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Abstract

We present parallel algorithms to accelerate collision queries for
sample-based motion planning. Our approach is designed for
current many-core GPUs and exploits data-parallelism and multi-
threaded capabilities. In order to take advantage of high num-
bers of cores, we present a clustering scheme and collision-packet
traversal to perform efficient collision queries on multiple config-
urations simultaneously. Furthermore, we present a hierarchical
traversal scheme that performs workload balancing for high paral-
lel efficiency. We have implemented our algorithms on commodity
NVIDIA GPUs using CUDA and can perform 500, 000 collision
queries per second on our benchmarks, which is 10X faster than
prior GPU-based techniques. Moreover, we can compute collision-
free paths for rigid and articulated models in less than 100 mil-
liseconds for many benchmarks, almost 50-100X faster than current
CPU-based PRM planners.

1 Introduction

Motion planning is one of the fundamental problems in algorith-
mic robotics. The goal is to compute collision-free paths for
robots in complex environments. Some of the widely used algo-
rithms for high-DOF (degree-of-freedom) robots are based on ran-
domized sampling. These include planning algorithms based on
PRMs [Kavraki et al. 1996] and RRTs [Kuffner and LaValle 2000].
These methods tend to approximate the topology of the free config-
uration space of the robot by generating a high number of random
configurations and connecting nearby collision-free configurations
(i.e. milestones) using local planning methods. The resulting al-
gorithms are probabilistically complete and have been successfully
used to solve many challenging motion planning problems.

In this paper, we address the problem of designing fast and almost
real-time planning algorithms for rigid and articulated models. The
need for such algorithms arises not only from virtual prototyping
and character animation, but also task planning for physical robots.
Current robots (e.g. Willow Garage’s PR2) tend to use live sen-
sor data to generate a reasonably accurate model of the objects in
the physical world. Some tasks, such as robot navigation or grasp-
ing, need to compute a collision-free path for the manipulator in
real-time to handle dynamic environments. Moreover, many high-
level task planning algorithms perform motion planning and sub-
task execution in an interleaved manner, i.e. the planning result of
one subtask is used to construct the formulation of the following
subtasks [Talamadupula et al. 2009]. A fast and almost real-time
planning algorithm is important for these applications.

It is known that a significant fraction (e.g. 90% or more) of ran-
domized sampling algorithms is spent in collision checking. This
includes checking whether a given configuration is in free-space or
not as well as connecting two free-space configurations using a lo-
cal planning algorithm. While there is extensive literature on fast
intersection detection algorithms, some of the recent planning algo-
rithms are exploiting the computational power and massive paral-
lelism of commodity GPUs (graphics processing units) for almost
real-time computation [Pan et al. 2010b; Pan et al. 2010a]. Current
GPUs are high-throughput many-core processors, which offer high
data-parallelism and can simultaneously execute a high number of

threads. However, they have a different programming model and
memory hierarchy as compared to CPUs. As a result, we need to
design appropriate parallel collision and planning algorithms that
can map well to GPUs.

Main Results: We present a novel, parallel algorithm to perform
collision queries for sample-based motion planning. Our approach
exploits parallelism at two levels: it checks multiple configurations
simultaneously (whether they are in free space or not) and performs
parallel hierarchy traversal for each collision query. Similar tech-
niques are also used for local planning queries. We use clustering
techniques to appropriately allocate the collision queries to differ-
ent cores, Furthermore, we introduce the notion of collision-packet
traversal, which ensures that all the configurations allocated to a
specific core result in similar hierarchical traversal patterns. The re-
sulting approach also exploits fine-grained parallelism correspond-
ing to bounding volume overlap tests to balance the workload.

The resulting algorithms have been implemented on commodity
NVIDIA GPUs. In practice, we are able to process about 500, 000
collision queries per second on a $400 NVIDIA GeForce 480 desk-
top GPU, which is almost 10X faster than prior GPU-based colli-
sion checking algorithms. We also use our collision checking al-
gorithm for GPU-based motion planners of high-DOF rigid and ar-
ticulated robots. The resulting planner can compute collision-free
paths in less than 100 milliseconds for various benchmarks and ap-
pears to be 50-100X faster than CPU-based PRM planners.

The rest of the paper is organized as follows. We survey related
work on real-time motion planning and collision detection algo-
rithms in Section 2. Section 3 gives an overview of our approach
and we present parallel algorithm for collision queries in Section 4.
We highlight the performance of our algorithm on different bench-
marks in Section 5. A preliminary version of this work was pre-
sented in [Pan and Manocha 2011].

2 Previous Work

In this section, we give a brief overview of prior work in real-time
motion planning and parallel algorithms for collision detection.

2.1 Real-time Motion Planning

An excellent survey of various motion planning algorithms is given
in [LaValle 2006]. Many parallel algorithms have also been pro-
posed for motion planning by utilizing the properties of configura-
tion spaces [Lozano-Perez and O’Donnell 1991]. The distributed
representation [Barraquand and Latombe 1991] can be easily paral-
lelized. In order to deal with high dimensional or difficult plan-
ning problems, distributed sampling-based techniques have been
proposed [Plaku et al. 2007].

The computational power of many-core GPUs has been used for
many geometric and scientific computations [Owens et al. 2007].
The rasterization capabilities of a GPU can be used for real-time
motion planning of low DOF robots [Hoff et al. 2000; Sud et al.
2007] or improve sample generation in narrow passages [Pisula
et al. 2000; Foskey et al. 2001]. Recently, GPU-based parallel mo-
tion planning algorithms have been proposed for rigid models [Pan
et al. 2010b; Pan et al. 2010a].



2.2 Parallel Collision Queries

Some of the widely used algorithms for collision checking are
based on bounding volume hierarchies (BVH), such as k-DOP
trees, OBB trees, AABB trees, etc [Lin and Manocha 2004]. Recent
developments include parallel hierarchical computations on multi-
core CPUs [Kim et al. 2009; Tang et al. 2010] and GPUs [Lauter-
bach et al. 2010]. CPU-based approaches tend to rely on fine-
grained communication between processors, which is not suited for
current GPU-like architectures. On the other hand, GPU-based al-
gorithms [Lauterbach et al. 2010] use work queues to parallelize
the computation on multiple cores. All of these approaches are pri-
marily designed to parallelize a single collision query.

