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Free-Flowing Granular Materials with Two-Way Solid Coupling
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Figure 1: An explosion goes off inside a sand pile, sending freely splashing sand and rigid bodies flying in the air (running at less than 20
seconds per frame on a single-processor PC). In such a scenario, sand needs to be modeled as a cohesionless granular material.

Abstract

We present a novel continuum-based model that enables efficient
simulation of granular materials. Our approach fully solves the in-
ternal pressure and frictional stresses in a granular material, thereby
allows visually noticeable behaviors of granular materials to be re-
produced, including freely dispersing splashes without cohesion,
and a global coupling between friction and pressure. The full treat-
ment of internal forces in the material also enables two-way in-
teraction with solid bodies. Our method achieves these results at
only a very small fraction of computational costs of the comparable
particle-based models for granular flows.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation
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1 Introduction

Granular materials such as sand, powders, cereal grains, and gravel
are commonplace in the physical world around us. Being com-
posed of very large numbers of mesoscopic grains, they show
unique physical behavior that is unlike other materials such as fluids
and deformable bodies, which have been well studied in computer
graphics. In particular, granular materials disperse freely in free
fall, flow plastically under forcing, and yet settle in stable piles.

∗E-mail: {narain,golas,lin}@cs.unc.edu

The physical behavior of such materials arises from the interplay of
contact and frictional forces between thousands to millions of tiny
grains. Simulating the motion of each such grain is computationally
prohibitive for large-scale scenarios or fine-grained materials like
sand. We instead take a continuum approach, treating a granular
material as a continuous fluid. Continuum-based approaches have
many advantages, including efficient numerical methods due to a
regular computational domain, and the ability for the user to choose
the resolution of the simulation as a trade-off between performance
and quality.

In order to capture the unique behaviors that such materials ex-
hibit, we depart significantly from traditional fluid simulation tech-
niques. Firstly, to allow the material to disperse freely when agi-
tated but maintain its volume when at rest, we replace the existing
fluid-based model’s assumption of incompressibility with a unilat-
eral variational constraint. Secondly, unlike fluid viscosity, friction
in granular materials can counteract gravity to maintain stable piles
in equilibrium. This requires solving for the internal stresses in a
global fashion. We present an efficient method for this numerical
problem, permitting appropriate frictional behavior and solid body
interaction.

1.1 Related work

Granular materials have received much attention in the fields of ge-
omechanics, engineering, and computational physics. Being “a dis-
tinctive form of matter that exhibits behavior rather different from
that of ordinary solids, liquids, or gases” [Behringer et al. 1999],
granular materials show surprisingly complex behavior that is still
being studied in the physics and engineering communities. Due
to the central role of friction and the dissipative nature of inelastic
contact interactions, granular flow resists analysis by traditional ap-
proaches of statistical mechanics, and describing it by a continuum
model which abstracts over individual grain interactions continues
to be a topic of active research.

For visual applications, however, the use of a simplified contin-
uum model that only treats the more common phases of granular
flow can still give very convincing results. This was demonstrated
by Zhu and Bridson [2005], who modeled sand as an incompress-
ible fluid by adding frictional forces to a traditional fluid simulator.
Their approach relies on identifying rigidly moving regions of ma-
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terial to obtain stable piles. Lenaerts and Dutré [2009] adapted this
method to the setting of smoothed particle hydrodynamics (SPH),
and also enabled simulating sand-water interaction in this setting.
The incompressibility assumption, however, can lead to undesirable
cohesive behavior, and it is not known if the rigidification approach
for friction supports two-way coupling with solid bodies. In soil
mechanics, continuum-based approaches have also been employed
to study large-scale phenomena such as avalanches and landslides
[Aranson and Tsimring 2001; Quecedo et al. 2004; Josserand et al.
2004].

Another natural method for animating granular materials is to di-
rectly simulate the interactions between individual grains. This
includes the class of discrete element methods used in engineer-
ing applications [Bićanić 2004]. In graphics, Luciani et al. [1995]
developed a particle system model for granular materials using
damped spring forces. Bell et al. [2005] used a molecular dynamics
method while modeling grains as rigid compounds of spheres, ex-
hibiting compelling behavior with two-way solid body interaction.
However, discrete methods incur a heavy computational expense to
model fine-grained materials due to the sheer number of particles
that must be resolved. This issue was addressed in part by Alduán
et al. [2009], who proposed a post-processing step that interpolates
fine grains over a coarser discrete simulation.

