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WHAT IS MENGE?

* Menge is a modular, pluggable framework for crowd simulation
developed at UNC.

* Menge is Open-Source and publicly available.



MULTI-AGENT SIMULATION PIPELINE

* Abstract pipeline for multi-agent simulation

Goal selection: What does the agent want to do

Plan computation: How does the navigate the environment

* Preferred velocity: The velocity the agent takes to optimally proceed
along its path

Plan Adaptation: How the Agent responds to local conditions

Motion synthesis: Animation / Output stage
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PLAN COMPUTATION

« Computes a path from Agent to Goal

* VelocityComponent Element

- Roadmap, Guidance Field, Navigation Mesh, Straight Line
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PLAN COMPUTATION

« Computes a path from Agent to Goal
* VelocityComponent Element

- Roadmap, Guidance Field, Navigation Mesh, Straight Line




PLAN ADAPTATION

 How does the agent react to local conditions?

 Pedestrian Model

* Social Force, RVO, Cellular Automata
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MENGE FRAMEWORK

Groal Selection Plan Computation lan Adaptation
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MENGE FRAMEWORK

Goal Selection

Goal Selection

- Nearest, farthest, biggest, least populous - EE
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« Goal reached, timers, probabilistic -

‘ompute Preferred
Velocity

Plan Computation

Velocity Components
 Roadmap, Navigation Mesh, Guidance Field

Pedestrian Model

» Local Navigation




MENGE TUTORIAL

* Live demo
* Project files
« Scene specification
* Run time parameters
* Visualizer

«  Documentation:
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http://gamma.cs.unc.edu/Menge/
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ENVIRONMENT REPRESENTATION
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ENVIRONMENT REPRESENTATION

* Visual representation more detailed than necessary
* Very common for dynamics simulation
« Typically true for navigation as well

* The more complex the representation, the more expensive
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ENVIRONMENT REPRESENTATION

* Full 3D polygonal
representation

* Quite expensive

* Details smaller than
~0.2 m probably don't
matter.

* Floor plan matters more
than vertical space

 (vertical clearance)
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ENVIRONMENT REPRESENTATION

« 2D footprint
- Saving an entire dimension
* How much detail?
« Coarse bounding volumes

. Visually clear regions are no longer clear
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ENVIRONMENT REPRESENTATION

- Keep polygons or rasterize to grid?
« Grid offers simple “is colliding” query

* (Compatible with potential field methods)
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GLOBAL NAVIGATION

« Solving requires two things
* Represent the navigable space and its relationships

- Search the navigable space for optimal paths
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ROADMAPS

- Path composed of waypoints or milestones
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ROADMAPS

* A discrete sampling of free space
- Each sample is guaranteed to be collision free (CLEAR(Q))

* Links between samples is guaranteed to be a collision free trajectory
(LINK(q, q'))
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ROADMAPS: CONSTRUCTION




ROADMAPS: CONSTRUCTION
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Algorithm 6 Roadmap Construction Algorithm
Input:

n : number of nodes to put in the roadmap

k : number of closest neighbors to examine for each configuration
Output:

A roadmap G = (V, E)
V<0
E<«0
while |V| < n do

repeat

q < arandom configuration in Q

until g is collision-free

V < VU lig}
end while
forallg € V do

N, < the k closest neighbors of ¢ chosen from V' according to dist

forall ' € N, do
if (¢,q9") € E and A(q, q') # NIL then
E < EU{q,q))
end if
end for

- end for
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ROADMAPS: QUERY
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ROADMAPS: QUERY
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9: until a connection was succesful or the set /

Input:
@init: the initial configuration
¢goa: the goal configuration
k: the number of closest neighbors to examine for each configuration
G = (V, E): the roadmap computed by algorithm 6
Output:
A path from gj 1O gu0a or failure

ame < the k closest neighbors of gy, from V according to dist
Ny,.. < thek closest neighbors of e, from V according to dist

4 I'-'i'_r--..:

N {qiulr} U {qglmli uv

: set ¢’ to be the closest neighbor of g, in /
. repeat

if A(qinit» g') # NIL then

E <« (Gni.q)VE
else

set g’ to be the next closest neighbor of iy in N,
end if

. until a connection was succesful or the set N, is empty
2: set g’ to be the closest neighbor of ggoq in
. repeat

if A(Ggoas ¢') # NIL then

E « (ggoat, gYUE
else

set ¢ to be the next closest neighbor of gay in /
end if

, is empty

: P <« shortest path(giyi, Ggoa, G)
. if P is not empty then

return P

3: else

return failure

25: end if
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ROADMAPS: QUERY

* Given start (s) and goal (g) positions

* Link to roadmap

* Find path on roadmap
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ROAD MAP - USE

 Path

* P =[P, P2s P3s ---5 Py 9]
* Ordered list of waypoints

* Preferred direction is direction toward “next” waypoint — the target
waypoint

- When do you change which waypoint is the target waypoint?

