Rasterization

COMP 575/770 Spring 2013

The Rasterization Pipeline

Rasterization

- 1. Project a primitive onto the screen
- 2. Find which pixels lie inside the projection
- 3. Interpolate attributes at each pixel
 - These are quantities that help in shading
- 4. Perform shading

Outline

- Overview
- Line Rasterization

Rasterizing Lines

- Most pixels won't lie on the line!
- Approximate line using thin rectangle

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0		0		0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0		•	2
0	0	0			0	0	0	0	0	•	0	-	0
0	0	0		0	0	0	•	-	- and	•	0	0	0
0	0	0	0	0	2		0		0	0	0	0	0
0	0		-	-	•	0	.0	0	0	0		0	0
0		0	0	0		0	0	0	0	0	0	0	0
0	.0	0	.0	0	0	0	0	0	0	.0		.0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	•	0	0	0	0	0	0	0	0
0	0	0	•	0	0	0		0	0	0			0
0	0	0	0	0	0	0	0	0	0	0		0	0
0	0	0	0	Θ	θ	0	0	0	0	0	0	0	0
•	0	0	0	0	0		0	0	0	0	0	0	

Rasterizing Lines

- Mark all pixels inside the thin rectangle?
- Problem: Sometimes marks adjacent pixels

0								0	0				
			1000										
0	0	0	0	0	0	0	0	Θ	0	0	0	0	
0	•	0	۰	•	۰	۰			0		0	۰	1
0	0		0		0		0	0	0	0			
0	0	0	0	Θ	0	0	0				0	0	6
0	0	0	0	0	0				0	0	0	0	e
0	0	0				0		0	0	0	0	0	4
0	0		0	0	0	0	0	0	0	0	0	0	0
0	0		.0	0	0	0		0		0	0	•	6
0	0	0	0	0	0	0	0	0	0	0	0	0	6
0	0	0	0	0	0	0	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	0	0	0	6
0		0		0	0				0		0		6

Rasterizing Lines

- Mark only one pixel per column
 - The closest one
- Basically, line width defined parallel to pixel grid

0	0	0	0	0	0	0	0	0	0	0	0	0	e
0	0		0	0	0	0		0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0		•	0	0		0		0	0			
0		0	0	0	0	0	0				0	0	6
0	0	0	0	0	0			0	0	0	0	0	e
0	0					0		0	0	.0		0	
0	0			0		0	0	0	0	0	0	0	
0	.0			0	0	0	0	0	0	.0			.0
0	0	0	0	0	0	0	0	0	0	0	0	0	e
0	0		0	0		0		0	0	0		0	
0	0	0	0	0	0	0		0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	9
0	0	0	0	Θ	0	0	0	0	0	0	0	0	6
•	0	0			0	0			0		0		

Slope-intercept form of line equation:

$$y = mx + b$$

- We assume $m \in (0,1]$
- There are three other analogous cases:
 - $m \in (-\infty, -1]$
 - *m* ∈ (−1,0]
 - $m \in (1, \infty)$

- Evaluate line equation per column
- Endpoints at x₀ < x₁

```
for x = ceil(x_0) to floor(x_1)

y = m^*x + b

mark(x, round(y))

end
```


- Evaluate line equation per column
- Endpoints at x₀ < x₁

```
 \begin{aligned} \mathbf{x} &= \text{ceil}(\mathbf{x}_0) \\ \text{while } \mathbf{x} &< \text{floor}(\mathbf{x}_1) \\ \mathbf{y} &= \mathbf{m}^* \mathbf{x} + \mathbf{b} \\ \text{mark}(\mathbf{x}, \text{ round}(\mathbf{y})) \\ \mathbf{x} &+= 1 \\ \text{end} \end{aligned}
```


- Two slow operations:
 - Multiply: $y = m^*x + b$
 - Round: mark(x, round(y))
- y varies predictably:

y(x + 1) = m(x + 1) + b= y(x) + m

 $x = ceil(x_0)$ $y = m^*x + b$ while x < floor(x₁) mark(x, round(y)) x += 1 y += m end

- Only two options when moving to next column
- Which does line pass closer to?
- d = m(x+1) + b y
- If d > 0.5, line is closer to NE
 - Otherwise, closer to E

- Incrementally update d
- If we choose E:
 - Increment d by m
- If we choose NE:
 - Increment d by m-1
- Approach also called digital differential analyzer (DDA)

