

• Erik Reinhard, Michael Stark, Peter Shirley, Jim Ferwerda. “Photographic 
Tone Reproduction for Digital Images.” ACM Transactions on Graphics, 
2002.


