
UNC Chapel Hill

Collision and Proximity Queries

Dinesh Manocha

(based on slides from Ming Lin)

COMP790-058
Fall 2013

UNC Chapel Hill

Geometric Proximity Queries	

l Given two object, how would you check: 	

 	

–  If they intersect with each other while moving?	

–  If they do not interpenetrate each other, how
far are they apart?	

–  If they overlap, how much is the amount of
penetration 	

UNC Chapel Hill

Collision Detection	

•  Update configurations w/ TXF matrices	

•  Check for edge-edge intersection in 2D	

 (Check for edge-face intersection in 3D)	

•  Check every point of A inside of B & 	

 every point of B inside of A	

	

•  Check for pair-wise edge-edge intersections	

Imagine larger input size: N = 1000+ ……	

UNC Chapel Hill

Classes of Objects & Problems

•  2D vs. 3D	

•  Convex vs. Non-Convex	

•  Polygonal vs. Non-Polygonal	

•  Open surfaces vs. Closed volumes	

•  Geometric vs. Volumetric	

•  Rigid vs. Non-rigid (deformable/flexible)	

•  Pairwise vs. Multiple (N-Body)	

•  CSG vs. B-Rep	

•  Static vs. Dynamic	

And so on… This may include other geometric

representation schemata, etc.	

UNC Chapel Hill

Some Possible Approaches

•  Geometric methods	

•  Algebraic Techniques	

•  Hierarchical Bounding Volumes	

•  Spatial Partitioning	

•  Others (e.g. optimization)	

UNC Chapel Hill

Voronoi Diagrams

l  Given a set S of n points in R2 , for each point pi
in S, there is the set of points (x, y) in the plane
that are closer to pi than any other point in S,
called Voronoi polygons. The collection of n
Voronoi polygons given the n points in the set S is
the "Voronoi diagram", Vor(S), of the point set S. 	

	

Intuition: To partition the plane into regions, each of
these is the set of points that are closer to a point pi in
S than any other. The partition is based on the set of
closest points, e.g. bisectors that have 2 or 3 closest
points.

UNC Chapel Hill M. C. Lin

Generalized Voronoi Diagrams

l  The extension of the Voronoi diagram to
higher dimensional features (such as
edges and facets, instead of points); i.e.
the set of points closest to a feature, e.g.
that of a polyhedron.

l  FACTS:
–  In general, the generalized Voronoi diagram has

quadratic surface boundaries in it.
–  If the polyhedron is convex, then its generalized

Voronoi diagram has planar boundaries.

UNC Chapel Hill M. C. Lin

Voronoi Regions

l  A Voronoi region associated with a feature is a
set of points that are closer to that feature than
any other.

l  FACTS:
–  The Voronoi regions form a partition of space outside

of the polyhedron according to the closest feature.
–  The collection of Voronoi regions of each polyhedron is

the generalized Voronoi diagram of the polyhedron.
–  The generalized Voronoi diagram of a convex

polyhedron has linear size and consists of polyhedral
regions. And, all Voronoi regions are convex.

UNC Chapel Hill M. C. Lin

Simple 2D Example

A

B

P1

P2

Objects A & B and their Voronoi regions: P1 and
P2 are the pair of closest points between A and B.
Note P1 and P2 lie within the Voronoi regions of
each other.	

UNC Chapel Hill M. C. Lin

Basic Idea for Voronoi Marching

UNC Chapel Hill M. C. Lin

Linear Programming

In general, a d-dimensional linear program-ming
(or linear optimization) problem may be posed
as follows: 	

 	

l  Given a finite set A in Rd 	

l  For each a in A, a constant Ka in R, c in Rd 	

l  Find x in Rd which minimize <x, c>	

l  Subject to <a, x> ≥ Ka, for all a in A . 	

where <*, *> is standard inner product in Rd. 	

UNC Chapel Hill M. C. Lin

LP for Collision Detection

Given two finite sets A, B in Rd 	

For each a in A and b in B, 	

Find x in Rd which minimize whatever	

Subject to 	

<a, x> > 0, for all a in A	

And 	

 <b, x> < 0, for all b in B	

	

where d = 2 (or 3).	

