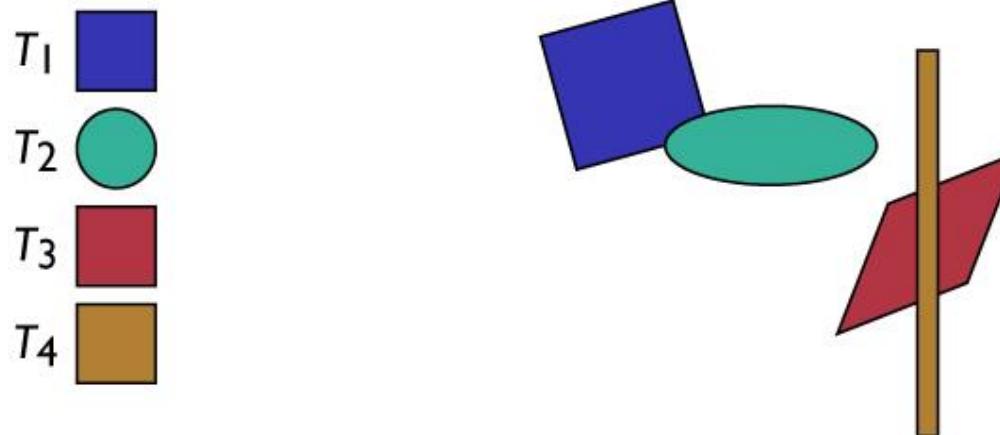


Scene Graphs

COMP 575 / COMP 770

Scene Graphs


- Good background at Wikipedia:

http://en.wikipedia.org/wiki/Scene_graph

1. A scene graph is a collection of nodes in a graph or tree structure
2. Nodes in a scene graph (generally) represent entities or objects in the scene
3. Define logical relationships
 - e.g. between a knight and a horse so that the knight is considered an extension to the horse;
4. Define spatial relationships
5. Spatial hierarchies and memory overhead

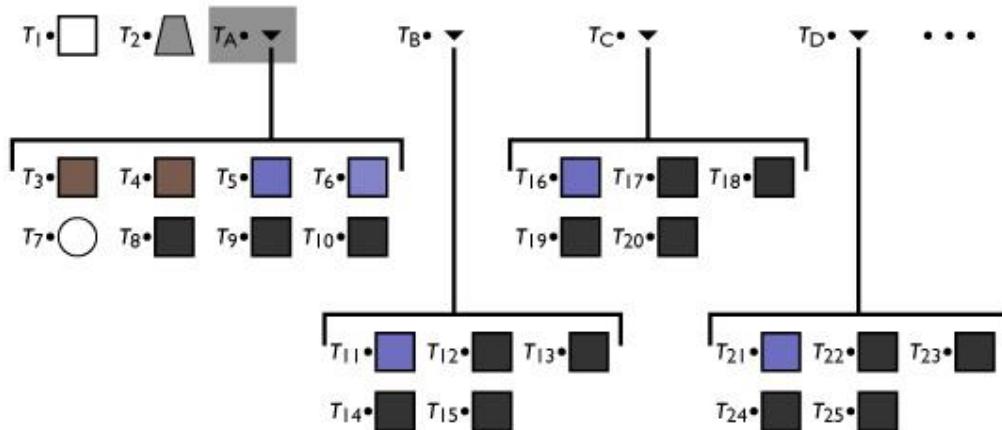
Data structures with transforms

- Representing a drawing (“scene”)
- List of objects
- Transform for each object
 - can use minimal primitives: ellipse is transformed circle
 - transform applies to points of object

