
Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

A GPU-based Streaming Algorithm for High-Resolution

Cloth Simulation

Min Tang1, Ruofeng Tong1, Rahul Narain3, Chang Meng1 and Dinesh Manocha2,

http://gamma.cs.unc.edu/gcloth/

1Zhejiang University, China
2University of North Carolina at Chapel Hill, USA

3University of California, Berkeley, USA

Figure 1: Different cloth simulations generated by varying the underlying resolution: The figure highlights different

simulation results generated using varying resolutions of the cloth mesh on the Buddha model: 20K, 500K, and 2M triangles
(from left to right). Our new GPU-based streaming algorithm takes 138 seconds/frame to perform the entire simulation
(including time integration, collision detection, and response) on a NVIDIA Tesla K20c GPU. It is about 126X faster than
a single-threaded CPU-based algorithm.

Abstract

We present a GPU-based streaming algorithm to perform high-resolution and accurate cloth simulation. We

map all the components of cloth simulation pipeline, including time integration, collision detection, collision

response, and velocity updating to GPU-based kernels and data structures. Our algorithm perform intra-object

and inter-object collisions, handles contacts and friction, and is able to accurately simulate folds and wrinkles.

We describe the streaming pipeline and address many issues in terms of obtaining high throughput on many-core

GPUs. In practice, our algorithm can perform high-fidelity simulation on a cloth mesh with 2M triangles using
3GB of GPU memory. We highlight the parallel performance of our algorithm on three different generations of
GPUs. On a high-end NVIDIA Tesla K20c, we observe up to two orders of magnitude performance improvement

as compared to a single-threaded CPU-based algorithm, and about one order of magnitude improvement over a

16-core CPU-based parallel implementation.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

http://gamma.cs.unc.edu/gcloth/

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

1. Introduction

Cloth simulation is important for many applications,
including video games, virtual environment, and
fashion/garment design. This problem has received
considerable attention in computer graphics and related
areas for more than a decade [BW98, BFA02, CK05,
SSIF09, FYK10, WHRO10, LYO∗10, NSO12], though
direct physically-based simulation of cloth remains
limited to off-line applications such as cinematic
animation. Recent trends have been on improving
the performance of such techniques for high-quality
simulation using higher-resolution [SSIF09] or adaptive
meshes [LYO∗10,NSO12].

There is considerable interest in performing fast cloth
simulation for different applications, including video games
and virtual environments. The most recent such techniques
use reduced cloth representations based on pre-computed
data or simplified physical models [FYK10, WHRO10,
MC10, KKN∗13]. However, these techniques are not as
general as direct physically-based simulation: they are
either limited to the space of the training data, or produce
visually coarse results or other artifacts in highly dynamic
scenarios. As a result, there is still value in developing
high-quality physically-based simulation algorithms for
interactive applications.

Motivation: Our goal is to develop efficient parallel
algorithms for higher-fidelity cloth simulation. Furthermore,
we want to develop general approaches that are applicable
to a wide variety of scenarios. A key bottleneck in cloth
simulation is accurate collision handing, i.e. checking
for collisions between the mesh elements and computing
responses. High-quality simulation often requires modeling
cloth with tens or hundreds of thousands of mass particles.
This combinatorial complexity leads to many collisions
and numerous primitive pairs in close proximity. It is
important to accurately detect all interferences, including
self-collisions and collisions between the cloth and other
objects. Even a single missed collision can result in an
invalid simulation and noticeable visual artifacts, such
as cloth passing through itself [VT94, BFA02, BWK03].
This is especially a challenge for high-resolution cloth
simulation. As stated by [SSIF09], most cloth simulation
techniques would fail if the mesh resolution was increased
due to two problems: robustness and tractability. These
problems typically manifest themselves in time integration
and self-collisions or collision handling.

In this paper, we address the problem of developing
highly parallel algorithms for high-resolution simulations.
Our goal is to perform accurate simulation and not
sacrifice the fidelity, and achieve higher performance by
exploiting the SIMD capabilities and multiple cores of
a GPU. There is some prior work on using GPUs for
only collision detection [TMLT11] or some parts of cloth
simulation [Gre04,Zel06], but our goal is to perform all the

steps of the simulation on a high-end discrete GPU and avoid
any data transfer between the CPU and the GPU. Ideally,
we desire a technique that can scale with the increased
parallelism or number of cores of a GPU.

Main Results: We present a GPU-based streaming
algorithm to perform high-resolution cloth simulation.
Our formulation includes a streaming pipeline for cloth
simulation that maps all the components, including time
integration, collision checking, response force computation,
and velocity computation to GPUs based on appropriate
geometric and topological data structures. We use an
optimized sparse matrix representation based on the
topological connectivity between cloth particles. With this
representation, we reduce the memory overhead by 50%,
and make it possible to use implicit time integration for
cloth simulation on commodity GPUs. By handling both
inter-object and intra-object collisions, contacts, and friction
accurately with GPU stream data and kernels, our algorithm
can simulate highly detailed folds and wrinkles.

