Comp 790-058 : Multi-Agent Simulation for Crowds & Autonomous Driving

Sahil Narang & Andrew Best August 22, 2017 University of North Carolina at Chapel Hill

University of North Carolina at Chapel Hill

Multi-Agent Simulation

Multiple robots in shared environments

Kiva Systems

Multi-Agent Simulation

• Multi-agent simulation in entertainment

Multi-Agent Simulation

• Multi-agent simulation as biological entities

University of Lincoln

Structure

- Introduction
- Course details
- Background
- Multi-agent simulation
 - Crowd simulation
 - Pedestrian tracking
- Autonomous Driving

Multi-Agent Simulation, Crowds and Autonomous Driving

- COMP 790-058 (Fall 2017)
 - Tue 11-1:30 in SN 115
- Instructor: Dinesh Manocha (<u>dm@cs.unc.edu</u>)
- Co-instructors:
 - Aniket Bera
 - Andrew Best
 - Sahil Narang
- Website
 - http://gamma.cs.unc.edu/courses/planning-f17/

What is this course about?

- Underlying geometric concepts of motion planning
 - Configuration space
- Character motion in virtual environments
- Multi-agent and Crowd simulation
- Autonomous driving navigation and coordination
- Local and global collision avoidance
- Pedestrian tracking and path prediction

Do I have the right background?

- Undergraduate algorithms course
- Exposure to geometric concepts
- Basic physics and dynamics
- Willingness to read about new concepts and applications!

Course Load & Grading

- 3-4 assignments (30%)
 - Geometric concepts (problems)
 - Multi-agent simulation: programming assignments
 - Autonomous driving: problems and programming
- Class participation and a lecture (20%)
 Lecture topic (consult the instructor)
- Course Project (45%)

Course Project

 Any topic related to multi-agent simulation, crowds, and autonomous driving

Must have some novelty to it!

- Can work by yourself or in small groups (2-3)
- Can combine with course projects in other courses
- Start thinking now of possible course project

Course Project Schedule

- Project topic proposal (October 03)
- Monthly updates
- Mid semester project update (early November)
- Final project presentation (During the finals week)
- Scope for extra credit + publications!

Course Schedule (Tentative)

- August 22, 2017: Course Introduction and Overview (Andrew and Sahil)
 - August 29, 2017: Graph Searches and Global Navigation (Dinesh)
 - Sep. 05, 2017: Local Navigation Methods (Dinesh)
- Sep. 12, 2017: High-DOF Motion Planning & Configuration Spaces (Dinesh)
 - Sep. 19, 2017: Overview of Autonomous Driving (Andrew and Sahil)
 - Sep. 26, 2017: Autonomous Driving: Dynamics and Navigation (Andrew and Sahil)
 - Oct. 03, 2017: Project Proposals

۲

۲

۲

۲

Course Schedule (Tentative)

- Oct. 10, 2017: Pedestrian Tracking and vision methods (Aniket)
- Oct. 17, 2017: Path Prediction and Anomaly Detection (Aniket)
- Oct. 24, 2017: Autonomous Driving Perception (Andrew and Sahil)
 - Oct. 31: Student lectures

۲

۲

۲

۲

- Nov. 07: Student Lectures
- Nov. 14: Project Update
- Nov. 21: Student Lectures
- Nov. 28: Student Lectures
- Dec. 05: Course Wrapup

Structure

- Introduction
- Course details
- Background
- Multi-agent simulation
 - Crowd simulation
 - Pedestrian tracking
- Autonomous Driving

Sense

- Takes raw data from sensors and produces information
- Plan
 - Takes information and produces tasks
- Act
 - Functional components which carry out the task

- Sense
 - Gather noisy data from various sensors
 - Fuse data into a consistent model
 - Perception: semantic understanding of the world

- Plan
 - Different abstractions of planning
 - Higher abstraction: Knowledge based reasoning
 - "Find someone who knows about P"
 - "Go to position B"
 - Lower abstraction: Motion planning
 - Given the current setting of the robot, find a valid or optimal trajectory for the robot to reach goal B
 - Collision-free
 - Other constraints: Dynamic/ kinematic feasibility
 - Optimality criterion: shortest path, min-time, smooth etc.