The capability to efficiently perform high numbers of collision
queries is essential in motion planning algorithms, e.g. multi-
ple collision queries in milestone computation and local planning.
Some of the prior algorithms perform parallel queries in a simple
manner: each thread handles a single collision query in an indepen-
dent manner [Pan et al. 2010b; Pan et al. 2010a; Amato and Dale
1999; Akinc et al. 2005]. Since current multi-core CPUs have the
capability to perform multiple-instruction multiple-data (MIMD)
computations, these simple strategies can work well on CPUs. On
the other hand, current GPUs offer high data parallelism and the
ability to execute a high number of threads in parallel to overcome
the high memory latency. As a result, we need new parallel colli-
sion detection algorithms to fully exploit their capabilities.

3 Overview

In this section, we first provide some background on current GPU
architectures. Next, we address some issues in designing efficient
parallel algorithms to perform collision queries.

3.1 GPU Architectures

In recent years, the focus in processor architectures has shifted
from increasing clock rate to increasing parallelism. Commodity
GPUs such as NVIDIA Fermi1 have theoretical peak performance
of Tera-FLOP/s for single precision computations and hundreds of
Giga-FLOP/s for double precision computations. This peak per-
formance is significantly higher as compared to current multi-core
CPUs, thus outpacing CPU architectures [Lindholm et al. 2008] at
relatively modest cost of $400 to $500. However, GPUs have dif-
ferent architectural characteristics and memory hierarchy, that im-
pose some constraints in terms of designing appropriate algorithms.
First, GPUs usually have a high number of independent cores (e.g.
the newest generation GTX 480 has 15 cores and each core has
32 streaming processors resulting in total of 480 processors while
GTX 280 has 240 processors). Each of the individual cores is a vec-
tor processor capable of performing the same operation on several
elements simultaneously (e.g. 32 elements for current GPUs). Sec-
ondly, the memory hierarchy on GPUs is quite different from that
of CPUs and cache sizes on the GPUs are considerably smaller.
Moreover, each GPU core can handle several separate tasks in par-
allel and switch between different tasks in the hardware when one
of them is waiting for a memory operation to complete. This hard-
ware multithreading approach is thus designed to hide the mem-
ory access latency. Thirdly, all GPU threads are logically grouped
in blocks with a per-block high-speed shared memory, which pro-
vides a weak synchronization capability between the GPU cores.
Overall, shared memory is a limited resource on GPUs: increas-
ing the shared memory distributed for each thread can limit the ex-

1http://www.nvidia.com/object/fermi_
architecture.html

tent of parallelism. Finally, multiple GPU threads are physically
managed and scheduled in the single-instruction, multiple-thread
(SIMT) way, i.e. threads are grouped into chunks and each chunk
executes one common instruction at a time. In contrast to single-
instruction multiple-data (SIMD) schemes, the SIMT scheme al-
lows each thread to have its own instruction address counter and
register state, and therefore, freedom to branch and execute inde-
pendently. However, the GPU’s performance can reduce signifi-
cantly when threads in the same chunk diverge considerably, be-
cause these diverging portions are executed in a serial manner for
all the branches. As a result, threads with coherent branching de-
cisions (e.g. threads traversing the same paths in the BVH) are
preferred on GPUs in order to obtain higher performance [Gunther
et al. 2007]. All of these characteristics imply that – unlike CPUs
– achieving high performance in current GPUs depends on several
factors:

1. Generating a sufficient number of parallel tasks so that all the
cores are highly utilized.

2. Developing parallel algorithms such that the total number of
threads is even higher than the number of tasks, so that each
core has enough work to perform while waiting for data from
relatively slow memory accesses.

3. Assigning appropriate size for shared memory to accelerate
memory accesses and not reduce the level of parallelism.

4. Performing coherent or similar branching decisions for each
parallel thread within a given chunk.

These requirements impose constraints in terms of designing ap-
propriate collision query algorithms.

3.2 Notation and Terminology

We define some terms and highlight the symbols used in the rest of
the paper.

chunk The minimum number of threads that GPUs manage,
schedule and execute in parallel, which is also called warp
in the GPU computing literature. The size of chunk (chunk-
size or warp-size) is 32 on current NVIDIA GPUs (e.g. GTX
280 and 480).

block The logical collection of GPU threads that can be executed
on the same GPU core. These threads synchronize by using
barriers and communicate via a small high-speed low-latency
shared memory.

BVHa The bounding volume hierarchy (BVH) tree for model a.
It is a binary tree with L levels, whose nodes are ordered
in the breadth-first order starting from the root node. The i-
th BVH node is denoted as BVHa[i] and its children nodes
are BVHa[2i] and BVHa[2i + 1] with 1 ≤ i ≤ 2L−1 − 1.
The nodes at the l-th level of a BVH tree are represented as
BVHa[k], 2l ≤ k ≤ 2l+1 − 1 with 0 ≤ l < L. The in-
ner nodes are also called bounding volumes (BV) and the leaf
nodes also have a link to the primitive triangles that are used
to represent the model.

BVTTa,b The bounding volume test tree (BVTT) represents re-
cursive collision query traversal between two objects a, b. It
is a 4-ary tree, whose nodes are ordered in the breadth-first
order starting from the root node. The i-th BVTT node is
denoted as BVTTa,b[i] ≡ (BVHa[m], BVHb[n]) or simply
(m,n), which checks the BV or primitive overlap between
nodes BVHa[m] and BVHb[n]. Here m = bi− 4M+2

3
c+2M ,

n = {i − 4M+2
3
} + 2M and M = blog4(3i − 2)c, where



A

B C

D

E F BE CF

AD

BE CE



(a) Two BVH trees (b) BVTT tree

Figure 1: BVH and BVTT: (a) shows two BVH trees and (b) shows
the BVTT tree for the collision checking between the two BVH trees.