We briefly survey some other approaches that have been taken for
modeling granular materials in computer graphics. Some of the ear-
liest work used particle systems with heuristic inter-particle forces
to give fluid-like or sand-like behavior [Miller and Pearce 1989; Lu-
ciani et al. 1995]. Sand has also been modeled using height fields
[Li and Moshell 1993; Chanclou et al. 1996], and several exten-
sions have been proposed for modeling footprints and tracks [Sum-
ner et al. 1999], using multi-valued height fields for some 3D ef-
fects [Onoue and Nishita 2003], and combining with a flowing sur-
face layer composed of particles [Zhu and Yang 2010]. Cellular au-
tomata can be used for interactive sand manipulation [Pla-Castells
et al. 2006].

Our method builds on the continuum approach, and is more gen-
eral, allowing non-cohesive behavior, globally coupled frictional
handling, and efficient two-way interaction with solids. These char-
acteristics allow qualitatively realistic, compelling results similar to
fine-scale discrete methods at a far lower computation time and sig-
nificantly reduced memory requirements.

1.2 Overview

In our method, we assume that the material’s grain size is so small
that the precise motion of individual grains is unimportant. There-
fore, we treat the granular material instead as a continuous fluid
flowing under the action of external forces and internal stresses.
The internal stresses represent the contact and frictional forces be-
tween individual grains in the material. Computing the motion of
the material under these forces requires two stages: first, to deter-
mine the internal stresses given the current state of the material, and
second, to integrate the motion of the material under the influence
of these forces.

While stress computation is most efficiently computed on a regular
Eulerian grid, integrating the motion of a granular material proves
to be best suited to a Lagrangian setting. We therefore take a hy-
brid approach, informed by previous work such as the FLIP method
[Zhu and Bridson 2005], where an Eulerian representation is used
to compute internal forces, while advection is performed using par-
ticles. Note that these simulation particles do not represent indi-
vidual grains, but rather moving “clumps” of matter which act as
samples of the material.
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Figure 2: The main simulation loop of our algorithm. See Section
1.2 for details.

We briefly describe the overall simulation loop, illustrated in Fig. 2.
At the beginning of a time step, the state of the material is pro-
jected to the Eulerian setting by accumulating particle values onto
the grid. Using the Eulerian representation, the material’s inter-
nal stresses and interaction forces with other bodies are computed
by the continuum model, taking into account the coupling between
pressure and friction (see Fig. 3). The computed stresses are used
by the Lagrangian representation to update the particle velocities.
The motion of each particle is then integrated over the time step,
giving the updated state of the material.

The remainder of the paper is organized as follows. The continuum
model is described in Section 2, and the particle-based advection
scheme in Section 3. Further implementation details are given in
Section 4. In Section 5, we discuss the results of our method on
several example scenarios.

2 Granular material as a continuum

Our approach has much in common with traditional fluid simula-
tion. However, the behavior of stresses in a granular material differs
qualitatively from pressure and viscosity in a fluid, and novel tech-
niques are required to treat them faithfully in a continuum model.

One characteristic property of granular materials is that they can
disperse freely. Dry grains apply no attractive forces on each other,
so in macroscopic terms the material displays little cohesion. This
means that unlike a liquid, a granular material in motion may not
have a clearly defined surface at all! Consider a sand pile transition-
ing to a cloud of grains under impact: where does the pile surface
end and the cloud begin? Another significant difference is the effect
of friction. It can transmit forces across large distances, and unlike
fluid viscosity, it continues to act even at rest, resulting in stable
piles and other quasi-rigid behaviors.

Indeed, many of the problems encountered in this work mirror those
of rigid body dynamics transferred to a continuum setting, since
granular materials are essentially aggregates of numerous rigid bod-
ies in contact. In order to capture their complex behavior, we syn-
thesize ideas from both the fields of computational fluid dynamics
and rigid-body simulation together to derive our new formulation.
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Figure 3: Sand trickles down an hourglass. The rate of flow is
constant due to the coupling between pressure and friction. On the
right, the simulation particles used for advection are visualized.

2.1 Fundamentals

From a continuum viewpoint, we represent the physical state of a
granular material through its mass density ρ and flow velocity v.
The system is acted upon by external forces f ext and internal stress
σ. The stress σ is a symmetric tensor field which can be decom-
posed into an isotropic mean stress (a “pressure”) p and a traceless
deviatoric component s, which represents frictional stresses.

