
MULTI-AGENT NAVIGATION 

(PART 1) 



PHILOSOPHY 
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In design, you can never choose whether you pay a 

cost, only how you pay it. 

                                            Dr. Fred Brooks 
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SEAN’S LECTURES  
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• Oct 2 – Introduction and Graph Searches 

• Oct 7 – Intro to Menge, Git, and OpenGL 

• Assign homework 2 

• Oct 9 – Global planners 

• Oct 14 – Local Planners (part 1) 

• Oct 21 – Local Planners (part 2) 

• Assign homework 3 

• Oct 23 – Extraneous issues 
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ROADMAP SURVEY  
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• Languages 

• C/C++, Python, Java 

• Representation 

• Objects/Pointers, Adjacency List, Matrix 

• Even starting ground for next homework assignment 
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MULTI-AGENT NAVIGATION 
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• Why do it? 

• Autonomous cars 

• Robot assembly lines 

• Swarm simulation 

• Pedestrian simulation 
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MULTI-AGENT NAVIGATION 
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• Planning for multiple robots 

• Can be the same as for a single robot with 

multiple parts 

• The parts need not be connected 

• Dimension grows linearly with the robots 

• For N simple 2D, translational robots, there are 

2N dimensions in configuration space 

• Algorithmic complexity tends to be exponential 

in dimensions (for “complete” solutions) 
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MULTI-AGENT NAVIGATION 
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• How do we do it? 

• Complete solutions are infeasible 

• “Decoupled” solutions 

• Independent solutions whose interactions are 

coordinated 

• Computational necessity 

• Design decision 

• Entities are often independent 
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MULTI-AGENT NAVIGATION 
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• Skipping general multi-agent navigation 

• Path coordination 

• Pareto optimality 

• Prioritized planning 

• We’ll come back to it 

• Focus on pedestrian/crowd simulation 
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PEDESTRIAN SIMULATOR 

ARCHITECTURE 
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• Simulation State: obstacles (static & dynamic), agents 

• Goal Selection: High-order model of what the agent wants 

• Static Planning: Plan to reach goal vs. static obstacles 

• Local Collision Avoidance: Adapt plan because of other agents 

Simulator State 

University of North Carolina at Chapel Hill 
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PEDESTRIAN SIMULATOR 

ARCHITECTURE 
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• We’ll have two homework assignments 

• Implement static planning algorithm 

• Implement local collision avoidance 

Simulator State 
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STATIC PLANNING 
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• Identifying and encoding traversable space 

• Roadmaps 

• Navigation Mesh 

• Corridor Maps 

• Guidance/potential fields 

• (We’ll talk about these in detail in a week). 
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STATIC PLANNING 
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• Graph searches 

• Many of the most common structures are, 

ultimately, graphs 

• Finding paths from start to end become a basic 

operation 

• Let’s look at path computation 

• http://www.youtube.com/watch?v=czk4xgdhdY4 

• http://www.youtube.com/watch?v=nDyGEq_ugGo 
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OPTIMAL PATH 
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• Typically, we’re looking not for any path 

• We have a sense of “optimality” and want to find the 

optimal path. 

• Typically distance 

• Can be other functions: e.g.,  

• Energy consumed (such as for uneven terrain) 

• Psychological comfort (avoiding “negative” 

regions) 
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OPTIMAL PATH 
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• The roadmap (and all graph-based traversal 

structures) encode the costs of moving from one 

node to another. 

• Cost of movement is the edge weight. 

• Given graph and optimality definition, how do we 

compute the optimal path? 
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OPTIMAL PATH 
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• Assumptions 

• The edge weights are non-negative 

• i.e., every section of the path requires a “cost” 

• No path section provides a “gain” 
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BREADTH/DEPTH-FIRST SEARCHES 
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• Depth-first 

• Similar to wall-following algorithms 

• Breadth-first 

• Weights are ignored, the boundary of the search 

space is all nodes k steps away from the source. 

