Workshop on

Edge Computing Using New Commodity Architectures (EDGE)
May 23 - 24, 2006

Chapel Hill, North Carolina

The Impact of Multicore on Math Software
and
Exploiting Single Precision Computing to
Obtain Double Precision Results

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory

5/27/2006

N

< Qverview

¢+ Look at current state of high
performance computing

> Top500 data for Past and present
+ Some of the changes Multicore brings
> Look at the impact on numerical libraries

+ Potential gains by exploiting lower
precision devices

> GPUs, Cell, SSE2, AltaVec

33




z TOPS500

H. Meuer, H. Simon, E. Stronmaier, & JD

- Listing of the 500 most powerful

Computers in the World
- Yardstick: Rmax from LINPACK MPP

AX:b, dense problem TPP performance|

A

Rate

- Updated twice a year -~
SC*xy in the States in November

Meeting in Germany in June
»- All data available from www.top500.0rg

3

N
“* Current HPC Architecture/Systems

Tightly -
[T

Coupled
A pied, Custom processor —_
with custom interconnect Custom A

> Cray X1
> NEC SX-8
» IBM Regatta
> IBM Blue Gene/L %
+ Commodity processor .
with custhpin'rerconnect Hybrid
> S6I Altix v
» Intel Itanium 2 [
> Cray XT3, XD1
> AMD Opteron
+ Commodity processor .
with commodity interconnect
Commod
1 1 0o 0o ]

> Clusters
> Pentium, Itanium, M es338%52558383ssao858883
Opteron, Alpha SE2i53555538583585¢85:82¢85
¥ » 6igE, Infiniband,
Myrinet, Quadrics

Loosely 3 Nec X7
Coupled > IBM eServer
33 > Dawning




¢ Processor Type Used in
| the Ton500 Svstems

Hitachi SR8000 91% = 66% Intel
0% 15% IBM
Sun Sparc Intel 1A-32 0
1% 41% 11% AMD
NEC
1%
HP Alpha
1%
Cray
2%
HP PA-RISC
3%
Intel EM64T

Intel 1A-64 16%

9%

AMD x86_64
11%

IBM Power
15%

£L
<= Processor Types (Top500)

W SIMD
O Sparc
O Vector
® MIPS
O Alpha
OHP

B AMD

& IBM Power

O Intel

2004 -
2005 -

1993
1994
1995
1996
1997 |
1998
1999
2000 1
2001
2002 |
2003

33 Intel + IBM Power PC + AMD =91% &




N

< Interconnects / Systems (Top500)

500 -
400 E O Others
E M Cray Interconnect
300 4 O SP Switch
i @ Crossbar
200 W Quadrics
] O Infiniband
] O Myrinet (101
100 e (10)
1 O Gigabit Ethernet (249
] O N/A
0 T T T T T T T T T T T T T T T T T T T T T T T T
Jo0) To) N~ o o [Te)
33 GigE + Myrinet = 70% 7
N

<= Performance Development (Top500)

2.3 PF/s

1 Pflop/si

280.6 TF/s

1BM
] BlueGene/L
10 Tflop/s3 4 167 Trss

] 1.646 TF/s
1 Tflop/s 3
Sandi
100 Gflop/s3 _ Sl
| Fujitsu
'NWT' NAL

10 Gflop/s3 N=500

100 Tflop/s 3

My Lapto,
1 0.4GF/s y Laptop
1 Gflop/s 3 =~ +
100 Mflop/s T T T T T T T T T T T T T T T T T T T T T T T T T
™ < Te) [{] N~ [e0] (2] o — [aN] ™ < Te)
(2] (2] (2] (2] (2] (2] (2] o o o o o o
(o) (o] (o) (2] (o] (o] (o] o o o o o o
— i — — i — i N N N N N N

33 8




_,;__,i..

Jn(‘ra,urm CPU Performance:

Cgehilnl=hw v,y. e -ru e —
LS —

BT AN RE PR _/_.___..___,.____a oy

Increasing the number of gates into a tight knotand decreasing the cycle time of the processor

We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

- CPU Desktop Trends — Change is Coming

+ Relative processing power will continue to double
every 18 months

+ 256 logical processors per chip in late 2010

300
]