- Act
 - Sequence of actuator commands
 - Realizing the generated plan
 - Generates the actual motion of the robot/agent

Hierarchical Paradigm

- Traditional Paradigm
- Powerful approach for "deliberative" and complex planning

Hierarchical Paradigm

- Limitations
 - Knowledge representation
 - Closed world assumption
 - Size of the state space can explode
 - Planning can be expensive
 - No reactivity

Reactive Paradigm

- No world model; no planning
- Maps sensor input to actuator output
- Very "reactive" to sensor readings

Other paradigms

- Hybrid Heirarchial / Reactive Paradigms
 - Reactive functions for low level control
 - Deliberation for higher level tasks

Problems to consider

- Moving obstacles
- Multiple agents
- Complex environments
- Goal is to acquire information by sensing
- Nonholonomic constraints
- Dynamic constraints
- Stability constraints

- Optimal planning
- Uncertainty in model, control and sensing
- Exploiting task mechanics (underactuated systems)
- Integration of planning and control
- Integration with higherlevel planning

Problems to consider in simulation

- Accuracy
 - Reflect real world conditions
 - Results should be transferrable to the real world
- Efficiency
 - Cost of a single timestep
 - Stability: ability to take large time steps
- Robustness

Structure

- Introduction
- Course details
- Background
- Multi-agent simulation
 - Crowd simulation
 - Pedestrian tracking
- Autonomous Driving

Multi-agent simulation

- Study of agents planning in a shared environment
- Environment
 - Static and Dynamic obstacles
- Goals
 - Generate optimal and feasible plans for all agents with respect to give constraints.
- Complexity
 - Linear in the number of robots
 - Exponential in the dimensionality of the configuration space

Multi-agent simulation

- Centralized vs Distributed Planning
 - Centralized
 - Planning is centralized, execution is distributed
 - Distributed
 - Both planning and execution are distributed

Multi-agent simulation

- Coordinated vs Independent Planning
 - Coordinated
 - Explicit communication and coordination between agents
 - Independent
 - Implicit communication (observations) and no explicit coordination between agents

Crowd Simulation

- Study of how pedestrians flow through a shared environment
- Goals:
 - Understanding Human Crowd Behavior
 - Predicting / Replicating pedestrian behavior
 - Design and Plan with Pedestrians in mind
- Multiple approaches
 - Agent Based (Distributed and Independent)
 - Fluid-Dynamic or Continuum (Centralized)
 - Event Based

Crowd Simulation

- Agents have:
 - Independent sensing
 - Independent Goals
 - Independent Planning
 - No implicit Communication
- Modeling pedestrians
 - Simple 2D shapes: circles (or ellipses)
 - Some high level constraints to generate human-like motion
 - Range of motion, dynamic stability, limb acceleration etc

Crowd Simulation Framework: Menge

- Menge is a modular, pluggable framework for crowd simulation developed at UNC.
- Menge is Open-Source and publicly available.
- Pluggable components:
 - Behaviors
 - State transitions
 - High level planning: goal selection
 - Motion planning
- Easy to create and simulate complex scenarios with 1000's of agents.

 Modeling physiological and psychological factors that effect density in crowds

Stadium

Reproduction of real world experiment

Comparison with captured trajectories of 300 people exiting a stadium

Three crowd flows meet at the mouth of the exit tunnel leading to high densities

Loading a Boeing aircraft

• Unloading a Boeing aircraft

Modeling human motion constraints

User – agent interactions in VR

Application: User in the Virtual Crowd

Our algorithm is suitable for interactive VR applications

User is a member of the virtual crowd

Virtual agents respond to and avoid the user agent

Structure

- Introduction
- Course details
- Background
- Multi-agent simulation
 - Crowd simulation
 - Pedestrian tracking
- Autonomous Driving

Pedestrian Tracking

- Locating a pedestrian (or pedestrians) along a window of time in a video.
- Tracking corresponds to computing the projected trajectory on a 2D plane assuming that the pedestrian is represented as a small circle.

NPLC-2 Medium Density, MOTP - 71.28%

Pedestrian Tracking

Stable multi-target tracking in real-time surveillance video – *Benfold et al. (2011)*

Tracking multiple people using laser and vision– *Cui et al. (2005)*

Tracking with Local Spatio-Temporal Motion Patterns in Extremely Crowded Scenes - Kratz et al. (2012)

Tracking people by learning their appearance – *Ramanan et al.* (2007)

People tracking with human motion predictions from social forces - *Luber et al.*

Multi-hypothesis motion planning for visual object tracking – *Gong et al. (2011)*

Pedestrian Prediction

- Determining future pedestrian positions and velocities based on past data.
- Short term prediction as future pedestrian positions for 1–2 seconds and long term prediction as future positions for 5 or more seconds.

Pedestrian Prediction

Learning to Navigate Through Crowded Environments – Henry et al. (2010)

Robotic motion planning in dynamic, cluttered, uncertain environments – *Toit et al. (2010)*

Dynamic obstacle avoidance in uncertain environment combining pvos and occupancy grid – *Fulgenzi et al. (2007)*

Learning behavior patterns from video – Zhong et al. (2015)

+ Accurate - Costly

Trajectory Analysis and Prediction for improved Pedestrian Safety – Møgelmose et al. (2015)

Feature-based prediction of trajectories for socially compliant navigation—Kuderer et al. (2012)

+ Realtime - Scene dependent

Pedestrian Behavior Learning

 We compute personality personalities based on based on Eysenck Personality Theory, a well-known psychology trait theory work.

