
TVCG JOURNAL 1

Real-time Path Planning in Dynamic Virtual

Environments Using Multi-agent Navigation Graphs
Avneesh Sud, Erik Andersen, Sean Curtis, Ming Lin, and Dinesh Manocha

Abstract—We present a novel approach for efficient path plan-
ning and navigation of multiple virtual agents in complex
dynamic scenes. We introduce a new data structure, Multi-agent
Navigation Graph (MaNG), which is constructed using first- and
second-order Voronoi diagrams. The MaNG is used to perform
route planning and proximity computations for each agent in
real time. Moreover, we use the path information and proximity
relationships for local dynamics computation of each agent by
extending a social force model [15]. We compute the MaNG using
graphics hardware and present culling techniques to accelerate
the computation. We also address undersampling issues and
present techniques to improve the accuracy of our algorithm. Our
algorithm is used for real-time multi-agent planning in pursuit-
evasion, terrain exploration and crowd simulation scenarios
consisting of hundreds of moving agents, each with a distinct
goal.

Index Terms—crowd simulation, Voronoi diagram, motion plan-
ning.

I. INTRODUCTION

Crowds, ubiquitous in the real world from groups of humans

to schools of fish, are vital features to model in a virtual

environment. Realistic simulation of virtual crowds have diverse

applications in architecture design, emergency evacuation, urban

planning, personnel training, education and entertainment. Ex-

isting work in this area can be broadly classified into agent-

based methods that focus more on individual behavior, or crowd

simulations that aim to exhibit emergent phenomena of the

groups.

In this paper, we address the problem of real-time collision-free

navigation of agents moving in a complex virtual environment.

Since individuals constantly adjust their behavior according to

dynamic factors (e.g. another approaching individual) in the

environment, agent-based techniques that focus on modeling

individual behaviors and intents offer many attractive benefits.

They often result in more realistic and detailed simulations. One

of the key challenges in a large-scale agent-based simulation

is global path planning along with local collision avoidance

for each virtual agent. The path planning problem can become

very challenging for real-time applications with a large group of

moving virtual characters, as each character is a dynamic obstacle

for other agents. Many prior techniques are either restricted to

static environments or perform only local collision avoidance

computations. The latter can result in unnatural behavior or

“getting stuck” in local minima. These problems tend to be more

prominent in dynamic scenes with multiple moving virtual agents.

Main Results: In this paper, we present a novel, real-time

algorithm for path planning and navigation of multiple virtual

Email: {sud,andersen,seanc,lin,dm}@cs.unc.edu. Department of Computer
Science, University of North Carolina, Chapel Hill, NC 27599-3175

agents in a dynamic environment. We introduce a new data

structure called “multi-agent navigation graph” or MaNG and

compute it efficiently using GPU-accelerated discrete Voronoi

diagrams. Voronoi diagrams have been widely used for path

planning computations in static environments [7], [22] and we

extend these approaches to dynamic environments. Moreover,

we present techniques for local dynamics computation of each

agent by extending the model by Helbing et al. [15] and use the

proximity relationships computed by MaNG.

Voronoi diagrams capture the connectivity of the space and

provide a path of maximal clearance for a robot from other

obstacles. In order to use Voronoi diagrams for multiple moving

agents in a dynamic scene, prior approaches compute the Voronoi

diagram for each agent separately and treat the other agents and

the environment as obstacles. This approach can become costly as

the number of virtual agents increases. Instead, we compute the

second-order Voronoi diagram of all the obstacles and agents, and

show that the second-order Voronoi diagram provides pairwise

proximity information for all the agents simultaneously. We com-

bine the first- and second-order Voronoi graphs to compute the

MaNG for global path planning of multiple virtual agents. Given

n dynamic agents, the computational complexity of computing the

second-order Voronoi diagram and the MaNG on a discrete grid

of resolution m×m is O(m2+n logm), which is identical to the
complexity of computing a first-order discrete Voronoi diagram.

Therefore, the computation of global paths using the MaNG is

more efficient than separately computing n first-order Voronoi

diagrams.

The MaNG computes paths of maximal clearance for a group of

moving agents with different goals simultaneously and does not

require a separate path planning data structure for each virtual

agent. Given the global path for each agent, we also compute

the local dynamics for each agent to follow the path generated

using MaNG. Our local dynamics model is based on a generalized

potential field method and the model by Helbing et al. [15]

for capturing emergent phenomenon in real-world crowd motion.

Since the MaNG captures pairwise proximity information, we

demonstrate that paths computed using the MaNG directly result

in collision avoidance among multiple agents. This approach also

reduces the number of pairwise proximity tests that need to

be performed for local dynamics computation. Furthermore, the

MaNG provides paths of maximal clearance, thus resulting in a

better coverage of the agents over the environment.

We compute a discrete approximation of the graph structure by

using the rasterization hardware and propose an adaptive culling

technique to accelerate the computation. We also address the

under-sampling issues that arise due to discretization and present

techniques to improve the accuracy. Some of our key results

include:

TVCG JOURNAL 2

1) A new global data structure, the “multi-agent navigation

graph” (MaNG) for parallel computation of maximal clear-

ance paths among multiple virtual agents moving indepen-

dently;

2) Interactive global path planning and local collision avoid-

ance for multiple virtual agents, each with possibly different

goal, in a complex virtual environment;

3) An improved model for local dynamics computation of each

virtual agent and techniques to generate smooth and more

natural motion that is similar to real crowds;

4) A fast two-pass algorithm with adaptive culling to compute

a discrete MaNG using GPUs;

5) Efficient techniques to handle spatial under-sampling issues

in the MaNG computed from a discrete grid.

Our overall approach is scalable for global path planning of

multiple dynamic agents in a complex virtual world. Although

our approach is specifically well suited for simulating multiple

virtual agents with distinct intentions, it can also be used in

conjunction with crowd simulation. We have demonstrated our

algorithm on three challenging scenarios: a pursuit-evasion game

of many fruit pickers chased by farmers, a crowd simulation, and

terrain exploration by robot rovers. In each of these environments,

our algorithm is able to perform real-time global path planning

and collision avoidance simultaneously for hundreds of virtual

agents with distinct goals.

Organization: The rest of the paper is organized as follows.

Section II reviews prior literature in related areas. In Section III,

we define our notation and give an overview of our approach. We

introduce our data structure, MaNG, and show how it can be used

for path planning of multiple agents in Section IV. We describe

our algorithm to compute local dynamics of multiple agents in

Section V. Section VI describes our algorithm to compute the

MaNG in real-time using GPUs. We describe the implementation

and highlight three applications of our planning algorithm to

complex virtual environments in Section VII, and analyze the

algorithm performance in Section VIII.

II. RELATED WORK

In this section, we briefly survey related work on multi-agent

simulation and Voronoi diagrams for path planning.

A. Multiple Agent Simulation

Agent-based methods, such as the seminal work of Reynolds [31],

generate fast, simple local rules that can create visually plausible

flocking behavior. Numerous extensions that account for social

forces [8], psychological models [29], directional preferences

[38], sociological factors [26], etc. have been proposed. Interest-

ing techniques for collision avoidance have also been developed

based on grid-based rules [24] and behavior models [42].

Most agent-based techniques perform local collision avoidance.

However, global path planning techniques are needed to provide

goal seeking capability. In practice, global planning algorithms

typically use graph search techniques for each agent [3], [12],

[21], [39]. Pettre et al. [30] proposed a graph structure that

decomposes the space into multi-layered terrains to support fast

graph search for multiple characters. Multi-agent path planning

has also been investigated extensively in robotics, mostly for

performing collaborative tasks [4], [23], [28].

