
Real-time Reciprocal Collision Avoidance with Elliptical Agents

Andrew Best1, Sahil Narang1 and Dinesh Manocha1

http://gamma.cs.unc.edu/EORCA/

Abstract— We present a novel algorithm for real-time
collision-free navigation between elliptical agents. Each robot
or agent is represented using a tight-fitting 2D ellipse in the
plane. We extend the reciprocal velocity obstacle formulation
by using conservative linear approximations of ellipses and
derive sufficient conditions for collision-free motion based on
low-dimensional linear programming. We use precomputed
Minkowski Sum approximations for real-time and conservative
collision avoidance in large multi-agent environments. Finally,
we present efficient techniques to update the orientation to
compute collision-free trajectories. Our algorithm can handle
thousands of elliptical agents in real-time on a single core and
provides significant speedups over prior algorithms for elliptical
agents. We compare the runtime performance and behavior
with circular agents on different benchmarks.

I. INTRODUCTION
One of the main issues in multi-robot planning and multi-

agent navigation is computing collision-free paths for each
robot or agent from its start position to its goal position.
This problem arises not only in robotics and AI, but also in
computer games, virtual environments, pedestrian dynamics,
and simulations of collective behaviors in biology.

In this paper, we mainly address the problem of real-time
multi-agent collision avoidance for large environments with
hundreds or thousands of agents. Most practical algorithms
are based on decentralized methods that tend to compute a
path for each robot or agent independently. Moreover, most
of these decentralized algorithms represent each agent as a
circle in a 2D plane. This simplified disc representation has
a number of advantages. Discs are radially symmetric and
there are simple solutions to operations, including computing
the closest point on a disc to an arbitrary query point or
checking two discs for overlap. Many collision-avoidance
algorithms based on velocity obstacles [1], [2], [3] compute
Minkowski Sums, which is rather trivial for discs. The
symmetric properties are also used to design simple rules
for flocking [4] or collision-avoidance schemes based on
potential fields or repulsive social forces [5].

Despite the computational benefits, the use of discs for
multi-agent navigation results in many challenges. In many
cases, a disc overestimates the actual profile of the robots
that it represents. The geometries of many robots, including
humanoids and vehicles, are not radially symmetric. As a
result, disc-based collision-avoidance schemes can be overly
conservative. In other applications, tighter-fitting geometric
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shapes (e.g. ellipses) are considered more accurate. For
example, elliptical shapes are used in motion planning al-
gorithms for robots with linear dynamics [6] or to represent
uncertainty [7], [8]. Prior work in pedestrian dynamics and
biomechanics has shown that 2D ellipses provide a better
approximation of human body in terms of shape and move-
ment [9], [10].

It is widely accepted that the use of ellipses for multi-
agent navigation can result in complex and time-consuming
algorithms. The underlying techniques must explicitly model
the orientation of each ellipse. Moreover, computing exact
Minkowski Sums of ellipses is regarded as considerably
more expensive than doing the same for circles [11]. It
is difficult to predict the behavior of force-based methods,
as the formulation and computation of repulsive forces on
elliptical agents is more complicated.

Main Results: We present a novel real-time algorithm
for collision-free navigation of elliptical agents in dynamic
environments. We use a decentralized approach based on
velocity obstacles [2], [3] and present fast algorithms for
conservative collision avoidance. To overcome the complex-
ity of exact Minkowski Sum computation, we use con-
servative linear approximations of ellipses and reduce the
collision avoidance problem to solve a lower dimensional
linear programming problem and show that our formulation
is reciprocally maximal. To ensure that we can handle
large environments consisting of hundreds or thousands of
agents in real-time, we use precomputed tables of Minkowski
Sums and guarantee that feasible trajectories computed using
our algorithm would be collision-free. We also present a
technique to update the orientation of ellipses in dense
environments to compute collision-free trajectories among
static obstacles or to generate human-like trajectories. In
practice, the use of conservative linear approximations and
precomputed Minkowski Sums tables improves the runtime
performance by more than an order of magnitude. Our
overall algorithm can perform collision-free navigation of
thousands of agents at interactive rates on a single core and
is only 4 − 5X slower than collision avoidance algorithms
for circular agents. We highlight its performance in complex
environments and demonstrate the benefits.