Pedestrian Behavior Learning

A Fully Online and Unsupervised System for Large and High Density Area Surveillance – Song et al. (2013)

Coherent filtering: Detecting coherent motions from crowd clutters – Zhou et al. (2013)

Identifying behaviors in crowd scenes using stability analysis for dynamical systems–Solmaz et al. (2012)

+ Realtime/Online
- Low density

+ Dense crowds

- Offline

Crowd Density

Low Density (<1 pedestrians/m²) Medium Density (1-3 pedestrians/m²) High Density (>3 pedestrians/m²)

Pedestrian Tracking - Challenges

- Change in illumination
- Change in appearance
- From certain camera angles, pedestrians look alike
- Occlusions
- Rapid change in velocity

Long-term Pedestrian Path Prediction

ÿ

\$

Path Prediction - Issues

- Most prior work limited to local interactions between pedestrians.
- Long-term predictions prone to error.
- Scene specific and limited to pre-learnt behaviors.

Behavior Learning - Challenges

- Most prior work on behavior learning is offline.
- No prior work on automatically classifying pedestrian personality.

Crowd behavior is not a sole product of the crowd itself; rather, it is defined by the individual pedestrians in that crowd.

Personality Traits

Video: International Trade Fair, New Delhi 2016

Anomaly Detection - Issues

- Most prior work offline.
- Requires precomputation and apriori learning.
- Limited to sparse crowds.

Overview

GLMP Realtime Pedestrian Path Prediction using Global and Local Movement Patterns

ICRA 2016 Submission Supplementary Video

Structure

- Introduction
- Course details
- Background
- Multi-agent simulation
 - Crowd simulation
 - Pedestrian tracking
- Autonomous Driving

• Autonomous vehicle:

- Autonomous vehicle: a motor vehicle that uses artificial intelligence, sensors and global positioning system coordinates to drive itself without the active intervention of a human operator
- Focus of enormous investment [\$1b+ in 2015]

- Levels of Autonomy
 - 0: Standard Car
 - 1: Assist in some part of driving
 - Cruise control
 - 2: Perform some part of driving
 - Adaptive CC + lane keeping
 - 3: Self-driving under ideal conditions
 - Human must remain fully aware
 - 4: Self-driving under near-ideal conditions
 - Human need not remain constantly aware
 - 5: Outperforms human in all circumstances

- Cutting Edge of numerous disciplines
 - Robotics
 - Sensor and signal analysis
 - Computer-vision
 - Motion-planning
 - Human-factors psychology
 - Civil engineering
 - Digital Ethics
 - Economics

Autonomous Driving Challenges

- Recall primitive: Sense, Plan, Act
- Sensing Challenges
 - Sensor Uncertainty
 - Sensor Configuration
 - Weather / Environment

Autonomous Driving Challenges

- Sensor Misclassification
 - "When is a cyclist not a cyclist?"
 - When is a sign a stop sign?
 - Whether a semi or a cloud?

- Planning challenges
 - Behavior of others
 - Reliance on Implicit knowledge / norms
 - Weather / Environment

- Behavior of others
 - Humans are notoriously hard to predict
 - Cyclists operate as vehicles and pedestrians

- "Act" challenges
 - Vehicle dynamics complex and uncertain
 - Weather / Environment!

- Vehicle Dynamics modelling
 - Tire properties change with speed
 - Traction
 - Pressure
 - Shape
 - Tread level difficult to predict
 - Forward simulation expensive considering forces
 - Load transfer
 - Slip equations

- Other challenges:
 - Communication
 - Coordination
 - Ethical Issues
 - Trolley Problem

- Other challenges:
 - MIT "Moral Machine" [https://goo.gl/RL4pr5]

MIT Moral Machine

- Civil Engineering / Ethics
 - Traffic impacts?
 - Pro: Vehicles should respond appropriately to traffic reducing jams
 - Con: Many more vehicles per person possible
 - People may not own cars?
 - Pro: Less emission? Less Traffic?
 - Con: Less access?

Autonomous Driving SOA

Lidar Visualization

Autonomous Driving SOA

• CMU Boss

Autonomous Driving SOA

• Waymo

Autonomous Driving SOA

- Multiple approaches demonstrated
- Nvidia Pilotnet

Autonomous Driving SOA

AutonoVi-Sim

Jaywalking Pedestrian

The vehicle respects pedestrians and slows until they have safely crossed the road

Multi-agent Simulation @ UNC

- Crowd and Multi-agent Simulation
 - http://gamma.web.unc.edu/research/crowds/
 - http://gamma.cs.unc.edu/menge/
- Autonomous Driving
 - http://gamma.cs.unc.edu/AutonoVi/
- Motion and Path Planning
 - http://gamma.web.unc.edu/research/robotics/