B. Voronoi Diagrams and Path Planning

The Voronoi diagram is a fundamental proximity data structure

used in computational geometry and related areas [27]. Gener-

alized Voronoi diagrams (GVD) of polygonal models have been

widely used for motion planning [6], [22]. The Voronoi region

boundaries in the generalized Voronoi diagram represent the

connectivity of the space. Moreover, they are used to compute

paths of maximal clearance between a robot and the obstacles

based on potential field approaches [5], [18] or to bias the sample

generation for a randomized planner [11], [14], [44]. However,

sampling-based methods are limited to static environments and the

potential-field based planners have been used for 2D environments

with very few robots or agents.

A disadvantage of using the GVD is the practical complexity of

computing it efficiently and robustly. Hence, several approaches

have been proposed to compute an approximation of the GVD.

Vleugels and Overmars [43] use adaptive spatial subdivision.

Choset and Burdick [6] define a related structure called hier-

archical generalized Voronoi graph which is computed using

continuation methods. Wilmarth et al. [44] compute points on

the GVD without explicitly computing a representation of the

entire set. Another set of approaches computes a discrete Voronoi

diagram on a uniform grid using graphics hardware [17], [37], [9].

C. Crowd Dynamics

There is an extensive amount of literature on crowd simulation

and dynamics in computer graphics as well as architecture,

psychology, social sciences, and civil and traffic engineering.

Many different approaches have been proposed for modeling

crowd movement and simulation [32], [40], [25], [33]. At a broad

level, they can be classified based on problem decomposition

(discrete vs continuous), stochastic vs deterministic, etc. Discrete

methods rely on discretization of the environment or of the agents.

Some common approaches include agent-based methods [31],

cellular-automata methods [20], [24], and particle dynamics [32],

[16]. In particular, our local dynamics model is based on the

generalized social force model presented by Helbing et al. [15].

In this approach, physical forces similar to N-body particle system

are computed for each agent. This model by Helbing et al. [15]

has previously been applied to simple scenarios and can result in

agents getting stuck in local minimum for more complex envi-

ronments. We extend that approach to handle complex scenarios

and can perform global path computations. Recently, a novel

approach for crowd simulation based on continuum dynamics

has been proposed by Treuille et al. [41]. This work computes

a dynamic potential field that simultaneously integrates global

navigation with local obstacle avoidance. The resulting system

runs at interactive rates and demonstrates smooth traffic flows

for three to four groups of large crowds, where each group

has common goals. We provide detailed comparisons with prior

approaches in Section VIII.

TVCG JOURNAL 3

Fig. 1. Fruit stealing simulation: A simulation of 96 fruit pickers (with yellow hair) in an orchard with 64K fruit (dark blue and purple) on 64 trees (brown
trunks) and 4 farmers (in white shirts). Each agent maintains an independent goal. Left: Initial top view of the orchard. Middle: Top view during the middle of
simulation with many fruit collected. Right: Perspective view of same time step. Our multi-agent navigation graph based algorithm can perform path planning
at 8 fps on a high-end PC.

III. BACKGROUND AND NOTATION

In this section we introduce the notation used in the paper, give

a background on Voronoi diagram based motion planning and

crowd dynamics, and present an overview of our approach.

A. Notation

A geometric primitive or an object (in 3-dimensions) is called

a site. In our work, a site refers to a point, an open edge, an

open triangle, or a connected polygonal object, and we restrict

ourselves to 2D environments. An entity for which a path needs

to be computed is called an agent (or a robot). All obstacles and

agents are represented as sites. The center of mass of a site pi
is denoted as π(pi). The interior and boundary of a set S are

denoted Int(S) and ∂S respectively.

Given a site pi, the scalar distance function d(q, pi) denotes the
distance from the point q ∈ R

n to the closest point on pi. Given

a set of sites P in domain D, and a subset T of P, with |T|= k,
the k-th order Voronoi region is the set of points closer to a site

in T than to any other site:

Vork(T|P) = {q ∈ D | d(q, pi)≤ d(q, p j) ∀ pi ∈ T, p j ∈ P\T}.

The k-th order Voronoi diagram is a partition of the domain D

into the k-th order Voronoi regions:

VDk(P) =
⋃

pi∈P

Vork(T,P) , |T|= k.

The standard Voronoi diagram is the same as the first-order

Voronoi diagram, VD1(P). In this paper, we mainly use the
first- and second-order Voronoi diagrams, denoted as VD1(P)
and VD2(P), respectively. A first-order Voronoi region Vor1(pi|P)
contains points closest to site pi, and the second-order Voronoi

region Vor2({pi, p j}|P) contains points that are closest to two
sites pi and p j. For ease of notation, we drop the superscript

for the first-order Voronoi diagram VD(P). The complement of
a sub-domain X is denoted as X

c and given by D\X.

The set of closest k-tuples of sites to a point is called the k-th

order governor set. For a point q∈D, let the set of closest k-tuple

of sites be U = {T0, . . . ,Tm}, |Ti| = k, i.e. q ∈ Vor
k(Ti|P). Then

the k-th order governor set of q is denoted as Govk(q|P) = U.

The first-order governor set is the set of closest sites, while the

second-order set of a point is the set of closest pairs of sites.

In 2D, the boundaries of Voronoi regions consist of Voronoi

edges which are subsets of the bisector between two sites, and

Voronoi vertices are equidistant from three or more sites. The

arrangement of all Voronoi edges and vertices in the k-th order

Voronoi diagram is called the k-th order Voronoi graph, denoted

VGk(P). Formally, VGk(P) = (V,E), where,

V ={v ∈ D | |Govk(v|P)| ≥ 3}

E ={e | e= (v1,v2),v1 ∈ V,v2 ∈ V,∃ connected curve c, s.t.

c= Vork(pi|P)∩Vork(p j|P),v1 ∈ c,v2 ∈ c}

The k-th order Voronoi diagram is closely related to the k-th

nearest neighbor diagram. The k-th nearest neighbor diagram is

the partition of D into k-th nearest neighbor regions. The k-th

nearest neighbor region of site pi is the set of points for which pi
is the k-th nearest site. Similarly, the arrangement of the vertices

and edges in the k-th nearest neighbor diagram is called the k-

th nearest neighbor graph, denoted NGk(P). Examples of the
first- and second-order Voronoi diagrams, Voronoi graphs, and

nearest neighbor diagrams are shown in Figure 2. The first-nearest

neighbor diagram is identical to the first-order Voronoi diagram.

Further properties of higher order Voronoi diagrams are presented

in [10], [27].

B. Motion Planning Using Voronoi Diagrams

Voronoi diagrams have been used in motion planning including

roadmap computation for global approaches, sample generation

for randomized approaches, or combined with potential field

methods for local planners. The set of sites P is the set of

obstacles, and the Voronoi diagram of the workspace VD(P) is
computed. The Voronoi graph VG(P) captures the connectivity of
the workspace and provides paths of maximal clearance between

the obstacles. The Voronoi vertices closest to the robot and goal

are classified as source and destination and the minimum weight

path is then computed.

For complex 3D environments, an approximate Voronoi diagram

is computed. The computation of discrete Voronoi diagrams and

discrete Voronoi graphs can be accelerated using GPUs and has

been used for motion planning in dynamic 2D [19] and 3D

environments [37]. The Voronoi vertex closest to the agent is set

as an intermediate goal and the Voronoi diagram is recomputed

as the obstacles move.

TVCG JOURNAL 4

However, these approaches are inefficient for computing the path

of multiple agents in a dynamic environment. For an agent pi, the

remaining agents need to be considered as obstacles, i.e. the set

of obstacles is P\{pi}. Hence to compute the path for agent pi,
the modified Voronoi graph VG(P\{pi}) needs to be computed.
Therefore, the cost of computing the path for all agents is O(nc),
where n is the number of agents and O(c) is the cost of computing
each modified Voronoi graph VG(P\ pi) for 1≤ i≤ n.

C. Crowd Dynamics

In addition to global path planning, we also compute the local

dynamics for each agent in the overall simulation. Our dynamics

computation model builds upon the vast literature on pedestrian

dynamics in psychology, transportation science, civil and traffic

engineering. One of the key underlying behavioral characteristics

in pedestrian dynamics is the principle of least effort [45].