We have evaluated our algorithm on several complex
benchmarks, with different cloth mesh resolutions (with
20K, 500K, and 2M triangles, respectively). We highlight
our speedups over CPU-based algorithms: 100−120X faster
compared to a single threaded CPU-based implementation;
10 − 14X faster compared to a 16-core CPU-based
implementation on an NVIDIA Tesla K20c GPU. As
compared to prior GPU-based approaches, our algorithm can
simulate accurate and high-resolution meshes (e.g. up to 2M
triangles).

Organization: The rest of the paper is organized as
follows. We give a brief overview of prior work in
Section 2. Section 3 introduces our notation and presents
our streaming algorithm. We highlight its performance on
different benchmarks in Section 4 and compare with prior
algorithms in Section 5.

2. Related Work

In this section, we give a brief overview of related work on
cloth simulation and collision handling. We also highlight
some recent GPU-based approaches in this field.

2.1. Cloth Simulation

Cloth simulation has been extensively studied by the
computer graphics community. Traditionally, continuum
models [TPBF87], energy-based particle systems [BHG92],
and mass-spring models [VT94, Pro95] have been
used for cloth representation. Implicit time integration
methods [BW98, CK02] have demonstrated improved
stability over explicit time integration. Keckeisen et
al. [KSFS03] showed that interactive cloth simulation
can be performed (at a lower fidelity) for virtual reality
applications. Cordier and Magnenat-Thalmann [CMT05]

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

used data-driven approach for realtime cloth simulation.
Volino et al. [VLMT08] gave a nice overview of
various virtual cloth techniques. Techniques to perform
high-resolution cloth simulation have been proposed by
Selle et al. [SSIF09] and used multi-core CPUs. Recently,
adaptive meshes have been used [LYO∗10, NSO12] for
multi-resolution cloth simulation.

2.2. Collision Handling

Collision handling (collision detection and response) is
regarded as the major bottleneck in high-resolution cloth
simulation, because of detecting and handling a high number
of collisions, including self-penetrations. BVHs (bounding
volume hierarchies) [VT94, Pro97] or spatial subdivision
methods [HB00] have been used as acceleration structures.
Provot [Pro97] introduced the concept of normal cones for
self-intersection culling. The idea has been further extended
to continuous collision detection [TCYM09, HSK∗10].
Bridson et al. [BFA02] proposed an impulse-based collision
handling algorithm, which has been extensively used in
many cloth simulation systems. Choi and Ko [CK05]
stressed the importance of accurate collision detection
and handling in cloth simulation. Tang et al. proposed
non-penetration filters both for triangle meshes [TMT10a,
DTT12] and volume meshes [TMY∗11]. Brochu et
al. [BEB12] designed a geometrically exact algorithm for
robust and efficient continuous collision detection.

2.3. GPU Acceleration

With the advent of programmable GPUs, researchers are
utilizing the parallel processing power to speed up cloth
simulation and collision handling. In 2004, Green [Gre04]
demonstrated fast cloth simulation on a GPU using
Verlet integration [Tho03], but could only handle collision
detection with a sphere and self-collisions were not taken
into account. Zeller [Zel06] presented a similar GPU-based
algorithm, but with improved collision detection and
responsiveness to wind. Contrary to the aforementioned
methods, which handle collision detection in object space,
image based methods have been employed [BW04,RNS06].
In 2009, ATI demonstrated cloth simulation results with
Havok on the GPU using OpenCL API [Sea09]. Many
GPU-based efficient algorithms have been proposed for
collision and proximity computations between deformable
models [GKJ∗05,SGG∗06]. Tang et al. [TMLT11] proposed
a streaming algorithm to accelerate the process of accurate
collision detection by using fine-grained front-based
decomposition [TMT10b].

3. Streaming Cloth Simulation

In this section, we introduce our notation and present our
streaming algorithm for cloth simulation.

Structural springs

Shear springs

Bend springs

Figure 2: Physical Model: Three different springs are

used to model the internal forces between cloth particles:

structural springs, shear springs, and bend springs.

3.1. Physical Model

We use the classic mass-spring model [VT94, Pro95] to
represent the cloth. Three different springs are used to model
the internal forces between cloth particles: structural springs,
shear springs, and bend springs (as illustrated by Figure 2).

3.2. Algorithm Overview

During each time step, our iterative cloth simulation
algorithm performs two major stages: time integration
and collision handling. During the stage corresponding to
time integration, all the cloth particles are evolved under
external forces (wind forces, gravity, etc.) and internal
forces (structural forces, bend forces, stretch forces, etc.).
The collision handling stage involves collision detection
between the cloth model and other objects, as well as
self-collisions in the cloth, and collision response. The
collisions are computed based on proximity queries and
continuous collision detection followed by impulse forces
for all the particles that are involved in collisions. Finally,
these impulses are used to update the velocities and positions
of the particles.