The rest of the paper is organized as follows. In Section
II, we provide a brief overview of prior work in multi-
agent navigation and collision avoidance algorithms. We
introduce the notation and present our optimal collision
avoidance algorithm between elliptical agents in Section III.
In Section IV, we present our acceleration scheme based
on precomputed Minkowski Sum tables. We describe two



different methods to update the orientation of elliptical agents
in Section V. We highlight our algorithm’s performance in
different environments in Section VI.

II. RELATED WORK

There is a substantial body of work on motion planning
and navigation for single or multi-robot systems. Some
earlier methods were designed for static environments.

At a broad level, prior algorithms for collision-free nav-
igation can be classified as centralized and decentralized.
Centralized planners treat the set of all robots as a single
system in a (very) high-dimensional configuration space, and
many well-known methods for single-robot motion planning
can be used [12], [13], [14]. These planners have the advan-
tage of being complete (in theory), but practical algorithms
are limited to systems with a few robots. Decentralized
planners tend to compute a path for each robot or agent
independently, and use some coordination mechanism or
local navigation techniques to avoid collisions between them.
Many techniques have also been proposed for collision-
avoidance, navigation, and planning among moving obstacles
[15], [16], [17], [18], and these can be extended to elliptical
agents. Given an agent, all the other agents can be treated
as dynamic obstacles along with other objects in the scene.
However, these methods do not consider the reactive behav-
ior of other agents as part of multi-agent planning.

Many decentralized planners tend to rely on high-level
planning modules to generate paths through the static envi-
ronment and on local collision-avoidance algorithms to adapt
those plans to the environment. Priority-based methods as-
sign order to the robots, and plan the paths sequentially [19].
Velocity-obstacle based methods compute locally collision-
free velocities in velocity space [1], [20], [2], [3]. Whereas
many local collision-avoidance algorithms take advantage of
the disc representation of the robots, some algorithms also
attempt to model additional dynamics constraints, such as
differential-drive [21], double-integrator [22], car-like [23],
or linear [24], etc., or they use reciprocally rotating ve-
locity obstacles [25]. The two dimensional disc collision-
avoidance problem has also been extensively studied in the
crowd simulation and pedestrian dynamics literature. These
studies include force-based methods [5], [26], [27], cellular-
decomposition methods [28], rule-based methods [4], etc.
Although all these algorithms are fast, they are limited to
circular agents.

III. MULTI-AGENT COLLISION AVOIDANCE
WITH ELLIPTICAL AGENTS

In this paper, we address the problem of the efficient
navigation of multiple elliptical agents. We first introduce
the notation used in the rest of the paper. Let Rd represent
the physical workspace of the robots or agents, where d ≥ 2.
For simplicity, we assume each agent can be represented in
R2. We project the geometric representation Od of the robot
in Rd space to R2, represented by O2, and bound it with an
ellipse in R2.

A. PROBLEM DEFINITION

Let S represent the simulator state, defined as the union
of all entities in the scene, including obstacles in the envi-
ronment and the overall state space X = ∪iXi, where Xi
denotes the state space of robot i [29]. The elliptical shape
in R2 for each robot i is defined by the position vector
~pi ∈ R2, orientation oi ∈ R, the semi-major axis smaji ∈ R+,
and the semi-minor axis smini ∈ R+ where orientation is
defined as the angle between the major axis and the x-axis
of the reference frame. Also, let ~v0i represent the optimal
velocity toward the goal with respect to static obstacles (also
called the preferred velocity) and let o0 denote the preferred
orientation for the robot. Then the state space of robot i in
R10 is given by [~pi, ~vi, ~v0i , oi, o

0
i , s

maj
i , smini ].

We assume that there is a high-level module Ki : t ×
S → R2 that maps the time t and simulator state S into an
instantaneous preferred velocity that can be expressed as the
composition of simpler functions such as

Ki(t) = Pi(Gi(t)), (1)

where Gi : t × S → R2 maps the time and simulator
state into a goal position and Pi : S × R2 → R2 that
maps the simulator state and the agent’s goal position into
a instantaneous preferred velocity for agent i, denoted by
~voi . The function Ki computes the collision-free path to
the goal with respect to static obstacles in the simulation.
Let LCAi : S × R2 × R2 × R → R2 × R2 denote a
local collision avoidance function that maps the simulator
state, the instantaneous preferred velocity, the instantaneous
preferred orientation, and time horizon, τ , into a collision-
free orientation (oi) and velocity ( ~vi) with respect to other
robots in the environment for at least time τ .

