Advanced Topic

ARTICULATED BODY DYNAMICS

Tim Johnson & Michael Su

A" A'\
Agenda

Inverse Dynamics in general
Efficiency

A power tool for designing algorithms —
Recursion

Recursive Newton-Euler Algorithm
Forward Dynamics in general
Featherstone’s Algorithm
Conclusion

Reference

[Y lf\iﬂ

ITnhverse

Given the kinematic representation of
motion, inverse dynamics calculates the
forces necessary to achieve that motion

Inverse kinematics will tell us what the
motion is

Inverse dynamics will tell us how to do it

"N Y 4
-

g by

I~ [7

T Pa Y a Vel a
LIIVCI O5C

* The calculation of the forces required at a
robot's joints to produce a given set of joint
accelerations

= Applications
Robot control
Trajectory planning

= Rapid execution is essential as it is used
heavily for real-time control

I~

€3 i ancy (1)
ETTiciency (1)

The classic approach to inverse dynamics

involved a Lagrangian formulation, which
was O(n4)

Non-recursive approaches of either
Lagrangian or Newton-Euler formulations
result in equations such as:

+ZZ Cud, 4+ &,

j=1 k=1

I~ \ W 4

€3 i ancy ()
ETtTiciency (2)

= Optimization technique: use recursion
Requires a reformulation of the equations
Can reduce complexity down to O(n)
Reduces computational requirement as well

1 1 I~

DA~ Y aVal Pl o DAl ~
NCC ClIICLT NC.1ld

"

4o A <
LLUIIDS

= Equations defining a member of a sequence
in terms of its predecessors

= Example
Xn+1 = Xn t Xn-1

Xg=X, =1

Fibonacci sequence

= Letthe matrix B be defined as
B=AA,. A, whereA isamatrix

= How do we compute the derivative of B

Brute force
Gets expensive fast

Use recursion

CFC A~~~
rUI CC

Say B=AAAA A = Computational
Then B' = requirementis n2-n
AAAAA + matrix multiplications

>3 45 and n-1 matrix

A1A2IA3A4A5 * additions

AAAAA, +

AAAA A, +

AAAAAS

E)\CIIIIIJ . T\CLUI)J.UII

RecallB=AA,...A

Define B,,, =B.A.

" 1+l

It follows that B, = B, thus B_' = B’

So
B.,'=B'A, +BA

I+1 I 1+ [b e

To calculate B', we start with B_,'=A_' and
iterate up to B,

I~

S10Nn

EX : Recur
= So we iteratively computeB,,...,B, .
n-2 iterations
1 matrix multiplication
= Then we iteratively computeB_',...,B'

n-1 iterations
2 matrix multiplications, 1 matrix addition

= Total: 3n-4 matrix multiplications, n-1
additions

Non-recursive: n2-n matrix multiplications and n-1
additions

[J nI\FII1+F
« NCOULLD

= By using recurrence relations, we were able
to reformulate the solution using recursion

= O(n?) to O(n) improvement

= We can get much more dramatic results with
inverse dynamics

O(n%) to O(n)

4
L

C\ IF+I\IM
System

nAIﬂA
NUVV

N movable links, labeled 1,...,N (from the root
to the terminal)

A fixed base link, labeled o

A(i) is the parent link of link i
Links are numbered so that A(i) < i

N joints, where joint i connects link A(i) to link
|

Link Link 2 Link N

Root -

FH. Vo AIAI,I+AIA EII1 7N b
>1LVC NCWLUIITLULCI

Algorithm (RNEA)

101V
I

nf\ﬁ
NCL

= The most efficient currently known general
method for calculating inverse dynamics

Input: a system model of a robot and the
values of the desired joint accelerations

utput: the joint forces required to produce
th de5|redJ0|nt acceleratlons

= Step 1: calculate the velocity and acceleration
of each link i

= Step 2: calculate the net force acting on each

link from its motion and inertia

= Step 3: calculate the joint forces required to
produce the forces in step 2

DN
AV

Compute velocity, acceleration of links

Compute net forces

4
/ Compute joint forces

C+=~nrn 1.
S>Ttep 1.

