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OverviewOverview

♦ Look at current state of high 
performance computing

Top500 data for Past and present 
♦ Some of the changes Multicore brings

Look at the impact on numerical libraries
♦ Potential gains by exploiting lower 

precision devices
GPUs, Cell, SSE2, AltaVec
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H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org
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Current HPC Architecture/SystemsCurrent HPC Architecture/Systems

♦ Custom processor                        
with custom interconnect

Cray X1
NEC SX-8
IBM Regatta
IBM Blue Gene/L

♦ Commodity processor              
with custom interconnect

SGI Altix
Intel Itanium 2

Cray XT3, XD1
AMD Opteron

♦ Commodity processor             
with commodity interconnect

Clusters 
Pentium, Itanium,              
Opteron, Alpha
GigE, Infiniband,             
Myrinet, Quadrics

NEC TX7
IBM eServer
Dawning

Loosely 
Coupled

Tightly 
Coupled ♦ Best processor performance for 

codes that are not “cache 
friendly”

♦ Good communication performance
♦ Simpler programming model
♦ Most expensive

♦ Good communication performance
♦ Good scalability

♦ Best price/performance (for 
codes that work well with caches 
and are latency tolerant)

♦ More complex programming model
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Processor Type Used in Processor Type Used in 
the Top500 Systemsthe Top500 Systems

Intel IA-32
41%

Intel EM64T
16%

IBM Power
15%

AMD x86_64
11%

Intel IA-64
9%

HP PA-RISC
3%

Cray
2%

HP Alpha
1%

NEC
1%

Sun Sparc
1%

Hitachi SR8000
0%

91% = 66% Intel 
15% IBM 
11% AMD
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Processor Types (Top500)Processor Types (Top500)
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Intel + IBM Power PC + AMD = 91%
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Interconnects / Systems (Top500)Interconnects / Systems (Top500)
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Cray Interconnect

SP Switch

Crossbar

Quadrics

Infiniband

Myrinet

Gigabit Ethernet

N/A

(249)
(101)

GigE + Myrinet = 70%
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Performance Development (Top500)Performance Development (Top500)

2.3 PF/s

1.167 TF/s

59.7 GF/s

280.6 TF/s

0.4 GF/s

1.646 TF/s
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Fujitsu

'NWT' NAL

NEC

Earth Simulator

Intel ASCI Red

Sandia

IBM ASCI White

LLNL

N=1

N=500

SUM

   1 Gflop/s

   1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

  10 Gflop/s

  10 Tflop/s

    1 Pflop/s

IBM

BlueGene/L

My Laptop
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Lower Lower 
VoltageVoltage

Increase Increase 
Clock RateClock Rate
& Transistor & Transistor 

DensityDensity

We have seen increasing number of gates on a 
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel 
Processors > 100 Watts

We will not see the dramatic increases in clock 
speeds in the future.

However, the number of gates on a chip will 
continue to increase.

Core

Cache

Core

Cache

Core

C1 C2

C3 C4

Cache

C1 C2

C3 C4

Cache

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor
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CPU Desktop Trends CPU Desktop Trends –– Change is ComingChange is Coming

2004 2005 2006 2007 2008 2009 2010

Cores Per Processor Chip
Hardware Threads Per Chip
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Year

♦ Relative processing power will continue to double 
every 18 months

♦ 256 logical processors per chip in late 2010
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Commodity Processor TrendsCommodity Processor Trends
Bandwidth/Latency is the Critical Issue, not FLOPSBandwidth/Latency is the Critical Issue, not FLOPS

28 ns
= 94,000 FP ops
= 780 loads

50 ns
= 1600 FP ops
= 170 loads

70 ns
= 280 FP ops
= 70 loads

(5.5%) DRAM latency

27 GWord/s
= 0.008 word/flop

3.5  GWord/s
= 0.11 word/flop

1  GWord/s
= 0.25 word/flop23%Front-side bus 

bandwidth

3300  GFLOP/s 32  GFLOP/s 4  GFLOP/s 59% 
Single-chip
floating-point 
performance

Typical value
in 2020

Typical value
in 2010

Typical value
in 2006

Annual 
increase

Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222 
pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