• This is guaranteed to find a path if one exists 

• Only guaranteed to be optimal if it is the only path 
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DJIKSTRA’S ALGORITHM 
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• Single-source shortest-path (to all other nodes) 

• Shortest path to a specific target node is simply 

an early termination 

• Djikstra’s Algorithm requires our non-negative cost 

assumption 

• What is the algorithm? 
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Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische 

Mathematik 1: 269–271. doi:10.1007/BF01386390 



DJIKSTRA’S ALGORITHM 
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minDistance( start, end, nodes ) 

For all nodes ni, i≠ start , cost(ni) = ∞ 

cost( start ) = 0 

unvisited = nodes \ {start}  // set  

                             // difference 

c = start       // current node 

while ( true ) 

if ( c == end ) return cost(c) 

For each unvisited neighbor, n, of c 

cost(n) = min( cost(n), cost(c) + E(c,n) 

) 

c = minCost( unvisited )    // 1 

if ( cost( c ) == ∞ ) return ∞ 
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1) We’ll say that minCost returns ∞ if there are no nodes in the set.  

Why? 



DJIKSTRA’S ALGORITHM 
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• How do we modify it to get a path? 

• What is the cost of this algorithm? 
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DJIKSTRA’S ALGORITHM 
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shortestPath( start, end, nodes ) 

For all nodes ni, i≠ start  

cost(ni) = ∞ 

prev(ni) = Ø 

cost( start ) = 0 

unvisited = nodes \ {start}  # set difference 

visited = {} 

c = start # current node 

while ( true ) 

if ( c == end ) break 

For each unvisited neighbor, n, of c 

if ( cost(n) > cost(c) + E(c,n) ) 

cost(n) = cost(c) + E(c,n) 

prev(n) = c 

c = minCost( unvisited ) 

if ( cost( c ) == ∞ ) break 

if ( cost(end) < ∞ ) 

construct path 
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DJIKSTRA’S ALGORITHM 
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• Constructing a path 

path = [ end ] 

p = prev[ end ] 

while (p != Ø) 

path = [ p ] + path  // list concatenation 

p = prev[ p ] 

return path 
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DJIKSTRA’S ALGORITHM 
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• What is the cost of this algorithm? 

• If the graph has V vertices and E edges: 

• E * d + V * m 

• d is the cost to change a node’s cost 

• m is the cost to extract the minimum unvisited 

node 

• d is typically a nominal constant 

• m depends on how we find the minimum node 
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DJIKSTRA’S ALGORITHM 
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• Minimum neighbor 

• Djikstra originally did a search through a list 

• Maintaining a sorted vector doesn’t solve the 

problem 

• The cost of maintaining the sort would be the 

same as simply searching 

• Cost was |E| + |V|2 
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DJIKSTRA’S ALGORITHM 
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• Minimum neighbor 

• Use a good min-heap implementation and it 

becomes 

• |E| + |V| log |V| 

• (Good  Fibonnaci heap) 
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Fredman, Michael Lawrence; Tarjan, Robert E. (1984). "Fibonacci heaps and their uses 

in improved network optimization algorithms". 25th Annual Symposium on Foundations of 

Computer Science. IEEE. pp. 338–346. doi:10.1109/SFCS.1984.715934 



DJIKSTRA’S ALGORITHM 
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• Good general solution 

• Guaranteed to find optimal solution 

• Not very smart 

• Why? 
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DJIKSTRA’S ALGORITHM 
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• Djikstra’s algorithm expands the front uniformly 

• It extends the nearest node on the front 

• This causes the search space to inflate uniformly 
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A* ALGORITHM 
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• “Best-first” graph search algorithm 

• Uses a knowledgeable heuristic to estimate the 

cost of a node 

• At any given time, the expected cost of a node, 

f(x), is the sum of two terms 

• Its known cost from the start, g(x) 

• Its estimated cost to the goal, h(x) 
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A* ALGORITHM 
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• Admissible heuristics 

• h(x) ≤ D(x,goal) 

• D(x,y) actual distance from node x to y 

• i.e., it must be a conservative estimate 

• In path planning, our heuristic is usually Euclidian 

distance 

• Triangle-inequality insures admissibility 

• h(x) ≤ E(x,y) + h(y) 

