
1

5/27/2006 1

The Impact of The Impact of MulticoreMulticore on Math Software on Math Software
and and

Exploiting Single Precision Computing to Exploiting Single Precision Computing to
Obtain Double Precision ResultsObtain Double Precision Results

Jack Dongarra
University of Tennessee

and
Oak Ridge National Laboratory

Workshop on
Edge Computing Using New Commodity Architectures (EDGE)
May 23 - 24, 2006
Chapel Hill, North Carolina

33 2

OverviewOverview

♦ Look at current state of high
performance computing

Top500 data for Past and present
♦ Some of the changes Multicore brings

Look at the impact on numerical libraries
♦ Potential gains by exploiting lower

precision devices
GPUs, Cell, SSE2, AltaVec

2

33 3

H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org

Size

R
at

e

TPP performance

33 4

Current HPC Architecture/SystemsCurrent HPC Architecture/Systems

♦ Custom processor
with custom interconnect

Cray X1
NEC SX-8
IBM Regatta
IBM Blue Gene/L

♦ Commodity processor
with custom interconnect

SGI Altix
Intel Itanium 2

Cray XT3, XD1
AMD Opteron

♦ Commodity processor
with commodity interconnect

Clusters
Pentium, Itanium,
Opteron, Alpha
GigE, Infiniband,
Myrinet, Quadrics

NEC TX7
IBM eServer
Dawning

Loosely
Coupled

Tightly
Coupled ♦ Best processor performance for

codes that are not “cache
friendly”

♦ Good communication performance
♦ Simpler programming model
♦ Most expensive

♦ Good communication performance
♦ Good scalability

♦ Best price/performance (for
codes that work well with caches
and are latency tolerant)

♦ More complex programming model
0%

20%

40%

60%

80%

100%

Ju
n-

93

D
ec

-9
3

Ju
n-

94

D
ec

-9
4

Ju
n-

95

D
ec

-9
5

Ju
n-

96

D
ec

-9
6

Ju
n-

97

D
ec

-9
7

Ju
n-

98

D
ec

-9
8

Ju
n-

99

D
ec

-9
9

Ju
n-

00

D
ec

-0
0

Ju
n-

01

D
ec

-0
1

Ju
n-

02

D
ec

-0
2

Ju
n-

03

D
ec

-0
3

Ju
n-

04

Custom

Commod

Hybrid

3

33 5

Processor Type Used in Processor Type Used in
the Top500 Systemsthe Top500 Systems

Intel IA-32
41%

Intel EM64T
16%

IBM Power
15%

AMD x86_64
11%

Intel IA-64
9%

HP PA-RISC
3%

Cray
2%

HP Alpha
1%

NEC
1%

Sun Sparc
1%

Hitachi SR8000
0%

91% = 66% Intel
15% IBM
11% AMD

33 6

Processor Types (Top500)Processor Types (Top500)

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

SIMD

Sparc

Vector

MIPS

Alpha

HP

AMD

IBM Power

Intel

Intel + IBM Power PC + AMD = 91%

4

33 7

Interconnects / Systems (Top500)Interconnects / Systems (Top500)

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Others

Cray Interconnect

SP Switch

Crossbar

Quadrics

Infiniband

Myrinet

Gigabit Ethernet

N/A

(249)
(101)

GigE + Myrinet = 70%

33 8

Performance Development (Top500)Performance Development (Top500)

2.3 PF/s

1.167 TF/s

59.7 GF/s

280.6 TF/s

0.4 GF/s

1.646 TF/s

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Fujitsu

'NWT' NAL

NEC

Earth Simulator

Intel ASCI Red

Sandia

IBM ASCI White

LLNL

N=1

N=500

SUM

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

IBM

BlueGene/L

My Laptop

5

33 9

Lower Lower
VoltageVoltage

Increase Increase
Clock RateClock Rate
& Transistor & Transistor

DensityDensity

We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

Core

Cache

Core

Cache

Core

C1 C2

C3 C4

Cache

C1 C2

C3 C4

Cache

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

33 10

CPU Desktop Trends CPU Desktop Trends –– Change is ComingChange is Coming

2004 2005 2006 2007 2008 2009 2010

Cores Per Processor Chip
Hardware Threads Per Chip

0

50

100

150

200

250

300

Year

♦ Relative processing power will continue to double
every 18 months

♦ 256 logical processors per chip in late 2010

6

33 11

Commodity Processor TrendsCommodity Processor Trends
Bandwidth/Latency is the Critical Issue, not FLOPSBandwidth/Latency is the Critical Issue, not FLOPS