2504
200
o |

100

50

o+
Hardware Threads Per Chip

2004 2005 Cores Per Processor Chip

2006

2008
Year 2009 2010

10




£ commodity Frocessor |rends
Bandwidth/Latency is the Critical Issue, not FLOPS

Go
Annual Typical value
increase in 2006
Single-chip
floating-point 59% 4 GFLOP/s
performance
Front-side bus 239 1 GWord/s
bandwidth ° = 0.25 word/flop
33 Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222 11

pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

n

< That Was the Good News

+ Bad news: the effect of the
hardware change on the existing
software base

¢ Must rethink the design of our
software
> Another disruptive technology

»>Rethink and rewrite the applications,
algorithms, and software

33 12




& Parallelism in LAPACK /
" ScaLAPACK

Shared Memory

Distributed Memory

lolered

33

¢ RIgNt-Lo0KINg LU Tactorization
“ (LAPACK)

DGETF2 DLSWP

DLSWP

v

At

DTRSM DGEMM
DGETF2 — Unblocked LU

DLSWP — row swaps

DTRSM — triangular solve with
many right-hand sides

DGEMM — matrix-matrix multiply

Y Y
%

%%,

w
w

14




L)
< Steps in the LAPACK LU

l LAPACK

l LAPACK

by
il e

A
232 T

W

DGETF2

DLSWP

|1

DLSWP LAPACK

AMMTNNNNNN.-
AR

N/
u|

AN
AMININNNNN

DTRSM

|/
s|

DGEMM

RN

33

L

~

“" LU Timing Profile (4 processor system)

LAPACK + BLAS threads
| EE KB EI BRI B¢ BR GG &1 6L ALY
—_——

] |
fail | R
| & il -

Time for each component

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

1D decomposition and SGI Origin

EEEOEO

33




&
“* LU Timing Profile (4 processor system)

LAPACK + BLAS threads

Time for each component
Threads — no lookahead

il Wi i

O DGETF2
In this case the performance difference comes from B DLASWP(L)
parallelizing row exchanges (DLASWP) and threads in the LU = E;gzvh;’P(R)
algorithm. @ DGEMM

1D decomposition and SGI Origin

33

£
“ Right-Looking LU Factorization

ARAA
| /
AAA

&=
T AN

33

18




&
“" Right-Looking LU with a Lookahead

T \

33

£ Pivot Rearrangement and Lookahead

cLor-

4 Processor runs

R BN :
2
3
o 20

10



&
«-Fixed vs Adaptive Lookahead

¢+ No look-ahead or shallow look-ahead:

> Not enough work in the update to the trailing matrix
Pipeline stalls "bubbles" at the end of factorization.

+ Deep or unlimited lookahead:

» Attempt to factorization the next panel before the
necessary piece of the trailing matrix is available,

> Pipeline stalls "bubbles" at the beginning of the
factorization.

+ Solution - adaptive look-ahead:

> Basically implement left-looking version of the algorithm,

> Pursue the panels as fast a possible,

> But continue updating the trailing matrix until sure that
calling next panel does not stall.

£ Pivot Rearrangement and Adaptive

icLor

| ook-ahead (16 SMPruns)_

33

22

11



O

-
-

<~ GPU Performance

GPU Vend ATI =

or f‘w‘%"féf
5@?49@, 3

Model 6800Ultra |78006TX X1900XTX

Release 2004 2005 2006

Year

32-bit 60 GFLOPS |200 GFLOPS 400 GFLOPS

Performance

64-bit must be emulated in software

Performance

Thanks: Jeremy Meredith, ORNL

23

5as  1nings to Watch: |

| Y PlayStation3 &

+ The PlayStation 3's CPU based on a chip codenamed "Cell"
¢ Each Cell contains 8 APUs.

> An APU is a self contained vector processor which acts independently from the
others.

> 4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

> 256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
» IEEE format, but only rounds toward zero in 32 bit, overflow set to largest

> According to IBM, the SPE's double precision unit is fully IEEE854 compliant.

Cell Processor Architecture Cell APU Architecture
b s mog e T v s FRE
Processing Element (FE)
— s
e ]
= = e e |
I_a"l 1820
o Lo H e (e
[ we | o]
[ S N e
[ ] e

12



N

32 or 64 bit Floating Point Precision?

+ A long time ago 32 bit floating point was
used

> Still used in scientific apps but limited

¢ Most apps use 64 bit floating point

> Accumulation of round off error

» A 10 TFlop/s computer running for 4 hours performs
> 1 Exaflop (10'8) ops.

> Ill conditioned problems
> IEEE SP exponent bits too few (8 bits, 10:38)
> Critical sections need higher precision
> Sometimes need extended precision (128 bit fl pt)
> However some can get by with 32 bit fl pt in
some parts
+ Mixed precision a possibility
. > Approximate in lower precision and then refine

. . . . . 25
or improve solution to high precision.

