LOCAL NAVIGATION 2

FORCE-BASED BOOKKEEPING

- Social force models
 - The forces are first-class abstractions
 - Agents are considered to be mass particles
- Other models use forces as bookkeeping
 - It is merely a way to combine multiple influences on an agent

OPENSTEER

- Based on Boids (Reynold's 1987)
 - Flocking model based on three rules
 - Separation
 - Alignment
 - Cohesion
 - http://www.youtube.com/watch?v=GUkjC-69vaw
 - <u>http://www.red3d.com/cwr/boids/</u>

OPENSTEER

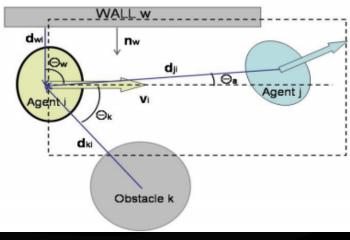
- Based on Boids (Reynold's 1987)
 - The rules are typically implemented as forces
 - Arbitrary weights define behavior
 - Linear extrapolation detects possible collisions
 - Normal forces applied to change heading
 - Poor at collision avoidance
 - http://www.youtube.com/watch?v=dKW-psERFGA
 - <u>http://www.youtube.com/watch?v=3CRjPwb5qol</u>

HiDAC - Pelechano et al. 2007

- Incorporates high-order behaviors into the model
- Applies various forces
 - Attractor force
 - Wall force, Obstacle force
 - Agent force
 - Inertial force
 - Collision force
 - Fallen-agent avoidance force
- http://www.youtube.com/watch?v=KsbChtHmwfA

HIDAC

- Application of forces is based on rules
- Examples
 - When in collision, only collision force is considered
 - When "stopping" or "waiting" repulsive forces are ignored

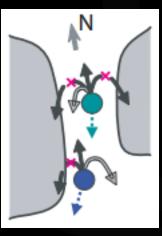

HIDAC

- Force formulation
 - "Nearby" defined by a "rectangle of influence"
 - Obstacle force

$$\mathbf{F}_{ki}^{Ob} = \frac{\left(\mathbf{d}_{ki} \times \mathbf{v}_{i}\right) \times \mathbf{d}_{ki}}{\left|\left(\mathbf{d}_{ki} \times \mathbf{v}_{i}\right) \times \mathbf{d}_{ki}\right|}$$

• Wall force

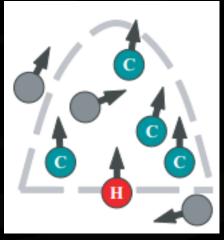
$$\mathbf{F}_{wi}^{Wa} = \frac{\left(\mathbf{n}_{w} \times \mathbf{v}_{i}\right) \times \mathbf{n}_{w}}{\left|\left(\mathbf{n}_{w} \times \mathbf{v}_{i}\right) \times \mathbf{n}_{w}\right|}$$

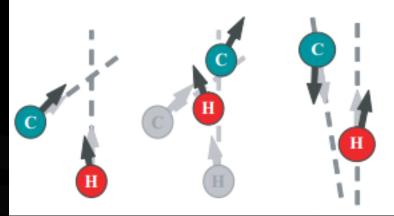

HIDAC

- Apply extra rules
 - In low-speed, high-dense scenarios jittering occurs
 - The authors apply a "stopping rule"
 - Prevents responses when the forces are too strong against desired direction of travel
 - Stopping lasts for a random period of time
 - Waiting for queues (also disables responses)

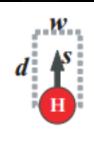
- Shao & Terzopolous, 2005
- Agent behavior based on six rules evaluated sequentially
 - Static obstacle avoidance
 - Static obstacle avoidance with turn
 - Maintain separation
 - Avoid oncoming pedestrians
 - Avoid "dangerously" close pedestrians
 - Validate against obstacles
- <u>http://www.youtube.com/watch?v=cqG7ADSvQ5o</u>

- Static obstacle avoidance
 - Turns preferred velocity based on nearby obstacles
 - If a great deal of turning is required, the magnitude of the preferred velocity is reduced

