
1

Scene Graphs

COMP 575 / COMP 770

2

Scene Graphs

• Good background at Wikipedia:

http://en.wikipedia.org/wiki/Scene_graph

1. A scene graph is a collection of nodes in a graph or tree

structure

2. Nodes in a scene graph (generally) represent entities or

objects in the scene

3. Define logical relationships

 e.g. between a knight and a horse so that the knight is considered an

extension to the horse;

4. Define spatial relationships

5. Spatial hierarchies and memory overhead

http://en.wikipedia.org/wiki/Scene_graph

3

Data structures with transforms

• Representing a drawing (“scene”)

• List of objects

• Transform for each object

– can use minimal primitives: ellipse is transformed circle

– transform applies to points of object

4

Example

• Can represent drawing with flat list

– but editing operations require updating many transforms

5

Groups of objects

• Treat a set of objects as one

• Introduce new object type: group

– contains list of references to member objects

• This makes the model into a tree

– interior nodes = groups

– leaf nodes = objects

– edges = membership of object in group

6

Example

• Add group as a new object type

– lets the data structure reflect the drawing structure

– enables high-level editing by changing just one node

7

The Scene Graph (tree)

• A name given to various kinds of graph structures

(nodes connected together) used to represent

scenes

• Simplest form: tree

– just saw this

– every node has one parent

– leaf nodes are identified

with objects in the scene

8

Concatenation and hierarchy

• Transforms associated with nodes or edges

• Each transform applies to all geometry below it

– want group transform to transform each member

– members already transformed—concatenate

• Frame transform for object is product of all

matrices along path from root

– each object’s transform describes relationship between

its local coordinates and its group’s coordinates

– frame-to-canonical transform is the result of repeatedly

changing coordinates from group to containing group

9

Instances

• Simple idea: allow an object to be a member of

more than one group at once

– transform different in each case

– leads to linked copies

– single editing operation changes all instances

10

Example

• Allow multiple references to nodes

– reflects more of drawing structure

– allows editing of repeated parts in one operation

11

The Scene Graph (with instances)

• With instances, there is no more tree

– an object that is instanced multiple

times has more than one parent

• Transform tree becomes DAG

– directed acyclic graph

– group is not allowed to contain

itself, even indirectly

• Transforms still accumulate

along path from root

– now paths from root to leaves

are identified with scene objects

12

Implementing a hierarchy

• Object-oriented language is convenient

– define shapes and groups as derived from single class

abstract class Shape {

 void draw();

}

class Square extends Shape {

 void draw() {

 // draw unit square

 }

}

class Circle extends Shape {

 void draw() {

 // draw unit circle

 }

}

13

Implementing traversal

• Pass a transform down the hierarchy

– before drawing, concatenate

abstract class Shape {

 void draw(Transform t_c);

}

class Square extends Shape {

 void draw(Transform t_c) {

 // draw t_c * unit square

 }

}

class Circle extends Shape {

 void draw(Transform t_c) {

 // draw t_c * unit circle

 }

}

class Group extends Shape {

 Transform t;

 ShapeList members;

 void draw(Transform t_c) {

 for (m in members) {

 m.draw(t_c * t);

 }

 }

}

14

Basic Scene Graph operations

• Editing a transformation

– good to present usable UI

• Getting transform of object in canonical (world)
frame

– traverse path from root to leaf

• Grouping and ungrouping

– can do these operations without moving anything

– group: insert identity node

– ungroup: remove node, push transform to children

• Reparenting

– move node from one parent to another

– can do without altering position

15

Adding more than geometry

• Objects have properties besides shape

– color, shading parameters

– approximation parameters (e.g. precision of subdividing

curved surfaces into triangles)

– behavior in response to user input

– …

• Setting properties for entire groups is useful

– paint entire window green

• Many systems include some kind of property

nodes

– in traversal they are read as, e.g., “set current color”

16

Scene Graph variations

• Where transforms go

– in every node

– on edges

– in group nodes only

– in special Transform nodes

• Tree vs. DAG

• Nodes for cameras and lights?

Spatial Hierarchies

• Broad classification:

– Spatial hierarchies

• Grids

• Octrees

• Kd-trees, BSP trees

– Object hierarchies

• Bounding volume hierarchies

• Spatial kd-trees

Spatial hierarchies: grids

• Regular subdivision of space into cells

– Cells almost always cubes

– Each object is referenced in

each cell it overlaps

– Nested grids also possible

Spatial hierarchies: kd-trees

• Binary tree of space subdivisions

– Each is axis-aligned plane

x

y y

Spatial hierarchies: kd-trees

• Traversing a kd-tree: recursive

– Start at root node

– For current node:

• If inner node (for ray tracing):

– Find intersection of ray with plane

– If ray intersects both children, recurse on

near side, then far side

– Otherwise, recurse on side it intersects

• If leaf node:

– Intersect with all object. If hit, terminate.

Kd-tree traversal

• Simple and fast implementation

– In practice: using stack, not recursion

– Very quick intersection test (couple FLOPS + tests)

• Overall: logarithmic complexity for each ray or

intersection test

Object hierarchies: BVHs

• Different approach:

subdivide objects, not space

– Hierarchical clustering of objects

– Each cluster represented by bounding volume

– Binary tree

• Each parent node fully contains children

Bounding volumes

• Practically anything can be bounding volume

– Just need ray intersection method

• Typical choices:

– Spheres

– Axis-aligned bounding boxes (AABBs)

– Oriented bounding boxes (OBBs)

– k-DOPs

• Trade-off between intersection speed and how

closely the BV encloses the geometry

BVH traversal

• Recursive algorithm:

– Start with root node

– For current node (ray tracing):

• Does ray intersect node’s BV? If no, return

• Is inner node?

– Yes, recurse on children

• Is leaf node?

– Intersect with object(s) in node, store intersection

results

• Widely used for view frustum culling or collision

checking

Choosing a structure

• There is no ‘best’ acceleration structure

– All have pros and cons

• Grid:

+ fast construction

- bad for high local detail (teapot/stadium)

Choosing a structure

• There is no ‘best’ acceleration structure

– All have pros and cons

• kd-tree:

+ fast traversal

- expensive build, only static scenes

Choosing a structure

• There is no ‘best’ acceleration structure

– All have pros and cons

• BVH:

+ can be updated for dynamic scenes

- traversal more expensive than kd-tree