N

Idea Something Like This...

+ Exploit 32 bit floating point as much as
possible.

> Especially for the bulk of the computation
¢ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results
¢+ Intuitively:
> Compute a 32 bit result,

> Calculate a correction to 32 bit result using
selected higher precision and,

> Perform the update of the 32 bit results with

the correction using high precision.
33 26

13



N

LS
L

32 and 64 Bit Floating Point Arithmetic

¢+ Iterative refinement for dense systems can

work this way.
Solve Ax = b in lower precision,
save the factorization (L*U = A*P); O(n%)
Compute in higher precision r = b - A*x; O(n?)
Requires the original data A (stored in high precision)
Solve Az = r; using the lower precision factorization; O(n?)
Update solution x, = x + z using high precision; O(n)
Iterate until converged.

> Wilkinson, Moler, Stewart, & Higham provide error bound
for SP fl pt results when using DP fl pt.

> We can show using this approach that we can compute the
solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n?) work is done in high precision

3 Problems if the matrix is ill-conditioned in sp: O(108) .7

N

LS
L

Iterative Refinement — What’s New?

+ Hasn't been used for speed improvement,
only for accuracy improvement.
¢ Most of the theorems on mixed-
precision iterative refinement are:
"what is the SINGLE precision
accuracy I can get with iterative
refinement single/double?”
+ Our problem is :
"what is the DOUBLE precision
accuracy I can get using iterative
refinement single/double?”

33

28

14



N

< Additional Benefits

¢ If non-IEEE 32 bit arithmetic, but 64
bit is IEEE

> If the floating point is not non-IEEE
arithmetic for 32 bit computations and 64
bit computations does IEEE arithmetic, then
accuracy should be as good as if IEEE was

used.
¢ Possibility of correcting “errors” in the
32 bit computation.
> Say a bit flips in the LU factorization and is

undetected, then the process will self
correct.

33

29

e
< In Matlab on My Laptop!

+ Matlab has the ability to perform 32 bit
floating point for some computations
> Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sh=single(b);
[sl,su,sp]=lu(sa); O(n3)
sx=su\(sl\(sp*sh)); x=double(sx); r=b-a*x; O(n3)
i=0;
while(norm(r)>resl),

i=i+1;

sr = single(r);

sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; O(n?)
if (i==30), break; end;

¢ Bulk of work, O(n3), in “single” precision
+ Refinement, O(n?), in “"double” precision
» Computing the correction to the SP results in DP and

. adding it to the SP results in DP.

30

15



N
“* Another Look at Iterative Refinement

¢ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

+ In addition there is reduced memory traffic (factor on sp data)

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

3.5 ! .
Intel Pentium M (T2500 2 GHz)
3L 4
2.5¢ E
2+ i
@
Q.
o .
5 sl A\b; Double Precision | 14 GFlOp/S'
i o —
0.5F / E
{
33% 500 1000 1500 2000 2500 3000 31
X = Size of Problem
N
~

“* Another Look at Iterative Refinement

+ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

+ In addition there is reduced memory traffic (factor on sp data)

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b
3.5 T T

Intel Pentium M (T2500 2 GHz) i X .
5| A\b; Single Precision w/iterative refinement

With same accuracy as DP

3 GFlop/s!!

] i
) i
%% 15 A\b; Double Precisigniiiii:
w5l / 2 X speedup Matlab ]

on my laptop!

0 1 I I I
33 0 500 1000 1500 2000 2500 3000

X =b Size of Problem

32

16



A
L

¢ Realized have the
similar situation on
our commodity
processors.
> That is, SP is 2X
as fast as DP on
many systems

¢ The Intel Pentium
and AMD Opteron
have SSE2

> 2 flops/cycle DP
> 4 flops/cycle SP

¢+ IBM PowerPC has
AltiVec
> 8 flops/cycle SP
> 4 flops/cycle DP
> No DP on AltiVec

£ On the Way to Understanding How to Use
the Cell Something Else Happened ...