Our goal is to formulate a generalized local collision
avoidance function LCA for elliptical agents, which seeks
to independently and simultaneously compute a velocity ~vi
and orientation oi for each elliptical robot i in the simulation.
Thus, the instantaneous velocity and orientation of an agent
can be given by:

(~vi(t), oi(t)) = LCAi(Hi(Pi(Gi(t)))), (2)

where Hi : S × R2 × R → R2 maps the simulator state,
preferred velocity, and time to the preferred orientation. The
function LCA must guarantee that all elliptical agents can
follow a collision-free trajectory with the new configuration
for at least a predefined horizon window of time τ . Further-
more, the agent’s new velocity should be as close as possible
to its preferred velocity.

B. LOCAL COLLISION AVOIDANCE

In this section, we present our local collision-avoidance
algorithm for elliptical agents. Our algorithm is based on ve-
locity obstacles that have been frequently used for collision-
avoidance in robotics and crowd simulation [3], [2]. How-
ever, as with most prior work in multi-agent navigation, these
methods are limited to agents represented as 2D discs.
Velocity Obstacles: For two agents, X and Y , centered at
~pX and ~pY , respectively, the velocity obstacle of X induced



by Y , which is denoted by V OτX|Y , and constitutes the set
of velocities for X that would result in a collision with Y
at some time before τ . By definition, agents X and Y are
guaranteed to be collision-free for at least time τ , if ~vX −
~vY /∈ V OτX|Y [3]. More formally,

V OτX|Y = {~v | ∃t ∈ [0, τ ] :: ~pX + t(~vX − ~vY ) ∈M}, (3)

where t ≥ 0 and M denotes the Minkowski Sum of −X and
Y .

In general, let V denote the set of all velocities for
an agent. At each simulation step, the agent must choose
a velocity ~vnew ∈ V s.t. ~vnew lies outside the velocity
obstacles defined by all the neighboring agents and obstacles,
which is a sufficient condition for collision-free navigation
for at least time τ .

In the case of disc-shaped agents, the Minkowski Sum
for two agents can be implicitly computed with a few
floating point operations. Finding the closest point on a
disc from a query point is also trivial. For elliptical agents,
these operations are non-trivial. Computing the Minkowski
Sum requires either computing convolution curves, which
is considerably more expensive [30], or using a closed-
form implicit equation [11]. Moreover, computing the closest
points on two arbitrarily oriented ellipses requires computing
the roots of a fourth-order polynomial. These operations are
costly, so we present faster algorithms based on conservative
linear approximations.

C. APPROXIMATING ELLIPSES

Instead of computing the exact Minkowski Sum of two
ellipses, we use a piece-wise linear approximation (PL) that
can provide conservative guarantees for collision avoidance.
For an ellipse C, a piece-wise linear approximation can be
computed by uniformly sampling C at intervals of δθ ∈
(0, 90) to yield the set of sample points S = {(smaj ×
cos(δθ × i), smin × sin(δθ × i) : 0 ≤ i ≤ b 2πδθ c|i ∈ I}.
Let L = {λ~p|~p ∈ S} denote the set of tangents to the curve
C, defined at each sample point as:

λ~p = C(~p) + tC′(~p) ∀ ~p ∈ S, (4)

where t ≥ 0. We can now define the set of vertices V of the
bounding polygon by solving λ~pA = λ~pA+1

i.e., the point
of intersection of two tangents where ~pA, ~pA+1 ∈ S.The
computational cost is thus O(m) for m samples. Next, we
use this property to show that the linear approximation
computes a conservative shape for collision avoidance.

Theorem 1: For any ellipse C, a piecewise linear
approximation L of the curve defined by the tangents at the
sampled points overestimates the curve.
Proof: Let C denote an axis-aligned ellipse defined at the
origin as:

x2

a2
+
y2

b2
= 1, (5)

where a2 > b2 and a, b ∈ R+. The first and second derivative
of the curve, Ċ and C̈ resp., are given by:

dy

dx
= − b

2x

a2y
, (6)

d2y

dx2
= − b4

a2y3
. (7)

It follows that: {
C̈ > 0 if y < 0,

C̈ < 0 if y > 0.