{x} = x−bxc. BVTT node (m,n)’s children are (2m, 2n),
(2m, 2n + 1), (2m + 1, 2n), (2m + 1, 2n + 1).

q A configuration of the robot, which is randomly sampled within
the configuration space C-Space. q is associated with the
transformation Tq. The BVH of a model a after applying
such a transformation is given as BVHa(q).

The relationship between BVH trees and BVTT is also shown in
Figure 1. Notice that given the BVHs of two geometric models,
the BVTT is completely determined using those BVHs and is in-
dependent of the actual configuration of each model. The model
configurations only affect the actual traversal path of the BVTT.

3.3 Collision Queries: Hierarchical Traversal

Collision queries between the geometric models are usually accel-
erated with hierarchical techniques based on BVHs, which corre-
spond to traversing the BVTT [Larsen et al. 2000]. The simplest
parallel algorithms used to perform multiple collision queries are
based on each thread traversing the BVTT for one configuration
and checking whether the given configuration is in free space or
not. Such a simple parallel algorithm is highlighted in Algorithm 1.
This strategy is easy to implement and has been used in previ-
ous parallel planning algorithms based on multi-core or multiple
CPUs. But it may not result in high parallel efficiency on current
GPUs due to the following reasons. First, each thread needs a lo-
cal traversal stack for the BVTT. The stack size should be at least
3(log4(Na) + log4(Nb))) to avoid stack overflow, where Na and
Nb are the numbers of primitive triangles of BVHa and BVHb, re-
spectively. The stack can be implemented using global memory
or shared memory. Global memory access on the GPUs tends to
be slow, which affects BVTT traversal. Shared memory access is
much faster but it may be too small to hold the large stack for com-
plex geometric models composed of thousands of polygons. More-
over, increasing the shared memory usage will limit the extent of
parallelism. Second, different threads may traverse the BVTT tree
with incoherent patterns: there are many branching decisions per-
formed during the traversal (e.g. loop, if, return in the pseudo-
code) and the traversal flow of the hierarchy in different threads
diverges quickly. Finally, different threads can have varying work-
loads; some may be busy with the traversal while other threads may
have finished the traversal early and are idle because there is no BV
overlap or a primitive collision has already been detected. These
factors can affect the performance of the parallel algorithm.

The problems of low parallel efficiency in Algorithm 1 become
more severe in complex or articulated models. For such models,
there are longer traversal paths in the hierarchy and the difference
between the length of these paths can be large for different con-
figurations of a robot. As a result, differences in the workloads of
different threads can be high. For articulated models, each thread
checks the collision status of all the links and stops when a colli-
sion is detected for any link. Therefore, more branching decisions
are performed within each thread and this can lead to more incoher-

Algorithm 1 Simple parallel collision checking; such approaches
are widely used on multi-core CPUs

1: Input: N random configurations {qi}Ni=1, BVHa for the robot
and BVHb for the obstacles

2: Output: return whether one configuration is in free space or not
3: tid ← thread id of the current thread
4: q← qtid

5: C traversal stack S[] is initialized with root nodes
6: shared/global S[] ≡ local traversal stack
7: S[]←BVTT[1] ≡ (BVHa(q)[1],BVHb[1])
8: C traverse BVTT for BVHa(q) and BVHb

9: loop
10: (x, y)← pop(S).
11: if overlap(BVHa(q)[x],BVHb[y]) then
12: if !isLeaf(x) && !isLeaf(y) then
13: S[] ← (2x, 2y), (2x, 2y + 1), (2x + 1, 2y), (2x +

1, 2y + 1)
14: end if
15: if isLeaf(x) && !isLeaf(y) then
16: S[]← (2x, 2y), (2x, 2y + 1)
17: end if
18: if !isLeaf(x) && isLeaf(y) then
19: S[]← (2x, 2y), (2x + 1, 2y)
20: end if
21: if isLeaf(x) && isLeaf(y)&&

exactIntersect(BVHa(q)[x],BVHb[y]) then
22: return collision
23: end if
24: end if
25: end loop
26: return collision-free

ent traversal. Similar issues also arise during local planning when
each thread determines whether two milestones can be joined by a
collision-free path by checking for collisions along the trajectory
connecting them.

4 Parallel Collision Detection on GPUs

In this section, we present two novel algorithms for efficient paral-
lel collision checking on GPUs between rigid or articulated mod-
els. Our methods can be used to check whether a configuration lies
in the free space or to perform local planning computations. The
first algorithm uses clustering techniques and fine-grained packet-
traversal to improve the coherence of BVTT traversal for different
threads. The second algorithm uses queue-based techniques and
lightweight workload balancing to achieve higher parallel perfor-
mance on the GPUs. In practice, the first method can provide 30%-
50% speed up. Moreover, it preserves the per-thread per-query
structure of the naive parallel strategy. Therefore, it is easy to im-
plement and is suitable for cases where we need to perform some
additional computations (e.g. retraction for handling narrow pas-
sages [Zhang and Manocha 2008]). The second method can provide
5-10X speed up, but is relatively more complex to implement.

4.1 Parallel Collision-Packet Traversal

Our goal is to ensure that all the threads in a block performing
BVTT-based collision checking have similar workloads and coher-
ent branching patterns. This approach is motivated by recent de-
velopments related to interactive ray-tracing on GPUs for visual
rendering. Each collision query traverses the BVTT and performs
node-node or primitive-primitive intersection tests. In contrast, ray-
tracing algorithms traverse the BVH tree and perform ray-node or



ray-primitive intersections. Therefore, parallel ray-tracing algo-
rithms on GPUs also need to avoid incoherent branches and varying
workloads to achieve higher performance.