Processor_and BLAS SGEMM | DGEMM | Speedup
Library (GFlopls) | (GFlop/s) | SP/DP
Pentium 111 Katmai 0.98 0.46 2.13
(0.6GHz) Goto BLAS
Pentium 111 CopperMine 1.59 0.79 2.01
(0.9GHz) Goto BLAS
Pentium Xeon Northwood 7.68 3.88 1.98
(2.4GHz) Goto BLAS
Pentium Xeon Prescott 10.54 5.15 2.05
(3.2GHz) Goto BLAS
Pentium 1V Prescott 11.09 5.61 1.98
(3.4GHz) Goto BLAS
AMD Opteron 240 4.89 2.48 1.97
(1.4GHz) Goto BLAS
PowerPC G5 18.28 9.98 1.83
(2.7GHz) AltiVec
33

Performance of single precision and double precision
matrix multiply (SGEMM and DGEMM) with n=m=k=1000

¢ Speedups for Ax = b (Ratio of Times)

L

Architecture (BLAS) n DGEMM | DP Solve | DP Solve | #iter
ISGEMM | /SP Solve | /lIter Ref

Intel Pentium IV-M Northwood (Goto) 4000 2.02 1.98 1.54 5
Intel Pentium 111 Katmai (Goto) 3000 2.12 211 1.79 4
Intel Pentium 111 Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Sun UltraSPARC lle (Sunperf) 3000 1.45 1.79 1.58 4
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 2.29 2.05 1.24 5
Cray X1 (libsci) 4000 1.68 157 1.32 7
Compag Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 113 1.00 3
SGI Octane (ATLAS) 2000 1.08 113 0.91 4
Architecture (BLAS-MPI) # n DP Solve DP Solve #

procs /SP Solve /Iter Ref | iter
AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

,%‘SMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6 | 4

17



N

< Quadruple Precision

n Quad Precision | Iter. Refine. Intel Xeon 3.2 GHz
Ax = b DP to QP
time (s) time (s) Speedup Beffrence; fon of
100 0.29 0.03 9.5 pemeniation o
200 2.27 0.10 20.9 quad precision
BLAS
300 7.61 0.24 30.5
400 17.81 0.44 40.4 Accuracy: 10-32
500 34.71 0.69 49.7
600 60.11 1.01 59.0 No more than 3
steps of iterative
700 94.95 1.38 68.7 refinement are
800 141.75 1.83 77.3 needed.
900 201.81 2.33 86.3
1000 276.94 2.92 94 .8

+ Variable precision factorization (with say < 32 bit precision)
33 plus 64 bit refinement produces 64 bit accuracy 35

¢ Refinement Technique Using

A

_Single/Double Precision

¢ Linear Systems
> LU (dense and sparse)
» Cholesky
> QR Factorization

+ Eigenvalue
> Symmetric eigenvalue problem
» SVD
> Same idea as with dense systems,

> Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the Tower precision to solve systems and use higher
precision to calculate residual with original data.

» O(n?) per value/vector
¢ Iterative Linear System
> Relaxed GMRES
> Inner/outer iteration scheme

33 36

See webpage for tech report which discusses this.

18



N

< Constantly Evolving - Hybrid Design

33

¢ Cluster of Cluster systems
> Multicore nodes in a cluster

+ Nodes augmented with accelerators
> ClearSpeed, GPUs, Cell

+ Japanese 10 PFlop/s "Life Simulator”
> Vector+Scalar+Grape:

> Theoretical peak performance: >1-2 PetaFlops from
Vector + Scalar System, ~10 PetaFlops from MD-
GRAPE-like System

¢+ LANL's Roadrunner

> Multicore + specialized accelerator boards

37

N

A

<= Summary of Current Unmet Needs

* & o o

33

Performance / Portability
Fault tolerance
Memory bandwidth/Latency
Adaptability: Some degree of autonomy to self optimize,
test, or monitor.
> Able to change mode of operation: static or dynamic
Better programming models
> Global shared address space
> Visible locality
Maybe coming soon (incremental, yet offering real benefits):
» Global Address Sﬂace (6AS) languages: UPC, Co-Array Fortran,
Titanium, X10, Chapel, Fortress
> “Minor” extensions to existing languages
> More convenient than MPT
> Have performance transparency via explicit remote memory
references
What's needed is a long-term, balanced investment in
hardware, software, algorithms and applications.

38

19



N

< Collaborators / Support

+ U Tennessee,
Knoxville .
> Alfredo Buttari, @

Julien Langou, 2.3
Julie Langou,
Piotr Luszczek,

P55 Office of
_(r. ~d Science

OF ENERD Y

Jakub Kurzak

Google

English

Web Images Groups News Froogle Local®™" more »
Advsnced Search
[dongared] |
[ Google Search ][ I'm Feeling Lygky Lengusge Tools

Advertising Programs - About Google - Go to Google.com

33

20