This implies that among all available options (e.g. accelerating,

decelerating, changing direction or doing nothing), a pedestrian

or agent tries to choose the option that will yield the smallest

predicted disutility. An agent will try to adapt to its environment

or will try to change the environment to suit its needs, if easier.

Under this assumption, the flow of agents self-evolves into a

user-equilibrium state with the emergence of several interesting

collective effects at various scales and densities of crowds [15].

Examples of such emergent phenomena include dynamics lane

formation, oscillations at bottlenecks, banding patterns at inter-

sections, trail following, and panic effects. However, most of the

prior work simulates crowd dynamics in localized environments

(for e.g. corridors, intersections), and does not guarantee global

goal seeking in complex dynamic environments. We would like

to provide a global collision-free path for each agent in dynamic

environments. Using the MaNG, our approach provides a global

path in addition to local collision avoidance.

D. Overview

Our approach for motion planning of multiple agents uses the

first- and the second-order Voronoi diagrams to compute a global

navigation data structure, the MaNG. The MaNG graph can be

considered as the union of the 1st and the 2nd order Voronoi graphs

and is formally presented in Section IV. We treat each agent as

a site (in addition to other obstacles in the environment) and the

MaNG is computed. The MaNG can be computed in time O(c)
and provides a path of maximal clearance for each agent, where

O(c) is the cost of computing each modified Voronoi graph (see
Section III-B).

In addition, we compute the proximity information from the

second-order Voronoi diagram [35] and apply it within a potential-

field based simulator based on the ‘generalized social force’

model [15] which provides for adding smooth, natural motions as

observed in human crowds. In this model, different physical inter-

actions among the agents, such as obstacle avoidance, grouping

and goal seeking are modeled using potential forces. We integrate

this force model with our MaNG based planner. The global path is

computed using the MaNG, and we add a roadmap force to guide

the agent along its path. We also exploit proximity information

from the MaNG to avoid inter-agent collisions.

IV. MULTI-AGENT PLANNING USING HYBRID VORONOI

STRUCTURES

In this section we introduce the multi-agent navigation graph

and demonstrate its application to multiple agents planning. We

combine them with a local dynamics model for multi-agent

simulation in Section 5.

A. Multi-agent Navigation Graph (MaNG)

In multi agent planning, each moving agent represents a dynamic

obstacle for the remaining agents. Hence, our goal is to compute

a global navigation data structure that provides the clearance and

proximity information for each agent. In particular, for each agent

we want to compute a proximity graph that provides maximal

clearance to the obstacles and remaining agents. We partition the

set of sites P into two subsets - the set of obstacles Po and the set

of agents Pa. The multi-agent navigation graph (MaNG), denoted

MG(P), is a union of the first order Voronoi graph VG1(P) and
a subset of the second order Voronoi graph VG2(P). The subset
of VG2(P) is the intersection of VG2(P) and the Voronoi regions
Vor(pi|P) of all agents. Formally,

MG(P) = (V,E), where

V = {v | v ∈ V
1∪ (V2∩Vor(pi|P))∀pi ∈ Pa},

E = {e | e ∈ E
1∪ (E2∩Vor(pi|P))∀pi ∈ Pa},

VG1(P) = (V1,E1) and VG2(P) = (V2,E2).

The MG(P) consists of vertices and edges from the 1st and the
2nd order Voronoi graphs VG1(P) and VG2(P). Some vertices
in MG(P) are common to both VG1(P) and VG2(P), however
VG1(P) and VG2(P) do not share any edge [27].

We assign a color to each edge and vertex in MG(P) based on
its membership in VG1(P) or VG2(P). Edges from VG1(P) are
colored red and edges from VG2(P) are colored black. Further,
vertices in VG1(P) are colored red, and vertices in VG2(P) \
VG1(P) are colored black. Finally, each edge in the MaNG is
assigned weight based on the cost of traveling that segment.

Details on weight computation are presented in Section VI. A

2D example of the MaNG for some point agents and obstacles is

shown in Figure 2.

MG(P) is closely related to the 2nd nearest neighbor graph
NG2(P). In particular, we use the following result about their
relationship.

Lemma 1: Given a set of sites P, the 2nd nearest neighbor graph

NG2(P) and the MaNG MG(P):

• MG(P)⊆ NG2(P),
• Given an edge e ∈ MG(P) incident on two second-nearest
neighbor regions of sites pi and p j. For any point x∈ Int(e):
d(x, pi) = d(x, p j) = d(x,P) ⇒ e ∈ VG1(P). d(x, p j) 6=
d(x, pi)⇒ e ∈ VG

2(P).

Proof: Let MG(P) = (V,E) and NG2(P) = (E′,V′). We shall
show E⊆ E

′,V ⊆ V
′. Let e ∈ E be any edge in the MaNG. Then

we have 2 cases:

TVCG JOURNAL 5

(a) (b) (c) (d) (e)

Fig. 2. Voronoi Diagrams and Voronoi Graphs: 8 point sites consisting of 3 obstacles (shown in white) and 5 agents (shown in black). (a) 1st order Voronoi
diagram (b) 2nd order Voronoi diagram of the 8 sites. Each region is closer to a pair of sites than to any other site (c) 2nd nearest neighbor diagram. Each
region has the same site as the second closest site. (d) 2nd nearest neighbor graph. Red edges denote edges from 1st order Voronoi graph, black edges are
edges from 2nd order Voronoi graph (e) the Multi-agent Navigation Graph (MaNG) for the 5 agents, which is a subset of the 2nd nearest neighbor graph.

1) e∈E
1 (e belongs to VG1(P)). Let Gov1(e) = {pi, p j} be the

governors of e. Then e⊆ ∂Vor1(pi|P). For any point x ∈ e,
d(x, pi) = d(x, p j) = d(x,P) (by definition of VG1(P)).
Consider the region X =Vor1(pi|P)∩Vor2({pi, p j}|P). Fur-
ther, for any point in X, p j is the 2

nd closest site, and X

is a subset of second-nearest neighbor region of p j. Since

e ⊆ ∂X, e ∈ E
′. In particular, e is a red edge in MaNG,

shown in Fig. 2(d)-(e).

2) e ∈ E
2 (e belongs to VG2(P)). Each edge in VG2(P) is

contained entirely in a first-order Voronoi region [27]. Let

e ⊂ Vor1(pi|P). Since e is incident on two second-nearest
neighbor regions of sites pi and p j, {pi, p j} form one
governor pair of e. Consider the region X = Vor1(pi|P)∩
Vor2({pi, p j}|P). For any point in X, p j is the second

closest site, and X is a subset of second-nearest neighbor

region of p j. Since e⊆ ∂X, e ∈ E
′. Further, since Int(e)⊂

Int(Vor1(pi)), for any x ∈ Int(e), d(x, pi) = d(x,P)) <
d(x, p j). In particular, e is a black edge in MaNG, shown
in Fig.2.

The proof for any vertex v ∈ V follows as above. The governors

of a vertex from VG1(P) are 3 or more sites, and the governors
of a vertex from VG2(P) are 3 or more pairs of sites.

As a consequence of Lemma 1, both the first- and the second-

order Voronoi graphs can be extracted from the second-nearest

neighbor diagram. We use this result to efficiently compute the

MaNG from the second-nearest neighbor diagram in Section VI.

B. Multiple Agent Planning

In this section, we present our approach for efficient path planning

of multiple agents using MaNG. The path planning problem for

each agent is defined as follows: we are given an agent pi ∈ Pa,

its current position in the workspace given by its center of mass

π(pi), and a goal position of the center of mass gi. We wish
to compute a path for pi from π(pi) to gi, which is maximally
clear and collision free to the remaining sites P \ {pi}. Such a
path can be computed using the Voronoi graph VG1(P \ {pi}).
We state a result on the equivalence of the paths computed using

the first-order Voronoi graphs and the MaNG.

