Triangle meshes

COMP575/COMP 770
Notation

- $n_T = \#\text{tris}; n_V = \#\text{verts}; n_E = \#\text{edges}$
- Euler: $n_V - n_E + n_T = 2$ for a simple closed surface
 - and in general sums to small integer
 - argument for implication that $n_T:n_E:n_V$ is about 2:3:1
Validity of triangle meshes

- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - topology: how the triangles are connected (ignoring the positions entirely)
 - geometry: where the triangles are in 3D space
Topology/geometry examples

• same geometry, different mesh topology:

• same mesh topology, different geometry:
Representation of triangle meshes

• Compactness
• Efficiency for rendering
 – enumerate all triangles as triples of 3D points
• Efficiency of queries
 – all vertices of a triangle
 – all triangles around a vertex
 – neighboring triangles of a triangle
 – (need depends on application)
 • finding triangle strips
 • computing subdivision surfaces
 • mesh editing
Representations for triangle meshes

• Separate triangles
• Indexed triangle set
 – shared vertices
• Triangle strips and triangle fans
 – compression schemes for transmission to hardware
• Triangle-neighbor data structure
 – supports adjacency queries
• Winged-edge data structure
 – supports general polygon meshes
Separate triangles

<table>
<thead>
<tr>
<th>tris[0]</th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀, y₀, z₀</td>
<td>x₂, y₂, z₂</td>
<td>x₁, y₁, z₁</td>
<td></td>
</tr>
<tr>
<td>x₀, y₀, z₀</td>
<td>x₃, y₃, z₃</td>
<td>x₂, y₂, z₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram: separate triangles with vertices (x₀, y₀, z₀), (x₁, y₁, z₁), (x₂, y₂, z₂), and (x₃, y₃, z₃).
Separate triangles

• array of triples of points
 – float[nT][3][3]: about 72 bytes per vertex
 • 2 triangles per vertex (on average)
 • 3 vertices per triangle
 • 3 coordinates per vertex
 • 4 bytes per coordinate (float)

• various problems
 – wastes space (each vertex stored 6 times)
 – cracks due to roundoff
 – difficulty of finding neighbors at all
Indexed triangle set

• Store each vertex once
• Each triangle points to its three vertices

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

\[
\begin{array}{l}
\text{verts[0]} \quad x_0, y_0, z_0 \\
\quad x_1, y_1, z_1 \\
\quad x_2, y_2, z_2 \\
\quad x_3, y_3, z_3 \\
\quad \vdots \\
\end{array}
\]

\[
\begin{array}{l}
\text{verts[1]} \\
\end{array}
\]

\[
\begin{array}{l}
\text{tInd[0]} \quad 0, 2, 1 \\
\quad 0, 3, 2 \\
\quad \vdots \\
\end{array}
\]

\[
\begin{array}{l}
\text{tInd[1]} \\
\end{array}
\]

\[
\begin{array}{l}
\end{array}
\]
Indexed triangle set

- array of vertex positions
 - float\([n_V][3]\): 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int\([n_T][3]\): about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined
Triangle strips

• Take advantage of the mesh property
 – each triangle is usually adjacent to the previous
 – let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 – every sequence of three vertices produces a triangle (but not in the same order)
 – e.g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
 – for long strips, this requires about one index per triangle
Triangle strips

verts[0]	\(x_0, y_0, z_0\)
verts[1]	\(x_1, y_1, z_1\)
	\(x_2, y_2, z_2\)
	\(x_3, y_3, z_3\)
	\(\vdots\)

tStrip[0]	4, 0, 1, 2, 5, 8
tStrip[1]	6, 9, 0, 3, 2, 10, 7
	\(\vdots\)
Triangle strips

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int[n_S][variable]: 2 + n indices per strip
 - on average, ($1 + \frac{n}{2}$) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh
Triangle fans

• Same idea as triangle strips, but keep oldest rather than newest
 – every sequence of three vertices produces a triangle
 – e.g., 0, 1, 2, 3, 4, 5, ... leads to
 (0 1 2), (0 2 3), (0 3 4), (0 4 5), ...
 – for long fans, this requires about one index per triangle
• Memory considerations exactly the same as triangle strip
Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex
Triangle neighbor structure

Triangle {
Triangle nbr[3];
Vertex vertex[3];
}

// t.neighbor[i] is adjacent
// across the edge from i to i+1

Vertex {
// ... per-vertex data ...
Triangle t; // any adjacent tri
}

// ... or ...