In real-time ray tracing, one approach to handle the varying work-
loads and incoherent branches is the use of ray-packets [Gunther
et al. 2007; Aila and Laine 2009]. In ray-tracing terminology,
packet traversal implies that a group of rays follow exactly the
same traversal path in the hierarchy. This is achieved by sharing the
traversal stack (similar to the BVTT traversal stack in Algorithm 1)
among the rays in the same warp-sized packet (i.e. threads that fit
in one chunk on the GPU), instead of each thread using an indepen-
dent stack for a single ray. This implies that some additional nodes
in the hierarchy may be visited during ray intersection tests, even
though there are no intersections between the rays and those nodes.
But the resulting traversal is coherent for different rays, because
each node is fetched only once per packet. In order to reduce the
number of computations (i.e. unnecessary node intersection tests),
all the rays in one packet should be similar to one another, i.e. have
similar traversal paths with few differing branches. For ray trac-
ing, the packet construction is simple: as shown in Figure 2, rays
passing through the same pixel on the image space make a natural
packet. We extend this idea to parallel collision checking and refer
to our algorithm as multiple configuration-packet method.

Ray Packet 1

Ray Packet 2

Camera

Image Space
pixel

Figure 2: Ray packets for faster ray tracing. Nearby rays con-
stitute a ray packet and this spatial coherence is exploited for fast
intersection tests.

The first challenge is to cluster similar collision queries or the con-
figurations into groups, because unlike ray tracing, there are no nat-
ural packet construction rules for collision queries. In some cases,
the sampling scheme (e.g. the adaptive sampling for lazy PRM)
can provide natural group partitions. However, in most cases we
need suitable algorithms to compute these clusters. Clustering al-
gorithms are natural choices for such a task, which aims at partition-
ing a set X of N data items {xi}Ni=1 into K groups {Ck}Kk=1 such
that the data items belonging to the same group are more “similar”
than the data items in different groups. The clustering algorithm
used to group the configurations needs to satisfy some additional
constraints: |Ck| = chunk-size, 1 ≤ k ≤ K. That is, each clus-
ter should fit in one chunk on GPUs, except for the last cluster and
K = d N

chunk-sizee. Using the formulation of k-means, the clustering
problem can be formally described as:

Compute K = d N
chunk-sizee items {ck}Kk=1 that minimizes

N∑
i=1

K∑
k=1

1xi∈Ck‖xi − ck‖, (1)

with constraints |Ck| = chunk-size, 1 ≤ k ≤ K. To our knowl-
edge, there are no clustering algorithms designed for this specific
problem. One possible solution is to use clustering with balanc-
ing constraints [Banerjee and Ghosh 2006], which has additional
constraints |Ck| ≥ m, 1 ≤ k ≤ K, where m ≤ N

K
.

Figure 3: Multiple configuration packet for parallel collision de-
tection. Green points are random configuration samples in C-space.
Grey areas are C-obstacles. Configurations adjacent in C-space are
clustered into configuration packets (red circles). Some packets are
completely in free space; some packets are completely within C-
obstacles; some packets are near boundaries of C-obstacles. Con-
figurations in the same packet have similar BVTT traversal paths
and are mapped to the same warp on a GPU.

Instead of solving Equation (1) exactly, we use a simpler clustering
scheme to compute an approximate solution. First, we use k-means
algorithm to cluster the N queries into C clusters, which can be
implemented efficiently on GPUs [Che et al. 2008]. Next, for k-th
cluster of size Sk, we divide it into d Sk

chunk-sizee sub-clusters, each of
which corresponds to a configuration-packet. This simple method
has some disadvantages. For example, the number of clusters is

C∑
k=1

d Sk

chunk-size
e ≥ K = d N

chunk-size
e

and therefore Equation (1) may not result in an optimal solution.
However, as shown later, even this simple method can improve the
performance of parallel collision queries. The configuration clus-
tering method is illustrated in Figure 3.

Next we map each configuration-packet to a single chunk. Threads
within one packet will traverse the BVTT synchronously, i.e. the
algorithm works on one BVTT node (x, y) at a time and processes
the whole packet against the node. If (x, y) is a leaf node, an exact
intersection test is performed for each thread. Otherwise, the algo-
rithm loads its children nodes and tests the BVs for overlap to deter-
mine the remaining traversal order, i.e. to select one child (xm, ym)
as the next BVTT node to be traversed for the entire packet. We se-
lect (xm, ym) in a greedy manner: it corresponds to the child node
that is classified as overlapping by most threads in the packet. We
also push other children into the packet’s traversal stack. In case
no BV overlap is detected in all the threads or (x, y) is a leaf node,



(xm, ym) would be the top element in the packet’s traversal stack.
The traversal step is repeated recursively, until the stack is empty.
Compared to Algorithm 1, all the threads in one chunk share one
traversal stack in shared memory, instead of using one stack for
each thread. Therefore, the size of shared memory used is reduced
by the chunk-size and results in higher parallel efficiency. The de-
tails of the traversal order decision rule is shown in Figure 4.

The traversal order described above is a greedy heuristic that tries
to minimize the traversal path of the entire packet. For one BVTT
node (x, y), if the overlap is not detected in any of the threads, it
implies that these threads will not traverse the sub-tree rooted at
(x, y). Since all the threads in the packet are similar and traverse
the BVTT in nearly identical order, this implies that other threads
in the same packet might not traverse the sub-tree either. We define
the probability that the sub-tree rooted at (x, y) will be traversed by
one thread as

px,y =
number of overlap threads

packet-size
.

For any traversal pattern P for BVTT, the probability that it is car-
ried on by BVTT traversal will be

pP =
∏

(x,y)∈P

px,y.

As a result, our new traversal strategy guarantees that the traversal
pattern with higher traversal probability will have a shorter traversal
length, and therefore minimizes the overall path for the packet.

The decision about which child node is the candidate for next
traversal step is computed using sum reduction [Harris 2009],
which can compute the sum of n items in parallel with O(log(n))
complexity. Each thread writes a 1 in its own location in the shared
memory if it detects overlap in one child and 0 otherwise. The
sum of the memory locations is computed in 5 steps for a size
32 chunk. The packet chooses the child node with the maximum
sum. The complete algorithm for configuration-packet computa-
tion is described in Algorithm 2.