σ = −pI + s. (1)

The equations of motion of the material may be derived from the
conservation laws for mass and momentum. If we denote the La-
grangian time derivative by D/Dt = ∂/∂t + (v · ∇), the time
evolution of the system is given by the transport of mass,

∂ρ

∂t
+∇ · (ρv) = 0, (2)

and the effect of forces,

ρ
Dv

Dt
= f ext −∇p+∇ · s. (3)

The stress response of frictional materials can be described in terms
of plastic yielding: the material resists deformation when the stress
is within a certain yield criterion, and begins to flow plastically
when the yield criterion is violated. Following previous work [Zhu
and Bridson 2005], we employ the Drucker-Prager yield criterion
for its computational simplicity. When the cohesion is negligible,
as is the case for most dry granular materials, the yield criterion can
be expressed by the inequality

‖s‖F ≤
√

3αp (4)

where ‖s‖F =
qP

s2ij is the Frobenius norm of s, and α is the
frictional coefficient. This is related to the angle of repose θ by
α =

p
2/3 sin θ.

We use an impulse-based time-stepping scheme throughout our
simulation, where forces are considered to act instantaneously at
the beginning of each time step. Let the density and velocity field
of the material at the beginning of time step n be ρn and vn respec-
tively. For a time step of length ∆t, we may define the intermediate
velocity field ṽ for given stress components p and s as

ṽ = vn +
∆t

ρn
(f ext −∇p+∇ · s) . (5)

This velocity field may be used to update the particle velocities and
positions in the advection step.

2.2 Pressure

We make two simplifying assumptions to the dynamics of granu-
lar materials. Firstly, we assume that the material cannot be com-
pressed beyond a fixed critical density ρmax which permits free
flow. This can be thought of as the density of a stable pile of mate-
rial at rest. (In reality, this density is slightly higher than critical, as
grains at rest must separate a little to move past each other, but this
effect is visually imperceptible.) Secondly, when ρ < ρmax, grains
are not packed together and only interact via intermittent collisions,
and we neglect the effect of these interactions.

Under these assumptions, the granular material has a maximum
density ρmax, and the pressure p acts to prevent any further com-
pression of the material. However, in contrast to traditional incom-
pressible fluids, where both positive and negative flow divergence
are always nullified by the pressure, an absence of cohesion in gran-
ular material implies that a material undergoing diverging flow ex-
periences no internal forces.

This behavior can be expressed as an inequality on the density of
the material, or more generally on its “volume fraction” φ,

φ =
ρ

ρmax
≤ 1. (6)

A similar constraint was recently applied to simulation of dense
crowds of pedestrians on a 2D plane by Narain et al. [2009], which
they called the unilateral incompressibility constraint. We adapt the
same numerical method for computing the corresponding pressure
p to satisfy the constraint in 3D space. For completeness, we briefly
describe this method below.

The volume fraction at the end of a time step ∆t can be estimated
by discretizing (2) with v = ṽ. This gives

φn+1 = φn −∆t∇ · (φnṽ) (7)

= φn+1|p=0 +
∆t2

ρmax
∇2p, (8)

where φn+1|p=0 is the predicted volume fraction when pressure is
zero.

The pressure p is chosen so that the constraint (6) is satisfied for
φn+1. Assuming inelasticity, the pressure must be such that it
only just maintains the constraint, but does not cause any additional
“bounce”. This implies a complementarity

p(1− φn+1) = 0 (9)

That is, when p is active (nonzero), φn+1 must equal 1, not fall
below it. Finally, the absence of cohesion implies that p ≥ 0, which
can also be seen from the yield condition (4) itself.

These conditions define a linear complementarity problem

A1p + b1 ≥ 0,

p ≥ 0,

pT (A1p + b1) = 0,

where

A1 =
∆t2

ρmax
DT

1 D1, (10)

b1 = 1− φn+1|p=0, (11)

and p is a vector containing the pressure values at all 3D grid cells.
D1 denotes the finite difference matrix mapping a scalar field p to
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Figure 4: Three stable piles with friction coefficients α = 0.3, 0.5, and 0.7, respectively. Lower friction leads to flatter piles.

the vector field∇p. Boundary conditions are treated using the stan-
dard technique of ghost cells, on which we set φn+1|p=0 = 1 to
prevent any flow across domain boundaries.

Because A1 is positive semidefinite, these are simply the KKT con-
ditions for minimizing a quadratic function

F =
1

2
pT A1p + bT

1 p, (12)

for p with all non-negative components. Therefore, the pressure p
is equivalently defined by the minimization problem

min F (p) : p ≥ 0. (13)

2.2.1 Density correction

Numerical error in advection can cause the density to violate (6)
slightly at the beginning of a time step, which would cause the
solver to apply spurious corrective pressure at those cells and lead
to oscillations. To avoid this issue, we first redistribute the density
so the initial state is valid.