The collision handling stage first finds all the collisions
using proximity queries and continuous collision detection,
then calculates the impulses for all the particles involved
in the collisions. Finally, these impulses will change the
velocities and consequently determine the final positions.

3.3. Streaming Pipeline

In order to fully utilize the parallel capabilities of
current GPUs, we map the geometric mesh and other
information (e.g., velocities of the particles) to streaming
data representation and the computational procedures to
GPU kernels. As illustrated in Figure 3, we use the following
streaming data representations:

• Position stream & velocity stream: These streams
describe the current state of the cloth under simulation.
We pack the positions and the velocities of the cloth
particles into these two streams.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

Position Stream Velocity Stream

Predicted

 Position Stream

Predicted

Velocity Stream

Collision Stream

Updated

Velocity Stream
Updated

 Position Stream

Time Integration

Proximity/Penetration

Detection

Impulse Stream

Repulsion/Impulse

Computation

Velocity/Position Updating

Figure 3: Streaming Data and Kernels: All the geometric

data are represented as GPU streams (shown in elliptical

shapes). Different kernels (shown in rectangular boxes)

operate on these streams. The arrows refer to input/output

relationship between these streams and kernels.

• Predicted position stream & predicted velocity

stream: These streams contain the position and velocity
information for the particles evolved under time
integration. These streams are computed by only
considering interior and exterior forces applied on the
particles (i.e., ignoring inter-object and intro-object
collisions).

• Collision stream: The stream contains the information
about inter-object and intra-object collisions (VF/EE
pairs, first time of contact, etc.) This collision information
will be used to generate impulse stream data.

• Impulse stream: The stream contains the impulses for the
particles involved in the collisions.

• Updated velocity stream & updated position stream:

The update velocity stream is generated by updating the
predicted velocity streams with the impulse stream. The
updated position stream is consequently updated based on
the updated velocity stream.

We also use some auxiliary streams corresponding to
some geometric and topological data that is needed for
collision checking, such as streaming data for connectivity
between the triangle meshes, the BVH, the BVTT front,
orphan set, etc. Please refer to [TMLT11] for more details.

3.4. Kernel Computations

The various computational stages corresponding to time
integration, collision detection, impulse computation, and
velocity update are abstracted as GPU kernels and performed
in parallel on the GPU cores or streaming units.

• Time integration kernel: We support both explicit and
implicit time integration on the GPU, and get predicated
velocity stream and position stream based on interior
forces and external forces that are applied to the mesh
particles during this kernel computation.

• Proximity/penetration detection kernel: We extend
the streaming algorithm originally proposed by Tang
et al. [TMLT11] to support proximity detection and
penetration detection for high-resolution cloth meshes.
The main extension is in terms of reducing the memory
overhead of collision-stream algorithm by storing the
BVTT (bounding volume traversal tree) front into GPU
memory.

• Repulsion/impulse computation kernel: After getting
collision results (a list of overlapping VF/EE features),
we compute the impulses caused by these contacts. For
a VF collision pair, the impulse Iv f between them can be
expressed as:

Iv f = k(vr · n̂)n̂, (1)

where vr is the relative velocity between the VF pair, n̂
is the normal vector of the face F , and k is a stiffness
factor. We use a similar formulation to compute impulses
between EE pairs.

• Velocity updating kernel: The predicted velocities are
updated based on the impulses in this kernel (Eq. 2). We
also compute the updated positions of mesh particles by
using the updated velocities (Eq. 3).

vu = vp+
Iv

mv
, (2)

pu = pi+ vu∆t, (3)

where vu and pu are the updated velocity and updated
position of a cloth particle. vp is the predicted velocity,
Iv is the accumulated impulse on this particle, and mv is
the mass of the particle. pi is the initial position at the
beginning of the current time step, and ∆t is the length of
the time step.

3.5. Time Integration

We support both explicit and implicit time integration on
the GPU. For explicit time integration, we used 4th-order
Runge-Kutta time integration. Each cloth particle can be
updated independently based on its own position and
velocity. For implicit time integration, we support both the
implicit method proposed by Baraff and Witkin [BW98] and
the semi-implicit method proposed by Choi and Ko [CK02].

Explicit Time Integration: Explicit time integration

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

methods (Euler integration, midpoint integration, Verlet
integration, 4 ordered Runge-Kutta integration, etc.) are
relatively easy for GPU acceleration. Since each particle
computation is performed independently, it is quite
straightforward for executing in parallel on GPUs. We used
4th-order Runge-Kutta integration, since it exhibits good
stability even for high-resolution cloth simulation (e.g., 2M
triangles). To perform time integration, we collect all the
external forces fe and internal forces fi (by processing all
the springs between particles), and apply those forces to each
particle pi to get predicted velocities vip and positions p

i
p in

parallel.

One major drawback of explicit time integration schemes
is that they are used with small time steps (comparing with
implicit time integration). However, we don’t use large time
steps in order to not miss any collisions.