By definition, C is concave downward for y > 0, which
implies that the tangent lines λ~p ∈ L lie above the curve
when ~p lies in the first or second quadrant. Similarly, C is
concave upward for y < 0, which implies that the tangent
lines λ~p ∈ L lie below the curve in the interval when p
lies in the third or fourth quadrant. Hence, the linearization
L overestimates the curve C. Without loss of generality, the
same proof can be used for oriented ellipses.

Theorem 2: We are given an ellipse C in the form y =
C(x) and a piecewise linear approximation L of the curve
defined by the tangents at the ordered set of samples S. Let
λA ∈ L denote a linearization centered at ~pA = (xA, C(xA))
that approximates the curve in the interval I = (~pA, ~pj)
where ~pA = (xA, C(xA)) and ~pj = (xj , C(xj)). Then the
error bounding function B(t) over I can be given by :

B(xs) =
K

(1− x2
s

a2 )
3/2

, (8)

where K =
b(xA−xj)2

2a2 and xA < xS < xj . Furthermore,
the maximum approximation error, Emax, can be exactly
computed.
Proof: As before, let us consider an axis-aligned ellipse
defined at the origin. We also assume that the set of samples
S includes the points where y = 0. Let E(xj) represent the
approximation error for point (xj , C(xj)), which is expressed
as:

E(xj) = C(xj)− λA|x=xj (9)

λA|x=xj ≥ C(xj)∀xj ∈ R (Theorem1) (10)
∴ E(xj) ≤ 0 (11)

It can be proven that there is some xs ∈ I such that:

E(xj) =
C̈(xs)
2

(xj − xA)2. (12)

We can derive an expression for the error-bounding func-
tion using 5 , 7, & 11, as:

B(xs) = |E(xj)| =
K

(1− x2
s

a2 )
3/2

(13)

Differentiating B(xs) gives:

Ḃ(xs) =
3K

a2(1− x2
s

a2 )
5
2

xs. (14)

It follows that the error bound is monotonically increasing
when xs > 0 i.e. xA, xj ∈ R+. Similarly, it is monotonically



decreasing when xs < 0 i.e. xA, xj ∈ R−. Thus the
maximum approximation error, Emax, over the open interval
I = (~pA, ~pj) can be expressed as:

Emax =


3K

a2(1− x
2
s
a2

)
5
2

xs

∣∣∣∣
xs=xj

if xA, xj ∈ R+,

3K

a2(1− x
2
s
a2

)
5
2

xs

∣∣∣∣
xs=xA

if xA, xj ∈ R−.

D. VELOCITY OBSTACLES FOR ELLIPTICAL AGENTS

In this section, we extend the ORCA algorithm [2] to
elliptical agents based on the linear approximation. We refer
to the new algorithm as ERVO.

1) Computing Neighboring Agent Constraints: To com-
pute the velocity obstacle for an elliptical agent, we first
compute a tangent from the origin of the velocity space to the
boundaries of the Minkowski Sum scaled by the inverse of τ .
For a Minkowski Sum with m samples, we can find tangents
in O(lg(m)) using binary search on the vertices. The forward
face of the truncated cone lies between the tangent points,
and the nearest point can be computed by another binary
search. Fig 1(A,B) illustrates the construction of the velocity
obstacle of the elliptical agents using the Minkowski Sum
and the tangents.

Next, we use the velocity obstacle to compute the set of
permitted velocities for an agent. Given the velocity obstacle,
V OτX|Y , we construct the set of permitted velocities for X
for reciprocal collision avoidance [2], which is denoted as
ERVOτX|Y . Consider a vector ~u from the relative velocity
~vX − ~vY to the nearest point on the truncated velocity
obstacle. Also, let ~n be the outward normal of the boundary
of V OτX|Y at point (~vX − ~vY ) + ~u. We assume that all
agents use the same collision-avoidance strategy. Therefore,
agent X is responsible for adapting its velocity by 1

2~u
assuming that Y will do the same. In this manner, the set
ERV OτX|Y of permitted velocities for X is defined by the
half-plane pointing in the direction of ~n centered at the point
~vX + 1

2~u (see Fig 1(C)). Hence, one half-plane constraint is
constructed for each neighboring agent.

