Communication Analysis of the Cell Broadband Engine Processor

Fabrizio Petrini Pacific Northwest National Laboratory <u>fabrizio.petrini@pnl.gov</u>

> Michael Perrone IBM TJ Watson <u>mpp@us.ibm.com</u>

Michael Kistler and Gordon Fossum IBM Austin Research Laboratory <u>mkistler@us.ibm.com</u>, <u>fossum@us.ibm.com</u>

Battelle

EDGE Workshop, UNC, May 2006

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

The Charm of the IBM Cell Broadband Engine

Extraordinary processing power

- 8 independent processing units (SPEs)
- One control processor
 - A traditional 64-bit PowerPC
- At 3.2 Ghz the Cell
 - a peak performance of 204.8 Gflops/second (single precision)
 - 14.64 Gflops/second (double precision)

Communication Performance

Internal bus (Element Interconnect Bus EIB) with peak performance of 204.8 Gbytes/second
 Memory Bandwidth 25.6 Gbytes/second
 Impressive I/O bandwidth

 25 Gbytes/second inbound
 35 Gbytes/second outbound

 Many outstanding memory requests

 Up to 128, typical of multi-threaded processors

Moving the Spotlight from Processor Performance to Communication Performance

- Traditionally the focus is on (raw) processor performance
- Emphasis is now shifting towards communication performance
- Lots of (peak) processing power inside a chip (approaching Teraflops/sec)
 - Small fraction is delivered to applications
- Lots of (peak) aggregate communication bandwidth inside the chip (approaching Terabytes/sec)
 - But processing units do not interact frequently
- Small on chip local memories
 - Little data reuse
- Main memory bandwidth is the primary bottleneck
- And then I/O and network bandwidth

Dangerous Connection Between Memory and Network Performance and Programmability

- Programming model is already a critical issue
 And it is going to get worse
- Low data-reuse increases the algorithmic complexity
- Memory and Network bandwidth are key to achieve performance and simplify the programming model
- Multi-core Uni-bus 😳

Internal Structure of the Cell BE

Pacific Northwest National Laboratory U.S. Department of Energy 6

Cell BE Communication Architecture

- SPUs can only access programs and data in their local storage
- SPEs have a DMA controller that performs transfers between local stores, main memory and I/O
- SPUs can post list a list of DMAs
- SPUs can also use mailboxes and signals to perform basic synchronizations
- More complex synchronization mechanisms can support atomic operations
- All resources can be memory mapped

SPE Internal Architecture

Pacific Northwest National Laboratory U.S. Department of Energy 8

Basic Latencies (3.2 Ghz)

LATENCY COMPONENT	CYCLES	NANOSECONDS
DMA issue	10	3.125
DMA to EIB	30	9.375
List Element Fetch	10	3.125
Coherence Protocol	100	31.25
Data Transfer for inter-SPE put	140	43.75
TOTAL	290	90.61

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 9

Is this is a processor or a supercomputer on a chip?

- Striking similarities with high-performance networks for supercomputers
 - E.g., Quadrics Elan4
- DMAs overlap computation and communication
- Similar programming model
- Similar synchronization algorithms
 - Barriers, allreduces, scatter & gather
- We can adopt the same techniques that we already use in high-performance clusters and supercomputers!

DMA Latency

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 11

Latency Distribution under Hot-Spot

Pacific Northwest National Laboratory U.S. Department of Energy 15

Aggregate Behavior

Putting the Pieces Back Together

- We have discussed the "raw" communication capability of the network
- We now try to see how we can parallelize scientific application on the Cell BE
 - A point in a large design space
- Sweep3D: a well known scientific application
- A case study to provide insight on the various aspects of the Cell BE
 - Parallelization strategies, nature of parallelism, actual computation and communication performance

Challenges

Initial excitement in the scientific community, but concerns about the

- Actual fraction of performance that can be achieved with real applications
- Complexity of developing new applications
- Complexity of developing new parallelizing compilers
- Whether there is clear migration path for existing legacy software, written using MPI, Shared memory programming libraries (Global Arrays, UPC, Cray Shmem, etc.)

Sweep3D

Application kernel representative of the ASC workload

- Considerable number of cycles on ASC machines
- Relevant for a number of national security applications at PNNL
- It solves 1-group time-independent discrete ordinates three-dimensional neutron transport problem

Sweep3D: data mapping and communication pattern

Pacific Northwest National Laboratory U.S. Department of Energy 20

Parallelization Strategy

Process level parallelism

- We keep the existing MPI parallelization, to guarantee seamless migration path of existing software
- Thread-level parallelism
 - Take advantage of loop independency
- Data-streaming parallelism
 - Data orchestration algorithms
- Vector parallelism
 - To exploit vector units
- Pipeline parallelism
 - Even-odd pipe optimizations

An arsenal of tools/techniques and optimizations

Pacific Northwest National Laboratory U.S. Department of Energy 23

Work in progress

Pacific Northwest National Laboratory U.S. Department of Energy 24

How does it compare with other processors?

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 25

Multicore surprises

High sustained floating point performance

- 64% in double precision (9 Gflops), 25% in single (50 Gflops)
- Typical values of actual performance for Sweep3D are 5-10%
- Memory bound
 - The real problem, is data movement, not floating point performance
- Outstanding Power Efficiency
 - 2-4 times faster than BlueGene/L, the most power efficient computer at the moment (conservative estimate)

Conclusions

Papers available at the following URLs

- Cell Multiprocessor Interconnection Network: Built for Speed, IEEE Micro, May/June 2006
 - http://hpc.pnl.gov/people/fabrizio/ieeemicro-cell.pdf
- Multicore Surprises: Lesson Learned from Optimizing Sweep3D on the Cell Broadband Engine, Submitted for publication

http://hpc.pnl.gov/people/fabrizio/sweep3d-cell.pdf