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Image processing

* Image = 2D array of color values (1D or 3D)

* Most image processing algorithms are
inherently parallel

Do “the same thing” for every pixel

* Memory intensive with coherent lookups



Image processing

Image processing maps well to GPUs

2D image
Per-pixel operations
Memory intensive

Accuracy is not critical

2D texture
Fragment program

Fast texture lookup
Good!



Image processing on GPUs
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Topics

Color correction

Convolution

Wavelet transforms

Anisotropic diffusion and depth of field
HDR and tone mapping



Color correction

* Brightness/contrast, hue/saturation, gamma,
thresholding, Levels and Curves, ...




Color correction

* Process each pixel independently
t: R3— R
* Usually process each channel independently
try oyt : R = R

* Pass three lookup tables as a 1D RGB texture
gr :x,y] = tR[fR[x,y]]




Convolution

glx,y] =Y flx+i,y+i] hli]
* Pass kernel h and sampling coordinates [i,j] as
uniform data arrays
* Requires N or N? texture lookups per pixel

Used to be a problem on old graphics cards

EXT_convolution is only supported by SGI



Convolution

Convolution with limited texture lookups:
|. Clear output buffer

2. For each pass:

|. In vertex program, generate k texture
coordinates corresponding to adjacent pixels

2. In fragment program, compute partial sum of k
terms and add to output buffer

Requires N/k passes



Convolution

* Now only limited by fragment program
instruction length

* All texture lookups access nearby pixels

Very fast due to cache coherence



framerate

Convolution

Fialka and Cadik: NVIDIA GeForce 6600
GPU outperforms CPU in all cases
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Convolution

3D convolution for volume data

Current GPUs don’t allow high-precision 3D
textures

Load slices into several 2D textures instead
Multiple passes to loop over slices

Only |6 textures can be bound at a time

Use multi-pass algorithm if kernel is wider in z



Non-linear filtering

Median filter

glx,y] = median { f[x+i,y+j] }
Can be done naively for smallish filter sizes
Known fast algorithms are not parallelizable

Even then, naive GPU is faster than fast CPU

Viola et al: |.17% speedup on 5%X5%5 volume
filter using NVIDIA GeForce FX 5800



Non-linear filtering

* Bilateral filter
glxl =k Y flx"Th[x"-x]h[f[x"]-f[x]]
k= 3 h[x'x] b [fx]f[x]]

* Naive approach: |1.52x speedup [Viola et al]

* Paris and Durand’s fast approximation [2006]
should be parallelizable on GPU



Wavelet transforms

Decomposition at level5:s=adf +d5+ dd + d3 + d2 + .

e Multi-resolution
decomposition of a

signal “’
* Basis functions are s
localized in both d,

position and frequency
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Wavelet transforms
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Wavelet transforms

* All wavelet coefficients stored in a texture
Two for ping-pong

* Each pass reads/writes

a subset of the texture

 Convolutions are
separable




Wavelet transforms

* Forward DWT:
cj_I[n] =Y h[k] c]-[zn—k], dj_l[n] =Y g[k] cj[2n+1—k]
zj—I - [Cj—I dj—I]

* Boundary extension using indirection texture
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Wavelet transforms

* |nverse DWT:
Cj[n] =2 h[k] C’j_I[(n—k)/ZJ + . g[k] d’j_1[<n_k)/2]

* Two cases depending on whether n is even

* Avoid conditionals using precomputed
indirection texture



Wavelet transforms

upsampling E 56738 ! upsampling

' boundary extension

boundary extension '

i oW 2B EdE-o-d HEHdBE

g

h,

g

hl’

interleaved filter

interleaving

8

7

6

indirect

addresses

5

§)

g

H,

g:

,

8

|

interleaved fi

ter

reconstructed

)

¥

values

20



Wavelet transforms

* Wong et al: NVIDIA GeForce 7800 GTX

Performance gain over CPU for large images
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Diffusion

* Diffuse intensities over image at varying rates

* Anisotropic diffusion

low diffusion at edges

* Depth of field

radius of confusion




Diffusion

u' = V(g Vu)
* Discretize differential equation over pixel grid

Finite differences in space

Implicit 1st-order Euler in time

* Solve linear system of equations per iteration
Ak(k) ub+ = rh(uh)
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Diffusion

e A is sparse, banded with known structure

* Don’t want to represent whole matrix in
memory

* Structure of A allows simplification
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Diffusion

Rumpf and Strzodka [2001]:

* Use Jacobi or conjugate gradient iterations
e.g. x*' = F(x') = D(r - (A - D)x)

* Corresponds directly to image blending

* Can be implemented directly in OpenGL!

* NVIDIA GeForce 3: 8ms per iteration on
256%256 image
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Diffusion

|. Upload original image u° to texture

2. For each timestep k:

.
2.

Initialize r.h.s. r* (usually equals u*)

(If necessary) calculate image of diffusion
coefficients g* using lookup table

. Initialize x° = r*

For each iteration i:
Calculate x'*' = F(x) using image blending
Store the solution u®+ = xi*
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Diffusion

Kass et al [2005]:
» Approximate by two 1D diffusions instead
* n linear systems for n rows, tridiagonal A’s

* Represent A’s using 3 channels of each row of
2D texture

* Solve in parallel using cyclic reduction
* NVIDIA GeForce 7800: 0.15s for 1024x1024
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Diffusion

|. Gaussian elimination on odd rows in parallel

2. Copy smaller system of even rows to new
texture; solve recursively

3. Propagate solution to odd rows
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* OpenEXR: half datatype = |6-bit floating point
* |dentical to native half datatype on GPUs

* Floating-point textures allow HDR
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Tone mapping

Displaying HDR images on LDR devices

Reduce the dynamic range of an HDR image
while “looking the same”

Several techniques

Reinhard et al.’s method
has been implemented

in real-time on the GPU
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Tone mapping

Compute log average luminance
Rescale pixel luminances by average

Find local average luminance of each pixel
Convolve with Gaussian filters of various widths

Compare to find best scale for each pixel

Apply transfer function based on per-pixel
local average luminance
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Tone mapping

First pass

* Compute log average luminance

Sum over entire image by repeated reduction
Several passes

* Convolve rescaled image with Gaussian filters of
various widths and compare

Accumulate results for “best” scale in texture
Final pass

* Apply transfer function
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Tone mapping

* Goodnight et al: ATl Radeon 9800
e GPU is faster that CPU in all cases
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Conclusion

* GPUs significantly accelerate image processing
Pixel-level parallelism

High memory bandwidth

* Previously slow operations now run at
interactive rates on GPU
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