Implicit & Semi-Implicit Time Integration: For implicit
and semi-implicit time integration, we construct a linear
system of equations and then solve the linear system with a
preconditioned conjugate gradient (PCG) solver. The system
matrix corresponding to this linear system is computed on
the GPU by computing the Jacobian matrices corresponding
to the external and internal forces in parallel. The system
matrix is typically a sparse matrix. Due to the regularity of
the rectangular cloth, each particle has 16 springs attached
to it. So we only need to store the 3× 3 matrices on 17
diagonal lines (16 plus the principal diagonal line), as shown
in Figure 4.

In order to store this sparse matrix compactly, we use
a novel matrix representation, called compressed diagonal
format (CDF). As shown in Figure 5(a), all the nodes
on the 17 diagonal lines are matrices of size 3 × 3.
Conventional diagonal format (Figure 5(b)) needs additional
40% space (to store the values in green). Instead, with our
compressed diagonal format (Figure 5(c)), we use a compact
representation for the system matrix. The system matrix
in dense format will need to store 9× N2 floating-point
values (where N is the number of particles). Instead, our
method only needs to store 17× 9N floating-point values.
Compared to other compressed data structures for sparse
matrix, such as compressed sparse row format (CSR) or
compressed sparse column format (CSC) [BG13, NVI13b],
our representation does not need to store all the index data,
and consequently reduces the total memory footprint by
50%. For a cloth with 2M triangles, a system matrix in
compressed diagonal format will need 593MBGPUmemory
to store it.

Our CDF representation can also be used for cloth with
cuts and holes that is not perfectly rectangular. For these
cases, some particles and springs are missing (i.e. have 0
entries). The resulting CDF may not provide an optimal
representation, but can still be used in the GPU-based
algorithm.

We do not used the standard library such as CUSP [BG13]

2,1M1,1M 3,1M

1,2M 2,2M 3,2M 4,2M

n
M ,1 1,1 n

M 2,1 n
M 12,1 n

M 12,1 n
M 32,1 n

M

1,2 n
M 2,2 n

M 3,2 n
M

n
M 2,2 22,2 n

M 42,2 n
M

22, nNN
M

nNN
M 2, 22, ! nNN

M
1, nNN

M
nNN

M
 , 1, !nNN
M 2, NN

M 1, NN
M

NN
M ,

Figure 4: System Matrix: Due to the regularity of the

rectangular cloth, each particle has only 16 springs linked.

So we only need to store the matrices on these 17 diagonal

lines (16 plus the principal diagonal line).

(a) (b) (c)

Figure 5: Compressed Diagonal Format: To store all the

values on the diagonal lines of the system matrix (a),

conventional diagonal format will need additional 40%
space (to store those values in green). Our novel compressed

diagonal format (c) provides a compact storage.

or cuSPARSE [NVI13b], since we found that our
implementation uses much less storage space, and makes it
feasible to perform high-resolution cloth simulation.

To solve the linear system, we implemented a PCG solver
with the optimized matrix representation, and used the
cuBLAS [NVI13a] library for efficient multiple operations
between large vectors.

3.6. Collision Handling

The basic idea of our collision handling approach is
inspired by Bridson’s work [BFA02]. We first compute
proximity repulsions by performing proximity detection
with discrete collision detection (DCD), and apply these
repulsions to handle penetrating features. Then we perform
penetration detection with continuous collision detection
(CCD) and compute the first time of contact along those

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

Penetration

Detection

Proximity Detection

Apply Proximity

Repulsions

Apply Collision

Impulses

Triangle pair

stream

Orphan

stream

Feature pair

 stream

Collision

stream

Predicted position

stream

Front & Self-

front stream

BV stream BVH stream

Discrete/Continuous Collision DetectionInput

Output

Impulse stream

Figure 6: Collision Handling: By perform proximity

detection and penetration detection (iteratively) on the GPU,

repulsion-based and impulse-based methods are used to

handle inter-object and intra-object collisions (left). We

use a streaming algorithm for discrete/continous collision

detection (right). All the geometric data and acceleration

data structures (i.e., the bounding volumes and the bounding

volume hierarchies) are represented as GPU streams.

By updating the BVTT fronts (for inter-object collisions)

and self-fronts (for intra-object collisions) incrementally,

collision information is used to generate impulse streams.

penetrating features by performing elementary tests. The
first-time-of-contact information is computed using CCDs
and used to estimate the collision impulses. These impulses
are applied to push back the particles and maintain a
penetration-free state. This process is applied iteratively till
all penetrations are resolved (as shown in Figure 6).

We extend the basic GPU-based collision detection
algorithm originally proposed by Tang et al. [TMLT11] to
perform collision handling. We first update the bounding
volume stream and bounding volume hierarchy stream by
using the predicted position stream which is updated by the
time integration stage. We update the BVTT front stream
and BVTT self-front stream in parallel on the GPU. These
two front streams correspond to inter-object and intra-object
collision information, respectively.

