
MULTI-AGENT NAVIGATION

(PART 1)

PHILOSOPHY

2

In design, you can never choose whether you pay a

cost, only how you pay it.

 Dr. Fred Brooks

University of North Carolina at Chapel Hill

SEAN’S LECTURES

3

• Oct 2 – Introduction and Graph Searches

• Oct 7 – Intro to Menge, Git, and OpenGL

• Assign homework 2

• Oct 9 – Global planners

• Oct 14 – Local Planners (part 1)

• Oct 21 – Local Planners (part 2)

• Assign homework 3

• Oct 23 – Extraneous issues

University of North Carolina at Chapel Hill

ROADMAP SURVEY

4

• Languages

• C/C++, Python, Java

• Representation

• Objects/Pointers, Adjacency List, Matrix

• Even starting ground for next homework assignment

University of North Carolina at Chapel Hill

MULTI-AGENT NAVIGATION

5

• Why do it?

• Autonomous cars

• Robot assembly lines

• Swarm simulation

• Pedestrian simulation

University of North Carolina at Chapel Hill

MULTI-AGENT NAVIGATION

6

• Planning for multiple robots

• Can be the same as for a single robot with

multiple parts

• The parts need not be connected

• Dimension grows linearly with the robots

• For N simple 2D, translational robots, there are

2N dimensions in configuration space

• Algorithmic complexity tends to be exponential

in dimensions (for “complete” solutions)

University of North Carolina at Chapel Hill

MULTI-AGENT NAVIGATION

7

• How do we do it?

• Complete solutions are infeasible

• “Decoupled” solutions

• Independent solutions whose interactions are

coordinated

• Computational necessity

• Design decision

• Entities are often independent

University of North Carolina at Chapel Hill

MULTI-AGENT NAVIGATION

8

• Skipping general multi-agent navigation

• Path coordination

• Pareto optimality

• Prioritized planning

• We’ll come back to it

• Focus on pedestrian/crowd simulation

University of North Carolina at Chapel Hill

PEDESTRIAN SIMULATOR

ARCHITECTURE

9

• Simulation State: obstacles (static & dynamic), agents

• Goal Selection: High-order model of what the agent wants

• Static Planning: Plan to reach goal vs. static obstacles

• Local Collision Avoidance: Adapt plan because of other agents

Simulator State

University of North Carolina at Chapel Hill

Goal Selection Static Planning

Goal

Local Collision

Avoidance

v0

PEDESTRIAN SIMULATOR

ARCHITECTURE

10

• We’ll have two homework assignments

• Implement static planning algorithm

• Implement local collision avoidance

Simulator State

University of North Carolina at Chapel Hill

Goal Selection Static Planning

Goal

Local Collision

Avoidance

v0

STATIC PLANNING

11

• Identifying and encoding traversable space

• Roadmaps

• Navigation Mesh

• Corridor Maps

• Guidance/potential fields

• (We’ll talk about these in detail in a week).

University of North Carolina at Chapel Hill

STATIC PLANNING

12

• Graph searches

• Many of the most common structures are,

ultimately, graphs

• Finding paths from start to end become a basic

operation

• Let’s look at path computation

• http://www.youtube.com/watch?v=czk4xgdhdY4

• http://www.youtube.com/watch?v=nDyGEq_ugGo

University of North Carolina at Chapel Hill

http://www.youtube.com/watch?v=czk4xgdhdY4
http://www.youtube.com/watch?v=nDyGEq_ugGo

OPTIMAL PATH

13

• Typically, we’re looking not for any path

• We have a sense of “optimality” and want to find the

optimal path.

• Typically distance

• Can be other functions: e.g.,

• Energy consumed (such as for uneven terrain)

• Psychological comfort (avoiding “negative”

regions)

University of North Carolina at Chapel Hill

OPTIMAL PATH

14

• The roadmap (and all graph-based traversal

structures) encode the costs of moving from one

node to another.

• Cost of movement is the edge weight.

• Given graph and optimality definition, how do we

compute the optimal path?

University of North Carolina at Chapel Hill

OPTIMAL PATH

15

• Assumptions

• The edge weights are non-negative

• i.e., every section of the path requires a “cost”

• No path section provides a “gain”

University of North Carolina at Chapel Hill

BREADTH/DEPTH-FIRST SEARCHES

16

• Depth-first

• Similar to wall-following algorithms

• Breadth-first

• Weights are ignored, the boundary of the search

space is all nodes k steps away from the source.