Lemma 2: Given an agent pi, and the Voronoi graphs VG
1(P \

{pi}), MG(P):

1) VG1(P\{pi})⊆MG(P)

2) VG1(P\{pi})∩Vor(pi|P) =MG(P)∩Vor(pi|P).

Proof: Let VG1(P \ {pi}) = (V′,E′) and MG(P) =
(V,E),VG1(P) = (V1,E1),VG2(P) = (V2,E2). We shall show
E
′ ⊆ E,V′ ⊆ V. Let e ∈ E

1. Then we have 2 cases:

1) e∩Vor1(pi|P) = /0. Then for any point x∈ e, pi /∈Gov
1(x|P)

and e ∈ E
1. Since VG1(P) ⊆MG(P), e ∈MG(P). In par-

ticular, e is a red edge in Fig.2.

2) e ∩ Vor1(pi|P) 6= /0. Consider the subsets Consider the
subsets e1 = e∩Vor1(pi|P),e2 = e \ e1. Okabe et al. [27]
show that e1 ∈ E

2. Also, pi is an agent, thus pi ∈ Pa,

and e1 ∈ MG(P). In particular, e1 is a black edge inside
Vor1(pi|P) in Fig. 2. For any point x ∈ e2, pi /∈ Gov

1(x|P)
and e∈ E

1. Thus e2 ∈MG(P) and e2 is a red edge in Fig.2.

To prove (2), consider all the black edges in Vor1(pi|P). As shown
in second case above, these are exactly the segments from E

′ ∩
Vor1(pi|P). The proof for the set of vertices follows as above.

Lemma 2 provides an approach for extracting the Voronoi graph

VG1(P \ {pi}), for each agent pi, from MG(P). The complete
algorithm for computing a path for an agent pi is given in

Algorithm 1, and an example path is shown in Figure 3. The func-

tion LocatePoint(gi) returns the first-order Voronoi region which

contains gi. The source and goal positions are connected to ver-

tices in the MaNG using green edges. ShortestPath(pi,gi,MG(P))
computes the minimum weight path from π(pi) to gi following
only the green and red edges in MG(P). This is equivalent
to computing the shortest path by following the second-order

Voronoi graph inside the first-order Voronoi region of agent pi,

and the first-order Voronoi graph everywhere else (see Figure 3).

The first vertex along this path is chosen as an intermediate goal

for agent pi.

V. MULTI-AGENT SIMULATION

In this section we present the multi-agent simulation algorithm

based on MaNG. First, we present our local dynamics compu-

tation model and after that we show how MaNG is used in the

computation of collision-free paths.

A. Local Dynamics Computation

Given a path on MaNG, the motion of each agent is computed

using a local dynamics model. In this section, we describe the

TVCG JOURNAL 6

Fig. 3. Multi-Agent Path Planning using the MaNG. The MaNG is augmented
with green edges connecting the start position (blue dot) to the goal position
(orange dot). The computed shortest path for one agent is shown with blue
edges.

local dynamics model used to guide an agents along the computed

path. Our local dynamics model is based on the generalized force

model of pedestrian dynamics proposed by Helbing et al.[16].

This force model has been shown to capture emergent crowd

behavior of multiple agents at varying densities of crowds. We

define the social force model in terms of force fields that are

defined over each Voronoi region.

We modify the social force model to include a force Fr that guides

an agent along a the edges of the MaNG. In addition, there is

a repulsive force Fsoc to the nearby agents, an attractive force

Fatt to simulate the joining behavior of groups, and a repulsive

force from dynamic obstacles Fobs. Given an agent pi and Voronoi

region Vor(pi), then the force field at a point p is given as

F(p) =∑
j

[

Fsocj (p)+Fattj (p)
]

+Fri (p)+∑
o

Fobso (p),

p j ∈ P, j 6= i,o ∈ O

where,

Fsocj (p) =Ai exp
(2ra−‖p−x j‖)/Bi n j(p)×

(

λi+(1−λi)
1+ cos(φ j(p))

2

)

,

Fattj (p) =−C jn j(p),

Fobso (p) =Ai exp
(ra−d(p,o))/Bi no(p)×

(

λo+(1−λo)
1+ cos(φo(p))

2

)

,

Fri (p) =
vdi (p)−vi

τi
,

where Ai and Bi are constants denote strength and range of

repulsive interactions, respectively, andC j is the strength of attrac-

tive interaction. These constants are dependent on the individual

behavior characteristics of the agents. λi reflects anisotropic
character of pedestrian interaction. The obstacle force field Fobs

simulates the repulsion of the agents from other obstacles in the

environment. Since the obstacles may be dynamic, we introduce

an additional anisotropic term that biases the repulsive forces

along the motion of the obstacles. This effect has also been

Input: Agent pi, Goal position gi, Set of sites P, MaNG

MG(P)
Output: Path Si from current position to goal position

k← LocatePoint(gi)
if k = i then
Si← edge(π(pi),gi)
return

Compute Vi← set of black vertices in Vor(pi|P)
Compute Ei← set of black edges in Vor(pi|P)
if Vi 6= /0 and π(pi) /∈Vi then
Augment MG(P) with green edges,
e j = (π(pi),v j)∀v j ∈Vi

Assign weight to e j,w(e j)← d(π(pi),v j)
else

foreach edge e j ∈ Ei do
Compute v j← closest point on e j to π(pi)
Augment MG(P) with green edge e j = (π(pi),v j)
Assign weight to e j,w(e j)← d(π(pi),v j)

end
Compute Vk← set of red vertices in Vor(pk|P)
Augment MG(P) with green edges e j = (gi,v j)∀v j ∈Vk
Assign weight to e j,w(e j)← d(gi,v j)
Add green labels to each edge e j ∈ Ei
Si← ShortestPath (pi,gi,MG(P))
Remove green labels from each edge e j ∈ Ei
Remove all green edges from MG(P)

Algorithm 1: ComputePath(pi, gi, P, MG(P)): Computes
a path for agent pi to goal gi given the set of sites P and

the MaNG MG(P)

modeled in other approaches by creating a ‘discomfort zone’ in

front of dynamic obstacles [41].

The roadmap force field Fri guides the agent pi along the shortest

path to the nearest point on the MaNG. Let vi be the first vertex

on the shortest path Si computed using Algorithm 1. Clearly,

vi lies on the MaNG, in particular, vi ∈ MG(P) ∩ Vor(pi|P).
The first term in Frk makes the agent achieve a desired velocity

towards its immediate goal vi. The desired velocity is given

as vdk (p) = vmaxek(p), where ek(p) is a unit vector field in the
direction vi− π(pi). The direction of the unit vector is chosen
such that ek(p) points along the roadmap towards the next goal
on the agents path. For efficient computation of repulsive force

Fsoc and obstacle force Fobs, we compute forces to the agents and

obstacles within a radius Bi. To accelerate the distance queries,

we use the Voronoi diagram VD1(P) and compute forces using
the Voronoi neighbors of each agent.

B. Collision Avoidance using MaNG

In this section we describe our local collision avoidance approach

used for local navigation. First we list a property of the shortest

paths computed using the MaNG that is used for collision

avoidance. Next, we describe a collision avoidance scheme used

as part of local dynamics simulator.

The MaNG is used to compute paths of maximum clearance for

each agent, i.e. the computed path is maximally clear of the obsta-

cles and other agents. We list a result that guarantees uniqueness

of the next immediate goal as computed by Algorithm 1.

TVCG JOURNAL 7

Environment

(Static Obstacles,

Dynamic Obstacles,

and Agents)

Local Dynamics

Collision Detection

Multi-agent

Navigation Graph

Scripted

Behaviors

Path to goal

Environment

(Static Obstacles,

Dynamic Obstacles,

and Agents)

Local Dynamics

Collision Detection

Scripted

Behaviors

Forces to

move along

path

Update

Fig. 4. Multi-Agent Simulation: Given a description of the environment,
the MaNG is computed. This is used in conjunction with our local dynamics
model to simulate the motion of each agent. The environment is updated using
agent motion, as well as behavior specification for each agent.