2) Computing Neighboring Obstacle Constraints: With-
out loss of generality, we can assume that all obstacles in the
scene are triangulated and their projections on the 2D plane
are given as a collection of line segments. To compute the
velocity obstacle V OτX|O for agent X induced by a line seg-
ment O, we implicitly compute the Minkowski Sum of −X
and O scaled by the inverse of τ . An agent X will collide
with obstacle O within the time τ if its velocity ~vX is inside
V OτX|O. Geometrically, the Minkowski Sum is equivalent to
sliding the reflected A along the scaled line segment (each
scaled by τ ). Because discs are unaffected by orientation
issues, the computations related to determining the shape of
the velocity obstacle, finding tangents, and determining the
closest point on the obstacle can be implemented by using
a small number of floating point operations. With elliptical
agents, the shape of the velocity obstacle, the tangents, and
the nearest point operations are governed by the orientation
of the agent as well as of the obstacle.

Let −θ ∈ [0,−2π] represent the angle between O and the
positive x-axis. We can simplify the computation by rotating
the coordinate system by θ, i.e., we rotate O and agent X by
θ and compute the appropriate constraints in the transformed
space. Let orotX denote the orientation of the ellipse after the
rotation transformation. For the remainder of this section,
we can assume that O is parallel to the positive x-axis.
Therefore, the shape of the velocity obstacle depends only on
the orientation orotX of the agent. We can also accelerate the
computation of tangents and the closest points (Section IV).

Once rotated, we determine whether the agent’s velocity
projects onto the left tangent, right tangent, left face, right
face, or line segment. Next, we compute the point FX|O on
the velocity obstacle closest to ~vX . The half plane defined
using the tangent to the velocity obstacle at FX|O yields the
set ERVOτX|O of permitted velocities for X with respect to
O (Figure 1(E)). We rotate the final computed constraint by
−θ to transform back into the original space(Figure 1(F )).

3) Choosing a Collision-free Velocity: At every simula-
tion step, we construct the half-plane constraints for each
neighboring agent and obstacle. The set of neighboring
agents and obstacles can be computed efficiently by using a
spatial data structure, such as a kD-tree. The set of permitted
velocities for agent X is simply the convex region – ERVOτX
– given by the intersection of the half-planes of the permitted
velocities that are induced by all the neighboring agents and
obstacle(Figure 1(F )).

ERVOτX =
⋂
Y 6=X

ERVOτX|Y (15)

The agent is responsible for selecting a new velocity vnewX

from ERVOτX that minimizes the deviation from its preferred
velocity ~v0X .

~vnewX = argmin
~v∈ERVOτ

X

‖~v − ~v0X‖ (16)

Eq. 15 and 16 can be solved efficiently with an expected
runtime of O(n) using linear programming, where n is the
total number of constraints.

4) Collision-free Guarantees:: If the linear programming
algorithm can compute a feasible solution for each agent, we
can guarantee that the resulting trajectories will be collision-
free. This follows from our conservative, bounding linear ap-
proximation (Section 3.2.1) for each ellipse. Furthermore, we
extended the original ORCA algorithm [2] to elliptical agents
by formulating appropriate constraints (Sections 3.2.2 and
3.2.3) that preserve the properties of the velocity obstacles.
The set of permitted velocities ERV OτX|Y and ERV OτY |X
for agents X and Y , respectively, are reciprocally maxi-
mal. The overall approach is conservative, but it guarantees
collision-free navigation. In densely packed conditions, the
ERVO set of feasible velocities may be empty, in which case
the 2D linear program will not find a solution. One possibility
is to change the orientation of the ellipses (see ERVO-F in
Section V) to find a solution. If that does not find a feasible
solution, we can select the velocity that minimally penetrates
the constraints generated by neighboring robots, by using 3D
linear programming [2].
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Fig. 1. COMPUTING COLLISION FREE VELOCITY (A) Two agents are moving toward one another in space. The approximating polygons are
shown. (B) The velocity obstacle for X induced by Y takes the shape of a truncated cone. The apex of the cone is located at the origin in velocity
space. The forward arc of the cone is the forward face of the Minkowski Sum of −X and Y scaled by τ and centered at ~pY − ~pX/τ . (C) The set of
permitted velocities for agent X w.r.t. Y represented by the half-plane constraint ERV Oτ

