Rasterization

COMP 575/770
Spring 2013

The Rasterization Pipeline

you are here

3D transformations; shading
\Rightarrow VERTEX PROCESSING
TRANSFORMED GEOMETRY
conversion of primitives to pixels
\rightarrow RASTERIZATION

FRAGMENTS
blending, compositing, shading
FRAGMENT PROCESSING
FRAMEBUFFER IMAGE

Rasterization

1. Project a primitive onto the screen
2. Find which pixels lie inside the projection
3. Interpolate attributes at each pixel

- These are quantities that help in shading

4. Perform shading

Outline

- Overview

- Line Rasterization

Rasterizing Lines

- Most pixels won’t lie on the line!
- Approximate line using thin rectangle

-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-					-	-	
-	-	-	-	-	-				-	-	-	-	-	
-	-	,					-	-	-	-	-	-	-	
-	-			-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	*	-	
-	*	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Rasterizing Lines

- Mark all pixels inside the thin rectangle?
- Problem: Sometimes marks adjacent pixels

-	-	-	*	-	-	-	-	-	-	\bullet	-	\bullet	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-			
-	-	\bullet	-	-	-	-	-				-	-	-
-	-	-	-	-	-				-	-	-	-	-
-	-	-				-	-	-	-	\bullet	-	-	-
-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	*	-	-	-	-	-	-	-	-	*	*	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	*	-	-	-	-	-	-	-
-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-

Rasterizing Lines

Midpoint Algorithm

- Mark only one pixel per column
- The closest one
- Basically, line width defined parallel to pixel grid

Midpoint Algorithm

Midpoint Algorithm

- Slope-intercept form of line equation:

$$
y=m x+b
$$

- We assume $m \in(0,1]$
- There are three other analogous cases:
- $m \in(-\infty,-1]$
- $m \in(-1,0]$
- $m \in(1, \infty)$

Midpoint Algorithm

- Evaluate line equation per column
- Endpoints at $\mathrm{x}_{0}<\mathrm{x}_{1}$
for $\mathrm{x}=\operatorname{ceil}\left(\mathrm{x}_{0}\right)$ to $\mathrm{floor}\left(\mathrm{x}_{1}\right)$ $y=m * x+b$ $\operatorname{mark}(x$, round $(y))$ end

Midpoint Algorithm

- Evaluate line equation per column
- Endpoints at $\mathrm{x}_{0}<\mathrm{x}_{1}$

```
\(x=\operatorname{ceil}\left(x_{0}\right)\)
while \(x<\) floor \(\left(x_{1}\right)\)
    \(y=m^{*} x+b\)
    \(\operatorname{mark}(x\), round \((y))\)
    \(x+=1\)
end
```


Optimized Midpoint Algorithm

- Two slow operations:
- Multiply: $y=m * x+b$
- Round: mark(x, round(y))
- y varies predictably:

$$
\begin{aligned}
y(x+1) & =m(x+1)+b \\
& =y(x)+m
\end{aligned}
$$

$$
x=\operatorname{ceil}\left(x_{0}\right)
$$

$$
y=m^{*} x+b
$$

$$
\text { while } x<\text { floor }\left(x_{1}\right)
$$

$$
\operatorname{mark}(x, \operatorname{round}(y))
$$

$$
x+=1
$$

$$
\mathrm{y}+=\mathrm{m}
$$

end

Optimized Midpoint Algorithm

- Only two options when moving to next column
- Which does line pass closer to?
- $d=m(x+1)+b-y$
- If $d>0.5$, line is closer to NE
- Otherwise, closer to E

Optimized Midpoint Algorithm

- Incrementally update d
- If we choose E :
- Increment d by m
- If we choose NE:
- Increment d by $m-1$
- Approach also called digital differential analyzer (DDA)

$$
d=m(x+1)+b-y
$$

Optimized Midpoint Algorithm

$$
\begin{aligned}
& x=\operatorname{ceil}\left(x_{0}\right) \\
& y=\operatorname{round}\left(m^{*} x+b\right) \\
& d=m^{*}(x+1)+b-y \\
& \text { while } x<\text { floor }\left(x_{1}\right) \\
& \text { if } d>0.5 \\
& \qquad y+=1 \\
& d-=1 \\
& \text { end } \\
& \quad x+=1 \\
& d+=m \\
& \quad \operatorname{mark}(x, y) \\
& \text { end }
\end{aligned}
$$

Outline

- Overview
- I ine Rasterization
- Line Attributes

Attribute Interpolation

- Attributes are often attached to vertices/endpoints
- E.g., color of hair drawn using lines
- Want color to vary smoothly along line segments
- Linear interpolation:

$$
\begin{aligned}
& f(x)=(1-\alpha) y_{0}+\alpha y_{1} \\
& \alpha=\frac{x-x_{0}}{x_{1}-x_{0}}
\end{aligned}
$$

- α is the fraction of distance from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$