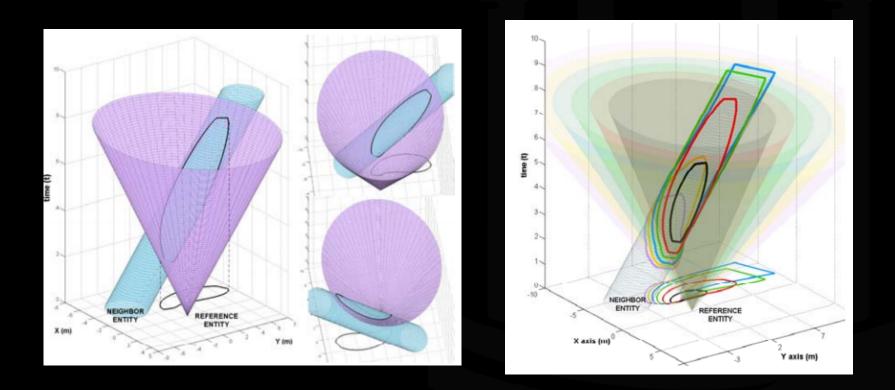

- Static obstacle avoidance with turn
 - Turning requires more than a single step (gait step, not time step)
 - Curves of increasing curvature are tested in both directions

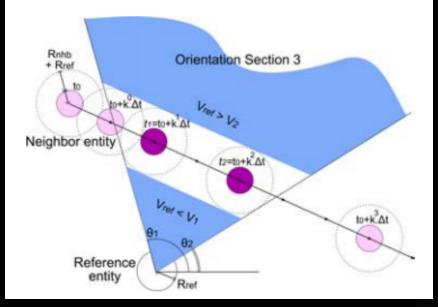

- Maintain separation
 - Only considers "temporary crowd"
 - Nearby agents moving with similar velocity

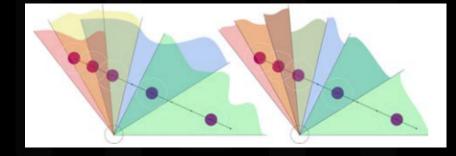
•
$$f_{ij} = \frac{r_i}{|\vec{p}_{ij}| - d_{min}} \hat{p}_{ij}$$


Got some mathematical problems

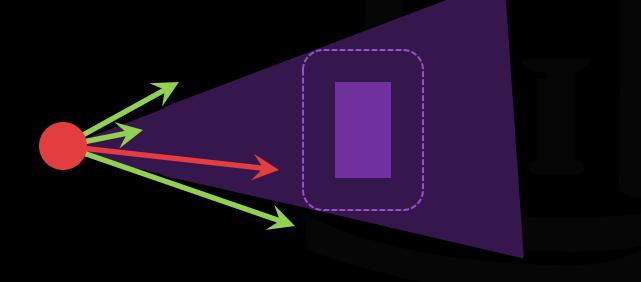
- Avoid oncoming pedestrians
 - Classifies potential collisions with non-temporary crowd members
 - Cross collisions
 - Head-on collisions
 - Considers most "imminent"
 - Turns from head-on
 - Changes speed for cross collisions


- Avoid "dangerously" close pedestrians
 - Safety catch for when the previous two rules fail
 - If another pedestrian is in the safety zone:
 - Stop as quickly as possible
 - Turn away
 - Start again when it appears clear


- Validate against obstacles
 - Inter-agent rules can lead to obstacle collisions
 - The current velocity is validated against obstacles
 - Throws out agent-responses
 - Applies voodoo to know when slowing should occur
 - (Not described in the paper)

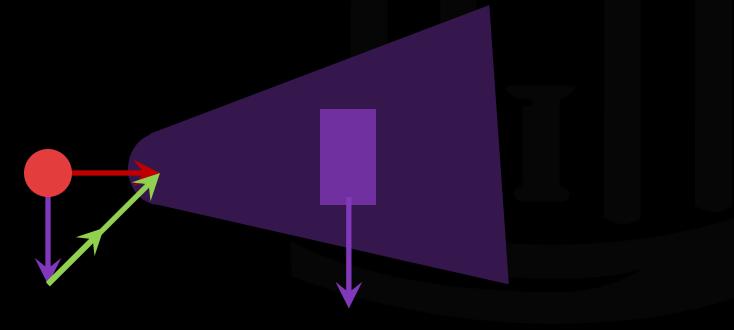

- Performs optimization in geometric space using optimization techniques
 - Here at UNC we primarily use models of this type

• Paris et al., 2007


• Paris et al., 2007

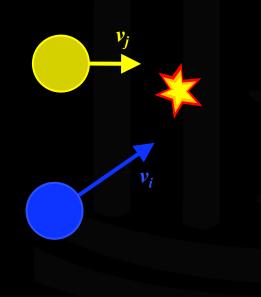
- Paris et al., 2007
 - Response is selected from the region with the lowest cost
 - Cost is minimal where:
 - Section speed is close to desired speed
 - Section orientation is close to desired direction
 - Acceleration is limited (related to previous rules)
 - Sections based on near time are more important

• A set of velocities which will lead to an inevitable collision.