- What if the target waypoint is lost?

University of North Carolina at Chapel Hill
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ROAD MAP - USE

 When do you advance the target waypoint?
« Simply measure distance (d) —d < D - reached
D - threshold
* Big enough to be robust

« Small enough that the next waypoint is
reachable

« What if the crowd keeps me from reaching the
waypoint?

« What if the crowd sweeps me PAST the waypoint
along my path, but | don’t get close?
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ROAD MAP - USE

 When do you advance the target waypoint?
* Visibility tests

« Set the target waypoint to be the most
advanced waypoint that is visible

« This keeps the waypoint as far in “front” as
possible

« Also detects if the agent is pushed from the
path
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ROAD MAP - USE

« What if you lose sight of the target waypoint (pushed
off the path)?

* Replan
* Create a new path

* Rewind
« Try testing previous waypoints (or successive)
* Replan if all else falls

 Remember

 Remember where you were when you last
could see it and work toward that
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ROAD MAP - ANALYSIS

- Paths are dependent on sampling and connectivity
« Path is only “optimal” w.r.t. the graph — not the environment
« “Smoothing” the path helps
 Earlier visibility query implicitly smooths the path

« All but the last visible nodes are culled
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ROAD MAP - ANALYSIS

« That form of smoothness depends on the roadmap

-
[
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ROAD MAP - ANALYSIS

- Paths are dependent on sampling and connectivity

« How close it is to optimal depends on how close the roadmap
samples come to the optimal path

* No link = no path

University of North Carolina at Chapel Hill

32



ROAD MAP - ANALYSIS

- Clearance
 Roadmaps are computed with one clearance in mind
- What if there are entities of varying size?

* Big agents will attempt to travel links with insufficient clearance on
a small-agent map

- Small agents will skip valid paths when using big-agent maps

* Encode each link with maximum clearance
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ROAD MAP - ANALYSIS

* More choices - more complexity

- The only way to give agents more paths to reach their goal is to
Increase the complexity of the map

- Search algorithms are worse than linear in the length of the optimal
path (length = # of links)

* Double the # of links, more than double the computation time

* Also increase memory footprint
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ROAD MAP - ANALYSIS

* Pros
- Easy to create
« Graph search straight-forward and generally effective
* Pre-computed
« Allows for non-planar topologies
 Cons
- Hard to create a good roadmap
« Paths non-optimal and non-smooth

* Requires acceleration structure and visibility query to link to the graph
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OTHER GLOBAL NAVIGATION METHODS

* Navigation Meshes
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NAVIGATION GRID

* Discretize Free space into cells

* Plan optimal velocity at each cell

o =«
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NAVIGATION GRID

* Discretization of space
* Cells don’t have to be uniform or square
* Rectangle, hex, etc.
* Cells are either marked as free or occupied

* Non-boolean values possible
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OTHER GLOBAL NAVIGATION METHODS

* Navigation Grids
« Guidance field

 Potential field
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NAVIGATION MESH

* Discretize space as a set of connected convex polygens
« Graph search to find “envelope”

- Path planning through envelope




NAVIGATION MESH

* Discretization of free region into a mesh of convex polygons
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GLOBAL PLANNERS

 How do roadmaps compare to navigation grids, or navigation meshes?
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ASSIGNMENT 1

* Revisit project specification
- Changing properties
« Changing global simulator
« Changing local simulator
* Format for roadmaps
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ASSIGNMENT 1

- Comparing simulations

. . the computational time taken to evaluate a single simulation
step.

- . simulation model’s ability to take large time steps and still
produce “accurate” results.

- . how much compute time is required to produce one second
of simulated results?

» = stability / cost
 How do you define accuracy?
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