• This is guaranteed to find a path if one exists

• Only guaranteed to be optimal if it is the only path

University of North Carolina at Chapel Hill

DJIKSTRA’S ALGORITHM

17

• Single-source shortest-path (to all other nodes)

• Shortest path to a specific target node is simply

an early termination

• Djikstra’s Algorithm requires our non-negative cost

assumption

• What is the algorithm?

University of North Carolina at Chapel Hill

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische

Mathematik 1: 269–271. doi:10.1007/BF01386390

DJIKSTRA’S ALGORITHM

18

minDistance(start, end, nodes)

For all nodes ni, i≠ start , cost(ni) = ∞

cost(start) = 0

unvisited = nodes \ {start} // set

 // difference

c = start // current node

while (true)

if (c == end) return cost(c)

For each unvisited neighbor, n, of c

cost(n) = min(cost(n), cost(c) + E(c,n)

)

c = minCost(unvisited) // 1

if (cost(c) == ∞) return ∞

University of North Carolina at Chapel Hill

1) We’ll say that minCost returns ∞ if there are no nodes in the set.

Why?

DJIKSTRA’S ALGORITHM

19

• How do we modify it to get a path?

• What is the cost of this algorithm?

University of North Carolina at Chapel Hill

DJIKSTRA’S ALGORITHM

20

shortestPath(start, end, nodes)

For all nodes ni, i≠ start

cost(ni) = ∞

prev(ni) = Ø

cost(start) = 0

unvisited = nodes \ {start} # set difference

visited = {}

c = start # current node

while (true)

if (c == end) break

For each unvisited neighbor, n, of c

if (cost(n) > cost(c) + E(c,n))

cost(n) = cost(c) + E(c,n)

prev(n) = c

c = minCost(unvisited)

if (cost(c) == ∞) break

if (cost(end) < ∞)

construct path

University of North Carolina at Chapel Hill

DJIKSTRA’S ALGORITHM

21

• Constructing a path

path = [end]

p = prev[end]

while (p != Ø)

path = [p] + path // list concatenation

p = prev[p]

return path

 University of North Carolina at Chapel Hill

DJIKSTRA’S ALGORITHM

22

• What is the cost of this algorithm?

• If the graph has V vertices and E edges:

• E * d + V * m

• d is the cost to change a node’s cost

• m is the cost to extract the minimum unvisited

node

• d is typically a nominal constant

• m depends on how we find the minimum node

University of North Carolina at Chapel Hill

DJIKSTRA’S ALGORITHM

23

• Minimum neighbor

• Djikstra originally did a search through a list

• Maintaining a sorted vector doesn’t solve the

problem

• The cost of maintaining the sort would be the

same as simply searching

• Cost was |E| + |V|2

University of North Carolina at Chapel Hill

DJIKSTRA’S ALGORITHM

24

• Minimum neighbor

• Use a good min-heap implementation and it

becomes

• |E| + |V| log |V|

• (Good  Fibonnaci heap)

University of North Carolina at Chapel Hill

Fredman, Michael Lawrence; Tarjan, Robert E. (1984). "Fibonacci heaps and their uses

in improved network optimization algorithms". 25th Annual Symposium on Foundations of

Computer Science. IEEE. pp. 338–346. doi:10.1109/SFCS.1984.715934

DJIKSTRA’S ALGORITHM

25

• Good general solution

• Guaranteed to find optimal solution

• Not very smart

• Why?

University of North Carolina at Chapel Hill

s g

DJIKSTRA’S ALGORITHM

26

• Djikstra’s algorithm expands the front uniformly

• It extends the nearest node on the front

• This causes the search space to inflate uniformly

University of North Carolina at Chapel Hill

A* ALGORITHM

27

• “Best-first” graph search algorithm

• Uses a knowledgeable heuristic to estimate the

cost of a node

• At any given time, the expected cost of a node,

f(x), is the sum of two terms

• Its known cost from the start, g(x)

• Its estimated cost to the goal, h(x)

University of North Carolina at Chapel Hill

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and

Cybernetics SSC4 4 (2): 100–107. doi:10.1109/TSSC.1968.300136

A* ALGORITHM

28

• Admissible heuristics

• h(x) ≤ D(x,goal)