X|Y . (D) An agent moves toward a line segment obstacle. (E)

To compute V OX|O , we rotate the frame of reference such that O is parallel to the positive x-axis. In this case, the forward arc of the cone is the forward
face of the Minkowski Sum of −X and O scaled by τ and centered at ~pO − ~pX/τ . We also show the ERVO constraint as a half-plane perpendicular
to the vector connecting vX and V OX|O and passing through the nearest point on V OX|O . After the constraint is computed, it is rotated back to the
axis-aligned reference frame. (F ) After all the constraints have been computed, we can determine a feasible velocity inside the union of all the ERVO
sets. A new velocity is chosen from the region of feasible velocities.

Fig. 2. Swept Ellipse: An ellipse (shown in black) swept along an interval
with padding in the positive direction (in red) and negative direction (in
blue) equal to the agent’s maximum angular velocity. The convex-hull of
this swept surface (in purple) is used in place of the agent to construct
Minkowski Sums and produce collision-free rotations for the ERVO-F
algorithm. A table of these swept surfaces is maintained for acceleration
of the ERVO-F algorithm.

IV. ACCELERATING ERVO WITH PRECOMPUTATION

The ERVO algorithm described above can compute
collision-free trajectories for elliptical agents. However, in
practice it is computationally two orders of magnitude times
more expensive compared to the original ORCA algorithm
for circular agents (see Table I). The main bottleneck is
the computation of the Minkowski Sum of the polygons
and determining the forward arc on its boundary while
constructing the half-plane constraints for each neighboring
agent and obstacle.

In order to accelerate the computation, we use precom-
puted Minkowski Sums for different orientations of ellipses
and still guarantee collision-free navigation. In particular,
we use a precomputed table of Minkowski Sums such

that the runtime computation is O(1), corresponding to a
table lookup. We use a discrete angular resolution of θE
for this precomputation. Let P = {θE × i : 0 ≤ i ≤
b 2πθE c|θE ∈ (0, 2π)} denotes an ordered set of angles. Also,
let K = {ROT (X(θi), θi+1))|θi, θi+1 ∈ P} denote the
set of surfaces generated by rotating an ellipse X from
orientation θi to θi+1 for each ordered pair (θ, θi+1) in P .
Likewise, let K′ denote the set of swept volumes (Figure 2)
generated by rotating an ellipse at orientation θi by θalpha =
±δt × αmax, where δt and αmax denote the simulation
timestep and maximum angular acceleration of the robot,
respectively. Each surface in K and K′ is parametrized by
the angle θi.

We precompute and store the pairwise Minkowski Sums
for surfaces in K, as well as K′. Each such Minkowski
Sum is parameterized by the corresponding pair of angles,
corresponding to the two ellipses. Additionally, we also
store the extreme points of the polygon which facilitates
the construction of tangents and reduces the complexity of
finding the closest point on the Velocity Obstacle. Consider
an elliptical agent X with orientation θX . The precomputed
table can be used to find the surface KX s.t. θi ≤ θX ≤ θi+1

where θi, θi+1 ∈ P . By definition, the ellipse representing
the agent X is contained within KX and is thus, conservative.
When computing the constraints for two agents X and Y , we
lookup the surfaces KX and KY resp., and the corresponding
Minkowski Sum. The collision-free guarantees (Section III-
B) still hold but the solution may not be optimal since
the ERVO sets of collision-free velocities are not maximal.



Fig. 3. Narrow Passage: Two ellipses approach one another in a narrow
hallway. In order to pass safely, each ellipse must rotate to reduce their
profile. These behaviors are not possible with disc-based agents and are
demonstrated with our ERVO-F algorithm.

Overall, our precomputed structures with an interval size of
5 degrees provide a 40x improvement in performance. The
precomputation time is on the order of minutes and spatial
complexity is O(m ∗ o2) where m is the number of samples
on the ellipse and o is the number of orientation intervals
( 120MB for o = 72,m = 100).

