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Geometric Proximity Queries	



l Given two object, how would you check: 	


  	



–  If they intersect with each other while moving?	



–  If they do not interpenetrate each other, how 
far are they apart?	



–  If  they  overlap,  how  much  is  the  amount  of 
penetration  	
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Collision Detection	



•  Update configurations w/ TXF matrices	



•  Check for edge-edge intersection in 2D	


  (Check for edge-face intersection in 3D)	



•  Check every point of A inside of B & 	


   every point of B inside of A	


	



•  Check for pair-wise edge-edge intersections	



Imagine larger input size:  N = 1000+ ……	
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Classes of Objects & Problems 

•  2D vs. 3D	


•  Convex vs. Non-Convex	


•  Polygonal vs. Non-Polygonal	


•  Open surfaces vs. Closed volumes	


•  Geometric vs. Volumetric	


•  Rigid vs. Non-rigid (deformable/flexible)	


•  Pairwise vs. Multiple (N-Body)	


•  CSG vs. B-Rep	


•  Static vs. Dynamic	


And so on…  This may include other geometric 

representation schemata, etc.	
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Some Possible Approaches 

•  Geometric methods	


•  Algebraic Techniques	


•  Hierarchical Bounding Volumes	


•  Spatial Partitioning	


•  Others (e.g. optimization)	





UNC Chapel Hill 

Voronoi Diagrams 

l  Given a set S of  n  points in R2 ,  for each point pi 
in S, there is the set of points (x, y)  in the plane 
that are closer to pi  than any other point in S, 
called  Voronoi polygons. The collection of n 
Voronoi polygons given the n points in the set S is 
the "Voronoi diagram", Vor(S), of the point set S. 	



	



Intuition: To partition the plane into regions, each of 
these is the set of points that are closer to a point pi in 
S than any other.  The partition is based on the set of 
closest points, e.g. bisectors that have 2 or 3 closest 
points.   
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Generalized Voronoi Diagrams 

l  The extension of the Voronoi diagram to 
higher dimensional features (such as 
edges and facets, instead of points); i.e. 
the set of points closest to a feature, e.g. 
that of a polyhedron.  

l  FACTS: 
–  In general, the generalized Voronoi diagram has 

quadratic surface boundaries in it.  
–  If the polyhedron is convex, then its generalized 

Voronoi diagram has planar boundaries.  
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Voronoi Regions 

l  A Voronoi region associated with a feature is a 
set of points that are closer to that feature than 
any other.   

l  FACTS: 
–  The Voronoi regions form a partition of space outside 

of the polyhedron according to the closest feature.   
–  The collection of Voronoi regions of each polyhedron is 

the generalized Voronoi diagram of the polyhedron.   
–  The generalized Voronoi diagram of a convex 

polyhedron has linear size and consists of polyhedral 
regions. And, all Voronoi regions are convex. 
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Simple 2D Example 

A

B

P1

P2

Objects A & B and their Voronoi regions:  P1 and 
P2 are the pair of closest points between A and B.    
Note P1 and P2 lie within the Voronoi regions of 
each other.	
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Basic Idea for Voronoi Marching 
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Linear Programming 

In  general,  a  d-dimensional  linear  program-ming 
(or linear optimization) problem may be posed 
as follows: 	



 	



l  Given a finite set A in Rd 	


l  For each a  in A, a constant Ka  in R, c in Rd 	


l  Find  x in Rd which minimize <x, c>	


l  Subject to <a, x>  ≥   Ka, for all a  in A . 	



where <*, *> is standard inner product in  Rd. 	
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LP for Collision Detection 

Given two finite sets A, B in Rd 	


For each a in A and b in B, 	


Find x in Rd which minimize whatever	


Subject to 	

<a, x> > 0, for all a in A	


And 	

         <b, x> < 0, for all b in B	


	


where d = 2 (or 3).	
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Minkowski Sums/Differences 

l Minkowski Sum (A, B) = { a + b  | a ∈ 
A, b ∈ B } 

  
l Minkowski Diff (A, B) = { a - b  | a ∈ A, 

b ∈ B } 
  
l A and B collide iff Minkowski 

Difference(A,B) contains the point 0. 
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Some Minkowski Differences 