28 ns
= 94,000 FP ops
= 780 loads

50 ns
= 1600 FP ops
= 170 loads

70 ns
= 280 FP ops
= 70 loads

(5.5%) DRAM latency

27 GWord/s
= 0.008 word/flop

3.5 GWord/s
= 0.11 word/flop

1 GWord/s
= 0.25 word/flop23%Front-side bus

bandwidth

3300 GFLOP/s 32 GFLOP/s 4 GFLOP/s 59%
Single-chip
floating-point
performance

Typical value
in 2020

Typical value
in 2010

Typical value
in 2006

Annual
increase

Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222
pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

Got Bandwidth?

33 12

That Was the Good NewsThat Was the Good News

♦Bad news: the effect of the
hardware change on the existing
software base

♦Must rethink the design of our
software

Another disruptive technology
Rethink and rewrite the applications,
algorithms, and software

7

33

ScaLAPACK

PBLASPBLASPBLAS

BLACSBLACSBLACS

MPIMPIMPI

LAPACK

ATLASATLASATLAS Specialized Specialized Specialized
BLASBLASBLAS

threadsthreadsthreads

P
arallel

Parallelism in LAPACK /
ScaLAPACK

Shared Memory Distributed Memory

33 14

DGETF2 DLSWP DLSWP

DTRSM DGEMM

DGETF2 – Unblocked LU

DLSWP – row swaps

DTRSM – triangular solve with

many right-hand sides

DGEMM – matrix-matrix multiply

Right-Looking LU factorization
(LAPACK)

8

33 15

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

33

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

LAPACK + BLAS threads

1D decomposition and SGI Origin

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)

Time for each component

9

33

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

LAPACK + BLAS threads

Threads – no lookahead

In this case the performance difference comes from

parallelizing row exchanges (DLASWP) and threads in the LU
algorithm.

1D decomposition and SGI Origin

Time for each component

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)

33 18

Right-Looking LU factorizationRight-Looking LU Factorization

10

33

Right-Looking LU with a Lookahead

33 20∞

3

2

1

Lookahead = 0

Pivot Rearrangement and Pivot Rearrangement and LookaheadLookahead
4 Processor runs4 Processor runs

11

Fixed Fixed vsvs Adaptive LookaheadAdaptive Lookahead
♦ No look-ahead or shallow look-ahead:

Not enough work in the update to the trailing matrix
Pipeline stalls "bubbles" at the end of factorization.

♦ Deep or unlimited lookahead:
Attempt to factorization the next panel before the
necessary piece of the trailing matrix is available,
Pipeline stalls "bubbles" at the beginning of the
factorization.

♦ Solution - adaptive look-ahead:
Basically implement left-looking version of the algorithm,
Pursue the panels as fast a possible,
But continue updating the trailing matrix until sure that
calling next panel does not stall.

33 22

Pivot Rearrangement and Adaptive Pivot Rearrangement and Adaptive
LookLook--ahead ahead (16 SMP runs)(16 SMP runs)

12

33 23

400 GFLOPS200 GFLOPS60 GFLOPS32-bit
Performance

64-bit
Performance

Release
Year

Model

GPU Vendor

must be emulated in software

200620052004

X1900XTX7800GTX6800Ultra

ATINVIDIANVIDIA

GPU PerformanceGPU Performance

Thanks: Jeremy Meredith, ORNL

33 24

Things to Watch:Things to Watch:
PlayStation 3PlayStation 3

♦ The PlayStation 3's CPU based on a chip codenamed "Cell"
♦ Each Cell contains 8 APUs.

An APU is a self contained vector processor which acts independently from the
others.

4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
IEEE format, but only rounds toward zero in 32 bit, overflow set to largest

According to IBM, the SPE’s double precision unit is fully IEEE854 compliant.
Datapaths “lite”

13

33 25

32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
♦ A long time ago 32 bit floating point was

used
Still used in scientific apps but limited

♦ Most apps use 64 bit floating point
Accumulation of round off error

A 10 TFlop/s computer running for 4 hours performs
> 1 Exaflop (1018) ops.