Attribute Interpolation

- Suppose endpoint attributes are A_{0} and A_{1}

$$
A(x)=A_{0}+\alpha\left(A_{1}-A_{0}\right)
$$

- Since α is linear in x, can write an incremental expression

-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-
-	*	-	-	-	-	-	-	-	-	-	-	\bullet	-
-	-	-	-	-	-	-	-	-	-	-	-	-	1
-	-	-	-	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-				\bullet	\bullet	-
-	-	-	-	-	-			-	-	-	-	-	-
-	-	-				-	-	-	-	-	-	\bullet	-
-				-	-	-	-	\bullet	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
-	-	-	-	-	-	\bullet	-	-	-	-	-	\bullet	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet	-

Outline

- Overview

- Line Rasterization
- Line Attributes
- Triangle Rasterization

Triangle Rasterization

- The most common primitive in most applications
- Can represent any object using many triangles
- A triangle always projects to a triangle
- Triangle represented by 3 vertices
- $\mathbf{a}=\left(x_{a}, y_{a}\right), \mathbf{b}=\left(x_{b}, y_{b}\right)$, and $\mathbf{c}=\left(x_{c}, y_{c}\right)$
- Need to figure out which pixels are inside the triangle

Bounding Rectangle

- Smallest rectangular portion of screen which contains triangle
- No pixels outside it could possibly be in the triangle
$x_{\text {min }}=\operatorname{floor}\left(\min \left(x_{a}, x_{b}, x_{c}\right)\right)$
$x_{\max }=\operatorname{ceil}\left(\max \left(x_{a}, x_{b}, x_{c}\right)\right)$
$y_{\text {min }}=\operatorname{floor}\left(\min \left(y_{a}, y_{b}, y_{c}\right)\right)$
$y_{\max }=\operatorname{ceil}\left(\max \left(y_{a}, y_{b}, y_{c}\right)\right)$

Triangle Rasterization

```
\(x_{\text {min }}=\operatorname{floor}\left(\min \left(x_{a}, x_{b}, x_{c}\right)\right)\)
\(x_{\max }=\operatorname{ceil}\left(\max \left(x_{a}, x_{b}, x_{c}\right)\right)\)
\(y_{\text {min }}=\operatorname{floor}\left(\min \left(y_{a}, y_{b}, y_{c}\right)\right)\)
\(y_{\max }=\operatorname{ceil}\left(\max \left(y_{a}, y_{b}, y_{c}\right)\right)\)
for \(y=y_{\text {min }}\) to \(y_{\text {max }}\)
    for \(x=x_{\text {min }}\) to \(x_{\text {max }}\)
        if \((x, y)\) is in triangle
                \(\operatorname{mark}(x, y)\)
        end
    end
end
```


Barycentric Coordinates

- A triangle is a convex shape
- Any point in the triangle is a convex combination of the triangle's vertices:

$$
\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

- Subject to:

$$
\alpha+\beta+\gamma=1
$$

Barycentric Coordinates

- α, β, γ are called the barycentric coordinates of \mathbf{p}
- \mathbf{p} lies inside the triangle if $\alpha \geq 0, \beta \geq 0$, and $\gamma \geq 0$
- Alternatively: $\beta \geq 0, \gamma \geq 0$, and $\beta+\gamma \leq 1$
- Main goal: determine β, γ

Barycentric Coordinates

- Rewriting:

$$
\mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

- We've seen this sort of thing before!
- (β, γ) are coordinates of \mathbf{p} in a different frame:
- a is the origin
- (b-a) and (c-a) are the axes

Barycentric Coordinates

Barycentric Coordinates

- Construct the "frame-to-canonical" matrix:

$$
\left[\begin{array}{ccc}
\mathbf{b - a} & \mathbf{c}-\mathbf{a} & \mathbf{a} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
1
\end{array}\right]=\mathbf{F}\left[\begin{array}{l}
\beta \\
\gamma \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Invert to get the "canonical-to-frame" matrix:

$$
\left[\begin{array}{l}
\beta \\
\gamma \\
1
\end{array}\right]=\mathbf{F}^{-1}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{b}-\mathbf{a} & \mathbf{c}-\mathbf{a} & \mathbf{a} \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Barycentric Coordinates

- The final answer is:

$$
\begin{aligned}
\beta & =\frac{\left(y_{a}-y_{c}\right) x+\left(x_{c}-x_{a}\right) y+x_{a} y_{c}-x_{c} y_{a}}{\left(y_{a}-y_{c}\right) x_{b}+\left(x_{c}-x_{a}\right) y_{b}+x_{a} y_{c}-x_{c} y_{a}} \\
\gamma & =\frac{\left(y_{a}-y_{b}\right) x+\left(x_{b}-x_{a}\right) y+x_{a} y_{b}-x_{b} y_{a}}{\left(y_{a}-y_{b}\right) x_{c}+\left(x_{b}-x_{a}\right) y_{c}+x_{a} y_{b}-x_{b} y_{a}} \\
\alpha & =1-\beta-\gamma
\end{aligned}
$$