4.2 Parallel Collision Query with Workload Balancing

Both Algorithm 1 and Algorithm 2 use the per-thread per-query
strategy, which is relatively easy to implement. However, when the
idle threads wait for busy threads or when the execution path of
threads diverges, the parallel efficiency on the GPUs reduces. Al-
gorithm 2 can alleviate this problem in some cases, but it still dis-
tributes the tasks among the separate GPU cores and cannot make
full use of the GPU’s computational power.

In this section, we present the parallel collision query algorithm
based on workload balancing which further improves the perfor-
mance. In this algorithm, the task of each thread is no longer one
complete collision query or continuous collision query (for local
planning). Instead, each thread only performs BV overlap tests. In
other words, the unit task for each thread is distributed in a more
fine-grained manner. Basically, we formulate the problem of per-
forming multiple collision queries as a pool of BV overlap tests
which can be performed in parallel. It is easier to distribute these
fine-grained tasks in a uniform manner onto all the GPU cores,
thereby balancing the load among them, than to distribute the colli-
sion query tasks.

All the tasks are stored in large work queues in GPU’s main mem-
ory, which has a higher latency compared to the shared memory.
When computing a single collision query [Lauterbach et al. 2010],
the tasks are in the form of BVTT nodes (x, y). Each thread will

Algorithm 2 Multiple Configuration-Packet Traversal

1: Input: N random configurations {qi}Ni=1, BVHa for the robot
and BVHb for the obstacles

2: tid ← thread id of current thread
3: q← qtid

4: shared CN []≡ shared memory for children node
5: shared TS[]≡ local traversal stack
6: shared SM []≡ memory for sum reduction

7: if overlap(BVHa(q)[1], BVHb[1]) is false for all threads in
chunk then

8: return
9: end if

10: (x, y) = (1, 1)
11: loop
12: if isLeaf(x) && isLeaf(y) then
13: if exactIntersect(BVHa(q)[x],BVHb[y]) then
14: update collision status of q
15: end if
16: if TS is empty then
17: break
18: end if
19: (x, y)← pop(TS)
20: else
21: C decide the next node to be traversed
22: CN []← (x, y)’s children nodes
23: for all (xc, yc) ∈ CN do
24: C compute the number of threads that detect overlap

at node (xc, yc)
25: write overlap(BVHa(q)[xc],BVHb[yc]) (0 or 1) into

SM [tid] accordingly
26: compute local summation sc in parallel by all threads

in chunk
27: end for
28: if maxc sc > 0 then
29: C select the node that is overlapped in the most threads
30: (x, y)← CN [argmaxc sc] and push others into TS
31: else
32: C select the node from the top of stack
33: if TS is empty then
34: break
35: end if
36: (x, y)← pop(TS)
37: end if
38: end if
39: end loop

fetch some tasks from one work queue into its local work queue on
the shared memory and traverse the corresponding BVTT nodes.
The children generated for each node are also pushed into the lo-
cal queue as new tasks. This process is repeated for all the tasks
remaining in the queue, until the number of threads with full or
empty local work queues exceeds a given threshold (we use 50% in
our implementation) and non-empty local queues are copied back
to the work queues on main memory. Since each thread performs
simple tasks with few branches, our algorithm can make full use of
GPU cores if there is a sufficient number of tasks in all the work
queues. However, during the BVTT traversal, the tasks are gener-
ated dynamically and thus different queues may have varying num-
bers of tasks and this can lead to an uneven workload among the
GPU cores. We use a balancing algorithm that redistributes the
tasks among work queues (Figure 5). Suppose the number of tasks
in each work queue is

ni, 1 ≤ i ≤ Q.
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Figure 4: Synchronous BVTT traversal for packet configurations. The four trees in the first row are the BVTT trees for configurations in
the same chunk. For convenience, we represent BVTT as binary tree instead of 4-ary tree. The 1 or 0 at each node represents whether the
BV-overlap or exact intersection test executed at that node is in-collision or collision-free. The red edges are the edges visited by the BVTT
traversal algorithm and the indices on these edges represent the traversal order. In this case, the four different configurations have traversal
paths of length 5, 5, 5 and 6. The leaf nodes with red 1 are locations where collisions are detected and the traversal stop. The tree in
the second row shows the synchronous BVTT traversal order determined by our heuristic rule, which needs to visit 10 edges to detect the
collisions of all the four configurations.

Whenever there exists i so that ni < Tl or ni > Tu, we execute
our balancing algorithm among all the queues and the number of
tasks in each queue becomes

n∗i =

∑Q
k=1 nk

Q
, 1 ≤ i ≤ Q,

where Tl and Tu are two thresholds (we use chunk-size for Tl and
the W − chunk-size for Tu, where W is the maximum size of work
queue).

In order to handle N collision queries simultaneously, we use sev-
eral strategies, which are highlighted and compared in Figure 6.
First, we can repeat the single query algorithm [Lauterbach et al.
2010] introduced above for each query. However, this has two main
disadvantages. First, the GPU kernel has to be called N times from
the CPU, which is expensive for large N (which can be� 10000
for sample-based motion planning). Secondly, for each query, work
queues are initialized with only one item (i.e. the root node of the
BVTT), therefore the GPU’s computational power cannot be fully
exploited at the beginning of each query, as shown in the slow as-
cending part in Figure 6(a). Similarly, at the end of each query,
most tasks have been finished and some of the GPU cores become
idle, which corresponds to the slow descending part in Figure 6(a).

As a result, we use the strategy shown in Figure 6(b): we divide the
N queries into d N

M
e different sets each of size M with M ≤ N

and initialize the work queues with M different BVTT roots for
each iteration. Usually M cannot be N because we need to use
t ·M GPU global memory to store the transform information for
the queries, where constant

t ≤ size of global memory
M

and we usually use M = 50. In this case, we only need to invoke
the solution kernel d N

M
e times. The number of tasks available in

the work queues changes more smoothly over time, with fewer as-
cending and descending parts, which implies higher throughput of
the GPUs. Moreover, the work queues are initialized with many
more tasks, which results in high performance at the beginning of
each iteration. In practice, as nodes from more than one BVTT of
different queries co-exist in the same queue, we need to distinguish
them by representing each BVTT node by (x, y, i) instead of (x, y),
where i is the index of collision query. The details for this strategy
are shown in Algorithm 3.