Example

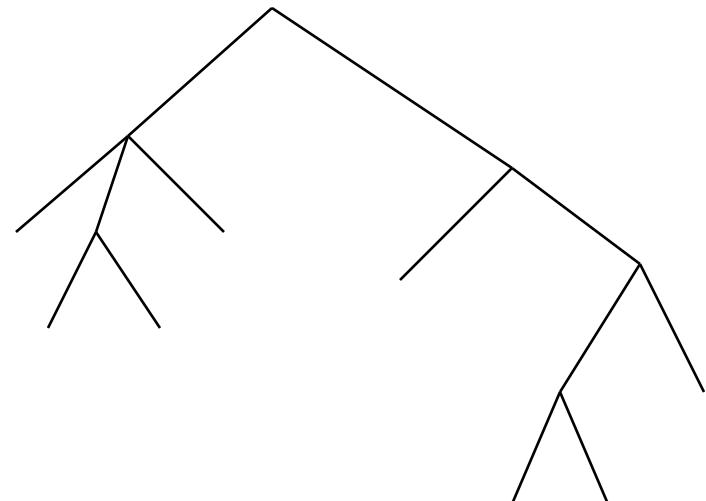
- Can represent drawing with flat list
 - but editing operations require updating many transforms

$T_1 \bullet \square \quad T_2 \bullet \text{triangle} \quad T_3 \bullet \text{brown square} \quad T_4 \bullet \text{dark brown square} \quad T_5 \bullet \text{blue square} \quad T_6 \bullet \text{dark blue square} \quad T_7 \bullet \text{circle} \quad T_8 \bullet \text{black square} \quad T_9 \bullet \text{dark gray square} \quad T_{10} \bullet \text{black square} \quad T_{11} \bullet \text{light blue square} \quad T_{12} \bullet \text{dark gray square} \quad T_{13} \bullet \text{dark gray square} \quad T_{14} \bullet \text{dark gray square} \quad T_{15} \bullet \text{dark gray square} \quad T_{16} \bullet \text{light blue square} \quad T_{17} \bullet \text{dark gray square} \quad T_{18} \bullet \text{dark gray square} \quad \dots$



Groups of objects

- Treat a set of objects as one
- Introduce new object type: group
 - contains list of references to member objects
- This makes the model into a tree
 - interior nodes = groups
 - leaf nodes = objects
 - edges = membership of object in group

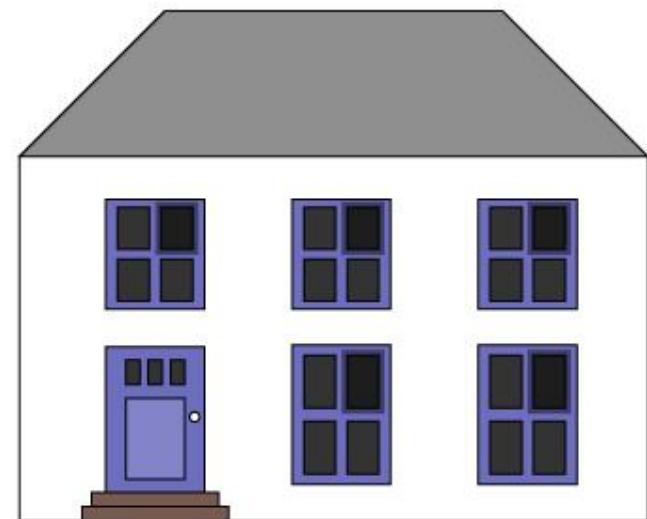

Example

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node

The Scene Graph (tree)

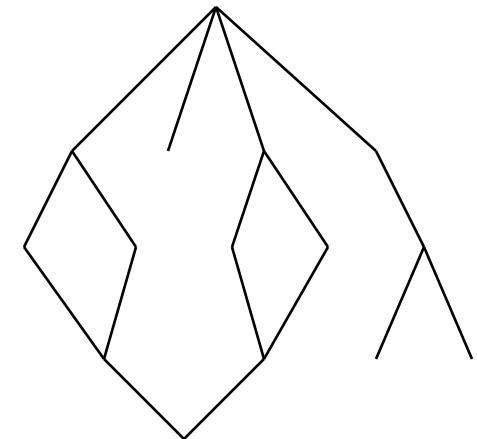
- A name given to various kinds of graph structures (nodes connected together) used to represent scenes
- Simplest form: tree
 - just saw this
 - every node has one parent
 - leaf nodes are identified with objects in the scene