UNC Chapel Hill M. C. Lin

Minkowski Sums/Differences

l Minkowski Sum (A, B) = { a + b | a ∈
A, b ∈ B }

l Minkowski Diff (A, B) = { a - b | a ∈ A,

b ∈ B }

l A and B collide iff Minkowski

Difference(A,B) contains the point 0.

UNC Chapel Hill M. C. Lin

Some Minkowski Differences

A B

A B

UNC Chapel Hill M. C. Lin

Minkowski Difference & Translation

l  Minkowski-Diff(Trans(A, t1), Trans(B, t2)) =
Trans(Minkowski-Diff(A,B), t1 - t2)

⇒ Trans(A, t1) and Trans(B, t2) intersect iff

Minkowski-Diff(A,B) contains point (t2 - t1).

UNC Chapel Hill M. C. Lin

Properties

l  Distance
–  distance(A,B) = min a ∈ A, b∈ B || a - b ||2
–  distance(A,B) = min c ∈ Minkowski-Diff(A,B) || c ||2
–  if A and B disjoint, c is a point on boundary of

Minkowski difference

l  Penetration Depth
–  pd(A,B) = min{ || t ||2 | A ∩ Translated(B,t) = ∅ }
–  pd(A,B) = mint ∉Minkowski-Diff(A,B) || t ||2
–  if A and B intersect, t is a point on boundary of

Minkowski difference

UNC Chapel Hill M. C. Lin

GJK for Computing Distance
between Convex Polyhedra

GJK-DistanceToOrigin (P) // dimension is m
1. Initialize P0 with m+1 or fewer points.
2. k = 0
3. while (TRUE) {
4. if origin is within CH(Pk), return 0
5. else {
6. find x ∈ CH(Pk) closest to origin, and Sk ⊂ Pk s.t. x ∈ CH(Sk)
7. see if any point p-x in P more extremal in direction -x
8. if no such point is found, return |x|
9. else {
10. Pk+1 = Sk ∪ {p-x}
11. k = k + 1
12. }
13. }
14. }

UNC Chapel Hill M. C. Lin

Large, Dynamic Environments

l  For dynamic simulation where the velocity
and acceleration of all objects are known
at each step, use the scheduling scheme
(implemented as heap) to prioritize
“critical events” to be processed.

l  Each object pair is tagged with the
estimated time to next collision. Then,
each pair of objects is processed
accordingly. The heap is updated when a
collision occurs.

UNC Chapel Hill

Collide System Architecture

Analysis &
Response

Sweep & Prune

Simulation
Exact
Collision
Detection

Collision

Transform Overlap

Parameters

UNC Chapel Hill M. C. Lin

Sweep and Prune

l  Compute the axis-aligned bounding box
(fixed vs. dynamic) for each object

l  Dimension Reduction by projecting boxes
onto each x, y, z- axis

l  Sort the endpoints and find overlapping
intervals

l  Possible collision -- only if projected intervals
overlap in all 3 dimensions

UNC Chapel Hill M. C. Lin

Sweep & Prune

b1 b2 e1 e2 b3 e3

b1

b2

e1
b3
e2

e3 T = 1

b1 b2 e1 e2 b3 e3

b3

b1

e3

b2

e1

e2

T = 2

UNC Chapel Hill M. C. Lin

Updating Bounding Boxes

l Coherence (greedy algorithm)

l Convexity properties (geometric
properties of convex polytopes)

l Nearly constant time, if the motion is
relatively “small”

UNC Chapel Hill

Collision and Proximity Queries

Dinesh Manocha

(based on slides from Ming Lin)

UNC Chapel Hill

Methods for General Models

l  Decompose into convex pieces, and take
minimum over all pairs of pieces:
–  Optimal (minimal) model decomposition is NP-hard.
–  Approximation algorithms exist for closed solids,

but what about a list of triangles?

l  Collection of triangles/polygons:
–  n*m pairs of triangles - brute force expensive
–  Hierarchical representations used to accelerate

minimum finding

UNC Chapel Hill

Hierarchical Representations

l  Two Common Types:
–  Bounding volume hierarchies – trees of spheres, ellipses, cubes,

axis-aligned bounding boxes (AABBs), oriented bounding boxes
(OBBs), K-dop, SSV, etc.	

–  Spatial decomposition - BSP, K-d trees, octrees, MSP tree, R-
trees, grids/cells, space-time bounds, etc. 	