We can further improve the efficiency by using the pump opera-
tion, as shown in Algorithm 4 and Figure 5. That is, instead of
initializing the work queues after it is completely empty, we add
M BVTT root nodes of unresolved collision queries into the work
queues when the number of tasks in it decreases to a threshold (we
use 10 · chunk-size). As a result, the few ascending and descend-
ing parts in Figure 6(b) can be further flattened as shown in Fig-
ure 6(c). Pump operation can reduce the timing overload of inter-
rupting traversal kernels or copying data between global memory
and shared memory, and therefore improve the overall efficiency of
collision computation.

4.3 Analysis

In this section, we analyze the algorithms described above using the
parallel random access machine (PRAM) model, which is a popu-
lar tool to analyze the complexity of parallel algorithms [JáJá 1992].
Of course, current GPU architectures have many properties that can
not be described by PRAM model, such as SIMT, shared memory,
etc. However, PRAM analysis can still provide some insight into
GPU algorithm’s performance.



Algorithm 3 Traversal with Workload Balancing: Task Kernel

1: Input: abort signal signal, N random configurations {qi}Ni=1,
BVHa for the robot and BVHb for the obstacles

2: shared WQ[] ≡ local work queue
3: initialize WQ by tasks in global work queues
4: C traverse on work queues instead of BVTTs
5: loop
6: (x, y, i)← pop(WQ)
7: if overlap(BVHa(qi)[x],BVHb[y]) then
8: if isLeaf(x) && isLeaf(y) then
9: if exactIntersect(BVHa(qi)[x],BVHb[y]) then

10: update collision status of i-th query
11: end if
12: else
13: WQ[]← (x, y, i)’s children
14: end if
15: end if
16: if WQ is full or empty then
17: atomically increment signal, break
18: end if
19: end loop
20: return if signal > 50%Q

Algorithm 4 Traversal with Workload Balancing: Manage Kernel

1: Input: Q global work queues
2: copy local queues on shared memory back to Q global work

queues on global memory
3: compute the number of tasks in each work queue ni, 1 ≤ i ≤

Q
4: compute the number of tasks in all queues n =

∑Q
k=1 nk

5: if n < Tpump then
6: call pump kernel: add more tasks in global queue from un-

resolved collision queries
7: else if ∃i, ni < Tl||ni > Tu then
8: call balance kernel: rearrange the tasks so that each queue

has n∗i =
∑Q

k=1
nk

Q
tasks

9: end if
10: call task kernel again

Suppose we are given n collision queries, which means that we
need to traverse n BVTT of the same tree structure but with dif-
ferent geometry configurations. We denote the complexity of se-
rial algorithm as TS(n), the complexity of naive parallel algorithm
(Algorithm 1) as TN (n), the complexity of configuration-packet
algorithm (Algorithm 2) as TP (n) and the complexity of workload
balancing algorithm (Algorithm 4) as TB(n). Then we have the
following result:

Lemma 1 Θ(TS(n)) = TN (n) ≥ TP (n) ≥ TB(n).

Remark In parallel computing, we say one parallel algorithm is
work efficient, if its complexity T (n) is bounded both above and
below asymptotically by S(n), the complexity of its serial version,
i.e. T (n) = Θ(S(n)) [JáJá 1992]. In other words, Lemma 1 means
that all the three parallel collision algorithms are work-efficient,
but the workload balancing is the most efficient and configuration-
packet algorithm is more efficient than the naive parallel scheme.

Proof Let the complexity to traverse the i-th BVTT be W (i),
1 ≤ i ≤ n. Then the complexity of a sequential CPU algorithm
is TS(n) =

∑n
i=1 W (i). For GPU-based parallel algorithms, we

assume that the GPU has p processors or cores. For convenience,
we assume n = ap, a ∈ Z.
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External 
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Pools

Global
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Global
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el

Figure 5: Load balancing strategy for our parallel collision query
algorithm. Each thread keeps its own local work queue in local
memory. After processing a task, each thread is either able to
run further or has an empty or full work queue and terminates.
Once the number of GPU cores terminated exceeds a given thresh-
old, the manage kernel is called and copies the local queues back
onto global work queues. If no work queue has too many or too
few tasks, the task kernel restarts. Otherwise, the balance kernel
is called to balance the tasks among all the queues. If there are
not sufficient tasks in the queues, more BVTT root nodes will be
’pumped’ in by the pump kernel.

For a naive parallel algorithm (Algorithm 1), each processor exe-
cutes BVTT traversal independently and the overall performance is
determined by the most time-consuming BVTT traversal. There-
fore, its complexity becomes

TN (n) =

a−1∑
k=0

p
max
j=1

W (kp + j).

If we sort {W (i)}ni=1 in ascending order and denote W ∗(i) as the
i-th element in the new order, we have

a−1∑
k=0

p
max
j=1

W (kp + j) ≥
a∑

k=1

W ∗(kp). (2)

To prove it, we start from a = 2. In this case, the summation
maxp

j=1 W (j) + maxp
j=1 W (p + j) achieves the minimum when

min {W (p + 1), · · · ,W (2p)} ≥ max {W (1), · · · ,W (p)}. Oth-
erwise, exchange the minimum value in {W (p + 1), · · · ,W (2p)}
and the maximum value in {W (1), · · · ,W (p)} will increase the
summation. For a > 2, using similarly technique, we can show
that the minimum of

∑a−1
k=0 maxp

j=1 W (kp + j) happens when

min
(j+1)p
k=jp+1 {W (k)} ≥ maxjp

(j−1)p+1 {W (k)}, 1 ≤ j ≤ a − 1.
This is satisfied by the ascending sorted result W ∗ and the Inequal-
ity (2) is proved.

Moreover, it is obvious that
∑n

i=1 W (i) ≥ TN (n) ≥
∑n

i=1 W (i)

p
.