Imagine freezing the material in time and applying an instantaneous
displacement ∆x such that each bit of material at x is moved to
x + ∆x. We choose ∆x such that the new volume fraction

φn ← φn −∇ · (φn∆x) (14)

satisfies (6). Letting ∆x = −∇y/ρn for some scalar field y, we
can solve this using the pressure solve itself, substituting ∆x for ṽ
and 1 for ∆t.

At the beginning of the time step, we solve this and update φn with
(14) and ρn correspondingly. We also store ∆x for use during ad-
vection.

2.3 Friction

The frictional stress s is a symmetric, trace-free, rank-2 tensor,

s =

24sxx sxy sxz

sxy syy syz

sxz syz szz

35 ,
sxx + syy + szz = 0,

subject to the yield condition (4). Because the yield constraint is
convex, it can be linearized by replacing the constraint surface with
a set of hyperplanes tangent to it. Taking the hyperplanes orthogo-
nal to each component of s yields bound constraints

−smax ≤ sij ≤ smax (15)

for i, j ∈ {x, y, z}, and with smax = αp. If desired, more hy-
perplanes can be included to improve the isotropy of the frictional
response. The effect of different values of α is shown in Figure 4.

For plastic flow, the principle of maximum plastic dissipation [Simo
and Hughes 1998] states that among all possible stresses satisfying

the yield criterion, the actual stress is that which maximizes the rate
of dissipation of kinetic energy. We compute the frictional stress
by directly applying the maximum dissipation principle over dis-
crete time steps. This automatically captures the interplay between
pressure and friction within the material both in motion and at rest,
eliminates the need for an additional rigidity condition for stable
piles, and naturally generalizes to interaction with solid bodies.

To maximize dissipation, we compute the frictional stress by re-
quiring that it minimize the kinetic energy of the system. However,
from a numerical perspective, directly using the total kinetic energy
results in a poorly conditioned system due to the division by ρn in
the definition of ṽ. This can be ameliorated by using an additional
weighting w = ρn/ρmax on the energy:

E =
1

2

Z
wρn ‖ṽ‖2 dV (16)

This modification makes the problem far more efficient, and be-
cause p and hence s are only ever nonzero when ρn is close to
ρmax, w is 1 over almost the entire support of s so only a small
amount of error is introduced.

The energy can be expressed as a quadratic functional

E =
1

2ρmax

Z
‖ρnṽ|s=0 + ∆t∇ · s‖2 dV

= E|s=0 +
1

2
sT A2s + bT

2 s. (17)

where

A2 =
∆t2

ρmax
DT

2 D2, (18)

b2 =
∆t

ρmax
DT

2 ρ
nṽ|s=0. (19)

Here s is treated as the vector composed of the concatenation of
the components of frictional stress at all grid points, and D2 is the
matrix mapping a tensor field s to the vector field∇·s. Minimizing
E subject to the constraints (15) determines the frictional stress:

min E(s) : −smax ≤ sij ≤ smax. (20)

Boundary conditions are treated as follows. Physically, the normal
force at the boundary due to friction must vanish. This corresponds
to the diagonal components sii on the ghost cells, so these are fixed
at zero. The tangential force corresponds to the off-diagonal com-
ponents on edges along the boundary; the associated finite differ-
ence stencil does not refer to cells outside the domain at all, so no
boundary conditions need to be specified here.

2.4 Interaction with solid bodies

By posing both the pressure and friction solves as minimization
problems, two-way solid-fluid interaction (as shown in Fig. 5) can
be very naturally handled along the lines of variational fluid-solid
coupling [Batty et al. 2007].
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Figure 5: Spheres of masses m = 0.3, 1, 3, and 10 units strike a sand surface. The heaviest spheres are denser than the sand itself, yet
internal friction allows the material to support their weight.

For a solid body interacting with a fluid or granular material, we can
define a linear operator J which integrates stresses on its surface to
give generalized forces. For example, for rigid bodies, we can rep-
resent generalized forces as 6-vectors with 3 components of force
followed by 3 components of moment. The J operator for scalars
then is given by

J1p =

Z »
∇p
∇p× x

–
φsdV, (21)

while that for tensorial stresses is

J2s =

Z »
∇ · s

(∇ · s)× x

–
φsdV, (22)

in terms of the fraction of volume φs covered by the solid body.
Under given material stresses p and s and external forces Fext, the
net generalized force on the body is simply

F = Fext − J1p + J2s. (23)

Furthermore, the adjoint JT
1 yields a scalar field JT

1 V which gives
the distribution of normal velocity times differential area over the
surface of the body; intuitively, this describes how the space occu-
pied by the body changes due to its velocity.

Consider a body with inertia matrix M and initial generalized ve-
locity Vn. After applying the impulse ∆tF, it moves with the up-
dated velocity Ṽ = Vn + ∆tM−1F.