	

l  Do very well in “rejection tests”, when objects
are far apart 	

	

l  Performance may slow down, when the two
objects are in close proximity and can have
multiple contacts 	

UNC Chapel Hill

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric
- Spatial redundancy - Object redundancy

UNC Chapel Hill

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric
- Spatial redundancy - Object redundancy

UNC Chapel Hill

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric
- Spatial redundancy - Object redundancy

UNC Chapel Hill

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric
- Spatial redundancy - Object redundancy

UNC Chapel Hill

Spatial Data Structures & Subdivision

Uniform Spatial Sub Quadtree/Octree kd-tree BSP-tree

UNC Chapel Hill

Uniform Spatial Subdivision

l  Decompose the objects (the entire simulated
environment) into identical cells arranged in a fixed,
regular grids (equal size boxes or voxels)	

l  To represent an object, only need to decide which cells
are occupied. To perform collision detection, check if
any cell is occupied by two object

l  Storage: to represent an object at resolution of n voxels
per dimension requires upto n3 cells

l  Accuracy: solids can only be “approximated” 	

UNC Chapel Hill

Bounding Volume Hierarchies

l  Model Hierarchy:
–  each node has a simple volume that bounds a

set of triangles
–  children contain volumes that each bound a

different portion of the parent’s triangles
–  The leaves of the hierarchy usually contain

individual triangles
l  A binary bounding volume hierarchy:

UNC Chapel Hill

Type of Bounding Volumes

l  Spheres
l  Ellipsoids
l  Axis-Aligned Bounding Boxes (AABB)
l  Oriented Bounding Boxes (OBBs)
l  Convex Hulls
l  k-Discrete Orientation Polytopes (k-dop)
l  Spherical Shells
l  Swept-Sphere Volumes (SSVs)

–  Point Swetp Spheres (PSS)
–  Line Swept Spheres (LSS)
–  Rectangle Swept Spheres (RSS)
–  Triangle Swept Spheres (TSS)

UNC Chapel Hill

BVH-Based Collision Detection

UNC Chapel Hill M. C. Lin

Collision Detection using BVH

1. Check for collision between two parent nodes (starting
from the roots of two given trees) 	

2. If there is no interference between two parents, 	

3. Then stop and report “no collision”	

4. Else All children of one parent node are checked 	

 	

against all children of the other node	

5. If there is a collision between the children	

6. Then If at leave nodes	

7. Then report “collision”	

8. Else go to Step 4	

9. 	

 	

Else stop and report “no collision”

UNC Chapel Hill

Evaluating Bounding Volume Hierarchies

 Cost Function:	

 	

F = Nu x Cu + Nbv x Cbv + Np x Cp	

 	

F: 	

total cost function for interference detection	

Nu: 	

no. of bounding volumes updated 	

Cu: 	

cost of updating a bounding volume,	

Nbv: 	

no. of bounding volume pair overlap tests	

Cbv: 	

cost of overlap test between 2 BVs	

Np: 	

no. of primitive pairs tested for interference	

Cp: 	

cost of testing 2 primitives for interference

UNC Chapel Hill M. C. Lin

Designing Bounding Volume Hierarchies

The choice governed by these constraints:

–  It should fit the original model as tightly as
possible (to lower Nbv and Np)	

	

– Testing two such volumes for overlap should be as
fast as possible (to lower Cbv)	

	

–  It should require the BV updates as infrequently
as possible (to lower Nu)

UNC Chapel Hill

Observations

l  Simple primitives (spheres, AABBs, etc.) do
very well with respect to the second constraint.
But they cannot fit some long skinny primitives
tightly.

l  More complex primitives (minimal ellipsoids,
OBBs, etc.) provide tight fits, but checking for
overlap between them is relatively expensive.

l  Cost of BV updates needs to be considered.

UNC Chapel Hill

Trade-off in Choosing BV’s

 increasing complexity & tightness of fit

 decreasing cost of (overlap tests + BV update)

AABB OBB Sphere Convex Hull 6-dop

UNC Chapel Hill

Building Hierarchies

l  Choices of Bounding Volumes
–  cost function & constraints

l  Top-Down vs. Bottum-up
–  speed vs. fitting

l  Depth vs. breadth
–  branching factors 	

	

l  Splitting factors	

–  where & how