 

 

 

 

 

University of North Carolina at Chapel Hill 



A* ALGORITHM 
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• Admissible heuristics 

• Monotonic/consistent 

• h(x) ≤ E(x,y) + h(y) 

• i.e., the “best guess” for a node cannot be 

beaten by the known cost to move to another 

node and my best guess from there 

• This applies to our Euclidian distance heuristic 
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A* ALGORITHM 
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minDistance( start, end, nodes ) 

closed = {} 

open = {start} 

g[ start ] = 0 

f[ start ] = g[ start ] + h( start, end ) 

while ( ! open.isEmpty() ) 

c = minF( open ) 

if ( c == end ) return g[ c ] 

open = open \ {c}; closed = closed U {c} 
for each neighbor, n, of c 

gTest = g[ c ] + E( n, c ) 

fTest = gTest = h( n, e ) 

if ( n in closed && fTest ≥ f[ n ] ) continue 

if ( n not in open || fTest < f[n] ) 

g[ n ] = gTest 

f[ n ] = fTest 

open = open U {n} 

University of North Carolina at Chapel Hill 

Wikipedia’s A* - assumes monotonic heuristic 



A* ALGORITHM 
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• Closed set 

• It is (apparently) possible to visit a node but then 

later need to place it back in the open set. 

• f(n) = g(n) + h(n,e) 

• h(n, e) is constant for constant n & e 

• So, to revisit n, f’(n) < f(n)  g’(n) < g(n) 

• We found a SHORTER path to that node 

• I cannot come up with a circumstance where this 

happens with the distance heuristic* 
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A* ALGORITHM 
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minDistance( start, end, nodes ) 

closed = {} 

open = {start} 

g[ start ] = 0 

f[ start ] = g[ start ] + h( start, end ) 

while ( ! open.isEmpty() ) 

c = minF( open ) 

if ( c == end ) return g[ c ] 

open = open \ {c}; closed = closed U {c} 

for each neighbor, n, of c 

if ( n in closed ) continue 

gTest = g[ c ] + E( n, c ) 

if ( gTest < g[ n ] ) 

g[ n ] = gTest; f[ n ] = gTest + h(n, end) 

open = open U {n} 
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A* ALGORITHM 
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• Notes 

• The goal node may be visited/updated multiple 

times 

• There may be multiple paths to it 

• Only when the goal node is the “closest” node is it 

considered final 

• Like Djikstra’s, it will still fall victim to local minima 

• But gets around them more efficiently 
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A* ALGORITHM 
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• Constructing a path 

• We add the same instrumentation 

• Record where we came from when we reduce 

the cost of each node 

• Construct the path by tracing backwards from 

the goal 
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A* ALGORITHM 
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• Efficient solution 

• Guaranteed to find optimal solution (for admissible 

heuristic) 

• Much more optimized search space 

• Can be fooled by adversarial graph 

University of North Carolina at Chapel Hill 
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A* ALGORITHM 
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• Demos 

• http://www.youtube.com/watch?v=DINCL5cd_w0 
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WEIGHTED A* ALGORITHM 
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• f(n) = g(n) + εh(n) 

• ε = 0  Djikstra’s algorithm 

University of North Carolina at Chapel Hill 
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WEIGHTED A* ALGORITHM 
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• f(n) = g(n) + εh(n) 

• ε = 1  A* algorithm 

University of North Carolina at Chapel Hill 
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WEIGHTED A* ALGORITHM 
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• f(n) = g(n) + εh(n) 

• ε > 1  Strong bias straight towards goal 

• Trades optimality for speed 

• Cost of path ≤ ε * cost of optimal 
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D* ALGORITHM 
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• These algorithms assume perfect a priori knowledge 

of the environment. 

• What if our knowledge of the environment (or the 

environment itself) changes over time? 

• We use an incremental search algorithm 

• D*, D*lite, etc. 

• These algorithms used in the Mars rovers and the 

DARPA grand challenge winners 
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QUESTIONS? 
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