Ill conditioned problems
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in
some parts

♦ Mixed precision a possibility
Approximate in lower precision and then refine
or improve solution to high precision.

33 26

Idea Something Like ThisIdea Something Like This……
♦ Exploit 32 bit floating point as much as

possible.
Especially for the bulk of the computation

♦ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

♦ Intuitively:
Compute a 32 bit result,
Calculate a correction to 32 bit result using
selected higher precision and,
Perform the update of the 32 bit results with
the correction using high precision.

14

33 27

32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦ Iterative refinement for dense systems can

work this way.
Solve Ax = b in lower precision,

save the factorization (L*U = A*P); O(n3)
Compute in higher precision r = b – A*x; O(n2)

Requires the original data A (stored in high precision)
Solve Az = r; using the lower precision factorization; O(n2)
Update solution x+ = x + z using high precision; O(n)

Iterate until converged.

Wilkinson, Moler, Stewart, & Higham provide error bound
for SP fl pt results when using DP fl pt.
We can show using this approach that we can compute the
solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

33 28

Iterative Refinement Iterative Refinement –– WhatWhat’’s New?s New?

♦ Hasn’t been used for speed improvement,
only for accuracy improvement.

♦ Most of the theorems on mixed-
precision iterative refinement are:

“what is the SINGLE precision
accuracy I can get with iterative
refinement single/double?”

♦ Our problem is :
“what is the DOUBLE precision
accuracy I can get using iterative
refinement single/double?”

15

33 29

Additional Benefits Additional Benefits

♦ If non-IEEE 32 bit arithmetic, but 64
bit is IEEE

If the floating point is not non-IEEE
arithmetic for 32 bit computations and 64
bit computations does IEEE arithmetic, then
accuracy should be as good as if IEEE was
used.

♦ Possibility of correcting “errors” in the
32 bit computation.

Say a bit flips in the LU factorization and is
undetected, then the process will self
correct.

33 30

In In MatlabMatlab on My Laptop!on My Laptop!
♦ Matlab has the ability to perform 32 bit

floating point for some computations
Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sb=single(b);
[sl,su,sp]=lu(sa); O(n3)
sx=su\(sl\(sp*sb)); x=double(sx); r=b-a*x; O(n2)
i=0;
while(norm(r)>res1),

i=i+1;
sr = single(r);
sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; O(n2)

if (i==30), break; end;

♦ Bulk of work, O(n3), in “single” precision
♦ Refinement, O(n2), in “double” precision

Computing the correction to the SP results in DP and
adding it to the SP results in DP.

16

33 310 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Size of Problem

G
flo

p/
s

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating

point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

Intel Pentium M (T2500 2 GHz)

Ax = b

1.4 GFlop/s!

33 320 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Size of Problem

G
flo

p/
s

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating

point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

A\b; Single Precision w/iterative refinement
With same accuracy as DP

2 X speedup Matlab
on my laptop!

Intel Pentium M (T2500 2 GHz)

Ax = b

3 GFlop/s!!

17

33 33

On the Way to Understanding How to Use On the Way to Understanding How to Use
the Cell Something Else Happened the Cell Something Else Happened ……

♦ Realized have the
similar situation on
our commodity
processors.

That is, SP is 2X
as fast as DP on
many systems

♦ The Intel Pentium
and AMD Opteron
have SSE2

2 flops/cycle DP
4 flops/cycle SP

♦ IBM PowerPC has
AltiVec

8 flops/cycle SP
4 flops/cycle DP

No DP on AltiVec

1.83 9.98 18.28 PowerPC G5
(2.7GHz) AltiVec

1.97 2.48 4.89 AMD Opteron 240
(1.4GHz) Goto BLAS

1.98 5.61 11.09 Pentium IV Prescott
(3.4GHz) Goto BLAS

2.05 5.15 10.54 Pentium Xeon Prescott
(3.2GHz) Goto BLAS

1.98 3.88 7.68 Pentium Xeon Northwood
(2.4GHz) Goto BLAS

2.01 0.79 1.59 Pentium III CopperMine
(0.9GHz) Goto BLAS

2.13 0.46 0.98 Pentium III Katmai
(0.6GHz) Goto BLAS

Speedup
SP/DP

DGEMM
(GFlop/s)

