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Abstract—We present a novel k-nearest neighbor search
algorithm (KNNS) for proximity computation in motion
planning algorithm that exploits the computational capa-
bilities of many-core GPUs. Our approach uses locality sen-
sitive hashing and cuckoo hashing to construct an efficient
KNNS algorithm that has linear space and time complexity
and exploits the multiple cores and data parallelism effec-
tively. In practice, we see magnitude improvement in speed
and scalability over prior GPU-based KNNS algorithm.
On some benchmarks, our KNNS algorithm improves the
performance of overall planner by 20−40 times for CPU-
based planner and up to 2 times for GPU-based planner.

I. INTRODUCTION

Sampling-based motion planning algorithms are

widely used in robotics and related areas to compute

collision-free motion for the robots. These methods use

randomized technique to generate samples in the con-

figuration space and connect nearby samples using local

planning methods. A key component in these algorithms

is the computation of the k-nearest neighbors (KNN)

of each sample, which are defined based on a given

distance metric.

The problem of nearest neighbor computation has

been well studied in computational geometry, databases

and image-processing besides robotics. Some of the

well known algorithms are based on Kd-trees, bounding

volume hierarchies (BVHs), R-tree, X-trees, M-trees,

VP-trees, GNAT, iDistance, etc [18].

In this paper, we address the problem of k-nearest

neighbor search (KNNS) for realtime sampling-based

planning. Our work is based on recent developments

in motion planning that use the computational capabili-

ties of commodity many-core graphics processing units

(GPUs) for real-time motion planning [15]. The resulting

planner performs all the steps of sampling-based plan-

ning including sample generation, collision checking,
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nearest neighbor computation, local planning and graph

search using parallel algorithms. In practice, the overall

planning can be one or two orders of magnitude faster

than current CPU-based planners.

We present a novel algorithm for GPU-based nearest

neighbors computation. Our formulation is based on

locality sensitive hashing (LSH) and cuckoo hashing

techniques, which can compute approximate k-nearest

neighbors in higher dimensions. We present parallel

algorithms for LSH computation as well KNN compu-

tation that exploit the high number of cores and data

parallelism of the GPUs. Our approach can perform the

computation using Euclidean as well as non-Euclidean

distance metrics. Furthermore, it is memory efficient

and can handle millions of sample points within 1GB

memory of a commodity GPU. Our preliminary results

indicate that the novel KNNS algorithm can be faster by

one or two orders of magnitude than prior GPU-based

KNNS algorithms. This also improves the performance

of the GPU-based planner by 25−100% as compared to
gPlanner [15]. We highlight its performance on different

benchmarks.

The rest of the paper is organized as follows. We

survey related work in Section II. Section III gives an

overview of our motion planning framework. We de-

scribe the novel GPU-based parallel algorithm for KNN

computation in Section IV. We highlight its performance

on motion planning benchmarks in Section V.

II. RELATED WORK

In this section, we briefly survey the related work on

motion planning, nearest neighbor computation, locality

sensitive hashing as well as GPU-based algorithms.

A. Motion Planning

An excellent survey of various motion planning al-

gorithms is given in [13]. Most of the recent work is

based on randomized or sampling-based methods such

as PRMs and RRTs.

Many task planning applications need a real-time

motion planning algorithm for dynamic environments



with moving objects. Some approaches use application-

specific heuristics to accelerate the planners. Many par-

allel algorithms have also been proposed for real-time

motion planning that can be parallelized on multi-CPU

systems, such as [8], [3] etc.

B. k-Nearest Neighbor Search

k-nearest neighbor search (KNNS), also known as

proximity computation, is an optimization problem in

the metric space: given a set S of points in a d-

dimensional space M with metric ‖ · ‖p and a query

point q ∈ M, find the closest k points in S to q.

Various solutions to KNNS computation have been

proposed. Some of them are based on spatial data

structures, e.g. Kd-tree, and compute the exact k-nearest

neighbors efficiently when the dimension d is low (e.g.,

up to 10). However, these methods suffer from either

space or query time complexity that tends to grow as

an exponential function of d. For large enough d, these

methods may only provide little improvement over the

brute-force search algorithm that compares a query to

each point from S. Such phenomenon is called the curse

of dimensionality. Some other approaches tend to over-

come the difficulty by using approximate methods for

KNNS computation [4], [14], [1]. In these formulations,

the algorithm is allowed to return a point whose distance

from the query point is at most 1 + ǫ times the distance

from the query to its nearest points; ǫ > 1 is called the
approximation factor. The appeal of these approaches is

that in most cases an approximate nearest neighbor can

be almost as good as the exact one.