V. ORIENTATION UPDATE

The use of ellipses increases the configuration space of
each to three dimensions - [x, y, θ]. In order to maintain
interactive simulation, we decompose the problem in two
parts: update the orientation of each ellipse and compute
the optimal collision-free velocity for that orientation. By
using swept surfaces in place of rotating ellipses for the
construction of neighboring agent constraints, we ensure
collision-free rotations as agents navigate. Figure 2 illustrates
the swept surfaces. We present two simple approaches to
orientation computation, given as function definitions H, for
orientation update:
• ERVO-C: In the simplest case, the agents maintain their

orientation between successive simulation time-steps:

o0i = oi. (17)

• ERVO-F: In some cases, the agent must change its
orientation in order to find a collision-free velocity.
For example, in Figure 3, the agent must change its
orientation to navigate through a narrow hallway. In this
method, we determine whether agent i can travel along
its current velocity ~vi with its current orientation oi by
estimating the scalar space, ci, available to the agent
w.r.t its current orientation at a point slightly ahead in
the direction of travel. LetMC(o) denote the minimum
clearance required for an agent with orientation o. Then,
o0i is given by:

o0i =

{
oi if ci ≥MC(oi),
oEi otherwise.

where oEi denotes closest orientation to oi such that ci ≥
MC(oEi ). Clearance can be computed as the distance
to the nearest point on the nearest neighboring agent or
obstacle from the extreme point on either side of the
agent with respect to its velocity.

Simulation Update At each time step, we evaluate H and
K (Section IV) to determine the preferred orientation o0 and

Px

Smin

Oi
Pi Smaji
i

Smin

Oi
Pi Smaji
i

.149 .135

.2286 .22

Fig. 4. Bounding Disc vs Ellipse. Disc (Blue) and ellipse (Brown) for
(Left) a human of average body width and depth; (Right) HRP-4 robot.

preferred velocity ~v0 for robot. Next, we compute the ERVO
constraints (Section III-D) using “swept” surfaces from the
set K′ for agents for which o 6= o0 and the less conservative
surfaces from the set K for the remaining ones. The agents
for which the 2D linear program computes a feasible solution
can update their orientation. The remaining robots maintain
their orientation and we use 3D linear programming to
compute the “safest possible” velocity.

VI. RESULTS

In this section, we highlight the performance of our
algorithm on several planar navigation benchmarks (Fig-
ure 5). We model a human body with average width and
depth (smaj = .2286, smin = .149, r = .2286) for our
experiments, and an HRP-4 humanoid robot (smaj = .22,
smin = .135, r = .22) for the crossflow scenario.

We set the sampling size at m = 100 points for our
piece-wise linear approximation and orientation intervals
of 5 degrees for precomputed surfaces. Using Theorem 2
(Section III-C), the maximum approximation error for a
point on the bounding ellipse for a human was found to be
0.005. The aggregate error, defined as the difference between
the area of the exact ellipse and approximated ellipse, was
0.0002m2.

We implemented our algorithm in C++ on a windows 7
desktop PC. Timing results (Table I) were generated on an
Intel i7-4790 pc with 16GB of ram. Although both ERVO
and ORCA can be parallelized, results were generated on a
single core.

A. ERVO Performance: Benefit of Pre-computation

We have evaluated the performance of the ERVO algo-
rithm described in Section III and the acceleration structure
that pre-computes the Minkowski Sums in Section IV. In
particular, we compared the performance of ERVO, with and
without precomputation, to compute collision-free trajecto-
ries of a large number of elliptical agents and also compared
them with ORCA, which uses circular agents, on the anti-
podal benchmark. In this scenario, the agents are initialized
on a circle and their goal position is set to the antipodal
position. We plot the average frame update time as function
of the number of agents in Figure 6.



(A) (B) (C) (D)

Fig. 5. Experiment Scenarios. (A) Two agents approach and rotate in the narrow hallway (B) 30 agents cross the antipodal circle (C) 100 Agents
cross through the center of the 4-square scene (D) Two groups of 44 HRP-4 form-factor agents cross one-another.
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Fig. 6. Relative Performance of ORCA and ERVO (with and
without precomputation). The average frame update time for ERVO with
precomputation is 4-5x slower than ORCA but still interactive for 1000’s
of agents, shown by the red line denoting 30 FPS. It is also two orders of
magnitude faster than ERVO without precomputation.

B. Narrow Benchmarks

In order to demonstrate the benefits of using elliptical
agents, we used some benchmarks with narrow passages,
where the circular agents would not be able to find a
collision-free path.