• D(x,y) actual distance from node x to y

• i.e., it must be a conservative estimate

• In path planning, our heuristic is usually Euclidian

distance

• Triangle-inequality insures admissibility

• h(x) ≤ E(x,y) + h(y)

University of North Carolina at Chapel Hill

A* ALGORITHM

29

• Admissible heuristics

• Monotonic/consistent

• h(x) ≤ E(x,y) + h(y)

• i.e., the “best guess” for a node cannot be

beaten by the known cost to move to another

node and my best guess from there

• This applies to our Euclidian distance heuristic

University of North Carolina at Chapel Hill

A* ALGORITHM

30

minDistance(start, end, nodes)

closed = {}

open = {start}

g[start] = 0

f[start] = g[start] + h(start, end)

while (! open.isEmpty())

c = minF(open)

if (c == end) return g[c]

open = open \ {c}; closed = closed U {c}
for each neighbor, n, of c

gTest = g[c] + E(n, c)

fTest = gTest = h(n, e)

if (n in closed && fTest ≥ f[n]) continue

if (n not in open || fTest < f[n])

g[n] = gTest

f[n] = fTest

open = open U {n}

University of North Carolina at Chapel Hill

Wikipedia’s A* - assumes monotonic heuristic

A* ALGORITHM

31

• Closed set

• It is (apparently) possible to visit a node but then

later need to place it back in the open set.

• f(n) = g(n) + h(n,e)

• h(n, e) is constant for constant n & e

• So, to revisit n, f’(n) < f(n)  g’(n) < g(n)

• We found a SHORTER path to that node

• I cannot come up with a circumstance where this

happens with the distance heuristic*

University of North Carolina at Chapel Hill

* Absence of proof is not proof of absence.

A* ALGORITHM

32

minDistance(start, end, nodes)

closed = {}

open = {start}

g[start] = 0

f[start] = g[start] + h(start, end)

while (! open.isEmpty())

c = minF(open)

if (c == end) return g[c]

open = open \ {c}; closed = closed U {c}

for each neighbor, n, of c

if (n in closed) continue

gTest = g[c] + E(n, c)

if (gTest < g[n])

g[n] = gTest; f[n] = gTest + h(n, end)

open = open U {n}

University of North Carolina at Chapel Hill

Sean’s A*

A* ALGORITHM

33

• Notes

• The goal node may be visited/updated multiple

times

• There may be multiple paths to it

• Only when the goal node is the “closest” node is it

considered final

• Like Djikstra’s, it will still fall victim to local minima

• But gets around them more efficiently

University of North Carolina at Chapel Hill

A* ALGORITHM

34

• Constructing a path

• We add the same instrumentation

• Record where we came from when we reduce

the cost of each node

• Construct the path by tracing backwards from

the goal

University of North Carolina at Chapel Hill

A* ALGORITHM

35

• Efficient solution

• Guaranteed to find optimal solution (for admissible

heuristic)

• Much more optimized search space

• Can be fooled by adversarial graph

University of North Carolina at Chapel Hill

s g

A* ALGORITHM

36

• Demos

• http://www.youtube.com/watch?v=DINCL5cd_w0

University of North Carolina at Chapel Hill

http://www.youtube.com/watch?v=DINCL5cd_w0

WEIGHTED A* ALGORITHM

37

• f(n) = g(n) + εh(n)

• ε = 0  Djikstra’s algorithm

University of North Carolina at Chapel Hill

s g

WEIGHTED A* ALGORITHM

38

• f(n) = g(n) + εh(n)

• ε = 1  A* algorithm

University of North Carolina at Chapel Hill

s g

WEIGHTED A* ALGORITHM

39

• f(n) = g(n) + εh(n)

• ε > 1  Strong bias straight towards goal

• Trades optimality for speed

• Cost of path ≤ ε * cost of optimal

University of North Carolina at Chapel Hill

s g

D* ALGORITHM

40

• These algorithms assume perfect a priori knowledge

of the environment.

• What if our knowledge of the environment (or the

environment itself) changes over time?

• We use an incremental search algorithm

• D*, D*lite, etc.

• These algorithms used in the Mars rovers and the

DARPA grand challenge winners

University of North Carolina at Chapel Hill

Stentz, Anthony (1994), "Optimal and Efficient Path Planning for Partially-Known Environments",

Proceedings of the International Conference on Robotics and Automation: 3310–3317

QUESTIONS?

41

University of North Carolina at Chapel Hill