A major challenge in collision detection for
high-resolution cloth is to overcome the memory overhead
of storing the BVTT-based front in the GPU memory. In
order to reduce the memory overhead on the GPUs, we use
deferred BVTT fronts [TMLT11] to significantly reduce the
memory footprint. In practice, we can reduce the overall
memory overhead by 80%. We also used the same BVTT
front stream for both proximity detection and penetration
detection to further reduce the memory overhead. After
getting collision results, we compute the impulses based on
these collisions. Then the predicted velocities are updated
based on the impulses in this kernel.

Frequency of Collision Query: Since collision detection is
the most expensive part, some researchers [SSIF09] make

GPU GeForce

GTX 580

GeForce

GTX 680

Tesla K20c

Number of

Cores

512 1536 2496

Memory

Capacity (G)

1.5 4.0 4.0

Memory Clock

Rate (MHz)

2004 3105 2600

GPU Clock Rate

(MHz)

1544 1163 706

Figure 7: GPUs: Three different GPUs, a NVIDIA GeForce

GTX 580, a NVIDIA GeForce GTX 680, and a NVIDIA Telsa

K20c, are used for testing our cloth simulation algorithm.

the optimization of reducing the frequency of collision
detection, i.e., performing one step of collision detection
after several steps of time integration. However, we find this
method can lead to worse performance, since one step of
CCD between large time steps is even more expensive than
several steps of CCD between small time steps. So we use
the same frequency for both time integration and collision
handling to make the simulation tractable.

4. Results

In this section, we describe our implementation and
highlight the performance of our algorithm on several
benchmarks.

4.1. Implementation

We have implemented our algorithm on three different
commodity GPUs: a NVIDIAGeForce GTX 580, a NVIDIA
GeForce GTX 680, and a NVIDIA Tesla K20c. Their
parameters are shown in Figure 7. For all these NVIDIA
GPUs, we used CUDA toolkit 4.2/Visual Studio 2008 as the
development environment. We use a standard PC (Windows
7 Ultimate 64-bit/Intel I7 CPU@3.5GHz/8G RAM) as the
testing environment.

Currently, we use a fixed time step (i.e., 160 s) for both
implicit and explicit time integration algorithms. Although
the implicit time integration provides stable behavior for
large time steps, we still need to use small time steps to
handle large, complex models (e.g. 2M triangles).

4.2. Benchmarks

In order to test the performance of our algorithm, we used
three different benchmarks. Each benchmark is tested with
three different resolutions of cloth (20K triangles, 500K
triangles, and 2M triangles):

• Budda: A cloth falls on the top of a Buddha statue (100K
triangles, 50K vertices, Figure 1).

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

Resolution

(triangles)

Benchmarks GTX 580

(s/frame)

GTX 680

(s/frame)

Tesla K20c

(s/frame)

CPU

(s/frame)

20k Buddha 4.50 5.40 3.10 135.00

20k Lion 4.20 4.60 3.10 132.00

20k Dragon 4.74 5.80 3.40 154.00

500k Buddha 49.80 58.38 38.92 2245.00

500k Lion 62.31 78.94 52.72 2858.00

500k Dragon 55.86 63.81 42.17 2408.00

2M Buddha N/A 280.27 137.94 17360.00

2M Lion N/A 332.64 156.87 20246.00

2M Dragon N/A 287.81 141.26 18542.00

Figure 8: Performance Results: This figure shows the

average running time (with totally 2K frames) of our
algorithm on the three different generations of GPUs with

varying number of cores.

• Lion: A cloth falls on the top of a Chinese lion statue
(20K triangles, 10K vertices, Figure 13).

• Dragon: A cloth falls on the top of a Chinese dragon
statue (100K triangles, 50K vertices, Figure 14).

For all the benchmarks, our algorithm can handling
inter-object and intra-object accurately and robustly.
Furthermore, these are complex scenarios with high number
of self-collisions and wrinkles.

4.3. Performance

Figure 8 highlights the performance of our algorithm on
different benchmarks. These results show that our streaming
cloth simulation algorithm works well on different GPU
architectures. The relative performance of a benchmark
appears to be proportional to the number of streaming units
or cores on different GPUs. This indicates that our algorithm
can exploit the large scale parallel capabilities of modern
GPUs.

Figure 9 shows the memory footprint for all the
benchmarks, and Figure 10 shows the memory occupation
rates of every part for the Buddha benchmark with different
cloth simulation and with explicit/implict integration. For
implicit integration, up to 50% for memory are used by the
linear system solver to store the system matrix and other
parameter vectors (at the 2M mesh resolution).

Figure 11 shows running time ratios for each stage i.e.,
Time Integration, Proximity Detection, and Penetration
Detection). Figure 12 compares the performance between
GPU-based implementation (GTX for NVIDIA GeForce
GTX 680, and Tesla for NVIDIA Tesla K20c) and
CPU-based single threaded implementation. As we
use a higher resolution model, we observe improved
computational intensity on GPUs and this leads to higher
speedups. On the NVIDIA Tesla K20c, we achieve up to
120X acceleration for cloth with 2M triangles.