Lemma 3: Given a set of (at least 3) agents P, in general position,

and the shortest path Si for each agent pi. Let vi be the first vertex

on Si. Then vi 6= v j for any j 6= i, pi, p j ∈ P.

Proof: Let pi be any agent. By construction (Algorithm 1),

the next intermediate goal vi lies on the MaNG contained in

the Voronoi region Vor(pi|P), i.e. vi ∈ MG(P)∩Vor(pi|P). To
guarantee that each vertex is unique, we shall prove that vi belongs

to interior of Vor(pi|P). Since the agents are in general position,
and there are at least 3 agents, ∂Vor(pi|P) consists of at least one
Voronoi vertex x. Let Gov(x) = {pi, p j, pk}. Furthermore, any
Voronoi region is not degenerate, thus Int(Vor(pi|P)) 6= /0. Thus,
there exists at least one point p ∈ Int(Vor(pi|P)), s.t. d(p, p j) =
d(p, pk), i.e. p lies on a Voronoi edge equidistant from p j and pk
in the Voronoi diagram VD1(P\ pi). Thus, p ∈ VG

1(P\{pi})∩
Int(Vor(pi|P)), and by Lemma 2, p ∈ MG(P)∩ Int(Vor(pi|P)).
We shall now show that vi = p as selected by Algorithm 1. If
the locus of all such points p contains a Voronoi vertex from

VG1(P\{pi}) (i.e. some p are black vertices), then the set Vi in
Algorithm 1 is non-empty, and vi ∈ Vi and vi ∈ Int(Vor(pi|P)).
If the locus of all such points p does not contain a Voronoi

vertex from VG1(P \ {pi}) (i.e. all p lie on black edges) then
vi is chosen as a point p closest to pi, and vi ∈ Int(Vor(pi|P)).
Since Int(Vor(pi|P))∩ Int(Vor(p j|P)) = /0, vi 6= v j.

As a result of lemma 3, the intermediate goal computed for each

agent is unique. Hence, by following the path computed from the

MaNG, the agents move towards a unique point, away from the

remaining agents. This is shown in figure 5, and compared to

paths computed using 1st order Voronoi graphs.

1

2

3

4

2

1
3

4

Fig. 5. Comparison of the first-order Voronoi graph and MaNG: 4 agents,
with goals in opposite corners. Left: Intermediate goals computed from the
first-order Voronoi graph. Pairs of agents move towards same goal. Right:
Intermediate goals from MaNG. Each agent has a unique intermediate goal.

However, when coupled with a local dynamics simulator, the

MaNG alone does not guarantee collision avoidance among mul-

tiple agents. This problem is due to the fact that the motion of an

agent is not constrained to the MaNG, but is governed by a local

force model that guides an agent along the MaNG. Furthermore,

the MaNG is a geometric data-structure, and paths computed from

the MaNG do not satisfy kino-dynamic motion constraints of each

agent. Hence, neighboring agents may approach each other due

to the local dynamics computation. In addition, as explained in

section VI, we compute a discrete approximation to the MaNG.

Due to under-sampling errors, the intermediate goal of an agent

may coincide with the first-order Voronoi graph VG1(P) and
Lemma 3 may not be valid.

Fig. 6. Path trace of an agent with same goal in two crowd simulations:
The red curve traces the position of an agent over a range of time steps. Left:
Path trace of an agent using the approach presented in [34]. Right: Path trace
of an agent with same goal based on our new local dynamics model. Note
that due to a different simulation framework, the relative positions of agents
is not identical. In comparison to [34], our approach results in a more direct
and natural looking path.

We introduce a constraint-dynamics based collision response in

our local dynamics model. To avoid collisions with the obstacles,

we set the the agent velocity and applied force to be zero along

the normal direction to the obstacle [2]. In addition, to enable

agents to move around each other, we add a coordination rule

which makes agents move to the right of nearest approaching

agent to avoid collisions with approaching agents [21].

VI. MANG COMPUTATION

In this section we present our approach for efficiently computing

the MaNG, which is based on the first- and the second-order

Voronoi diagrams. However, exact computation of generalized

Voronoi diagrams of polygonal models is non-trivial. Rather, we

compute the discrete Voronoi diagram along a uniform grid using

graphics hardware [17]. The 2nd nearest neighbor diagram is

computed using a second pass with depth peeling, as presented

in [10]. We compute the generalized second-nearest diagram of

higher order sites (lines, polygons) by rendering the generalized

distance function for each site [36]. We compute the first-order

Voronoi diagram in the first pass, and compute the second-nearest

neighbor diagram in the second pass. Finally we extract the first-

and the second-order Voronoi graphs from the second-nearest

neighbor diagram and compute the MaNG.

A. Culling Techniques

The distance field is computed by evaluating the distance function

to each site at each pixel, and this computation is efficiently per-

formed using the rasterization capabilities of the GPU. However,

for a large number of sites, this leads to redundant computation

TVCG JOURNAL 8

for each pixel, and the computation becomes fill bound. Hence,

we use culling techniques to compute conservative bounds on the

first- and the second-order Voronoi regions. The distance function

to each site is computed on the pixels that are contained within

its conservative Voronoi region.

Our goal is to efficiently derive a tight upper bound on the first-

and the second-order Voronoi regions for each site. We compute

these bounds by determining the closest site (and closest 2 sites)

along each principle direction (+X ,−X ,+Y ,−Y). We compute the
bounds using a quadtree, which subdivides the domain. Each node

in the quadtree contains the number of sites contained in the

subtree rooted at the node. Using this quadtree we can efficiently

determine the set of nearest neighbors for each site.

The quadtree is constructed as follows. Each leaf nodes contains

the number of sites contained within the node. Let δ be the size
of a leaf node. Each intermediate node contains the number of

sites contained in all of its 4 children. Let the function E(l)
compute the closest non-empty leaf node to the right of node

l in the quadtree. Similarly, W (l) and N(l), S(l), respectively,
return closest leaf nodes to the left, top and bottom of node l. To

compute the bound along +X for the first-order Voronoi region of
a site pi, we first identify the leaf node li that contains the centroid

of the site π(pi). Next we compute the closest leaf nodes E(li),
W (li), N(li) and S(li). Let b1 be the bisector between centroids of
node li and E(li), b2 be the bisector between centroids of li and
S(li) and b3 be the bisector between centroids of li and N(li).
Let x1 = b1 ∩ b2,x2 = b1 ∩ b3. Along +X , the bound on first
order Voronoi region of pi is given by +dx = (π(pi) + ∆X+ +
δ) where ∆X+ = min((x1−π(pi)) · (1,0),(x2−π(pi)) · (1,0)).
Similarly the bounds −dx,+dy,−dy along −X ,+Y,−Y axes are
computed and the first order Voronoi region is bounded by a quad

covering the interval [−dx,+dx]× [−dy,+dy]. In addition, for a
leaf node li, we store the locations of its closest neighbors E(li),
W (li), N(li) and S(li).

We compute the bounds on all the second-order Voronoi regions

of site pi in the second pass as follows. Along +X axis, we
check the number of sites stored in the closest node E(li). If the
number of sites in node E(li) is 2 or more, then the bound along
+X is ∆X+ = d(li,E(li))+ 2δ . If number of sites in node E(li)
is less than 2, then we lookup the node E(E(li)) (this has been
computed in the 1st pass), and the bound along +X is ∆X+ =
d(li,E(E(li)))+2δ . Similarly we compute bounds along −X ,+Y
and −Y axes and compute the distance function of site pi in a
quad that covers these bounds.

To compute the bounds for a higher order site (a line segment or a

convex polygon), we store the position of the centroid of the site

in the quadtree. We compute the distance bounds for the centroid

using the quadtree, and add the distance between the centroid and

a vertex to compute the distance bounds for the site.

