Bezier Curves

- Interpolating curve
- Polynomial or rational parametrization using Bernstein basis functions
- Use of control points
- Piecewise segments defining control polygon or characteristic polygon
- Algebraically: used for linear combination of basis functions

Properties of Basis Functions

- Interpolate the first and last control points, $\mathbf{P}_{\mathbf{0}}$ and $\mathbf{P}_{\mathbf{n}}$.
- The tangent at $\mathbf{P}_{\mathbf{0}}$ is given by $\mathbf{P}_{\mathbf{1}}-\mathbf{P}_{\mathbf{0}}$ and at $\mathbf{P}_{\mathbf{n}}$ is given by $\mathbf{P}_{\mathbf{n}}-\mathbf{P}_{\mathbf{n} \mathbf{- 1}}$
- Generalize to higher order derivatives: second derivate at $\mathbf{P}_{\mathbf{0}}$ is determined by $\mathbf{P}_{\mathbf{0}}, \mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$ and the same for higher order derivatives
- The functions are symmetric w.r.t. u and (1-u). That is if we reverse the sequence of control points to $\mathbf{P}_{\mathbf{n}} \mathbf{P}_{\mathbf{n}-\mathbf{1}} \mathbf{P}_{\mathbf{n}-\mathbf{2}} \ldots \mathbf{P}_{\mathbf{0}}$, it defines the same curve.

Bezier Basis Function

Use of Bernstein polynomials:

$$
\mathbf{P}(\mathrm{u})=\sum_{i=0}^{n} \mathbf{P}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}, \mathrm{n}}(\mathrm{u}) \quad \mathrm{u} \in[0,1]
$$

Where

$$
\mathrm{B}_{\mathrm{i}, \mathrm{n}}(\mathrm{u})=\binom{n}{i} \mathrm{u}^{\mathrm{i}}(1-\mathrm{u})^{\mathrm{n}-\mathrm{i}}
$$

Cubic Bezier Curve: Matrix Representation

Let $\mathbf{B}=\left[\begin{array}{llll}\mathbf{P}_{\mathbf{0}} & \mathbf{P}_{\mathbf{1}} & \mathbf{P}_{\mathbf{2}} & \mathbf{P}_{\mathbf{3}}\end{array}\right]$
$\mathbf{F}=\left[\begin{array}{lll}\mathrm{B}_{1}(\mathrm{u}) & \mathbf{B}_{2}(\mathrm{u}) & \mathbf{B}_{3}(\mathrm{u})\end{array} \mathbf{B}_{4}(\mathrm{u})\right]$ or

$$
\left.\left.\begin{array}{c}
\mathbf{F}=\left[u^{3} u^{2} \mathrm{u}\right.
\end{array}\right] \quad \begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & 6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

This is the 4 X 4 Bezier basis transformation matrix.

$$
\begin{aligned}
\mathbf{P}(\mathrm{u}) & =\mathbf{U} \mathbf{M}_{\mathbf{B}} \mathbf{P}, \text { where } \\
\mathrm{U} & =\left[\begin{array}{lll}
\mathrm{u}^{3} & \mathrm{u}^{2} & \mathrm{u}
\end{array}\right]
\end{aligned}
$$

Properties of Bezier Curves

- Invariance under affine transformation
- Convex hull property
- Variation diminishing
- De Casteljau Evaluation (Geometric computation)
- Symmetry
- Linear precision