A B

A B
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Minkowski Difference & Translation 

l  Minkowski-Diff(Trans(A, t1), Trans(B, t2)) = 
Trans(Minkowski-Diff(A,B), t1 - t2) 

 
⇒ Trans(A, t1) and Trans(B, t2) intersect iff 

Minkowski-Diff(A,B) contains point (t2  - t1). 
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Properties 

l  Distance 
–  distance(A,B) = min a ∈ A,  b∈ B  || a - b ||2 
–  distance(A,B) = min c ∈ Minkowski-Diff(A,B)  || c ||2 
–  if A and B disjoint, c is a point on boundary of 

Minkowski difference 
 

l  Penetration Depth  
–  pd(A,B) = min{ || t ||2 | A ∩ Translated(B,t) = ∅ } 
–  pd(A,B) = mint ∉Minkowski-Diff(A,B) || t ||2  
–  if A and B intersect, t is a point on boundary of 

Minkowski difference 
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GJK for Computing Distance 
between Convex Polyhedra 

GJK-DistanceToOrigin ( P )   // dimension is m 
1.   Initialize P0  with m+1 or fewer points. 
2.   k  = 0 
3.   while (TRUE) {   
4.       if origin is within CH( Pk ), return 0 
5.       else  {  
6.             find x ∈ CH(Pk) closest to origin, and Sk ⊂  Pk s.t. x ∈ CH(Sk) 
7.                  see if any point p-x in P more extremal in direction -x  
8.           if no such point is found, return |x| 
9.                  else { 
10.              Pk+1 = Sk ∪ {p-x} 
11.              k = k + 1 
12.          } 
13.      } 
14.   } 
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Large, Dynamic Environments 

l  For dynamic simulation where the velocity 
and acceleration of all objects are known 
at each step, use the scheduling scheme 
(implemented as heap) to prioritize 
“critical events” to be processed. 

l  Each object pair is tagged with the 
estimated time to next collision.  Then, 
each pair of objects is processed 
accordingly.  The heap is updated when a 
collision occurs. 



UNC Chapel Hill 

Collide System Architecture 

Analysis &  
Response 

Sweep & Prune 

Simulation 
Exact  
Collision 
Detection 

Collision 

Transform Overlap 

Parameters 
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Sweep and Prune 

l  Compute the axis-aligned bounding box 
(fixed vs. dynamic) for each object 

l  Dimension Reduction by projecting boxes 
onto each x, y, z- axis 

l  Sort the endpoints and find overlapping 
intervals 

l  Possible collision -- only if projected intervals 
overlap in all 3 dimensions  
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Sweep & Prune 
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Updating Bounding Boxes 

l Coherence (greedy algorithm) 
 

l Convexity properties (geometric 
properties of convex polytopes) 

 

l Nearly constant time, if the motion is 
relatively “small” 
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Methods for General Models 

l  Decompose into convex pieces, and take 
minimum over all pairs of pieces: 
–  Optimal (minimal) model decomposition is NP-hard.   
–  Approximation algorithms exist for closed solids, 

but what about a list of triangles? 

l  Collection of triangles/polygons: 
–  n*m pairs of triangles - brute force expensive 
–  Hierarchical representations used to accelerate 

minimum finding 
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Hierarchical Representations 

l  Two Common Types: 
–  Bounding volume hierarchies – trees of spheres, ellipses, cubes, 

axis-aligned bounding boxes (AABBs), oriented bounding boxes 
(OBBs), K-dop, SSV, etc.	



–  Spatial decomposition - BSP, K-d trees, octrees, MSP tree, R-
trees, grids/cells, space-time bounds, etc. 	