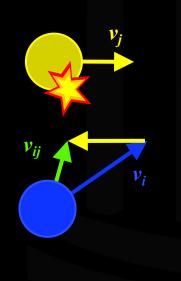

Navigate by selecting "best" velocity outside of the obstacle.

- Velocity obstacle for moving objects is translated by that object's velocity.
- This is the original VO formulation [Fiorini & Schiller 1998].

• Predicting responsive obstacles


- Reciprocal Velocity Obstacles (RVO) van den Berg, et al., 2008
 - Assume:
 - Each agent is responsive
 - Each agent will take an equal share to avoid collision

• RVO

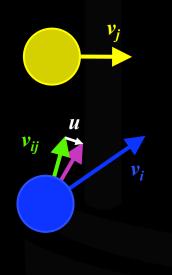


- RVO
 - It still assumes that it accurately predicts the other agent's future velocity
 - If the other agent has OTHER constraints that prevent it from taking the expected velocity, the assumption is broken
 - That brings us to Optimal Reciprocal Collision Avoidance (ORCA) – van den Berg, et al., 2009

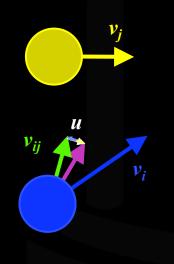
- Identify a collision
 - Linear extrapolation (constant velocity)

- Identify a collision w.r.t. relative velocity and position
 - Linear interpolation (constant velocity)

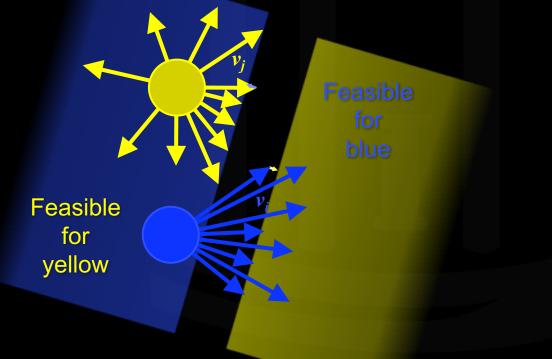
• Find alternate, collision-free relative velocity


?

 v_i


?

• Which one?


- ORCA finds the relative velocity that requires the *smallest* change to the current relative velocity
 - *u* is the change vector

Share the displacement *equally* between the two agents

- The change in velocity is enforced with a half-plane constraint
- All feasible pairs will change relative velocity by at least u

- Multiple neighbors form multiple, simultaneous constraints
- Nearest feasible velocity to v⁰

Feasible with respect to all neighbors

• [van den Berg et al. 2009]

VISION-BASED

- Ondrej et al., 2010
 - Based on planning in "vision" space
 - Similar to optical flow
 - Detecting how quickly things change size and heading
 - <u>http://www.youtube.com/watch?feature=player_e</u> <u>mbedded&v=586qhaDwr24</u>

AGGREGATE CROWDS

- Narain, et al., 2009
 - Solves for velocity based on density constraints
 - Creates velocity and density fields
 - Projects preferred velocity onto the field and solves the flow such that maximum density is never exceeded
 - http://www.youtube.com/watch?v=pqBSNAOsMDc
 - In principle, still similar to previous pedestrian models

CONTINUUM CROWD

- Treuille et al., 2006
 - Does not use the global-local decomposition
 - Solves globally at each time step w.r.t. dynamic entities
 - http://www.youtube.com/watch?v=IGOvYyJ6r1c

CONTINUUM CROWD

- Treuille et al., 2006
 - Computes a "unit-cost" field

$$\int_P C ds, \quad \text{where} \quad C \equiv \frac{\alpha f + \beta + \gamma g}{f}$$

- Minimizes
 - Path length
 - Travel time
 - Discomfort
- A true potential field model

CONTINUUM CROWD

- Treuille et al., 2006
 - Assumes limited number of unique groups
 - Groups share
 - Goal
 - Preferred speed
 - Discomfort fields

QUESTIONS?