SGEMM
(GFlop/s)

Processor and BLAS
Library

Performance of single precision and double precision
matrix multiply (SGEMM and DGEMM) with n=m=k=1000

33 34

Speedups for Ax = b Speedups for Ax = b (Ratio of Times)(Ratio of Times)

71.321.571.684000Cray X1 (libsci)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

41.581.791.453000Sun UltraSPARC IIe (Sunperf)

51.531.931.984000AMD Opteron (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.922.242.103500Intel Pentium III Coppermine (Goto)

41.792.112.123000Intel Pentium III Katmai (Goto)

51.541.982.024000Intel Pentium IV-M Northwood (Goto)

iterDP Solve
/Iter Ref

DP Solve
/SP Solve

DGEMM
/SGEMM

nArchitecture (BLAS)

61.831.903200064AMD Opteron (Goto – OpenMPI MX)

61.791.852262732AMD Opteron (Goto – OpenMPI MX)

iter

DP Solve
/Iter Ref

DP Solve
/SP Solve

n#
procs

Architecture (BLAS-MPI)

18

33 35

Quadruple PrecisionQuadruple Precision

♦ Variable precision factorization (with say < 32 bit precision)
plus 64 bit refinement produces 64 bit accuracy

94.8 2.92 276.94 1000
86.3 2.33 201.81 900
77.3 1.83 141.75 800
68.7 1.38 94.95 700
59.0 1.01 60.11 600
49.7 0.69 34.71 500
40.4 0.44 17.81 400
30.5 0.24 7.61 300
20.9 0.10 2.27 200
9.5 0.03 0.29 100

Speedup time (s) time (s)

Iter. Refine.
DP to QP

Quad Precision
Ax = b

n Intel Xeon 3.2 GHz

Reference
implementation of
the
quad precision
BLAS

Accuracy: 10-32

No more than 3
steps of iterative
refinement are
needed.

33 36

Refinement Technique Using Refinement Technique Using
Single/Double PrecisionSingle/Double Precision

♦ Linear Systems
LU (dense and sparse)
Cholesky
QR Factorization

♦ Eigenvalue
Symmetric eigenvalue problem
SVD
Same idea as with dense systems,

Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the lower precision to solve systems and use higher
precision to calculate residual with original data.
O(n2) per value/vector

♦ Iterative Linear System
Relaxed GMRES
Inner/outer iteration scheme

See webpage for tech report which discusses this.

19

33 37

Constantly Evolving Constantly Evolving -- Hybrid DesignHybrid Design

♦ Cluster of Cluster systems
Multicore nodes in a cluster

♦ Nodes augmented with accelerators
ClearSpeed, GPUs, Cell

♦ Japanese 10 PFlop/s “Life Simulator”
Vector+Scalar+Grape:

Theoretical peak performance: >1-2 PetaFlops from
Vector + Scalar System, ~10 PetaFlops from MD-
GRAPE-like System

♦ LANL’s Roadrunner
Multicore + specialized accelerator boards

33 38

Summary of Current Unmet NeedsSummary of Current Unmet Needs
♦ Performance / Portability
♦ Fault tolerance
♦ Memory bandwidth/Latency
♦ Adaptability: Some degree of autonomy to self optimize,

test, or monitor.
Able to change mode of operation: static or dynamic

♦ Better programming models
Global shared address space
Visible locality

♦ Maybe coming soon (incremental, yet offering real benefits):
Global Address Space (GAS) languages: UPC, Co-Array Fortran,
Titanium, X10, Chapel, Fortress)

“Minor” extensions to existing languages
More convenient than MPI
Have performance transparency via explicit remote memory
references

♦ What’s needed is a long-term, balanced investment in
hardware, software, algorithms and applications.

20

33 39

Collaborators / SupportCollaborators / Support
♦U Tennessee,

Knoxville
Alfredo Buttari,
Julien Langou,
Julie Langou,
Piotr Luszczek,
Jakub Kurzak