Mesh

Resolution

Benchmarks Explicit

Integration

Implicit

Integration

20k Buddha 0.75G 0.92G

20k Lion 0.72G 0.91G

20k Dragon 0.73G 0.92G

500k Buddha 1.07G 1.35G

500k Lion 0.91G 1.31G

500k Dragon 1.05G 1.32G

2M Buddha 1.7G 3.03G

2M Lion 1.62G 2.98G

2M Dragon 1.68G 3.01G

Figure 9:Memory Footprint: This figure shows the memory

footprint for all the benchmarks (with different resolutions

and with explicit/implicit integration).

5. Analysis & Comparisons

In this section, we compare our algorithm with prior
CPU-based and GPU-based algorithms and highlight some
of the benefits.

5.1. Comparisons

In this section, we compare the performance of our approach
with prior parallel and GPU-based algorithms.

• CPU & multi-core based algorithms: As compared
to CPU-based algorithms [CK02, BW98, SSIF09], we
obtain better performance based on exploiting the GPU
parallelism. For example, some cloth benchmarks with
2M triangles in [SSIF09] takes 20− 40 minutes/frame
using 16 CPU-cores, while our algorithm only need
2 − 3 minutes/frame on the Tesla K20c GPU. It is
approximately 10−12X faster.

• CPU-GPU hybrid algorithms: These methods [PKS10]
transfer the data between the CPU and the GPU
frequently, while our algorithm is a purely GPU-based
method and avoids such data transfers. For examples,
at each time step, 2M triangles need to be transferred
between GPU and CPU. Also, by performing time
integration and collision handling on the same GPU
platform, the data inconsistency between CPU and GPU
are avoided.

• GPU based algorithms: These GPU-based
methods [Sea09, Zel06, Gre04] demonstrate good
performance, but do not perform accurate collision
detection and handling. As a result, they may not be able
to perform high-fidelity cloth simulation. The GPU-based
algorithm in [TMLT11] is limited to performing accurate
collision detection. It has been applied to models with
tens of thousands of triangles. In contrast, our algorithm
performs time integration, collision detection, and
collision handling and can handle models with millions
of triangles.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

(a) Explicit Integration (b) Implicit Integration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20k 500k 2M 20k 500k 2M

Solver

Collision

Buddha

Cloth

Self-front

Front

Auxilary

Figure 10: Memory Occupation Rates: This figure shows

the memory occupation rates of every part for the Buddha

benchmark with explicit/implict integration (Solver - storage

for linear system solver, Collision - storage for collision

information, Buddha - storage for the Buddha model, Cloth

-storage for the cloth, Self-front and front - storage for the

BVTT fronts, Auxiliary - storage for other data structures).

0

1

2

3

4

5

6

7

8

9

10

s

t

Penetration

Detection

Proximity

Detection

Time

Integration

Figure 11: Running Time Ratios: This figure highlights the

timing breakdown for different stages of the algorithm (for

the Buddha benchmark with 2M triangles).

5.2. Limitations

Our approach does have some limitations, including:

• For some complex scenarios, repulsion-based and
impulse-based collision handling methods can not resolve
all the penetrations. Some more sophisticated methods,
such as untangling (by side voting), or impact zones, can
be used. This is a good avenue for future work.

• Our optimized sparse matrix representation is specially
designed for rectangular meshes. In the future, we hope
to generalize this representation to support cloth models
represented by triangle meshes.

• Currently, our time integration and collision handling
algorithms do not use the shared memory on GPUs.

20K 500K 2M

Buddha Lion Dragon Buddha Lion Dragon Buddha Lion Dragon

GTX 25 29 27 38 36 38 62 61 64

Tesla 44 43 45 58 54 57 126 129 131

Figure 12: GPU v.s. CPU Performance: This figure(a)

shows acceleration rates by comparing our GPU

implementation with a single-threaded CPU implementation

(GTX for NVIDIA GeForce GTX 680, and Tesla for NVIDIA

Tesla K20c). We demonstrate the speedup for different

resolutions of cloth mesh. As we use a higher resolution

model, we observe improved computational intensity on

GPUs and this leads to higher speedups.

6. Conclusion and Future Work

We present a GPU-based streaming cloth simulation
algorithm for efficient high quality cloth simulation. Our
approach is designed for high performance as it maps
the data and various computations in terms of appropriate
streams and kernels. We also present parallel algorithms
for time integration and collision handling and all these
computations are performed on the GPU. Moreover, our
approach is flexible and maps well to current GPU
architectures in terms of memory hierarchy. In practice, our
algorithm can improve the performance of cloth simulation
on current GPU architectures. We observe significant
speedups over CPU-based multi-core algorithm, and are
able to perform accurate and higher fidelity simulation as
compared to prior GPU-based algorithms.