Got Bandwidth?
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That Was the Good NewsThat Was the Good News

♦Bad news: the effect of the 
hardware change on the existing 
software base

♦Must rethink the design of our 
software

Another disruptive technology
Rethink and rewrite the applications, 
algorithms, and software



7

33

ScaLAPACK

PBLASPBLASPBLAS

BLACSBLACSBLACS

MPIMPIMPI

LAPACK

ATLASATLASATLAS Specialized Specialized Specialized 
BLASBLASBLAS

threadsthreadsthreads

P
arallel

Parallelism in LAPACK  / 
ScaLAPACK

Shared Memory Distributed Memory
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DGETF2 DLSWP DLSWP

DTRSM DGEMM

DGETF2 – Unblocked LU

DLSWP – row swaps

DTRSM – triangular solve with 

many right-hand sides

DGEMM – matrix-matrix multiply

Right-Looking LU factorization 
(LAPACK)
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

33

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

LAPACK + BLAS threads

1D decomposition and SGI Origin

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)

Time for each component
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DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

LAPACK + BLAS threads

Threads – no lookahead

In this case the performance difference comes from

parallelizing row exchanges (DLASWP) and threads in the LU 
algorithm.

1D decomposition and SGI Origin

Time for each component

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)
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Right-Looking LU factorizationRight-Looking LU Factorization
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Right-Looking LU with a Lookahead

33 20∞

3

2

1

Lookahead = 0

Pivot Rearrangement and Pivot Rearrangement and LookaheadLookahead
4 Processor runs4 Processor runs
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Fixed Fixed vsvs Adaptive LookaheadAdaptive Lookahead
♦ No look-ahead or shallow look-ahead:

Not enough work in the update to the trailing matrix 
Pipeline stalls "bubbles" at the end of factorization.

♦ Deep or unlimited lookahead:
Attempt to factorization the next panel before the 
necessary piece of the trailing matrix is available,
Pipeline stalls "bubbles" at the beginning of the 
factorization.

♦ Solution - adaptive look-ahead:
Basically implement left-looking version of the algorithm,
Pursue the panels as fast a possible,
But continue updating the trailing matrix until sure that 
calling next panel does not stall.

33 22

Pivot Rearrangement and Adaptive Pivot Rearrangement and Adaptive 
LookLook--ahead ahead (16 SMP runs)(16 SMP runs)
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400 GFLOPS200 GFLOPS60 GFLOPS32-bit 
Performance

64-bit
Performance

Release 
Year

Model

GPU Vendor

must be emulated in software

200620052004

X1900XTX7800GTX6800Ultra

ATINVIDIANVIDIA

GPU PerformanceGPU Performance

Thanks: Jeremy Meredith, ORNL
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Things to Watch:Things to Watch:
PlayStation 3PlayStation 3

♦ The PlayStation 3's CPU based on a chip codenamed "Cell"
♦ Each Cell contains 8 APUs. 

An APU is a self contained vector processor which acts independently from the 
others. 

4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
IEEE format, but only rounds toward zero in 32 bit, overflow set to largest

According to IBM, the SPE’s double precision unit is fully IEEE854 compliant.
Datapaths “lite”
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32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
♦ A long time ago 32 bit floating point was 

used
Still used in scientific apps but limited

♦ Most apps use 64 bit floating point
Accumulation of round off error

A 10 TFlop/s computer running for 4 hours performs 
> 1 Exaflop (1018) ops. 