Narrow Hallway: In this benchmark, an agent must
navigate through a narrow hallway of width .4 meters in
order to reach its goal position, which requires the agent to
rotate and change its orientation. In this case, ERVO-F is
able to easily compute collision-free trajectories. ERVO-C
can only work if the default orientation is set properly.

Hallway Headon: In this benchmark, two agents approach
each other in a narrow hallway of width 0.7 meters i.e. agents
must rotate to pass through (Figure 5(A)). In this scenario,
the ERVO-F agents change their orientation to compute a
collision-free trajectory. However, ORCA agents cannot find
a collision-free solution.

C. Other Benchmarks

We also demonstrate the performance of our algorithm on
several benchmark scenarios. For each scenario, we compare
the total simulation time, average frame update time, and

Scene Num. Model Sim Time Avg. Update Avg.
Agents (s) Time (ms) Collisions (m)

Circle 100 ORCA 38.19 0.1972 8.9e-05
ERVO-C 33.54 1.056 8.1e-04
ERVO-F 27.5 5.38 7.4e-04

Four-Square 100 ORCA 54.52 0.2918 3.05e-07
ERVO-C 55.56 1.1012 7.52e-05
ERVO-F 53.13 3.95608 9.82e-05

HRP-4 Crossflow 88 ORCA 29.7 0.233 0
ERVO-C 29.58 0.899 1.55e-06
ERVO-F 29.64 3.954 0

TABLE I
COMPARISON RESULTS. ERVO REDUCES TOTAL SOLUTION TIME WITH

A SMALL INCREASE IN COMPUTATION TIME (APROX. 5X).

the number of collisions for ERVO-C, ERVO-F and ORCA
(Table I).

Antipodal Circle: This benchmark (Figure 5 B, Figure 6)
is commonly used by prior multi-agent navigation algo-
rithms [2]. The scene demonstrates the ability to perform
collision avoidance at very high densities as the agents pass
through the center of the circle (Figure 5(B)). ERVO agents
are able to navigate the circle 40% faster than ORCA agents.

Four-Square: In this scene, four groups of agents cross
through a constrained space between four large square ob-
stacles. This scenario demonstrates ERVO’s capability to
utilize space more effectively, and thus, decreases the overall
simulation time that corresponds to all the agents reaching
their goal positions (Figure 5(C)).

HRP-4 Crossflow: In this benchmark, the agents are
configured to the dimensions of the HRP-4 humanoid robot
platform (smaj = 0.22m, smin = 0.135m). We demonstrate
two groups of agents walking in opposing directions through
a hallway (Figure 5(D)). ERVO-F agents are able to change
their orientation and navigate through the high density region
at the crossing region.

It is evident from our results (Table I) that both ERVO-
C and ERVO-F are computationally comparable to ORCA.
However, ERVO-F significantly reduces the solution time as
agents utilize the space more effectively by changing their
orientation. The average collision, measured as the average of
the interval penetration depth at each time step, is negligible
in each case.



VII. CONCLUSIONS AND FUTURE WORK
We have presented a novel algorithm for reciprocal

collision-avoidance between multiple elliptical agents. We
use a piecewise linear approximation of ellipses and reduce
the velocity computation problem to linear programming.
Furthermore, we use a precomputed Minkowski Sum table
to reduce the runtime overhead and present techniques to
update the orientation. We demonstrate our ability to simulate
hundreds of elliptical agents at interactive rates and provide
orientation computation and guaranteed collision-avoidance.
Furthermore, we show the benefits of using elliptical agents
over disc agents in narrow benchmarks and high density
scenarios.

Our work has several limitations. Firstly, the orientation
update is decoupled from the velocity computation, and we
would like to simultaneous optimize both the velocity and
the orientation. Second, the ERVO algorithm without pre-
computation is expensive compared to disc-based methods
and the choice of an appropriate orientation interval is not
easy. Third, our algorithm assumes perfect sensing and does
not account for hardware related errors. In terms of future
work, we would like to explore improved strategies for
updating the orientation and also take into account dynamics-
related constraints in trajectory computation. We would like
to validate the accuracy of our method by comparing the
trajectory results with those of human crowds. We would
also like to test the applicability of our algorithm on physical
robots in real environments.
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