Scene Graphs

COMP 575/ COMP 770

Scene Graphs

» Good background at Wikipedia:
http://en.wikipedia.org/wiki/Scene _graph

1. A scene graph is a collection of nodes in a graph or tree
structure

2. Nodes in a scene graph (generally) represent entities or
objects in the scene

3. Define logical relationships

e.g. between a knight and a horse so that the knight is considered an
extension to the horse;

4. Define spatial relationships

5 Spatial hierarchies and memorv overhead

http://en.wikipedia.org/wiki/Scene_graph

Data structures with transforms

* Representing a drawing (“scene”)
 List of objects

« Transform for each object
— can use minimal primitives: ellipse is transformed circle
— transform applies to points of object

.- k
Tz‘

Example

* Can represent drawing with flat list
— but editing operations require updating many transforms

o0 A RO E -l

1=

Groups of objects

* Treat a set of objects as one

 Introduce new object type: group
— contains list of references to member objects

* This makes the model into a tree
— Interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group

Example

« Add group as a new object type
— lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node

T .D Tzo. ﬁ Tge ¥ Tce = Tpe *
o || ‘
T7'O Te'. T9°. T|o°. 719'. Tzo'.

el el l el el . . .

TI4'. TIS‘- T240- Tzsn-

The Scene Graph (tree)

* A name given to various kinds of graph structures
(nodes connected together) used to represent

scenes
* Simplest form: tree
— Just saw this
— every node has one parent

— |leaf nodes are identified
with objects in the scene

Concatenation and hierarchy

« Transforms associated with nodes or edges

« Each transform applies to all geometry below it
— want group transform to transform each member
— members already transformed—concatenate

* Frame transform for object is product of all
matrices along path from root

— each object’s transform describes relationship between
Its local coordinates and its group’s coordinates

— frame-to-canonical transform is the result of repeatedly
changing coordinates from group to containing group

Instances

« Simple idea: allow an object to be a member of
more than one group at once
— transform different in each case
— leads to linked copies
— single editing operation changes all instances

Example

 Allow multiple references to nodes
— reflects more of drawing structure
— allows editing of repeated parts in one operation

Ti .D Tzo. Tae ¥ Tge ¥ Tce w Tpe ¥ Tge w Tee w

T

il el -l el
T7°O Ts'. T9°. T|o°.

AR
HH
EEE

el o
na il sl

The Scene Graph (with instances)

 With instances, there iIs no more tree

— an object that is instanced multiple
times has more than one parent

» Transform tree becomes DAG
— directed acyclic graph

— group Is not allowed to contain
itself, even indirectly

* Transforms still accumulate
along path from root

— now paths from root to leaves
are identified with scene objects

11

Implementing a hierarchy

* Object-oriented language is convenient
— define shapes and groups as derived from single class

abstract class Shape {
void draw();

}

class Square extends Shape {
void draw() {
/[draw unit square

}
}

class Circle extends Shape {
void draw() {
/[draw unit circle

}
}

12

Implementing traversal

» Pass a transform down the hierarchy
— before drawing, concatenate

abstract class Shape {
void draw(Transform t_c);

} class Group extends Shape {
class Square extends Shape { Transform t;
void draw(Transform t_c) { ShapelList members;
// draw t_c * unit square void draw(Transform t_c) {
} for (m in members) {
} m.draw(t_c * t);
}
class Circle extends Shape { }
void draw(Transform t_c) { }
/[draw t_c * unit circle
}
}

13

Basic Scene Graph operations

« Editing a transformation

— good to present usable Ul

Getting transform of object in canonical (world)
frame

— traverse path from root to leaf

Grouping and ungrouping

— can do these operations without moving anything
— group: insert identity node

— ungroup: remove node, push transform to children
Reparenting

— move node from one parent to another

— can do without altering position

14

Adding more than geometry

* Objects have properties besides shape
— color, shading parameters

— approximation parameters (e.g. precision of subdividing
curved surfaces into triangles)

— behavior in response to user input

e Setting properties for entire groups is useful
— paint entire window green

« Many systems include some kind of property
nodes

— In traversal they are read as, e.g., “set current color”

15

Scene Graph variations

* Where transforms go
— In every node
— on edges
— In group nodes only
— In special Transform nodes

* Tree vs. DAG
* Nodes for cameras and lights?

16

Spatial Hierarchies

* Broad classification:

— Spatial hierarchies
« Grids
* Octrees
« Kd-trees, BSP trees

— Object hierarchies
« Bounding volume hierarchies
« Spatial kd-trees

Spatial hierarchies: grids

* Regular subdivision of space into cells
— Cells almost always cubes

— Each object is referenced in
each cell it overlaps

— Nested grids also possible

Spatial hierarchies: kd-trees

* Binary tree of space subdivisions
— Each is axis-aligned plane

Spatial hierarchies: kd-trees

* Traversing a kd-tree: recursive
— Start at root node
— For current node:

* If inner node (for ray tracing): “---f-----

— Find intersection of ray with plan

— If ray intersects both children, recurse on
near side, then far side

— Otherwise, recurse on side it intersects
e |f leaf node:
— Intersect with all object. If hit, terminate.

[3

Kd-tree traversal

« Simple and fast implementation
— In practice: using stack, not recursion
— Very quick intersection test (couple FLOPS + tests)

* Overall: logarithmic complexity for each ray or
Intersection test

Object hierarchies: BVHs

 Different approach:
subdivide objects, not space
— Hierarchical clustering of objects
— Each cluster represented by bounding volume

— Binary tree
« Each parent node fully contains children

Bounding volumes

« Practically anything can be bounding volume
— Just need ray intersection method

« Typical choices:
— Spheres
— Axis-aligned bounding boxes (AABBS)
— Oriented bounding boxes (OBBS)
— k-DOPs
« Trade-off between intersection speed and how
closely the BV encloses the geometry

BVH traversal

* Recursive algorithm:
— Start with root node
— For current node (ray tracing):
* Does ray intersect node’s BV? If no, return
* |s inner node?
—Yes, recurse on children
* |s leaf node?

— Intersect with object(s) in node, store intersection
results

* Widely used for view frustum culling or collision
checking

Choosing a structure

 There Is no ‘best’ acceleration structure
— All have pros and cons
e Grid:
+ fast construction
- bad for high local detalil (teapot/stadium)

Choosing a structure

* There is no ‘best’ acceleration structure
— All have pros and cons
e kd-tree:

+ fast traversal
- expensive build, only static scenes

Choosing a structure

* There is no ‘best’ acceleration structure
— All have pros and cons
e BVH:

+ can be updated for dynamic scenes
- traversal more expensive than kd-tree