There are many avenues for future work. First, we
will work on solving some limitations of our current
approach. We also believe that we can further improve the
performance of our algorithm by exploiting more parallelism
and memory hierarchy of GPUs. Also, the cloth simulation
algorithm can inspire some related simulations, such as rigid
body/deformble body simulations. Finally, we would like to
extend the algorithm to support adaptive meshes for better
simulation and improved performance.

Acknowledgements:

This research is supported in part by NSFC (61170140),
the National Basic Research Program of China
(2011CB302205), the National Key Technology R&D
Program of China (2012BAD35B01), and NVIDIA.
Dinesh Manocha is supported in part by ARO Contract
W911NF-10-1-0506, NSF awards 0917040, 0904990,
1000579 and 1117127, and Intel. Ruofeng Tong is partly
supported by NSFC (61170141). Rahul Narain is supported
by NSF Grant IIS-0915462 and funding from Intel Science
and Technology Center for Visual Computing.

References

[BEB12] BROCHU T., EDWARDS E., BRIDSON R.: Efficient
geometrically exact continuous collision detection. ACM Trans.
Graph. 31, 4 (July 2012), 96:1–96:7.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

Figure 13: Dropping cloth on a lion: A cloth falls on the top of a Chinese lion statue. The lion model consists of 20K
triangles, and the cloth consists of 2M triangles. On a NVIDIA Tesla K20c GPU, we perform simulation at 157s/frame, which
is approximately 129X faster than a single-threaded CPU algorithm.

Figure 14: Dropping cloth on a dragon: A cloth falls on the top of a Chinese dragon statue. The dragon model consists of

100K triangles, and the cloth consists of 2M triangles. On a NVIDIA Tesla K20c GPU, we perform simulation at 141s/frame,
which is approximately 131X faster than a single-threaded CPU algorithm.

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. 21, 3 (July 2002), 594–603.

[BG13] BELL N., GARLAND M.: CUSP: A C++ Templated
Sparse Matrix Library, http://cusplibrary.github.io/, 2013.

[BHG92] BREEN D. E., HOUSE D. H., GETTO P. H.: A
physically-based particle model of woven cloth. The Visual
Computer 8 (1992), 264–277.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth
simulation. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1998), SIGGRAPH ’98, ACM, pp. 43–54.

[BW04] BACIU G., WONG W. S.-K.: Image-based collision
detection for deformable cloth models. IEEE Transactions

on Visualization and Computer Graphics 10, 6 (11-12 2004),
649–663.

[BWK03] BARAFF D., WITKIN A., KASS M.: Untangling cloth.
ACM Trans. Graph. 22, 3 (July 2003), 862–870.

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive cloth. ACM
Trans. on Graph. 21 (2002), 604–611.

[CK05] CHOI K.-J., KO H.-S.: Research problems in clothing
simulation. Comput. Aided Des. 37, 6 (May 2005), 585–592.

[CMT05] CORDIER F., MAGNENAT-THALMANN N.: A
data-driven approach for real-time clothes simulation. Comput.
Graph. Forum 24, 2 (2005), 173–183.

[DTT12] DU P., TANG M., TONG R.: Fast continuous collision
culling with deforming noncollinear filters. Computer Animation
and Virtual Worlds 23, 3-4 (2012), 375–383.

[FYK10] FENG W.-W., YU Y., KIM B.-U.: A deformation
transformer for real-time cloth animation. ACM Trans. Graph.
29, 4 (July 2010), 108:1–108:9.

[GKJ∗05] GOVINDARAJU N. K., KNOTT D., JAIN N., KABUL
I., TAMSTORF R., GAYLE R., LIN M. C., MANOCHA D.:
Interactive collision detection between deformable models using
chromatic decomposition. ACM Trans. Graph. 24, 3 (July 2005),
991–999.

[Gre04] GREEN S.: Nvidia white paper,
http://developer.nvidia.com/object/demo_cloth_simulation.html,
2004.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

M. Tang & R. Tong & R. Narain & C. Meng & D. Manocha / A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation

[HB00] HOUSE D. H., BREEN D. E. (Eds.): Cloth Modeling and
Animation. A. K. Peters, Ltd., 2000.

[HSK∗10] HEO J.-P., SEONG J.-K., KIM D., OTADUY
M. A., HONG J.-M., TANG M., YOON S.-E.: FASTCD:
Fracturing-aware stable collision detection. In SCA ’10:
Proceedings of the 2010 ACM SIGGRAPH / Eurographics

Symposium on Computer Animation (2010).

[KKN∗13] KIM D., KOH W., NARAIN R., FATAHALIAN
K., TREUILLE A., , O’BRIEN J. F.: Near-exhaustive
precomputation of secondary cloth effects. ACM Trans. Graph.
(Proc. of SIGGRAPH 2013) 32, 4 (2013).

[KSFS03] KECKEISEN M., STOEV S. L., FEURER M.,
STRASSER W.: Interactive cloth simulation in virtual
environments. In Proceedings of the IEEE Virtual Reality 2003
(2003), pp. 71–71.