For the pressure coupling, we replace the volume fraction constraint
(6) with

φ+ φs ≤ 1. (24)

Enforcing this constraint requires estimating the volume fraction
covered by the body at the next time step. Using the adjoint prop-
erty of J1, this is given by

φn+1
s = φn

s + ∆tJT
1 Ṽ

= φn+1
s |p=0 −∆t2JT

1 M−1J1p, (25)

where φn+1
s |p=0 is the predicted volume fraction without pres-

sure coupling. Thus we add ∆t2JT
1 M−1J1 to the matrix A1, and

−φn+1
s |p=0 to the linear term b1 in (10) and (11) respectively.

In the friction solve, we simply need to add the kinetic energy of
the rigid body to E. This is given by

Es = Ṽ
T
MṼ

= Es|s=0 +
1

2
∆t2sT JT

2 M−1J2s + ∆tsT JT
2 Ṽ|s=0. (26)

Figure 6: Sand falls on a series of paddle wheels, setting them in
motion.

Thus, we add ∆t2JT
2 M−1J2 to the matrix A2 and ∆tJT

2 Ṽ|s=0 to
the linear term b2 in (18) and (19).

It is also necessary to modify the velocity updates of the granular
material to account for the reduced volume occupied by it. Assum-
ing that the body forces are distributed volumetrically in a partially
occupied cell, the velocity update rule (5) becomes

ṽ = vn +
∆t

ρn
(1− φs) (f ext −∇p+∇ · s) . (27)

Once the pressure and frictional stresses are computed, the rigid
body can be updated by applying an impulse ∆tF using (23) and
advancing it through one time step.

2.5 Putting it together

Given the current state of the system in terms of density ρ and ve-
locity v, the pressure p and frictional stress s are determined by
minimization of two coupled quadratic programs F (p) and E(s),
subject to corresponding linear inequality constraints. The problem
of solving these coupled minimizations mirrors that addressed by
Kaufman et al. [2008], who treated the contact and frictional forces
between rigid bodies in the same way. This solution procedure, us-
ing staggered projections on each minimization in turn, extends to
the continuous case we consider.

The staggered projection method works by fixing the value of one
variable, say s, and finding p through (13) using the current value
of s. Then, the resulting p is fixed and s is updated through (20).
This pair of minimizations forms one iteration, which is repeated.
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This procedure of solving (13) and (20) can be shown to be a non-
expansive mapping, of which the coupled solution is a fixed point;
we refer the reader to the supplementary document for the proof. In
the discretized setting, both problems become quadratic programs
which can be solved efficiently, as we describe in Section 4. Be-
cause of the non-expansive property of staggered projection iter-
ations, the iteration process is guaranteed not to diverge, and in
practice we have always observed it to converge extremely quickly.

After the internal stresses p and s have been computed, it remains
to integrate (2) and (3) to advance the physical state of the material
to the next time step. This is described in the following section.

3 Particle-based advection

Unlike traditional fluids considered in computer graphics, the flow
of a granular material may not be purely incompressible due to
the absence of cohesion. As a consequence, it is difficult to ap-
ply techniques based on semi-Lagrangian advection while ensuring
the conservation of mass and momentum. Furthermore, a granular
material that exhibits a coherent surface in a pile at rest may tran-
sition into a sparse cloud of grains in very dynamic events such as
splashes or free fall, rendering surface tracking methods used for
animating liquids inapplicable. We therefore use a Lagrangian ap-
proach for advecting the material, which can easily handle these
properties. Our method can be considered as an extension of the
fluid-implicit-particle (FLIP) method [Brackbill and Ruppel 1986;
Zhu and Bridson 2005].

In the Lagrangian setting, the granular material is represented as a
set of simulation particles. Each simulation particle represents not
a single grain but a macroscopic sample of the material—a moving
“clump” of matter with mass mi centered at a point xi and mov-
ing with average velocity vi. At the beginning of a time step, the
continuum values of ρn and vn are defined by accumulating the
values of particles near each grid cell. Each particle is treated as
a point mass, and its contribution is divided among its neighboring
8 grid nodes using standard trilinear weights. The internal stresses
are then computed through the continuum model to determine the
intermediate velocity ṽ. Finally, advection is performed by updat-
ing the particles using this velocity field.

In the advection step, we update each particle’s position based on
the grid velocity. First the displacement ∆x for density correction
(Section 2.2.1) is applied, then particle positions are advanced us-
ing the velocity field. Particle velocities are updated by adding the
change in grid values from the previous time step, following the
FLIP method.

