Bezier Curves

- Interpolating curve
- Polynomial or rational parametrization using Bernstein basis functions
- Use of control points
 - Piecewise segments defining control polygon or characteristic polygon
 - Algebraically: used for linear combination of basis functions

Properties of Basis Functions

- Interpolate the first and last control points, P_0 and P_n .
- The tangent at P_0 is given by $P_1 P_0$ and at P_n is given by $P_n P_{n-1}$
- Generalize to higher order derivatives: second derivate at P_0 is determined by $P_{0,}P_1$ and P_2 and the same for higher order derivatives
- The functions are symmetric w.r.t. u and (1-u). That is if we reverse the sequence of control points to $\mathbf{P_n P_{n-1} P_{n-2} \dots P_{0}}$, it defines the same curve.

04/10/06

Bezier Basis Function

Use of Bernstein polynomials:

$$\mathbf{P}(\mathbf{u}) = \sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{B}_{i,n} (\mathbf{u}) \qquad \mathbf{u} \in [0,1]$$

Where

$$\mathbf{B}_{i,n}(\mathbf{u}) = \begin{pmatrix} n \\ i \end{pmatrix} \mathbf{u}^{i} (1-\mathbf{u})^{n-i}$$

Dinesh Manocha, COMP236

Cubic Bezier Curve: Matrix Representation

Let $\mathbf{B} = [\mathbf{P}_0 \ \mathbf{P}_1 \ \mathbf{P}_2 \ \mathbf{P}_3]$ $\mathbf{F} = [\mathbf{B}_1(\mathbf{u}) \ \mathbf{B}_2(\mathbf{u}) \ \mathbf{B}_3(\mathbf{u}) \ \mathbf{B}_4(\mathbf{u})] \text{ or }$ $\mathbf{F} = [\mathbf{u}^3 \ \mathbf{u}^2 \ \mathbf{u} \ 1]$ $\begin{pmatrix} -1 \ 3 \ -3 \ 1 \ 3 \ 6 \ 3 \ 0 \ -3 \ 3 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ \end{pmatrix}$

This is the 4 X 4 Bezier basis transformation matrix.

 $\mathbf{P}(\mathbf{u}) = \mathbf{U} \mathbf{M}_{\mathbf{B}} \mathbf{P}, \text{ where}$ $\mathbf{U} = \begin{bmatrix} \mathbf{u}^3 & \mathbf{u}^2 & \mathbf{u} & 1 \end{bmatrix}$

Dinesh Manocha, COMP236

Properties of Bezier Curves

- Invariance under affine transformation
- Convex hull property
- Variation diminishing
- De Casteljau Evaluation (Geometric computation)
- Symmetry
- Linear precision