 $\begin{array}{l} x = ceil(x_0) \\ y = round(m^*x + b) \\ d = m^*(x+1) + b - y \\ while x < floor(x_1) \\ if d > 0.5 \\ y += 1 \\ d -= 1 \\ end \\ x += 1 \\ d += m \\ mark(x, y) \\ end \end{array}$

Outline

- Overview
- Line Rasterization
- Line Attributes

Attribute Interpolation

- Attributes are often attached to vertices/endpoints
 - E.g., color of hair drawn using lines
 - Want color to vary smoothly along line segments
- Linear interpolation:

$$f(x) = (1 - \alpha)y_0 + \alpha y_1$$
$$\alpha = \frac{x - x_0}{x_1 - x_0}$$

• α is the fraction of distance from (x_0, y_0) to (x_1, y_1)

Attribute Interpolation

 Suppose endpoint attributes are A₀ and A₁

 $A(x) = A_0 + \alpha (A_1 - A_0)$

 Since α is linear in x, can write an incremental expression

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	.0	θ	0	0	θ	0	0
0	0	0	0	0	0	0		0	0	0	0	0	p
0	•			•	0		0		•	•			•
0		0		0	0	0	0				0	0	6
0	0	0	0	0	0			•	•	•	0	0	0
0	°p	0				0		0	٥	0	0	0	0
0			v	0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	•	0	.0	.0	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	. 0		0	0		0	0	0				0	0
0	0	0		0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	0	0	0	6
0		0		0							0	0	6

Outline

- Overview
- Line Rasterization
- Line Attributes
- Triangle Rasterization

Triangle Rasterization

- The most common primitive in most applications
 - Can represent any object using many triangles
 - A triangle always projects to a triangle
- Triangle represented by 3 vertices

•
$$\mathbf{a} = (x_a, y_a), \mathbf{b} = (x_b, y_b), \text{ and } \mathbf{c} = (x_c, y_c)$$

Need to figure out which pixels are inside the triangle

Bounding Rectangle

- Smallest rectangular portion of screen which contains triangle
- No pixels outside it could possibly be in the triangle

$$\begin{array}{l} x_{min} = floor(min(x_a, x_b, x_c)) \\ x_{max} = ceil(max(x_a, x_b, x_c)) \\ y_{min} = floor(min(y_a, y_b, y_c)) \\ y_{max} = ceil(max(y_a, y_b, y_c)) \end{array}$$

Triangle Rasterization

 $\begin{aligned} x_{min} &= floor(min(x_a, x_b, x_c)) \\ x_{max} &= ceil(max(x_a, x_b, x_c)) \\ y_{min} &= floor(min(y_a, y_b, y_c)) \\ y_{max} &= ceil(max(y_a, y_b, y_c)) \end{aligned}$

for
$$y = y_{min}$$
 to y_{max}
for $x = x_{min}$ to x_{max}
if (x, y) is in triangle
mark (x, y)
end
end
end

- A triangle is a **convex** shape
- Any point in the triangle is a convex combination of the triangle's vertices:

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

Subject to:

$$\alpha + \beta + \gamma = 1$$

- α, β, γ are called the **barycentric** coordinates of **p**
- **p** lies inside the triangle if $\alpha \ge 0$, $\beta \ge 0$, and $\gamma \ge 0$
- Alternatively: $\beta \ge 0$, $\gamma \ge 0$, and $\beta + \gamma \le 1$
- Main goal: determine β, γ

• Rewriting:

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

- We've seen this sort of thing before!
- (β, γ) are coordinates of **p** in a different frame:
 - a is the origin
 - $(\mathbf{b} \mathbf{a})$ and $(\mathbf{c} \mathbf{a})$ are the axes

Construct the "frame-to-canonical" matrix:

$$\begin{bmatrix} \mathbf{b} - \mathbf{a} & \mathbf{c} - \mathbf{a} & \mathbf{a} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ 1 \end{bmatrix} = \mathbf{F} \begin{bmatrix} \beta \\ \gamma \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Invert to get the "canonical-to-frame" matrix:

$$\begin{bmatrix} \beta \\ \gamma \\ 1 \end{bmatrix} = \mathbf{F}^{-1} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{b} - \mathbf{a} & \mathbf{c} - \mathbf{a} & \mathbf{a} \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• The final answer is:

$$\beta = \frac{(y_a - y_c)x + (x_c - x_a)y + x_a y_c - x_c y_a}{(y_a - y_c)x_b + (x_c - x_a)y_b + x_a y_c - x_c y_a}$$
$$\gamma = \frac{(y_a - y_b)x + (x_b - x_a)y + x_a y_b - x_b y_a}{(y_a - y_b)x_c + (x_b - x_a)y_c + x_a y_b - x_b y_a}$$
$$\alpha = 1 - \beta - \gamma$$