3.1 Particle shapes and split/merge operations

Unlike fluids like water which are practically incompressible, gran-
ular materials can exhibit visibly diverging flow, such as a dispers-
ing mass of sand thrown into the air. This presents a difficulty
for traditional particle-based advection techniques designed for in-
compressible flow: particles spread farther and farther from each
other, and the simulated fluid eventually separates into clumps cor-
responding to individual particles instead of spreading uniformly.
While this is satisfying for liquids, or for wet sand which ex-
hibits cohesion, grains in a dispersing cloud of dry sand are often
smoothly distributed.

To ensure that the material remains faithfully sampled in such
cases, it is necessary to somehow track the spreading of simu-
lation particles, and insert additional particles where necessary.
We do this simply by attaching to each particle a shape centered
around the particle position, initially spherical, which is stretched

Figure 7: If particle distortion is not tracked (left), particles cannot
remain well distributed in the material during diverging flow. By
tracking the shape of particles under the flow (right), we can split
and merge them appropriately to maintain a good distribution.

and squeezed by the flow. When the particle becomes too large
or too small, it is split into two or merged with an adjacent parti-
cle, thus automatically maintaining a good distribution of particles
(Fig. 7). Previous work in incompressible SPH-based fluid simula-
tion has used splitting and merging as a level of detail approach to
accelerate simulation [Adams et al. 2007], but here it is a necessity
for representing a dispersing mass of not incompressible material.

In general, the shape of a particle is an ellipsoid, which we represent
as the region (x−xi)

T A−1
i (x−xi) ≤ 1 for a symmetric positive

definite matrix Ai. The semi-axes of the ellipsoid are given by the
eigenvectors and square roots of eigenvalues of Ai. To first order,
as this ellipsoid is advected through the velocity field v, its time
evolution is given by

dAi

dt
= AiJ

T
v (xi) + Jv(xi)Ai (28)

where Jv(xi) is the Jacobian of the velocity field at position xi.

A user-specified parameter r controls the size of particles. We de-
fine a particle as valid if the lengths of its semi-axes lie within the
range [ 1√

2
r,
√

2r]. We have found that setting r to one-fourth the
grid spacing is generally effective. The bounds on the axis lengths
prevent particles from becoming too big, too small, or too skinny,
so that they can be treated as points when interpolating grid values.
Split and merge operations are applied to particles that become in-
valid. These operations are defined so that they conserve the mass,
momentum, and center of mass of the system.

A split operation divides a particle into two identical particles along
the longest axis. Each child particle has half the axis length along
this direction, while the other two axes remain the same.

A merge operation replaces two nearby particles with one larger
particle centered at their center of mass, carrying their total mass
and momentum. Upon merging particles i and j, the shape of the
new particle, say k, is given by

mkAk = mi(Ai + ∆xi∆xT
i ) +mj(Aj + ∆xj∆xT

j ), (29)

where ∆xi = xi−xk, and similarly ∆xj , are the displacements of
the old particles from the new center of mass. We chose this rule so
that immediately merging the children of a split returns the original
particle.

We perform split and merge operations only when the resulting par-
ticle(s) are valid. In practice, this yields a consistent set of particles
without oscillations.

4 Implementation details

An overview of all the steps of our method is shown in Figure 8.
Below we describe some details of our implementation.
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For each time step:
1. Accumulate density ρn and velocity vn onto grid.
2. Perform density correction on ρn.
3. Repeat until convergence or maximum iterations:

(a) Compute friction s by minimizing (20) for fixed p.
(b) Compute pressure p by minimizing (13) for fixed s.

4. Find intermediate velocity ṽ through (5).
5. Update solid bodies with an impulse ∆tF (23).
6. Update particles:

(a) Update velocities using FLIP.
(b) Move particles through the velocity field ṽ.
(c) Update shapes using (28).
(d) Split and merge particles.

Figure 8: The main steps of our method.

For the continuum model, we use a regular Cartesian grid on which
physical quantities are stored in a “staggered” fashion following
Goktekin et al [2004]. Scalars ρ and p and diagonal components
of s are stored at cell centers, vector components of v at cell faces,
and off-diagonal components of s at cell edges. Spatial derivatives
are computed through finite differences. For stability, we choose
time steps so that no particle moves more than half of a grid cell in
a single time step. As the impulse-based integration scheme means
that forces only act on particles at the beginning of a time step, a
forward Euler step suffices to perform particle advection.