C. Locality Sensitive Hashing

Locality-sensitive hashing (LSH) is another popular

algorithm for approximate KNNS in high-dimensional

spaces [10]. The key idea is to hash the points in M
using several hashing functions to ensure that for each

function the probability of collision is much higher for

points that are close to each other than for those that are

far apart. One formal description is:

Ph∈F [h(x) = h(y)] ∝ sim(x,y), (1)

where h(·) is the hash function and belongs to the so
called locality-sensitive hash (LSH) function family F ;
x,y are two points in d-dimensional space; sim(·) is a
function to measure the similarity between x and y: for

KNNS large sim(x,y) means ‖x − y‖p, the distance

between x and y, is small. Different function families

F can be used for different metrics. Datar et al. [5]
proposed LSH families for l2 metric based on p-stable

distributions, where each hash function is defined as:

g(x) = 〈h1(x), h2(x), ..., hM (x)〉 (2)

hi(x) = ⌊
ai · x + bi

W
⌋ i = 1, 2, ...,M. (3)

In this case, ai is a d-dimensional random vector with

entries chosen independently from a normal distribution

N (0, 1) and bi is drawn uniformly from the range

[0,W ]. M and W are parameters used to control the

locality sensitivity of the hash function.

The KNNS search structure is a hash table: points

with the same hash values are pushed into the same

bucket of hash table. The query process is to scan

within the buckets which the query point is hashed to.

In order to improve the quality of KNNS, generally L

different hash functions gj(·), j = 1, ..., L are chosen
randomly from function family F . As a result, query
algorithm must perform repeatedly on all L hash tables.

LSH-based KNNS can perform one query in nearly

constant time, which means the nearest neighbor in

motion planning algorithm can be completed within

linear time complexity to the number of samples.

D. GPU-based Algorithms

Many-core GPUs have been used for many geometric

and scientific computations. The rasterization capabil-

ities of a GPU can be used for motion planning of

multiple low DOF robots [19], motion planning in

dynamic scenes [9] or improve the sample generation in

narrow passages [6], [16]. However, rasterization based

planning algorithms are accurate only to the resolution

of image-space.

The computational capabilities of many-core GPUs

have been exploited to improve KNNS. Garcia et al.

[7] describe an implementation of brute-force KNNS

on GPU. Recently, some efficient GPU-based algorithms

have been proposed to construct Kd-trees [20]. Pan et

al. [15] propose a new approach to compute KNNS in

low-dimensional space, which is based on the collision

operations between bounding volume hierarchies (BVH)

on GPU [12], [11].

III. OVERVIEW

In this section, we give an overview of the GPU-

based motion planning framework, which is relatively

easy to parallelize and can be used for single-query and

multiple-query problems.

Our work is built on GPU-based sample-based plan-

ning algorithm called gPlanner [15]. We choose PRM as

the underlying motion planning algorithm, because it is

more suitable to exploit the multiple cores and data par-

allelism on GPUs. The PRM algorithm is composed of

several steps and each step performs similar operations

on the input samples or the links joining those samples.



Fig. 1. Overview of the GPU-based real-time planner [15].

The PRM algorithm has two phases: roadmap con-

struction and query phase, whose basic flowchart is

shown in the left part of Fig 1. We use a many-core

GPU to improve the performance of each component

significantly and the framework for the overall GPU-

based planner is shown in the right side of Fig 1.

We first use MD5 cryptographic hash function to

generate random samples for each thread independently.

For each sample generated, we need to check whether

it is a milestone, i.e. does not collide with the obstacles

using BVH trees [12] and exploit GPU parallelism [11].

For each milestone, we perform KNN query to find

its nearest neighbors. Pan et al. [15] used parallel KNNS

based on BVH collision, which is effective but has

three drawbacks: 1) it is difficult to extend to high-

dimensional cases; 2) it provides no theory guarantee

for the timing performance; 3) it is difficult to control

the approximation level of the nearest neighbors it

computed. Instead, we use the LSH-based KNNS to

overcome these difficulties.

Once the roadmap is constructed by local planning,

we connect initial-goal configurations in one query to

the roadmap, using similar algorithms as the KNN query.

Finally we perform a parallel graph search on roadmap

to obtain a collision-free path.

For more details about motion planning framework on

GPU, please refer to [15].

IV. LSH-BASED KNNS ON GPUS

In this section, we present our GPU-based algorithm

for LSH based KNNS computation. We compute the

nearest neighbors for n milestones {qi}n
i=1
in the d-

dimensional configuration space M. The algorithm in-
cludes two steps: parallel LSH computation and parallel

KNNS computation. We first compute the LSH value for

each milestone and then search for the nearest neighbor

in the milestones with the same LSH value.

A. Parallel LSH Computation

In this step, each GPU thread computes the LSH value

for one milestone q. We assume thatM is an Euclidean

space with weighted l2 metric: ‖q‖λ = (
∑d

i=1
q2

i λ2

i )
1/2,

where λ is the weight vector. We will discuss how to

handle non-Euclidian case in Section IV-D.