B. Undersampling Errors

Computation of the Voronoi graph on a uniform grid may result

in under-sampling errors, which may lead to the Voronoi regions

to become disconnected [37],and the computed discrete Voronoi

graph may have many small disjoint components [18]. As a

result, for complex environments with a large number of sites,

the combinatorial complexity of the MaNG becomes very high.

We address the issue of under-sampling for motion planning,

by reducing the combinatorial complexity of the MaNG without

changing its connectivity. We reduce the complexity by appropri-

ately modifying the MaNG near undersampled areas. We rely on

the fact that when two Voronoi edges are arbitrarily close, then the

agent might follow either edge, as long as the path connectivity

does not change. Such edges can be removed from the MaNG

provided their removal does not change the connectivity of the

MaNG.

We present the details of our algorithm for reducing the com-

plexity of MaNG. We treat an edge with an adjacent edge less

than one pixel away as a candidate for removal. Such edges are

exactly those edges that bound a discrete Voronoi region of width

1 pixel. Thus the test for eliminating such edges is equivalent

to removing certain pixels from a discrete Voronoi region, which

does not change the connectivity of the Voronoi graph. Hence our

test for removal of a pixel from a discrete Voronoi region relies

on a local 3× 3 stencil around a pixel. Let pa be the governor
of a pixel (i, j), and the set α denote the governor set of the
4 adjacent pixels (i−1, j),(i+1, j),(i, j−1),(i, j+1). Then the
pixel (i, j) can be removed if either of the following conditions
holds (see Figure 7):

1) pa /∈α . Then site pa has an isolated discrete Voronoi region
at pixel (i, j), with 4 Voronoi edges surrounding it. Removal
of this Voronoi region does not change the path connectivity

in the stencil.

2) pa ∈α and pa occurs in α exactly once. Then the pixel (i, j)
represents an end point of a discrete Voronoi region of site

pa and its removal does not change the path connectivity

in the stencil.

After a pixel (i, j) satisfies the criteria for removal, we assign it
to another discrete Voronoi region to maintain the connectivity of

Voronoi edges. The pixel is assigned to a site in α \{pa} with the
minimum distance to pixel (i, j). The distance of a site in α to
pixel (i, j) can be efficiently computed by relying on the fact that
distance vectors are bi-linearly interpolated [36]. Thus distance

computation involves a vector summation with a basis vector and

vector norm computation.

(a) (b) (c)

Fig. 7. Discrete Voronoi region shrinking for under-sampling errors: A
3×3 pixel neighborhood of a discrete Voronoi diagram. The discrete MaNG
is shown in thick orange lines. (a) The green discrete Voronoi region is
disconnected. (b) The center pixel may be assigned to an adjacent Voronoi
region reducing complexity of the MaNG, without changing its connectivity
(c) Reassigning the center pixel will change connectivity of the MaNG.

The operation performed at each pixel is a read followed by

a conditional write, and the output of one pixel may affect

the connectivity of adjacent pixels. Thus an efficient parallel

algorithm is not feasible, and we perform a sequential scan of

the discrete Voronoi diagram to update the Voronoi graph.

TVCG JOURNAL 9

Fig. 8. Crowd Simulation: Three scenes of a crowd simulation with agents moving between buildings and the sidewalks. The cars represent dynamic obstacles.
Our MaNG based algorithm can perform navigation on 200 agents, each with distinct goals, at 5 frames per second.

C. Graph Construction

We now present our algorithm to compute the MaNG. We

compute the first-order Voronoi diagram VD1(P) and the second-
nearest neighbor diagram on the GPU, and refine the connectivity

information based on the algorithm described in Section VI-B. We

then perform sequential tracing of vertices and edges to compute

the 2nd nearest neighbor graph [17].

We use the result presented in Lemma 1 to classify the edges in

the 2nd nearest neighbor graph, NG2(P). An edge is classified as
belonging to the first-order Voronoi graph if the distance to closest

site for all pixels on the edge is identical in VG1(P) and NG2(P).
Due to pixel resolution errors, we treat two distance values as

identical if they are within one pixel width of each other. Each

edge is assigned a weight proportional to its length and inversely

proportional to the minimal clearance along the edge. An edge

belonging to VG1(P) is labeled red, and the remaining edges are
labeled black. A vertex is labeled red if it has at-least one red

edge incident on it, otherwise it is labeled black. These colors are

used by Algorithm 1 to search for an optimal path.

VII. IMPLEMENTATION AND RESULTS

In this section we describe the implementation of our multi agent

planning algorithm and highlight its application to various multi-

agent simulations.

A. Implementation

We have implemented our algorithm on a PC running Windows

XP operating system with an AMD Opteron 280 CPU, 2GB

memory and an NVIDIA 7900 GPU. We used OpenGL as the

graphics API and Cg language for implementing the fragment

programs. The discrete Voronoi diagram and distance field are

computed at 32-bit floating point precision using floating point

buffers. The Voronoi diagram is stored in the red channel, and the

distance field in the depth buffer. We use stencil tests to disable

the second-order Voronoi diagram computation in the first-order

Voronoi regions of the obstacles. In the first pass, the stencil

mask is set for all pixels in the first-order Voronoi regions of

the agents. In the second pass, distance functions are evaluated

at pixels with stencil mask set. This optimization speeds up both

discrete Voronoi diagram computation and MaNG construction.

We perform readback of the discrete Voronoi diagrams and

construct the MaNG on the CPU. The optimal path is computed

using an A∗ search with Euclidean distance metric to guide the

search.

We use a complete quadtree for Voronoi region culling described

in Section VI-A. The depth of the quadtree is set such that one

leaf node corresponds to a block of 32× 32 pixels. We need to
determine if a node contains up to 2 sites - hence the number of

sites per node is encoded in 1 byte. By using a complete quadtree,

the node addresses can be efficiently computed using bit shifts,

avoiding pointer addressing.

B. Demos

We describe three multi-agent simulations, demonstrating the

effectiveness of the MaNG for real-time path planning. The first

simulation involves a coverage problem, the second one is of a

crowd simulation and third is of terrain exploration.

Fruit Stealing Game: The first simulation is of fruit stealing in

a dense orchard (see Figure 1). There are several agents (thieves)

which attempt to steal the fruit on the trees. The environment also

contains some old farmers who chase the thieves. As the thieves

move through the orchard, they steal fruit in close proximity.

The goal is for each thief to move towards denser regions of

fruit while avoiding the farmers, the trees and other thieves. The

thieves, farmers and trees are treated as cylindrical sites. The

trees are fixed obstacles, farmers are dynamic obstacles and the

thieves are the agents. A coarse density map is used to track the

density of fruit remaining in the orchard. Trees with desirable

fruit are assigned higher density. The agents are initially spread

near the boundary of the orchard, and the goal position is set to

a distant high density region. The goal position for each agent is

also dynamically updated as the density of the current goal drops

below a certain threshold.

The global path of each agent is computed using the approach

presented in Algorithm 1. We compute the proximity to nearest

site for each agent from the second-nearest neighbor diagram,

which is used in a potential planner for local planning. Finally,

we also use the second-order Voronoi diagram to compute the

closest agent (thief) for each farmer. This agent is set as the goal

TVCG JOURNAL 10

for each farmer and the farmer moves directly towards it. The

farmers do not use the MaNG for path planning, however they

use the potential and repulsive forces to stay clear of other farmers

and trees. A thief is eliminated if caught by a farmer. Hence it

is desirable for each thief to compute shortest paths of maximal

clearance from the farmers (dynamic obstacles) and other thieves

(agents) in order to collect the most fruit.