Mesh {
// ... per-vertex data ...
int tInd[nt][3]; // vertex indices
int tNbr[nt][3]; // indices of neighbor triangles
int vTri[nv]; // index of any adjacent triangle
}
Triangle neighbor structure
Triangle neighbor structure

TrianglesOfVertex(v) {
 t = v.t;
 do {
 find t.vertex[i] == v;
 t = t.nbr[pred(i)];
 } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
Triangle neighbor structure

- indexed mesh was 36 bytes per vertex
- add an array of triples of indices (per triangle)
 - int[n_T][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- add an array of representative triangle per vertex
 - int[n_V]: 4 bytes per vertex
- total storage: 64 bytes per vertex
 - still not as much as separate triangles
Triangle neighbor structure—refined

Triangle {
 Edge nbr[3];
 Vertex vertex[3];
}

// if t.nbr[i].i == j
// then t.nbr[i].t.nbr[j] == t

Edge {
 // the i-th edge of triangle t
 Triangle t;
 int i; // in {0,1,2}
 // in practice t and i share 32 bits
}

Vertex {
 // ... per-vertex data ...
 Edge e; // any edge leaving vertex
}

T₀.nbr[0] = { T₁, 2 }
T₁.nbr[2] = { T₀, 0 }
V₀.e = { T₁, 0 }
Triangle neighbor structure

TrianglesOfVertex(v) {
 \{t, i\} = v.e;
 do {
 \{t, i\} = t.nbr[pred(i)];
 } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;

T_0.nbr[0] = \{T_1, 2\}
T_1.nbr[2] = \{T_0, 0\}
V_0.e = \{T_1, 0\}
Winged-edge mesh

• Edge-centric rather than face-centric
 – therefore also works for polygon meshes
• Each (oriented) edge points to:
 – left and right forward edges
 – left and right backward edges
 – front and back vertices
 – left and right faces
• Each face or vertex points to one edge
Winged-edge mesh

Edge {
Edge hl, hr, tl, tr;
Vertex h, t;
Face l, r;
}

Face {
// per-face data
Edge e; // any adjacent edge
}

Vertex {
// per-vertex data
Edge e; // any incident edge
}
Winged-edge structure

EdgesOfFace(f) {
 e = f.e;
 do {
 if (e.l == f)
 e = e.hl;
 else
 e = e.tr;
 } while (e != f.e);
}

EdgesOfVertex(v) {
 e = v.e;
 do {
 if (e.t == v)
 e = e.tl;
 else
 e = e.hr;
 } while (e != v.e);
}

<table>
<thead>
<tr>
<th></th>
<th>hl</th>
<th>hr</th>
<th>tl</th>
<th>tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge[0]</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>edge[1]</td>
<td>18</td>
<td>0</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>edge[2]</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Winged-edge structure

- array of vertex positions: 12 bytes/vert
- array of 8-tuples of indices (per edge)
 - head/tail left/right edges + head/tail verts + left/right tris
 - `int[n_E][8]`: about 96 bytes per vertex
 - 3 edges per vertex (on average)
 - (8 indices x 4 bytes) per edge
- add a representative edge per vertex
 - `int[n_V]`: 4 bytes per vertex
- total storage: 112 bytes per vertex
 - but it is cleaner and generalizes to polygon meshes
Winged-edge optimizations

• Omit faces if not needed
• Omit one edge pointer on each side
 – results in one-way traversal
Half-edge structure

• Simplifies, cleans up winged edge
 – still works for polygon meshes

• Each half-edge points to:
 – next edge (left forward)
 – next vertex (front)
 – the face (left)
 – the opposite half-edge

• Each face or vertex points to one half-edge
Half-edge structure

HEdge {
HEdge pair, next;
Vertex v;
Face f;
}

Face {
// per-face data
HEdge h; // any adjacent h-edge
}

Vertex {
// per-vertex data
HEdge h; // any incident h-edge
}
Half-edge structure

EdgesOfFace(f) {
 $h = f.h$;
 do {
 $h = h.pair.next$;
 } while ($h != f.h$);
}

EdgesOfVertex(v) {
 $h = v.h$;
 do {
 $h = h.pair.next$;
 } while ($h != v.h$);
}
Half-edge structure

• array of vertex positions: 12 bytes/vert
• array of 4-tuples of indices (per h-edge)
 – next, pair h-edges + head vert + left tri
 – int[2n_E][4]: about 96 bytes per vertex
 • 6 h-edges per vertex (on average)
 • (4 indices x 4 bytes) per h-edge
• add a representative h-edge per vertex
 – int[n_V]: 4 bytes per vertex
• total storage: 112 bytes per vertex
Half-edge optimizations

• Omit faces if not needed
• Use implicit pair pointers
 – they are allocated in pairs
 – they are even and odd in an array