Triangle Rasterization

```
x min = floor(min}(\mp@subsup{x}{\textrm{a}}{},\mp@subsup{x}{\textrm{b}}{},\mp@subsup{x}{c}{})
x max = ceil(max ( }\mp@subsup{x}{\textrm{a}}{},\mp@subsup{x}{b}{},\mp@subsup{x}{c}{})
ymin}=\operatorname{floor}(\operatorname{min}(\mp@subsup{y}{\textrm{a}}{},\mp@subsup{y}{b}{},\mp@subsup{y}{c}{})
ymax = ceil(max (ya
for y = y min to y ymax
    for }x=\mp@subsup{x}{\mathrm{ min }}{}\mathrm{ to }\mp@subsup{x}{\mathrm{ max}}{
        compute }\beta,\gamma\mathrm{ given x, y
        if }\beta>0\mathrm{ and }\gamma>0\mathrm{ and }\beta+\gamma<
            mark(x, y)
        end
    end
end
```


Optimized Triangle Rasterization

- β, γ are linear functions of x, y :

$$
\begin{aligned}
\beta & =\frac{\left(y_{a}-y_{c}\right) x+\left(x_{c}-x_{a}\right) y+x_{a} y_{c}-x_{c} y_{a}}{\left(y_{a}-y_{c}\right) x_{b}+\left(x_{c}-x_{a}\right) y_{b}+x_{a} y_{c}-x_{c} y_{a}} \\
\gamma & =\frac{\left(y_{a}-y_{b}\right) x+\left(x_{b}-x_{a}\right) y+x_{a} y_{b}-x_{b} y_{a}}{\left(y_{a}-y_{b}\right) x_{c}+\left(x_{b}-x_{a}\right) y_{c}+x_{a} y_{b}-x_{b} y_{a}} \\
\alpha & =1-\beta-\gamma
\end{aligned}
$$

- Rewriting:

$$
\begin{aligned}
& \beta(x, y)=\beta_{0}+\beta_{x} x+\beta_{y} y \\
& \gamma(x, y)=\gamma_{0}+\gamma_{x} x+\gamma_{y} y
\end{aligned}
$$

Optimized Triangle Rasterization

- This gives the following recurrences:

$$
\begin{aligned}
& \beta(x+1, y)-\beta(x, y)=\beta_{x} \\
& \beta(x, y+1)-\beta(x, y)=\beta_{y} \\
& \gamma(x+1, y)-\gamma(x, y)=\gamma_{x} \\
& \gamma(x, y+1)-\gamma(x, y)=\gamma_{y}
\end{aligned}
$$

- So now we can write an incremental algorithm!

Optimized Triangle Rasterization

```
compute }\mp@subsup{\textrm{x}}{\mathrm{ min }}{},\mp@subsup{\textrm{x}}{\mathrm{ max }}{},\mp@subsup{\textrm{y}}{\mathrm{ min}}{\mathrm{ , }},\mp@subsup{\textrm{y}}{\mathrm{ max }}{
compute }\beta,\gamma\mathrm{ given }\mp@subsup{X}{\mathrm{ min }}{},\mp@subsup{\textrm{Y}}{\mathrm{ min}}{
n=( }\mp@subsup{\textrm{x}}{\mathrm{ max }}{}-\mp@subsup{\textrm{x}}{\mathrm{ min }}{})+
for y = y min to y ymax
    for }x=\mp@subsup{x}{\mathrm{ min }}{}\mathrm{ to }\mp@subsup{x}{\mathrm{ max }}{
        if \beta>0 and }\gamma>0\mathrm{ and }\beta+\gamma<
            mark(x, y)
        end
        \beta+= 济
        \gamma}+=\mp@subsup{\gamma}{x}{
    end
    \beta+= 脐-n* }\mp@subsup{\beta}{x}{
    \gamma+= \gamma
end
```


Outline

- Overview
- Line Rasterization
- Line Attributes
- Triangle Rasterization
- Triangle Attributes

Attribute Interpolation

- Given attributes A_{a}, A_{b}, A_{c} at vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$
- Attribute at $\mathbf{p}=(x, y)$:

$$
A(x, y)=A_{a}+\beta\left(A_{b}-A_{a}\right)+\gamma\left(A_{c}-A_{a}\right)
$$

- β, γ are just the barycentric coordinates

Attribute Interpolation

- Easy to incorporate into incremental algorithm
- Also called Gouraud interpolation
- Just one way of doing interpolation

Shared Edges

- Some pixels may lie exactly on an edge shared by two triangles
- What color to assign them?
- More than one way to do this

Shared Edges

- Pixel (x, y) is on an edge if:
$\beta=0$ or $\gamma=0$ or
$\beta+\gamma=1$
- Ignore pixels on an edge when on top row or last column in a row
- OpenGL/Direct3D convention

Outline

- Overview
- Line Rasterization
- Line Attributes
- Triangle Rasterization
- Triangle Attributes
- Clipping

Clipping

- Rasterizer assumes triangle's pixels are on-screen
- Bad things happen if triangle crosses near plane
- After applying perspective matrix, need to clip against canonical view volume
- Clip triangle against planes $\{x, y, z\}= \pm 1$

Clipping

- 4 cases, based on which/how many vertices are inside the clipping plane:
- All inside: retain triangle as-is
- All outside: don’t draw triangle
- One inside, two outside: one clipped triangle
- Two inside, one outside: two clipped triangles