Crowd Simulation:We simulate a crowd of people moving in an

urban environment with dynamic obstacles (Figure 8). We simu-

late only the individual behavior and not the group behavior. The

set of sites consists of buildings, cars and humans. The humans

enter the scene from one of the buildings and exit through another

building or the sidewalks. Each human is an individual agent with

an independent goal. The cars are dynamic obstacles, while the

buildings, benches, fountains are static obstacles. Similar to fruit

picking, the proximity information for local planning is computed

using the second-order Voronoi diagram. The dynamics of each

agent is computed using the local dynamics model presented

in Section V. In combination with the local dynamics model,

our navigation system provides smooth, natural motions for each

agent (see Figure 6). For goals in the same Voronoi region as the

agent, or in the adjacent Voronoi region, the shortest path to goal

is used, disregarding the MaNG.

Terrain Exploration: The third simulation is one for robot rovers

exploring a terrain (see Figure 9). The environment consists of

6 rocks and 1 crater. The rocks and crater are static non-convex

polygonal obstacles. Each rover is an individual agent with an

independent goal and motion characteristics. Certain rovers are

more ‘aggressive’ and have a higher maximum velocity. The goal

for each rover is randomly assigned in the open terrain. Once

a rover reaches its goal, it is assigned a new goal. The global

path information computed using the MaNG enables the rovers

to avoid local minimum and move around non-convex obstacles.

The dynamics of each agent is computed using the local dynamics

model.

C. Results

We now highlight the performance of our algorithm in dynamic

virtual environments. Our approach can perform real-time path

planning for each agent in environments up to 200 virtual agents

with different destinations, at the rates of 5 to 20 fps. The discrete

Voronoi diagrams are computed on grid of resolution 1K × 1K
pixels. The fruit stealing simulation has 64 trees with a varying

number of thieves and farmers. The crowd simulation has 15

static obstacles and between 2 and 5 moving cars, with a varying

number of humans. The performance of our approach, with a

timing breakup is presented in Table I.

VIII. ANALYSIS AND COMPARISON

In this section, we analyze the performance of our algorithm. We

highlight its computational complexity and compare it with other

approaches for multi-agent path planning.

A. Analysis

Let the number of sites be n, and the size of the grid used to

compute the discrete Voronoi diagrams be m×m. We assume

Demo Agents Graph Time(ms)

|V| |E| DVD MaNG Plan LD Total

Crowd 10 206 1051 7 20 0.23 0.18 52

Crowd 25 330 1949 9 22 0.8 0.45 58

Crowd 50 560 3500 10 36 2.0 0.95 73

Crowd 100 946 7058 15 65 5.6 2.23 112

Crowd 200 1927 14669 20 150 18 5.3 217

Fruit 10 565 2282 8 25 1.0 0.21 59

Fruit 100 1378 6099 15 70 20 2.4 133

Mars 10 285 1015 9 21 0.23 0.19 55

Mars 50 790 3580 12 36 2.8 0.98 77

TABLE I

PERFORMANCE OF MULTI-AGENT PATH PLANNING ALGORITHM (AVERAGE

OVER ALL FRAMES): |V| AND |E| DENOTE NUMBER OF VERTICES AND

EDGES IN THE MANG. DVD = TIME TO COMPUTE THE SECOND-ORDER

DISCRETE VORONOI DIAGRAM ON THE GPU, AND REMOVING

UNDERSAMPLED REGIONS. MANG = TIME TO EXTRACT THE MANG

FROM THE DISCRETE VORONOI DIAGRAM. LD = TIME FOR COMPUTING

THE LOCAL DYNAMICS OF ALL AGENTS. PLAN = TIME FOR PATH

PLANNING FOR ALL AGENTS. TIME FOR READBACK OF DISCRETE

VORONOI DIAGRAM AND DEPTH BUFFERS AT 1K×1K RESOLUTION =

25MS.

Fig. 9. Terrain Exploration: Two scenes of a terrain exploration simulation
with agents moving around rocks and craters. The green rovers have a higher
maximum velocity and exhibit aggressive motion. Our MaNG based algorithm
can perform navigation on 50 rovers, each with distinct goals, at 13 frames
per second.

the number of agents |Pa| = O(n). We now present the time
complexity of each stage in our algorithm.

The cost of computing the first- and second-order discrete Voronoi

diagrams is as follows. The size of the quadtree is O((m
32

)2), and
depth = O(logm). Then the cost of computing the bounds for
each site (see Section VI-A) is O(logm). The cost of rasterizing
the distance function for a site pi is O(r|Vork(pi|P)|), where
|Vork(pi|P)| is the number of pixels in the Voronoi region of pi
and r depends on the tightness of the computed Voronoi region

bounds, 1 < r < O(n). Typically, we have observed r = O(1).
Then the cost of computing the Voronoi diagram is O(n logm+
Σni=1(r|Vor

k(pi|P)|)) = O(rm2+n logm).

The cost of reading back the framebuffers is O(m2). The cost of
extracting the MaNG is O(|E|), where |E| is number of edges in
MaNG. From lemma 2, the number of edges in MaNG, |E| ≤
|E1|+ |E2|, where |Ek| is number of edges is VDk(P), and |Ek|=
O(kn) [10]. Thus cost of extracting the MaNG is O(n). The cost
of path planning using A∗ is typically polynomial in O(|E|+ |V|).
Therefore cost of computing all paths is O(n(|E|+ |V|)) =O(n2).
In practice, as shown by Table I the associated constant with

path planning is much smaller and the bottleneck is the discrete

Voronoi diagram computation and graph construction.

TVCG JOURNAL 11

B. Comparisons

Next we provide qualitative comparisons of our approach with

prior methods for multi-agent planning.

Comparison with the first-order Voronoi diagram: Our ap-

proach provides a global solution for path planning of each

agent using the MaNG. The MaNG computes a roadmap of

maximal clearance collision free paths for each agent in O(1)
passes, as compared to O(n) passes for computing O(n) Voronoi
roadmaps. In particular, using the second-order Voronoi graph

for path planning guarantees that the position selected as the

first intermediate goal along the computed path is unique. This

approach prevents adjacent agents from moving towards the same

intermediate goal and getting stuck in a local minimum of the

potential function. An example is presented in Figure 5. In this

example, adjacent agents select the same intermediate goal from

the first-order Voronoi diagram, whereas the intermediate goals

from the second-order Voronoi diagram are unique. In addition,

the path computed has maximal clearance. More specifically,

vertices on the Voronoi diagram are used to compute the area

of maximum coverage for a new site [1]. Hence by following the

vertices on the MaNG, our planning approach ensures a maximum

coverage region for each agent.

The closest related work by Pettre et al. [30] computes an initial

roadmap of a static environment using Voronoi diagrams, and

constructs a set of homotopic paths for a group of agents. This

work implicitly groups agents by their origins and goals. Further-

more, local collision avoidance is not guaranteed. In contrast, our

algorithm is able to handle dynamic environments as the roadmap

is updated in real-time, and the use of the second-order Voronoi

diagrams provides pairwise proximity information which is used

to guarantee collision avoidance.

The work on continuum crowds [41] computes a dynamic po-

tential field and updates the position of each agent by moving

along the gradient of the potential function. The potential field is

computed for a small number of groups of agents moving with

common goals. However, due to the use of a potential function

the agents may get stuck in a local minimum. In contrast, our

approach allows for an independent goal for each agent.

In comparison to agent based methods, our MaNG based path

planning algorithm provides global paths, and may be combined

with rule-based techniques to simulate more complex and realistic

agent behavior.

C. Limitations

There are some limitations of our work. We compute the MaNG

in the workspace, hence the approach does not scale well for

agents with many degrees of freedom (e.g. snakes). We use an

A∗ graph search algorithm, which may not be optimal. Finally, we

compute an optimal path for each time step, however there is no

guarantee on coherence of paths across frames, or on convergence

over a period of time. In fact, the optimal paths across two time

steps may not be coherent (i.e. the immediate goal may change

considerably), potentially resulting in noisy motions.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for real-time path planning

of multiple virtual agent, based on a new data structure - the

Multi-agent Navigation Graph (MaNG). The MaNG is used to

simultaneously compute the paths of maximal clearance for a

set of moving agents with independent goals. The MaNG is

constructed dynamically using discrete Voronoi diagrams. We also

presented culling techniques for accelerating the discrete Voronoi

diagram computation and addressed undersampling issues due

to discretization. We have demonstrated the application of our

approach to real time simulation involving a large number of

independent agents, each with an individual goal.