Concatenation and hierarchy


- Transforms associated with nodes or edges
- Each transform applies to all geometry below it
 - want group transform to transform each member
 - members already transformed—concatenate
- Frame transform for object is product of all matrices along path from root
 - each object's transform describes relationship between its local coordinates and its group's coordinates
 - frame-to-canonical transform is the result of repeatedly changing coordinates from group to containing group

Instances

- Simple idea: allow an object to be a member of more than one group at once
 - transform different in each case
 - leads to linked copies
 - single editing operation changes all instances


Example

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation

The Scene Graph (with instances)

- With instances, there is no more tree
 - an object that is instanced multiple times has more than one parent
- Transform tree becomes DAG
 - **directed acyclic graph**
 - group is not allowed to contain itself, even indirectly
- Transforms still accumulate along path from root
 - now *paths* from root to leaves are identified with scene objects

Implementing a hierarchy

- Object-oriented language is convenient
 - define shapes and groups as derived from single class

```
abstract class Shape {  
    void draw();  
}
```

```
class Square extends Shape {  
    void draw() {  
        // draw unit square  
    }  
}
```

```
class Circle extends Shape {  
    void draw() {  
        // draw unit circle  
    }  
}
```

Implementing traversal

- Pass a transform down the hierarchy
 - before drawing, concatenate

```
abstract class Shape {  
    void draw(Transform t_c);  
}  
  
class Square extends Shape {  
    void draw(Transform t_c) {  
        // draw t_c * unit square  
    }  
}  
  
class Circle extends Shape {  
    void draw(Transform t_c) {  
        // draw t_c * unit circle  
    }  
}
```

```
class Group extends Shape {  
    Transform t;  
    ShapeList members;  
    void draw(Transform t_c) {  
        for (m in members) {  
            m.draw(t_c * t);  
        }  
    }  
}
```

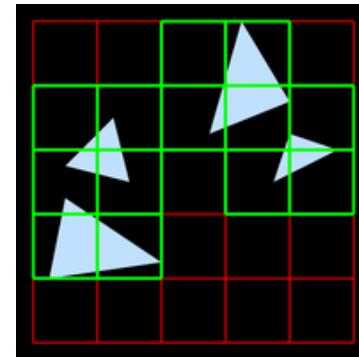
Basic Scene Graph operations

- Editing a transformation
 - good to present usable UI
- Getting transform of object in canonical (world) frame
 - traverse path from root to leaf
- Grouping and ungrouping
 - can do these operations without moving anything
 - group: insert identity node
 - ungroup: remove node, push transform to children
- Reparenting
 - move node from one parent to another
 - can do without altering position

Adding more than geometry

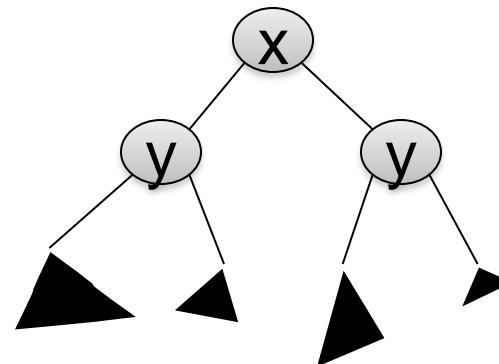
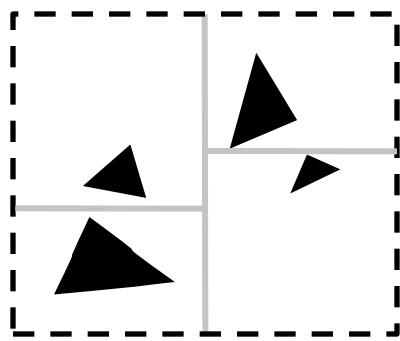
- Objects have properties besides shape
 - color, shading parameters
 - approximation parameters (e.g. precision of subdividing curved surfaces into triangles)
 - behavior in response to user input
 - ...
- Setting properties for entire groups is useful
 - paint entire window green
- Many systems include some kind of property nodes
 - in traversal they are read as, e.g., “set current color”