In the discretized setting, (13) and (20) are quadratic programs
(QPs) with sparse, symmetric, positive semidefinite matrices.
These problems can be solved efficiently using the recent algorithm
of Dóstal and Schöberl [2005], which we extended to incorporate
an MIC(0) preconditioner [Bridson and Müller-Fischer 2007] and
support two-sided bound constraints. However, a naı̈ve approach
causes the friction solve to converge slowly, because of the cou-
pling between different components of s. By instead minimizing
with respect to one component of s at a time (which amounts to
optimizing over orthogonal subspaces in turn), an approximate fric-
tional solution can be found which converges much more rapidly.
Because the projections are nevertheless repeated in an outer loop,
the correct solution remains the fixed point of the procedure. Please
see the supplementary document for more details.

Convergence is also greatly accelerated by warm-starting the solver
using the pressure and friction values computed at the previous time
step as initialization. We found that in practice, performing just a
few iterations of staggered projections sufficed to give stable and
convincing results; only 2 iterations were used in all our results.

4.1 Multiple interacting materials

Our method can easily be extended to handle multiple granular ma-
terials with different properties interacting in a single scene (Fig. 9).

To account for materials of varying densities and friction coeffi-
cients, we associate each simulation particle i with its own values
of ρmax,i and αi. For the pressure constraint, the volume frac-
tion φ must be redefined because ρmax will vary for materials of
different densities. Instead of accumulating mi of each particle
on the grid to obtain ρ and computing φ = ρ/ρmax, we obtain
φ directly by accumulating the minimum volume of each particle
Vmin,i = mi/ρmax,i. The pressure solve is then given by

A1 = ∆t2DT
1
φn

ρn
D1, (30)

b1 = 1− φn+1|p=0, (31)

Figure 9: An example of multiple granular materials interact-
ing in a scene. From left to right: high density and friction
(black), medium density and friction (sandy), low density and fric-
tion (white).

instead of (10) and (11). φn/ρn here is treated as a diagonal matrix.

In the friction solve, the weighting w now simply equals φ. This
leads similarly to replacing (18) and (19) with

A2 = ∆t2DT
2
φn

ρn
D2, (32)

b2 = ∆tDT
2 φ

nṽ|s=0. (33)

Since the coupling matrices of Section 2.4 are computed indepen-
dently of the material, they remain exactly the same. In the particle-
based advection part, we only merge two particles if they have iden-
tical material properties. This ensures that each simulation particle
is associated with only one distinct material, and facilitates render-
ing. If it is desired to simulate materials with properties that vary
continuously over space, this condition can be relaxed.

5 Results

We have applied our method to several scenarios, showing many
characteristic behaviors of granular materials including stable pile
formation, freely dispersing clouds of grains, and two-way rigid
body interaction.

Absence of cohesion: In Figure 1, several rigid bodies are placed
on top of a sand pile, and an explosion goes off inside the pile, send-
ing the sand and the bodies into the air. We modeled the explosion
as an instantaneous outward impulse applied to particles in a small
sphere in the interior of the pile. In an incompressible fluid, this
divergence would be immediately nullified by the pressure projec-
tion, but our cohesionless pressure solve allows the sand to disperse
in a realistic manner.

Pressure/friction interaction: Figure 3 shows sand falling in an
hourglass. Friction plays a central role here, as it maintains a con-
stant rate of flow of sand through the neck of the hourglass, unlike
a traditional liquid whose rate of flow would depend on the height
of the liquid above it.

Solid coupling: Figure 5 demonstrates two-way coupling between
rigid bodies and granular material. Note that an accurate coupling
of frictional stress is necessary for the material to be able to support
the weight of bodies much denser than itself. Friction also causes
the lighter spheres roll without slipping on the sand surface. An-
other example with rotating paddle wheels is shown in Figure 6.

Multiple materials: Figure 9 shows different kinds of granular ma-
terials colliding and interacting in a single scene. The differing den-
sities and friction of the materials give rise to different interactions.

Comparison with previous work: In Figure 11, we compare
the behavior of our simulator with the results of Zhu and Bridson
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Figure 10: A 1-inch metal sphere hits sand at high velocity, creating a splash and a large crater.

Figure 11: A column of granular material is simulated using Zhu
and Bridson’s method [2005] (top) and our method (bottom).

[2005]. Due to their incompressibility assumption, their approach
works well for modeling cohesive materials like wet sand, while
ours behaves more like a dry granular material with zero cohesion.

Real-world comparison: Figure 10 shows an impact scenario with
a fast-moving metal sphere. We modeled this on a real experiment
from the Discovery Channel, viewable at http://dsc.discovery.com/
videos/time-warp-deep-impact.html. Our result is qualitatively con-
sistent with the real-world behavior of sand in this scenario. Some
anisotropy visible in the splash is due to the linearization of the fric-
tion constraint (15). This can be avoided by adding more constraint
hyperplanes, at the cost of higher simulation time.