There are several avenues for future work. One relevant avenue

is to constrain the graph search to compute temporally coherent

paths which are guaranteed to converge to the final goal. We

would like to exploit coherence in graph search when many agents

have similar goals and initial positions. Efficient parallel algo-

rithms for simplifying the discrete Voronoi graphs and computing

the MaNG would be useful for accelerating the computation.

Finally, we would like to extend our approach to handle agents

with high degrees of freedom.

REFERENCES

[1] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental
geometric data structure. ACM Comput. Surv., 23(3):345–405, Sept.
1991.

[2] D. Baraff and A. Witkin. Physically Based Modeling. ACM SIGGRAPH
Course Notes, 2001.

[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better group behaviors
in complex environments with global roadmaps. Int. Conf. on the Sim.
and Syn. of Living Sys. (Alife), pages 362–370, 2002.

[4] M. Bennewitz, W. Burgard, and S. Thrun. Finding solvable priority
schemes for decoupled path planning techniquesfor teams of mobile
robots. Robotics and Autonomous Systems, 41(2-3):89 – 99, 11 2002.

[5] J. Champagne and W. Tang. Real-time simulation of crowds using
voronoi diagrams. EG UK Theory and Practice of Computer Graphics,
pages 195 – 201, 2005.

[6] H. Choset and J. Burdick. Sensor based motion planning: The hierar-
chical generalized Voronoi graph. In Algorithms for Robot Motion and
Manipulation, pages 47–61. A K Peters, 1996.

[7] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and
Implementations. MIT Press, 2005.

[8] O. C. Cordeiro, A. Braun, C. B. Silveria, S. R. Musse, and G. G.
Cavalheiro. Concurrency on social forces simulation model. First
International Workshop on Crowd Simulation, 2005.

[9] M. Denny. Solving geometric optimization problems using graphics
hardware. In Proc. of Eurographics, pages 441 – 451, 2003.

[10] I. Fischer and C. Gotsman. Fast approximation of high order Voronoi
diagrams and distance transforms on the GPU. Technical report CS
TR-07-05, Harvard University, 2005.

[11] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid
planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
1:55 – 60, 2001.

[12] J. Funge, X. TU, and D. Terzopoulos. Cognitive modeling: Knowledge,
reasoning and planning for intelligent characters. Proc. of ACM

SIGGRAPH, pages 29–38, 1999.

TVCG JOURNAL 12

[13] P. Glardon, R. Boulic, and D. Thalmann. Dynamic obstacle clearing
for real-time character animation. Computer Graphics International,
22(6):399 – 414, 2005.

[14] L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap plan-
ner for flexible objects with a workspace medial-axis-based sampling
approach. In Proc. of IROS, pages 254 – 259, 1999.

[15] D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized
pedestrian crowd dynamics: experiments, simulations and design solu-
tions. Transportation science, pages 1–24, 2005.

[16] D. Helbing, L. Buzna, and T. Werner. Self-organized pedestrian crowd
dynamics and design solutions. Traffic Forum 12, 2003.

[17] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation
of generalized voronoi diagrams using graphics hardware. Proceedings
of ACM SIGGRAPH 1999, pages 277–286, 1999.

[18] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive
motion planning using hardware accelerated computation of generalized
voronoi diagrams. IEEE Conference on Robotics and Automation, pages
pp. 2931–2937, 2000.

[19] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d
geometric proximity queries using graphics hardware. Proc. of ACM
Symposium on Interactive 3D Graphics, pages 145–148, 2001.

[20] S. P. Hoogendoorn, S. Luding, P. Bovy, M. Schrecklenberg, and D. Wolf.
Traffic and Granular Flow. Springer, 2000.

[21] F. Lamarche and S. Donikian. Crowd of virtual humans: a new approach
for real-time navigation in complex and structured environments. Com-
puter Graphics Forum, 23(3):509–518, 2004.

[22] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[23] T.-T. Li and H.-C. Chou. Motion planning for a crowd of robots. Proc.
of IEEE Int. Conf. on Robotics and Automation, 3:4215–4221, 2003.

[24] C. Loscos, D. Marchal, and A. Meyer. Intuitive crowd behaviour in
dense urban environments using local laws. In Theory and Practice of
Computer Graphics (TPCG’03), pages 122–129, 2003.

[25] MASSIVE. http://www.massivesoftware.com, 2006.

[26] S. R. Musse and D. Thalmann. A model of human crowd behavior:
Group inter-relationship and collision detection analysis. Computer
Animation and Simulation, pages 39–51, 1997.

[27] A. Okabe, B. Boots, and K. Sugihara. Spatial tessellations: concepts
and applications of Voronoi diagrams. Wiley & Sons, 1992. ISBN 0
471 93430 5.

[28] L. E. Parker. Designing control laws for cooperative agent teams. Proc.
of IEEE Int. Conf. on Robotics and Automation, pages 582–587, 1993.

[29] N. Pelechano, K. O’Brien, B. Silverman, and N. Badler. Crowd
simulation incorporating agent psychological models, roles and com-
munication. First International Workshop on Crowd Simulation, 2005.

[30] J. Pettre, J.-P. Laumond, and D. Thalmann. A navigation graph for
real-time crowd animation on multilayered and uneven terrain. First
International Workshop on Crowd Simulation, 2005.

[31] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model. In M. C. Stone, editor, Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21, pages 25–34, July 1987.

[32] M. Schreckkenberg and S. D. Sharma. Pedestrian and Evacuation
Dynamics. Springer, 2001.

[33] G. Still. Crowd Dynamics. PhD thesis, University of Warwik, UK, 2000.
Ph.D. Thesis.

[34] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha. Real-time
path planning for virtual agents in dynamic environments. Proc. of IEEE
VR, pages 91–98, 2007.

[35] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha. Fast
proximity computation among deformable models using discrete voronoi
diagrams. ACM Trans. Graph. (Proc ACM SIGGRAPH), 25(3):1144–
1153, 2006.

[36] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interactive 3d
distance field computation using linear factorization. In Proc. ACM
Symposium on Interactive 3D Graphics and Games, pages 117–124,
2006.

[37] A. Sud, M. A. Otaduy, and D. Manocha. DiFi: Fast 3D distance field
computation using graphics hardware. Computer Graphics Forum (Proc.
Eurographics), 23(3):557–566, 2004.

[38] M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors for crowd
simulation. Computer Graphics Forum, 23(3 (Sept)):519–528, 2004.

[39] M. Sung, L. Kovar, and M. Gleicher. Fast and accurate goal-directed
motion synthesis for crowds. Proc. of SCA 2005, pages 291–300, 2005.

[40] D. Thalmann, C. O’Sullivan, P. Ciechomski, and S. Dobbyn. Populating
Virtual Environments with Crowds. Eurographics 2006 Tutorial Notes,
2006.

[41] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. Proc. of
ACM SIGGRAPH, pages 1160 – 1168, 2006.

[42] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion,
perception, behavior. In A. Glassner, editor, Proceedings of SIGGRAPH
’94, pages 43–50, 1994.

[43] J. Vleugels and M. H. Overmars. Approximating Voronoi diagrams of
convex sites in any dimension. International Journal of Computational
Geometry and Applications, 8:201–222, 1998.

[44] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Maprm: A probabilistic
roadmap planner with sampling on the medial axis of the free space.
IEEE Conference on Robotics and Automation, pages 1024–1031, 1999.

[45] G. K. Zipf. Human behavior and the principle of least effort. Addison-
Wesley Press, 1949.

