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Many underactuated mechanical systems can be written

M (q)�q + C(q; _q) _q +G(q) =

�
u

0

�
; (1)

perhaps after a feedback transformation, where q 2 Rn is the
configuration and u 2 Rm is the control. These equations cap-
ture the dynamics of underactuated robot manipulators, space-
craft, ground vehicles, and underwater vehicles without drag.
The n�m underactuation constraints are the last n�m rows
of (1), written

M0(q)�q +C0(q; _q) _q + G0(q) = 0: (2)

These are state-dependent constraints on the feasible acceler-
ations �q, and these constraints complicate the trajectory plan-
ning problem. The system may also be subject to a set of non-
holonomic constraints of the form !(q) _q = 0.

The key to computationally efficient trajectory planning for
such systems is to exploit the structure of the equations of mo-
tion. One such structure is differential flatness, which reduces
the trajectory generation problem to curve fitting. The problem
becomes significantly more complex in the presence of control
and obstacle constraints, however.

We have recently discovered a class of underactuated me-
chanical systems we call kinematically controllable which
permit obstacle and control constraints to be dealt with more
naturally. For such systems, we can find a set of decoupling
velocity vector fields on the the configuration space. These
vector fields can be followed at any speed and acceleration
without violating the constraints (2), and any configuration is
reachable by following these vector fields. These decoupling
vector fields together define a kinematic reduction of the dy-
namic system, and we can use methods from the literature on
collision-free path planning for driftless kinematic systems.
The resulting paths are time scaled to yield the time-optimal
trajectory along the path. Trajectory planning is fast, because
search occurs on the n-dimensional configuration space, not
the 2n-dimensional state space. Execution of a trajectory is
fast, because it uses “natural” motions for the system.

In the absence of obstacles, path planning for some kinemat-
ically controllable systems reduces to simple closed-form in-
verse kinematics. This is often true for vehicle models, where
the dynamics are invariant to group actions on SE(n). Exam-
ples of such kinematically controllable systems are shown in
Figures 1 and 2.

Future work will focus on (1) modifying existing kinematic
path planners to suit kinematically controllable systems among

Figure 1: An obstacle-avoiding path for a snakeboard, which
locomotes by steering the wheels and spinning the momentum
rotor.
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Figure 2: A trajectory for an autonomous underwater vehicle
with only three body-fixed control forces.

obstacles and (2) feedback stabilization techniques for stabiliz-
ing planned trajectories.
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