Triangle Rasterization

 $\begin{aligned} x_{min} &= floor(min(x_a, x_b, x_c)) \\ x_{max} &= ceil(max(x_a, x_b, x_c)) \\ y_{min} &= floor(min(y_a, y_b, y_c)) \\ y_{max} &= ceil(max(y_a, y_b, y_c)) \end{aligned}$

for
$$y = y_{min}$$
 to y_{max}
for $x = x_{min}$ to x_{max}
compute β , γ given x, y
if $\beta > 0$ and $\gamma > 0$ and $\beta + \gamma < 1$
mark(x, y)
end
end
end

Optimized Triangle Rasterization

• β, γ are linear functions of x, y:

$$\beta = \frac{(y_a - y_c)x + (x_c - x_a)y + x_a y_c - x_c y_a}{(y_a - y_c)x_b + (x_c - x_a)y_b + x_a y_c - x_c y_a}$$
$$\gamma = \frac{(y_a - y_b)x + (x_b - x_a)y + x_a y_b - x_b y_a}{(y_a - y_b)x_c + (x_b - x_a)y_c + x_a y_b - x_b y_a}$$
$$\alpha = 1 - \beta - \gamma$$

Rewriting:

$$\beta(x, y) = \beta_0 + \beta_x x + \beta_y y$$

$$\gamma(x, y) = \gamma_0 + \gamma_x x + \gamma_y y$$

Optimized Triangle Rasterization

This gives the following recurrences:

$$\beta(x + 1, y) - \beta(x, y) = \beta_x$$

$$\beta(x, y + 1) - \beta(x, y) = \beta_y$$

$$\gamma(x + 1, y) - \gamma(x, y) = \gamma_x$$

$$\gamma(x, y + 1) - \gamma(x, y) = \gamma_y$$

So now we can write an incremental algorithm!

Optimized Triangle Rasterization

compute x_{min} , x_{max} , y_{min} , y_{max} compute β , γ given x_{min} , y_{min} $n = (x_{max} - x_{min}) + 1$

for
$$y = y_{min}$$
 to y_{max}
for $x = x_{min}$ to x_{max}
if $\beta > 0$ and $\gamma > 0$ and $\beta + \gamma < 1$
mark(x, y)
end
 $\beta += \beta_x$
 $\gamma += \gamma_x$
end
 $\beta += \beta_y - n^*\beta_x$
 $\gamma += \gamma_y - n^*\gamma_x$
end

Outline

- Overview
- Line Rasterization
- Line Attributes
- Triangle Rasterization
- Triangle Attributes

Attribute Interpolation

- Given attributes A_a, A_b, A_c at vertices a, b, c
- Attribute at $\mathbf{p} = (x, y)$:

$$A(x, y) = A_a + \beta (A_b - A_a) + \gamma (A_c - A_a)$$

• β, γ are just the barycentric coordinates

Attribute Interpolation

- Easy to incorporate into incremental algorithm
- Also called Gouraud interpolation
- Just one way of doing interpolation

Shared Edges

- Some pixels may lie exactly on an edge shared by two triangles
- What color to assign them?
- More than one way to do this

Shared Edges

Pixel (x, y) is on an edge if:

 $eta=0 ext{ or } \gamma=0 ext{ or } \ eta+\gamma=1$

- Ignore pixels on an edge when on top row or last column in a row
- OpenGL/Direct3D convention

http://msdn.microsoft.com/en-us/library/windows/desktop/bb147314(v=vs.85).aspx

Outline

- Overview
- Line Rasterization
- Line Attributes
- Triangle Rasterization
- Triangle Attributes
- Clipping

Clipping

- Rasterizer assumes triangle's pixels are on-screen
 - Bad things happen if triangle crosses near plane
- After applying perspective matrix, need to clip against canonical view volume
 - Clip triangle against planes $\{x, y, z\} = \pm 1$

Clipping

- 4 cases, based on which/how many vertices are inside the clipping plane:
 - All inside: retain triangle as-is
 - All outside: don't draw triangle
 - One inside, two outside: one clipped triangle
 - Two inside, one outside: two clipped triangles