Ill conditioned problems
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

♦ Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.
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Idea Something Like ThisIdea Something Like This……
♦ Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

♦ Correct or update the solution with 
selective use of 64 bit floating point to 
provide a refined results

♦ Intuitively: 
Compute a 32 bit result, 
Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with 
the correction using high precision. 
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32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦ Iterative refinement for dense systems can 

work this way.
Solve Ax = b in lower precision,                                       

save the factorization (L*U = A*P); O(n3)
Compute in higher precision r = b – A*x; O(n2)

Requires the original data A (stored in high precision)
Solve Az = r; using the lower precision factorization; O(n2)
Update solution x+ = x + z using high precision; O(n)

Iterate until converged.

Wilkinson, Moler, Stewart, & Higham provide error bound 
for SP fl pt results when using DP fl pt.
We can show using this approach that we can compute the 
solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)
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Iterative Refinement Iterative Refinement –– WhatWhat’’s New?s New?

♦ Hasn’t been used for speed improvement, 
only for accuracy improvement.

♦ Most of the theorems on mixed-
precision iterative refinement are:

“what is the SINGLE precision 
accuracy I can get with iterative 
refinement single/double?”

♦ Our problem is :
“what is the DOUBLE precision 
accuracy I can get using iterative 
refinement single/double?”
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Additional Benefits Additional Benefits 

♦ If non-IEEE 32 bit arithmetic, but 64 
bit is IEEE 

If the floating point is not non-IEEE 
arithmetic for 32 bit computations and 64 
bit computations does IEEE arithmetic, then 
accuracy should be as good as if IEEE was 
used.

♦ Possibility of correcting “errors” in the 
32 bit computation.

Say a bit flips in the LU factorization and is 
undetected, then the process will self 
correct.
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In In MatlabMatlab on My Laptop!on My Laptop!
♦ Matlab has the ability to perform 32 bit 

floating point for some computations
Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sb=single(b);
[sl,su,sp]=lu(sa);                                                              O(n3)
sx=su\(sl\(sp*sb)); x=double(sx); r=b-a*x;                             O(n2)
i=0;
while(norm(r)>res1),

i=i+1;
sr = single(r);
sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x;     O(n2)

if (i==30), break; end;

♦ Bulk of work, O(n3), in “single” precision
♦ Refinement, O(n2), in “double” precision

Computing the correction to the SP results in DP and 
adding it to the SP results in DP.
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In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating 

point operations per cycle and in double precision 2 floating point 
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

Intel Pentium M (T2500 2 GHz)

Ax = b

1.4 GFlop/s!
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In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating 

point operations per cycle and in double precision 2 floating point 
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

A\b; Single Precision w/iterative refinement
With same accuracy as DP

2 X speedup Matlab
on my laptop!

Intel Pentium M (T2500 2 GHz)

Ax = b

3 GFlop/s!!
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On the Way to Understanding How to Use On the Way to Understanding How to Use 
the Cell Something Else Happened the Cell Something Else Happened ……

♦ Realized have the 
similar situation on 
our commodity 
processors.

That is, SP is 2X 
as fast as DP on 
many systems

♦ The Intel Pentium 
and AMD Opteron
have SSE2

2 flops/cycle DP
4 flops/cycle SP

♦ IBM PowerPC has 
AltiVec

8 flops/cycle SP
4 flops/cycle DP

No DP on AltiVec

1.83  9.98 18.28 PowerPC G5                 
(2.7GHz) AltiVec

1.97  2.48 4.89 AMD Opteron 240 
(1.4GHz) Goto BLAS 

1.98  5.61 11.09 Pentium IV Prescott 
(3.4GHz) Goto BLAS 

2.05  5.15 10.54 Pentium Xeon Prescott 
(3.2GHz) Goto BLAS 

1.98  3.88 7.68 Pentium Xeon Northwood 
(2.4GHz) Goto BLAS 

2.01  0.79 1.59 Pentium III CopperMine
(0.9GHz) Goto BLAS 

2.13  0.46 0.98 Pentium III Katmai 
(0.6GHz) Goto BLAS 

Speedup
SP/DP 

DGEMM
(GFlop/s) 

SGEMM
(GFlop/s) 