Scene Graph variations

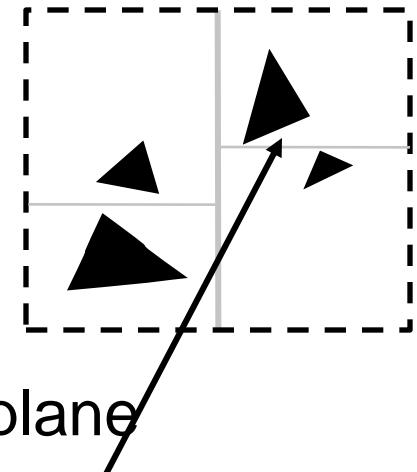

- Where transforms go
 - in every node
 - on edges
 - in group nodes only
 - in special Transform nodes
- Tree vs. DAG
- Nodes for cameras and lights?

Spatial Hierarchies

- Broad classification:
 - Spatial hierarchies
 - Grids
 - Octrees
 - Kd-trees, BSP trees
 - Object hierarchies
 - Bounding volume hierarchies
 - Spatial kd-trees



Spatial hierarchies: grids

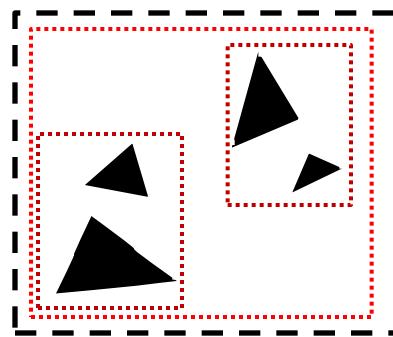
- Regular subdivision of space into cells
 - Cells almost always cubes
 - Each object is referenced in each cell it overlaps
 - Nested grids also possible


Spatial hierarchies: kd-trees

- Binary tree of space subdivisions
 - Each is axis-aligned plane

Spatial hierarchies: kd-trees

- Traversing a kd-tree: recursive
 - Start at root node
 - For current node:
 - If inner node (for ray tracing):
 - Find intersection of ray with plane
 - If ray intersects both children, recurse on near side, then far side
 - Otherwise, recurse on side it intersects
 - If leaf node:
 - Intersect with all object. If hit, terminate.



Kd-tree traversal

- Simple and fast implementation
 - In practice: using stack, not recursion
 - Very quick intersection test (couple FLOPS + tests)
- Overall: logarithmic complexity for each ray or intersection test

Object hierarchies: BVHs

- Different approach:
subdivide objects, not space
 - Hierarchical clustering of objects
 - Each cluster represented by bounding volume

- Binary tree
 - Each parent node fully contains children

Bounding volumes

- Practically anything can be bounding volume
 - Just need ray intersection method
- Typical choices:
 - Spheres
 - Axis-aligned bounding boxes (AABBs)
 - Oriented bounding boxes (OBBs)
 - k-DOPs
- Trade-off between intersection speed and how closely the BV encloses the geometry

BVH traversal

- Recursive algorithm:
 - Start with root node
 - For current node (ray tracing):
 - Does ray intersect node's BV? If no, return
 - Is inner node?
 - Yes, recurse on children
 - Is leaf node?
 - Intersect with object(s) in node, store intersection results
- Widely used for view frustum culling or collision checking

Choosing a structure

- There is no ‘best’ acceleration structure
 - All have pros and cons
- Grid:
 - + fast construction
 - bad for high local detail (teapot/stadium)

Choosing a structure

- There is no ‘best’ acceleration structure
 - All have pros and cons
- kd-tree:
 - + fast traversal
 - expensive build, only static scenes

Choosing a structure

- There is no ‘best’ acceleration structure
 - All have pros and cons
- BVH:
 - + can be updated for dynamic scenes
 - traversal more expensive than kd-tree