The LSH function for weighted Euclidean space is

similar to Equ 2 and 3, except that we need to consider

the weight function as LSH only handles l2 metric:

gλ(x) = 〈hλ
1
(x), hλ

2
(x), ..., hλ

M (x)〉 (4)

hλ
i (x) = ⌊

ai · x̂ + bi

W
⌋, i = 1, 2, ...,M (5)

where x̂ = [x1λ1, ..., xdλd]. q will be stored in an

indexing table T with the computed gλ(q) as indexing
key. For notational convenience, thereafter we denote

gλ(·), hλ(·) simply by g(·) and h(·).

B. Parallel KNNS

In this step, each GPU thread computes the k-nearest

neighbor of one milestone q. First, the LSH value g1(q)
is calculated and we use it as the key to find the bucket

in indexing table T1 that q is located in. Then we search

within the bucket to find the k nearest neighbors of q.

Usually the size of each bucket is quite small and the

overall process is fast. We repeat the above process L

times to handle all the L tables T1, T2, ..., TL and the

final result is the approximate k-nearest neighbor for q.

C. Bucket Hashing

The indexing table T can be a M -dimensional grid

which covers the domain of LSH function g(·). How-
ever, T can be quite sparse and the range of g(·) can
be too large to store all the possible buckets explicitly.

Therefore we need to use algorithms to store these LSH

values in a compressed form. To this end, we use a

secondary bucket hashing which includes two levels of

hashing operations: a universal hashing (line 8 in Algo 1)

and a cuckoo hashing (line 9-16 in Algo 1).

First, we hash the LSH values once more with a

universal hash function:

hu(g(·)) =

M∑

i=1

ri · hi(·), (6)

where ri is an integer chosen uniformly in [0, 32768)
and hi(·) is the function defined in Equ 5. For all the n

milestones, we can compute {hu(g(qi))}
n
i=1
in parallel.

The function hu reduces the M -dimensional indexing

key into a one-dimension entity. We denote the hash

value hu(g(qi)) as ki.



Algorithm 1: Parallel KNNS algorithm on GPU

Input : milestones {q}, neighbor size k

Output: k-nearest neighbor of each milestone

begin1

foreach q ∈ milestones in parallel do2

allocate memory size of k and attached3

with a max-heap heap[q]
heap[q] as q’s neighbor cache4

for i = 1 to L do5

foreach q ∈ milestones in parallel do6

compute LSH keys:7

g(q) = 〈h1(q), ..., hM (q)〉
compute bucket hashing keys:8

hu(q) ≡ hu(g(q))

KM = {(hu(q),q)}, the array of9

key-milestone pairs

perform parallel radix sort on KM10

according to key

perform parallel difference on KM11

perform parallel prefix sum on KM to12

determine N unique keys Ta

for i-th unique key Ta[i] do13

compute the start index in KM: start[i]14

compute the number of the key in KM:15

count[i]

Ti ≡ Tb =16

cuckoo-hashing({(Ta[i], i)}N
i=1
)

foreach (key,q) ∈ KM do17

id = hash-lookup(Tb)18

S = [start[id], start[id] + count[id])19

for x ∈ S do20

add KM[x].q to heap[q]21

The k elements in heap[q] is the KNN for q22

end23

Next we use radix sorting to sort the array of n key-

point pairs (ki,qi) according to key value. After that, we
perform difference operation on the sorted result and use

parallel prefix-sum scan on GPU to find the unique items

within the n keys. Suppose there are N unique keys

and we store them in an array Ta. For the i-th unique

key Ta[i], we can compute the start index start[i] and
the size count[i] for the segment in sorted key-point
sequence that corresponds to it.

N can still be quite large (> 10, 000) which makes it
time consuming to find the index for a given key in the

array Ta. We further store the key-index pair (ui, i) in
a hash table to accelerate the index lookup for a given

key. We use the parallel cuckoo hashing [2] to build

the second level indexing structure Tc. Cuckoo hashing

places at most one item at each location in the hash

table by allowing items to be moved after their initial

placement. It stores the key-index pairs in f hash sub-

tables (f ≥ 3).
KNNS process based on the two-level indexing struc-

ture Ta and Tc is very efficient. Given a query q, we

compute its bucket hashing value k according to Equ 6.

Then using k as hash key, we can find the index id for

k in at most f (i.e. the number of sub-tables) checks.

Then the segment [start[id], start[id] + count[id]) in
the resorted key-point sequence is the bucket for the

nearest neighbors of q. (It is possible that the bucket

contains points with different LSH values with q but has

the same bucket hashing value. However, we can simply

filter these items by computing the hamming distance

between the LSH value of q and theirs.)