Then we obtain

TS(n) ≥ TN (n) ≥ max
(TS(n)

p
,

a∑
k=1

W ∗(kp)
)
,
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Figure 6: Different strategies for parallel collision query using
work queues. (a) Naive way: repeat the single collision query
algorithm one by one; (b) Work queues are initialized by some
BVTT root nodes and we repeat the process until all queries are
performed. (c) is similar to (b) except that new BVTT root nodes
are added to the work queues by the pump kernel, when there is not
sufficient number of tasks in the queue.

which implies TN (n) = Θ(TS(n)).

According to the analysis in Section 4.1, we know that the expected
complexity Ŵ (i) for i-th BVTT traversal in configuration-packet
method (Algorithm 2) should be smaller than W (i) because of the
near-optimal traversing order. Moreover, the clustering strategy is
similar to ordering different BVTTs, so that the BVTTs with similar
traversal paths are arranged closely to each other and thus the prob-
ability is higher that they would be distributed on the same GPU
core. In practice, we can not implement such an ordering exactly
because the complexity of BVTT traversal is not known a priori.
Therefore the complexity of Algorithm 2 is

TP (n) ≈
a∑

k=1

Ŵ ∗(kp),

with Ŵ ∗ ≤W ∗. As a result, we have TP (n) ≤ TN (n).

The complexity for workload balancing method (Algorithm 4) can
be given as:

TB(n) =

∑n
i=1 W (i)

p
+ B(n),

where the first item is the timing complexity for BVTT traversal and
the second item B(n) is the timing complexity for balancing step.
As B(n) > 0, the acceleration ratio of GPU with p-processors is
less than p. We need to reduce the load of balancing step to improve
the efficiency of Algorithm 4. If balancing step is implemented
efficiently, i.e. if B(n) = o(TS(n)), we have TN (n) ≥ TP (n) ≥
TB(n).

5 Implementation and Results

In this section, we present some details of the implementation and
highlight the performance of our algorithm on different bench-
marks. All the timings reported here were recorded on a machine
using an Intel Core i7 3.2GHz CPU and 6GB memory. We im-
plemented our collision and planning algorithms using CUDA on a
NVIDIA GTX 480 GPU with 1GB of video memory.
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Figure 7: Overview of the GPU-based real-time planner [Pan et
al. 2010a].

5.1 GPU-based Planner

We use the motion planning framework called gPlanner introduced
in [Pan et al. 2010b; Pan et al. 2010a], which uses PRM as the
underlying planning algorithm as it is more suitable to exploit the
multiple cores and data parallelism on GPUs. The planner is com-
pletely implemented on GPUs to avoid the expensive data transfer
the between CPU and GPU.

PRM algorithm has two phases: roadmap construction and query
phase, whose basic flowchar is shown in the left part of Figure 7.
We use a many-core GPU to improve the performance of each com-
ponent significantly and the framework for the overall GPU-based
planner is shown in the right side of Figure 7.

We first use MD5 cryptographic hash function [Tzeng and Wei
2008] to generate random samples for each thread independently.
For each sample generated, we need to check whether it is a mile-
stone, i.e. does not collide with the obstacles using BVH trees
[Lauterbach et al. 2009] and exploits GPU parallelism.

For each milestone, we perform k-nearest neighbor query to com-
pute the nearest neighbors and construct a roadmap for the C-space.
In practice, exact k-nearest neighbor search can be slow in high-
dimensional C-space. As a result, we use approximate k-nearest
neighbor search based on locality-sensitive hashing (LSH) and can
construct the k-nearest graph in time linear in the number of mile-
stones [Pan et al. 2010a]. Finally, we use local planning algorithms
to check the validness of k-nearest graph edges and construct the
roadmap in the C-space.

Once the roadmap is constructed, we connect initial-goal config-
urations to the multiple queries to the roadmap. Finally, we per-
form parallel graph search on the roadmap to compute collision-
free paths. For single query cases, we use a lazy version of PRM.
Instead of computing the entire roadmap, we delay the expensive
local planning and localize it to only a few edges.

5.2 Implementation

As part of our implementation, we replace the collision detection
module in gPlanner with the new algorithms described above. As
observed in [Pan et al. 2010b], more than 90% time of the motion
planning algorithm is spent in collision queries, i.e. milestone com-
putation and local planning.



piano large-piano helicopter humanoid PR2
#robot-faces 6,540 34,880 3,612 27,749 31,384

#obstace-faces 648 13,824 2,840 3,495 3,495
DOF 6 6 6 38 12 (one arm)

Table 1: Geometric complexity of our benchmarks. Large-piano is a piano model that has more vertices and faces and is obtained by
subdividing the original piano model.

(a) piano (b) helicopter

(c) humanoid (d) PR2

Figure 8: Benchmarks used in our experiments.

In order to compare the performance of different parallel collision
detection algorithms, we use the benchmarks shown in Figure 8.
The geometric complexity of these benchmarks is shown in Ta-
ble 1. For rigid body benchmarks, we generate 50, 000 random
configurations and compute a collision-free path by using different
variants of our parallel collision detection algorithm. For articu-
lated model benchmark, we generate 100, 000 random configura-
tions. For milestone computation, we directly use our collision de-
tection algorithm. For local planning, we first need to unfold all the
interpolated configurations: we denote the BVTT for the j-th in-
terpolated query between the i-th local path as BVTT(i, j) and its
node as (x, y, i, j). In order to avoid unnecessary computations, we
first add BVTT root nodes with small j into the work queues, i.e.
(1, 1, i, j) ≺ (1, 1, i′, j′), ifj < j′. As a result, once a collision is
computed at BVTT(i, j0), we need not traverse BVTT(i, j) when
j > j0.

For Algorithm 1 and Algorithm 2, we further test the performance
for different traversal sizes (i.e. 32 and 128). Both algorithms give
correct results when using a larger stack size (i.e. 128). For smaller
stack sizes, the algorithms will stop once the stack is filled. Al-
gorithm 1 may report a collision when the stack overflows while
Algorithm 2 returns a collision-free query. Therefore, Algorithm 1
may suffer from false positive errors while Algorithm 2 may suffer
from false negative errors. We also compare the performance of Al-
gorithm 1 and Algorithm 2 when the clustering algorithm described
in Section 4.1 is used and when it is not.