	



l  Do very well in “rejection tests”, when objects 
are far apart 	



	



l  Performance may slow down, when the two 
objects are in close proximity and can have 
multiple contacts 	
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BVH vs. Spatial Partitioning 

BVH:        SP: 
- Object centric        - Space centric 
- Spatial redundancy       - Object redundancy 
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BVH vs. Spatial Partitioning 

BVH:        SP: 
- Object centric        - Space centric 
- Spatial redundancy       - Object redundancy 
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Spatial Data Structures & Subdivision 

Uniform Spatial Sub Quadtree/Octree kd-tree BSP-tree 
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Uniform Spatial Subdivision 

l  Decompose the objects (the entire simulated 
environment) into identical cells arranged in a fixed, 
regular grids (equal size boxes or voxels)	



l  To represent an object, only need to decide which cells 
are occupied.  To perform collision detection, check if 
any cell is occupied by two object   

l  Storage:  to represent an object at resolution of n voxels 
per dimension requires upto n3 cells  

l  Accuracy:  solids can only be “approximated” 	





UNC Chapel Hill 

Bounding Volume Hierarchies 

l  Model Hierarchy:  
–  each node has a simple volume that bounds a 

set of triangles  
–  children contain volumes that each bound a 

different portion of the parent’s triangles  
–  The leaves of the hierarchy usually contain 

individual triangles 
l  A binary bounding volume hierarchy: 
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Type of Bounding Volumes 

l  Spheres 
l  Ellipsoids 
l  Axis-Aligned Bounding Boxes (AABB) 
l  Oriented Bounding Boxes (OBBs) 
l  Convex Hulls 
l  k-Discrete Orientation Polytopes (k-dop) 
l  Spherical Shells  
l  Swept-Sphere Volumes (SSVs) 

–  Point Swetp Spheres (PSS) 
–  Line Swept Spheres (LSS) 
–  Rectangle Swept Spheres (RSS) 
–  Triangle Swept Spheres (TSS) 
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BVH-Based Collision Detection 
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Collision Detection using BVH 

1.  Check for collision between two parent nodes (starting 
from the roots of two given trees) 	



2.  If there is no interference between two parents, 	


3.       Then stop and report “no collision”	


4.   Else All children of one parent node are checked   	


                    	

against all  children of  the other node	


5.  If there is a collision between the children	


6.     Then If at leave nodes	


7.          Then report “collision”	


8.    Else go to Step 4	


9. 	

 	

Else stop and report “no collision” 
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Evaluating Bounding Volume Hierarchies  

   Cost Function:	


   	



F = Nu x Cu  +  Nbv x Cbv + Np x Cp	


 	



F: 	

total cost function for interference detection	


Nu: 	

no. of bounding volumes updated 	


Cu: 	

cost of updating a bounding volume,	


Nbv: 	

no. of bounding volume pair overlap tests	


Cbv: 	

cost of overlap test between 2 BVs	


Np: 	

no. of primitive pairs tested for interference	


Cp: 	

cost of testing 2 primitives for interference 
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Designing Bounding Volume Hierarchies  

The choice governed by these constraints:  
 

–  It  should  fit  the  original  model  as  tightly  as 
possible (to lower Nbv and Np)	



	



– Testing two such volumes for overlap should be as 
fast as possible (to lower Cbv)	



	



–  It should require the BV updates as infrequently 
as possible (to lower Nu) 
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Observations 

l  Simple primitives (spheres, AABBs, etc.) do 
very well with respect to the second constraint. 
But they cannot fit some long skinny primitives 
tightly. 

l  More complex primitives (minimal ellipsoids, 
OBBs, etc.) provide tight fits, but checking for 
overlap between them is relatively expensive.  

l  Cost of BV updates needs to be considered. 
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Trade-off in Choosing BV’s 

         increasing complexity & tightness of fit 
 
 

   decreasing cost of (overlap tests + BV update) 

AABB OBB Sphere Convex Hull 6-dop 
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Building Hierarchies  

l  Choices of Bounding Volumes 
–  cost function & constraints 

 

l  Top-Down vs. Bottum-up 
–  speed vs. fitting 

l  Depth vs. breadth 
–  branching factors 	



	



l  Splitting factors	


–  where & how 