[LYO∗10] LEE Y., YOON S.-E., OH S., KIM D., CHOI S.:
Multi-resolution cloth simulation. Computer Graphics Forum 29,
7 (2010), 2225–2232.

[MC10] MÜLLER M., CHENTANEZ N.: Wrinkle meshes. In
Proceedings of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (2010), SCA ’10,
pp. 85–92.

[NSO12] NARAIN R., SAMII A., O’BRIEN J. F.: Adaptive
anisotropic remeshing for cloth simulation. ACM Trans. Graph.
31, 6 (Nov. 2012), 152:1–152:10.

[NVI13a] NVIDIA: cuBLAS: The NVIDIA CUDA Basic Linear
Algebra Subroutines library, https://developer.nvidia.com/cublas,
2013.

[NVI13b] NVIDIA: cuSparse: The NVIDIA CUDA Sparse
Matrix library, https://developer.nvidia.com/cusparse, 2013.

[PKS10] PABST S., KOCH A., STRASSER W.: Fast and scalable
CPU/GPU collision detection for rigid and deformable surfaces.
Computer Graphics Forum 29, 5 (2010), 1605–1612.

[Pro95] PROVOT X.: Deformation constraints in a mass-spring
model to describe rigid cloth behavior. In Proc. of Graphics
Interface (1995), pp. 147–154.

[Pro97] PROVOT X.: Collision and self-collision handling in
cloth model dedicated to design garments. In Graphics Interface
(1997), pp. 177–189.

[RNS06] RODRÍGUEZ-NAVARRO J., SUSÍN A.: Non structured
meshes for cloth GPU simulation using FEM. In VRIPHYS’06
(2006), pp. 1–7.

[Sea09] SEAN KALINICH: Havok show
OpenCL based Havok Cloth on ATI GPUs,
http://www.brightsideofnews.com/news/2009/3/27/
havok-show-opencl-based-havok-cloth-on-ati-gpus.aspx, 2009.

[SGG∗06] SUD A., GOVINDARAJU N., GAYLE R., KABUL I.,
MANOCHA D.: Fast proximity computation among deformable
models using discrete voronoi diagrams. ACM Trans. Graph. 25,
3 (July 2006), 1144–1153.

[SSIF09] SELLE A., SU J., IRVING G., FEDKIW R.: Robust
high-resolution cloth using parallelism, history-based collisions,
and accurate friction. IEEE Transactions on Visualization and
Computer Graphics 15, 2 (Mar. 2009), 339–350.

[TCYM09] TANG M., CURTIS S., YOON S.-E., MANOCHA
D.: ICCD: interactive continuous collision detection between
deformable models using connectivity-based culling. IEEE

Transactions on Visualization and Computer Graphics 15 (2009),
544–557.

[Tho03] THOMAS JAKOBSEN: Advanced character
physics, http://www.gamasutra.com/resource_guide/
20030121/jacobson_01.shtml, 2003.

[TMLT11] TANG M., MANOCHA D., LIN J., TONG R.:
Collision-streams: Fast GPU-based collision detection for
deformable models. In I3D ’11: Proceedings of the 2011 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games

(2011), pp. 63–70.

[TMT10a] TANG M., MANOCHA D., TONG R.: Fast continuous
collision detection using deforming non-penetration filters. In
I3D ’10: Proceedings of the 2010 ACM SIGGRAPH symposium

on Interactive 3D Graphics and Games (New York, NY, USA,
2010), ACM, pp. 7–13.

[TMT10b] TANG M., MANOCHA D., TONG R.: MCCD:
Multi-core collision detection between deformable models using
front-based decomposition. Graphical Models 72, 2 (2010),
7–23.

[TMY∗11] TANG M., MANOCHA D., YOON S.-E., DU P., HEO
J.-P., TONG R.: VolCCD: Fast continuous collision culling
between deforming volumemeshes. ACM Trans. Graph. 30 (May
2011), 111:1–111:15.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. SIGGRAPH Comput. Graph.
21, 4 (Aug. 1987), 205–214.

[VLMT08] VOLINO P., LUIBLE C., MAGNENAT-THALMANN
N.: Virtual clothing. InWiley Encyclopedia of Computer Science
and Engineering. 2008.

[VT94] VOLINO P., THALMANN N. M.: Efficient self-collision
detection on smoothly discretized surface animations using
geometrical shape regularity. Computer Graphics Forum 13, 3
(1994), 155–166.

[WHRO10] WANG H., HECHT F., RAMAMOORTHI R.,
O’BRIEN J.: Example-based wrinkle synthesis for clothing
animation. ACM Trans. Graph. 29, 4 (July 2010), 107:1–107:8.

[Zel06] ZELLER C.: Practical Cloth Simulation on Modern GPU.
Shader X4: Advanced Rendering with DirectX and OpenGL.
Charles River Media, 2006.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