V, ~ absolute velocity of link i

a; — absolute acceleration of link |

s, g, — velocity across link i (relative velocity of
link i with respect to link i-1

Recurrence relation:
@
V=V, 15,4,

a,=aq,_,+tV,Xs8,4,+5,4, (ao =0)

= The net force on link iis given by the link's
rate of change of momentum

d(1y)
dt

fi =

=la +v,x1v,

CH4+-Awn
Step

First we must find the total force transmitted
from link i-1 to link i through joint i

Réa?rfwgiﬁg-f x/:/e get
fi=futfi (f,=1)

aking
Forcesm

= The equation for joint force becomes

s fi=fiat -

= |f you want to model gravity, you can apply a

gravitational force to each joint

It is more efficient, however, to give the
robot's base an acceleration of -g (a, = -qg)

o

LT
|

C A
r'UI'W

= Primarily for simulation, not necessary to
meetreal-timespeed requirement

Position

= A moreldifficult prallgm t&solve than inverse

External Forces Acceleration

dynamytsrorques

= Two approaches:

Solve the problem directli/ by calculating

recursion cogyficientAEX: flatherstone’s
Algorithm

Obtain and then solve a set of simultaneous
equations. Ex: Composite Rigid Body Algorithm

(©
]
=
I
@
.
wn
(C
m

I

111IC \UClld

Y e - L~ ~-L
| L 1Co Ul

ist]
Featherstone’s Algorithm

Also called “Articulated-Body Algorithm”

Developed for solving forward dynamics
oroblems

dClteris

-irst version only worked for joints with single
degree-of-freedom.

Second version included a general joint
model and was faster.

Complexity: O(n), faster than CRBA for N>g

Ih

,F ‘e W H.
s Algorithm

rcCdllic] S5LOIIC

= | inearrelation between the acceleration and

the force (Newton Euler equation):
Articulated-body

A/Inertia
Test force—JI‘ = II aﬂ_ﬁL Link acceleration

Known

= No kinematic connection with ground, for ex:
a floating system
If there are external forces such as gravity,
the equation becomes f+fE=Ia+p

-l—L\ .
1Tnm.

Algor
as forces (1)

=net force on Iink 1 + force transmitted
to link 2 through the joint

=ht/;

=la+p+1La,+p,

Joint Axis s

=ha+vyxIvi+1La,+p,+v,x1,v,
.. (1)
Constraint imposed by the joint:
a,=a, +v,xv,+sa... (Il
Active joint force:

s' f,=0... ()

Active joint force

Scalar joint acceleration

I~

one’s Algorithm:

rcdiLiiIcl o

T
Inertia & Bias forces (2)
From (1), (I1), and (lII),

Iss'I,
S=|5+1,- s @+ xXIv, +v, xLv, + 1| v, Xv, +5
2

Q—.s':r(I,_v1 Xv,+v, XLy,
sIs

The above derivation is for a system with 2 links
only. They can be generalized to multiple links
by considering the following scenario:

b,

r
1

+har
cne
1

ead
n

ertia

I isstillasimplerigid body but I, becomes an
articulated body. By a similar derivation, we can
find out the following recursions for the inertia
and the bias force:

+1S:+1 (S:+1) :+1
(S :+1) +1S:+1

I!=1+I% -

I Alsi+l (Qﬁl (si+l) (I Alvi+l X Ils'i+1 qi+l+ pi+1)J

\

— 4 p
=V, xIv,+p,,+1 v, X8,,q,.,+ T IA
(si+1) lsl-l-l

Definition of joint velocity:
V=V, =8¢ ..(IV)

Take derivatives:
a,—a,=v,xsq+sq ...(V)

Force f applied through
the joint:

s'f=0 ..V

Joint Axis s

rf\ﬂ+
rcdli

Joint acceleration (2)
From (IV), (V), (VI), and our linear relationship

74 Y|
[=1"a +v,xI"%),

We can obtain

Q_ST[IA(ab+vasé)+pJ Joint Axis s

Link |

A []
= (D(ab’vb’al’vhl :S:q)

FAndt+laAanmmed~
rcaiLlicl >LU
Put all ste

FUNCTION ABA_acceleration(q, q_dot, s, Q) {

v(1) = 0;

4
L

// Compute velocity for all links.
FOR link_i=2TON

v(link_i) = p_link(v(link_i))+s*q_dot();
/| Compute the inertia and the bias forces.
FOR link_i=NTO 1§

compute_l(link_i, link_i-1);

compute_p(link_i, link_i-1);

}

/| Compute acceleration for all the joints.

a(1) = o; // link 1's acceleration
FOR joint_i=2 TO N-1 {
compute_q_dotdot(joint_i);

// Compute link acceleration for the next joint.
a(joint_i+1) = a(joint_i)+v(joint_i).cross(s(joint_i))*q_dot(joint_i)+

s(joint_i)*q_dot_dot(joint_i);

nverse Dynamics Vs. Forward Dynamics

Recursive Newton-Euler Algorithm for solving
nverse Dynamics problems

~eatherstone’s Algorithm for solving Forward
Dynamics issues

Use the recursion trick to make your program
faster.

Roy Featherstone, "Robot Dynamics
Algorithm,” Kluwer Academic Publishers 1987

Featherstone & Orin, "Robot Dynamics:
Equations and Algorithms, " ICRA 2000

Karen Liu, “Articulated Rigid Bodies,"” slides
from CS7496/4496 Computer Animation class
at Georgia Tech