Algo 1 shows the detail for parallel LSH computation,

parallel KNNS and bucket hashing.

D. Non-Euclidean Metrics

Generally, LSH is difficult to extend to non-Euclidean

metric. However, we can handle rotational DOFs using

two level LSH-hashing.

First, we use the algorithm in Section IV-A and

Section IV-B to handle translational DOFs, but we use

a large W so as for each configuration the number of

returned nearest neighbors is much larger than K.

Next for one spherical joint, we can compute the

direction vector based on the 3 rotational DOFs (Euler
anglers). For all the n samples, we can have n dim-3
vectors x1, ...,xn, where ‖xi‖2 = 1. It is known that for
vectors on unit sphere, the following relationship holds:

P(sign(x · r) = sign(y · r)) = 1−
1

π
cos−1(x · y), (7)

where r is a uniform generated vector. According to its

similarity with Equ 1, we can use following function as

the locality sensitive function:

h(x) =

{
1, if r · x ≥ 0
0, otherwise

(8)

For each joint, we can choose M different r and

thusM different functions hi(·), i = 1, 2, ...,M . Similar

to Equ 2, we compose them in to LSH function g(·).
The LSH function for all m spherical joints are the

composition of m different g(·). Then we can perform
the KNNS similar to Section IV-A and Section IV-B.

Of course, this method uses angle-based metric, which

is different from the local l2 metric used in the first

method. As a result, the KNNS results of the two

methods may be different.



V. IMPLEMENTATION AND RESULTS

In this section, we present some details of the imple-

mentation and highlight the performance of our algo-

rithm on a set of benchmarks. All the timings reported

here were taken on a machine using a Intel Core2 CPU

at 3.2GHz CPU and 6GB memory. We implemented our

algorithms using CUDA on a NVIDIA GTX 285 GPU

with 1GB of video memory.

We implement a motion planning algorithm using our

LSH-based KNNS as the proximity computation com-

ponent and compare it with previous motion planning

algorithms implemented on CPU (OOPSMP library [17],

PRM and RRT, use GNAT for KNNS) and GPU ([15],

PRM and lazy PRM, use BVH for KNNS). The result

is shown in Table I and the collision free paths for two

benchmarks computed by our algorithm are shown in

Fig 2. The comparison shows several things: 1) Our

method improves KNNS’s performance on GPU; 2)

LSH-based KNNS can capture the connectivity of the

configuration space; 3) LSH-based KNNS can improve

the overall performance of motion planning algorithm,

because it can provide high-quality nearest neighbor

which can reduce the computational complexity in CCD.

We further compare the scalability of LSH and BVH

based KNNS and the result is shown in Fig 5. When

the number of points is small, the performances of

LSH- and BVH-based KNNS are similar. However,

when the number of points increases, the performance of

BVH-based KNNS reduces much faster than LSH-based

KNNS: BVH-based KNNS has superlinear complexity

while LSH-based KNNS is linear complexity. Moreover,

in Fig 5 there is no timing result for BVH-based KNNS

when the number of samples is larger than 40, 000,
because our GPU can not allocate enough memory for

BVH-tree for so many samples. Therefore, it also shows

that LSH-based KNNS has smaller space complexity

than BVH-based KNNS.

Finally, we analyze the accuracy of our algorithm.

Fig 3 compares the KNNS quality between LSH- and

BVH-based methods. We use two criteria to evaluate

any approximate KNNS’s quality: rmax

r0
max

and rmin

r0
max

, where

rmin and rmax are the minimum and maximum distance

between the query point and the k-nearest neighbor

points returned by the algorithm and r0

max is the distance

of the exact k-th nearest point to the query point. From

this comparison, we can see that LSH-based KNNS

provides much better result in terms of approximate

KNNS computation. We also show how LSH’s L pa-

rameter influences the quality of KNNS in Fig 4. For

each query point, we compute the intersection part of

its neighborhoods computed by LSH-based KNNS and

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

number of samples

ti
m

in
g
(m

s
)

 

 
BVH piano

BVH helicopter

LSH piano

LSH helicopter

Fig. 5. The scalability of BVH-and LSH-based KNNS. BVH-based
KNNS does not have timing when sample number is larger than
40, 000 because GPU can not allocate enough memory for BVH-tree.

exact KNNS. Fig 4 shows that when L grows, more

query points have a large intersection set, which means

the quality of KNNS is increasing.

VI. CONCLUSIONS

In this paper, we have introduced an efficient k-

nearest neighbor search algorithm on GPU. Based on

local sensitive hashing and cuckoo hashing techniques,

our novel algorithm can provide nearest neighbors with

faster speed, high accuracy and better scalability, when

comparing with previous BVH-based algorithms. It can

also be used as the component of GPU-based motion

planning algorithm and can improve the overall perfor-

mance of planner significantly.
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