The timing results are shown in Table 2 and Table 3. We ob-
serve: (1) Algorithm 1 and Algorithm 2 both work better when
local traversal stack is smaller and pre-clustering technique is used.
However for large models, traversal stack of size 32 may result in
overflows and the collision results can be incorrect, which hap-
pens for the large-piano benchmarks in Table 2 and Table 3. Al-
gorithm 1’s performance is considerably reduced when the size of

Figure 9: Our GPU-based motion planner can compute a
collision-free path for PR2 in less than 1 second.

traversal stack increases to 128. This is due to the fact that Algo-
rithm 2 uses per-packet stack, which is about 32 times smaller then
using per-thread stack. Moreover, clustering and configuration-
packet traversal can result in more than 50% speed-up. Moreover,
the improvement in the performance of Algorithm 2 over Algo-
rithm 1 is more on complex models (e.g. large-piano). (2) Al-
gorithm 4 is usually the fastest one among all the variations of the
three algorithms. It can result in more than 5-10X speedup over
other methods.

As observed in [Pan et al. 2010b; Pan et al. 2010a], the performance
of the planner in these benchmarks is dominated by milestone com-
putation and local planning. Based on the novel collision detection
algorithm, the performance of PRM and lazy PRM planners can be
improved by at least 40%-45%.

In Figure 10, we also show how the pump kernel increases the
GPU throughput (i.e. the number of tasks available in work queues
for GPU cores to fetch) in the workload balancing based Algo-
rithm 4. The maximum throughput (i.e. the maximum number
of BV overlap tests performed by GPU kernels) increases from
8× 104 to nearly 105 and the minimum throughput increases from
0 to 2.5 × 104. For piano and helicopter models, we can com-
pute a collision-free path from the initial to the goal configura-
tion in 879ms and 778ms, respectively, using PRM or 72.79ms or
72.68ms, respectively, using lazy PRM.

5.3 Articulated Models

Our parallel algorithms can be directly applied to articulated mod-
els. In this case, checking for self-collisions among various links
of a robot adds to the overall complexity. We use a model of the
PR2 robot as an articulated benchmark. The PR2 robot model has
65 links and 75 DOFs. We only allow one arm (i.e. 12 DOFs)
to be active in terms of motion. A naive approach would in-
volve exhaustive self-collision checking, and reduces to checking
65× (65− 1)/2 = 2, 080 self-collisions among the links for each
collision query. As shown in Table 4, GPU-based planner takes
more than 10 seconds for the PR2 benchmark when performing ex-



Algorithm 1 Algorithm 2 Algorithm 4
32, no-C 32, C 128, no-C 128, C 32, no-C 32, C 128, no-C 128, C traversal balancing

piano 117 113 239 224 177 131 168 130 68 3.69
large-piano 409 387 738 710 613 535 617 529 155 15.1
helicopter 158 151 286 272 224 166 226 163 56 2.3
humanoid 2,392 2,322 2,379 2,316 2,068 1,877 2,073 1,823 337 106

Table 2: Comparison of different algorithms in milestone computation (timing in milliseconds). 32 and 128 are the different sizes used for
the traversal stack; C and no-C means using pre-clustering and not using pre-clustering, respectively; timing of Algorithm 4 includes two
parts: traversal part and balancing part.

Algorithm 1 Algorithm 2 Algorithm 4
32, no-C 32, C 128, no-C 128, C 32, no-C 32, C 128, no-C 128, C traversal balancing

piano 1,203 1,148 2,213 2,076 1,018 822 1,520 1,344 1,054 34
large-piano 4,126 3,823 8,288 7,587 5,162 4,017 7,513 6,091 1,139 66
helicopter 4,528 4,388 7,646 7,413 3,941 3,339 5,219 4,645 913 41
humanoid 5,726 5,319 9,273 8,650 4,839 4,788 9,012 8,837 6,082 1,964

Table 3: Comparison of different algorithms in local planning (timing in milliseconds). 32 and 128 are the different sizes used for the
traversal stack; C and no-C means using pre-clustering and not using pre-clustering, respectively; timing of Algorithm 4 includes two parts:
traversal part and balancing part.

haustive self-collision, though it is still much faster than the CPU-
based implementation.

However, exhaustive self-collision checking is usually not neces-
sary for physical robots, because the joint limits can filter out many
of the self-collisions. The common method is to manually set some
link pairs that need to be checked for self-collisions. This strategy
can greatly reduce the number of pairwise checks. As shown in
Table 4, we can compute a collision-free path for the PR2 model
in less than 1 seconds, which can be further reduced to 300ms if
the number of samples is reduced to 500. The collision-free path
calculated by our planner is shown in Figure 9.

6 Conclusion and Future Work

In this paper, we introduce two novel parallel collision query algo-
rithms for real-time motion planning on GPUs. The first algorithm
is based on configuration-packet tracing, is easy to implement, and
can improve the parallel performance by performing more coherent
traversals and reducing the memory consumed by traversal stacks.
It can provide more than 50% speed-up as compared to simple par-
allel methods. The second algorithm is based on workload bal-
ancing, and decomposes parallel collision queries into fine-grained
tasks corresponding to BVTT node operations. The algorithm uses
a light-weight task-balancing strategy to guarantee that all GPU
cores are fully utilized and achieves close to peak performance on
GPUs. In practice, we observe 5-10X speed-up. The new colli-
sion algorithms can improve the performance of GPU-based PRM
planners by almost 50%.

There are many avenues for future work. We are interested in us-
ing more advanced sampling schemes with the GPU-based plan-
ner to further improve its performance and deal with narrow pas-
sages. Furthermore, we would like to modify the planner to gen-
erate smooth paths and integrate our planner with physical robots
(e.g. PR2). We would also like to take into account kinematic and
dynamic constraints.
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