Processor and BLAS 
Library 

Performance of single precision and double precision 
matrix multiply (SGEMM and DGEMM) with n=m=k=1000
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Speedups for Ax = b Speedups for Ax = b (Ratio of Times)(Ratio of Times)

71.321.571.684000Cray X1 (libsci)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

41.581.791.453000Sun UltraSPARC IIe (Sunperf) 

51.531.931.984000AMD Opteron (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.922.242.103500Intel Pentium III Coppermine (Goto)

41.792.112.123000Intel Pentium III Katmai (Goto)

51.541.982.024000Intel Pentium IV-M Northwood (Goto)

# iterDP Solve
/Iter Ref

DP Solve
/SP Solve

DGEMM
/SGEMM

nArchitecture (BLAS)

61.831.903200064AMD Opteron (Goto – OpenMPI MX)

61.791.852262732AMD Opteron (Goto – OpenMPI MX)

# 
iter

DP Solve
/Iter Ref

DP Solve
/SP Solve

n# 
procs

Architecture (BLAS-MPI)
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Quadruple PrecisionQuadruple Precision

♦ Variable precision factorization (with say < 32 bit precision) 
plus 64 bit refinement produces 64 bit accuracy

94.8  2.92 276.94 1000 
86.3  2.33 201.81 900 
77.3  1.83 141.75 800 
68.7  1.38 94.95 700 
59.0  1.01 60.11 600 
49.7  0.69 34.71 500 
40.4  0.44 17.81 400 
30.5  0.24 7.61 300 
20.9  0.10 2.27 200 
9.5  0.03 0.29 100 

Speedup  time (s) time (s) 

Iter. Refine.
DP to QP

Quad Precision
Ax = b

n Intel Xeon 3.2 GHz

Reference 
implementation of 
the 
quad precision 
BLAS

Accuracy: 10-32

No more than 3 
steps of iterative 
refinement are 
needed.
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Refinement Technique Using Refinement Technique Using 
Single/Double PrecisionSingle/Double Precision

♦ Linear Systems 
LU (dense and sparse)
Cholesky
QR Factorization

♦ Eigenvalue
Symmetric eigenvalue problem
SVD
Same idea as with dense systems, 

Reduce to tridiagonal/bi-diagonal in lower precision, 
retain original data and improve with iterative technique 
using the lower precision to solve systems and use higher 
precision to calculate residual with original data.
O(n2) per value/vector

♦ Iterative Linear System
Relaxed GMRES
Inner/outer iteration scheme

See webpage for tech report which discusses this.
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Constantly Evolving Constantly Evolving -- Hybrid DesignHybrid Design

♦ Cluster of Cluster systems
Multicore nodes in a cluster

♦ Nodes augmented with accelerators
ClearSpeed, GPUs, Cell

♦ Japanese 10 PFlop/s “Life Simulator”
Vector+Scalar+Grape: 

Theoretical peak performance: >1-2 PetaFlops from 
Vector + Scalar System, ~10 PetaFlops from MD-
GRAPE-like System

♦ LANL’s Roadrunner
Multicore + specialized accelerator boards
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Summary of Current Unmet NeedsSummary of Current Unmet Needs
♦ Performance / Portability
♦ Fault tolerance  
♦ Memory bandwidth/Latency
♦ Adaptability: Some degree of autonomy to self optimize, 

test, or monitor. 
Able to change mode of operation: static or dynamic

♦ Better programming models 
Global shared address space 
Visible locality 

♦ Maybe coming soon (incremental, yet offering real benefits):
Global Address Space (GAS) languages:  UPC, Co-Array Fortran, 
Titanium, X10, Chapel, Fortress)

“Minor” extensions to existing languages
More convenient than MPI
Have performance transparency via explicit remote memory 
references

♦ What’s needed is a long-term, balanced investment in 
hardware, software, algorithms and applications. 
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Collaborators / SupportCollaborators / Support
♦U Tennessee, 
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Alfredo Buttari, 
Julien Langou,        
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Piotr Luszczek, 
Jakub Kurzak