Rendering granular materials from a continuum-based simulation
poses its own challenges, as fine grains for rendering must be sam-
pled from the simulation in a temporally coherent manner. Previ-
ous methods either simulated a cohesive material which maintained
a well-defined surface for rendering [Zhu and Bridson 2005], or
attached grains rigidly to simulation particles [Lenaerts and Dutré
2009] leading to visible clumps. Neither of these is applicable to
our technique, so we have developed a heuristic approach that we
found to perform well for many situations.

We render sand as a cloud of points, producing a granular appear-
ance. To each simulation particle, we associate a number of render
points sampled within the particle’s ellipsoid, that are passively ad-
vected with the flow. Points are reassigned to new simulation parti-
cles upon split and merge events, and resampled if they fall outside
their parent ellipsoid. We also reduce the number of points being
rendered by detecting connected regions of high density and avoid-
ing sampling points inside them. For illumination, the point normal
is taken to be the gradient of the density plus a per-particle random

Example Grid size Sim/render Time/
particles frame

Explosion (Fig. 1) 75× 50× 75 242k / 4.7M 19.5 s
Hourglass (3) 25× 50× 25 44k / 2.4M 6.5 s
Impacts (5) 50× 40× 100 425k / 4.1M 18.3 s
Paddles (6) 50× 100× 50 199k / 2.7M 32.5 s
Materials (9) 60× 40× 60 415k / 4.4M 13.9 s
Comparison (11) 75× 50× 75 506k / 4.0M 11.6 s
Splash (10) 50× 40× 50 403k / 5.2M 6.1 s

Table 1: Performance measurements for all of our examples.

jitter. All scenes were rendered using Pixar’s RenderMan R©.

The performance of our single-threaded implementation was mea-
sured on a 3.33 GHz Intel Core i7 machine with 5.8 GB of RAM.
The detailed performance numbers are shown in Table 1. On aver-
age, the time per frame was spent as follows: 17% pressure, 35%
friction, 33% particle update, and the remainder in other steps.

All of our simulations took between 6 and 33 seconds per frame
on average, which is comparable to the performance of [Zhu and
Bridson 2005] on similar PCs. The simulation time per frame is
proportional to both the number of occupied grid cells and the speed
of motion in the scene due to adaptive timestepping. In comparison
to [Bell et al. 2005], their hourglass scenario with 110k particles and
rigid body impact (“splash”) with 187k particles both take roughly
200 seconds per frame. Accounting for the scaling factor in the
number of particles, our method running on the similar scenes and
hardware is about one order of magnitude faster.

6 Conclusion

We have presented an efficient method for simulating free-flowing,
dynamic granular materials using a continuum model. Our method
supports a very general, diverse set of granular behaviors, includ-
ing dispersing flow and two-way interaction with solid objects. We
achieved this through a novel mathematical treatment of granular
flow that robustly handles the complex interplay of internal stresses
in the granular material. In addition, we developed a generalization
of the particle-in-cell method that maintains a good distribution of
particles in general compressible flows.

6.1 Limitations and future work

Our method models purely cohesionless behavior, which is an as-
sumption satisfied by most dry granular materials. However, cer-
tain materials such as wet sand and soil show a finite amount
of cohesion, which prevents the material from dispersing under
small forces. Existing continuum models [Zhu and Bridson 2005;
Lenaerts and Dutré 2009] which assume incompressibility can
model such materials to an extent, but do not handle cases when
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cohesive forces are overcome and the material breaks apart. An
approach that can faithfully model granular materials with varying
amounts of cohesion remains an open challenge.

Currently, we do not model the detailed effects of inter-grain in-
teraction. These include subgrid-scale variations in motion, and
interactions between grains of widely differing sizes. The addition
of a model for such subgrid-scale interactions would allow for the
simulation of even more complex scenes such as avalanches involv-
ing objects of many different shapes and sizes. Such an approach
could also be useful in engineering applications.

To derive a tractable model for granular material dynamics, we have
adopted a critical state assumption and neglected inter-particle in-
teractions in the collisional regime of lower density. These assump-
tions allow many scenarios of interest to graphics applications to
be simulated efficiently, but preclude modeling the more counter-
intuitive behaviors such as formation of convection layers and sur-
face waves upon shaking, and the Brazil nut and reverse Brazil nut
effects. These surprising phenomena are beyond the scope of our
current work, and remain as puzzling, challenging effects to model
for the physics and mathematics communities.

Finally, the issue of sampling and rendering millions of grains from
a continuum representation of granular material is an interesting re-
search problem in itself, and can further enhance the visual appear-
ance of our key contribution on simulation. Further independent
investigation of this problem is valuable.
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