2D Geometric Transformations

COMP 575/770
Spring 2016
A little quick math background

• Notation for sets, functions, mappings
• Linear transformations
• Matrices
 – Matrix-vector multiplication
 – Matrix-matrix multiplication
• Geometry of curves in 2D
 – Implicit representation
 – Explicit representation
Implicit representations

• Equation to tell whether we are on the curve
 \[\{v \mid f(v) = 0\} \]

• Example: line (orthogonal to \(u\), distance \(k\) from \(0\))
 \[\{v \mid v \cdot u + k = 0\} \]

• Example: circle (center \(p\), radius \(r\))
 \[\{v \mid (v - p) \cdot (v - p) + r^2 = 0\} \]

• Always define boundary of region
 – (if \(f\) is continuous)
Explicit representations

• Also called parametric
• Equation to map domain into plane
 \{ f(t) \mid t \in D \}
• Example: line (containing \(\mathbf{p} \), parallel to \(\mathbf{u} \))
 \{ \mathbf{p} + t\mathbf{u} \mid t \in \mathbb{R} \}
• Example: circle (center \(\mathbf{b} \), radius \(r \))
 \{ \mathbf{p} + r \begin{bmatrix} \cos t & \sin t \end{bmatrix}^T \mid t \in [0, 2\pi) \}
• Like tracing out the path of a particle over time
• Variable \(t \) is the “parameter”
Transforming geometry

• Move a subset of the plane using a mapping from the plane to itself
 \[S \rightarrow \{ T(v) \mid v \in S \} \]

• Parametric representation:
 \[\{ f(t) \mid t \in D \} \rightarrow \{ T(f(t)) \mid t \in D \} \]

• Implicit representation:
 \[\{ v \mid f(v) = 0 \} \rightarrow \{ T(v) \mid f(v) = 0 \} \]
 \[= \{ v \mid f(T^{-1}(v)) = 0 \} \]
Translation

• Simplest transformation: \(T(v) = v + u \)
• Inverse: \(T^{-1}(v) = v - u \)
• Example of transforming circle
Linear transformations

• One way to define a transformation is by matrix multiplication:
 \[T(v) = Mv \]

• Such transformations are \textit{linear}, which is to say:
 \[T(au + v) = aT(u) + T(v) \]
 (and in fact all linear transformations can be written this way)
Geometry of 2D linear trans.

• 2x2 matrices have simple geometric interpretations
 – uniform scale
 – non-uniform scale
 – rotation
 – shear
 – reflection

• Reading off the matrix
Linear transformation gallery

- Uniform scale
 \[
 \begin{bmatrix}
 s & 0 \\
 0 & s
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 sx \\
 sy
 \end{bmatrix}
 \begin{bmatrix}
 1.5 & 0 \\
 0 & 1.5
 \end{bmatrix}
 \]

\[
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{r.png}
\end{array}
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{r.png}
\end{array}
\]
Linear transformation gallery

• Nonuniform scale

\[
\begin{bmatrix}
 s_x & 0 \\
 0 & s_y \\
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
\end{bmatrix}
=
\begin{bmatrix}
 s_xx \\
 s_yy \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1.5 & 0 \\
 0 & 0.8 \\
\end{bmatrix}
\]
Linear transformation gallery

• Rotation

$$ \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix} $$

$$ \begin{bmatrix} 0.866 & -0.05 \\ 0.5 & 0.866 \end{bmatrix} $$
Linear transformation gallery

• Reflection
 – can consider it a special case of nonuniform scale

\[
\begin{bmatrix}
-1 & 0 \\ 0 & 1
\end{bmatrix}
\]
Linear transformation gallery

- Shear
 \[
 \begin{bmatrix}
 1 & a \\
 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 x + ay \\
 y
 \end{bmatrix}
 \]

\[
\begin{bmatrix}
1 & 0.5 \\
0 & 1
\end{bmatrix}
\]
Composing transformations

• Want to move an object, then move it some more
 \[p \rightarrow T(p) \rightarrow S(T(p)) = (S \circ T)(p) \]
• We need to represent \(S \circ T \) (“S compose T”)
 \[(S \circ T)(p) = p + (u_T + u_S) \]
• Translation by \(u_T \) then by \(u_S \) is translation by \(u_T + u_S \)
Composing transformations

• Linear transformations also straightforward

\[T(p) = M_T p; \quad S(p) = M_S p \]

\[(S \circ T)(p) = M_S M_T p \]

• Transforming first by \(M_T \) then by \(M_S \) is the same as transforming by \(M_S M_T \)
 – only sometimes commutative
 • e.g. rotations & uniform scales
 • e.g. non-uniform scales w/o rotation
 – Note \(M_S M_T \), or \(S \circ T \), is \(T \) first, then \(S \)
Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as \(T(p) = Mp + u \)
 - \(T(p) = M_Tp + u_T \)
 - \(S(p) = M_SP + u_S \)
 - \((S \circ T)(p) = M_SM_Tp + u_T + u_S \)
 - e.g. \(S(T(0)) = S(u_T) \)
- Transforming by \(M_T \) and \(u_T \), then by \(M_S \) and \(u_S \), is the same as transforming by \(M_SM_T \) and \(u_S + M_Su_T \)
 - This will work but is a little awkward
Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component \(w\) for vectors, extra row/column for matrices
 – for affine, can always keep \(w = 1\)
• Represent linear transformations with dummy extra row and column

\[
\begin{bmatrix}
 a & b & 0 \\
 c & d & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1 \\
\end{bmatrix}
= \begin{bmatrix}
 ax + by \\
 cx + dy \\
 1 \\
\end{bmatrix}
\]
Homogeneous coordinates

- Represent translation using the extra column

\[
\begin{bmatrix}
1 & 0 & t \\
0 & 1 & s \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1 \\
\end{bmatrix} =
\begin{bmatrix}
x + t \\
y + s \\
1 \\
\end{bmatrix}
\]
Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

\[
\begin{bmatrix}
M_S & u_S \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
M_T & u_T \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
p \\
1
\end{bmatrix}
= \begin{bmatrix}
(M_SM_T)p + (M_Su_T + u_S) \\
1
\end{bmatrix}
\]

• This is exactly the same as carrying around M and u
 – but cleaner
 – and generalizes in useful ways as we’ll see later
Affine transformations

- The set of transformations we have been looking at is known as the “affine” transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)
Affine transformation gallery

- Translation

\[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\quad
\begin{bmatrix}
1 & 0 & 2.15 \\
0 & 1 & 0.85 \\
0 & 0 & 1
\end{bmatrix}
\]

R

RR
Affine transformation gallery

- Uniform scale

\[
\begin{bmatrix}
 s & 0 & 0 \\
 0 & s & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1.5 & 0 & 0 \\
 0 & 1.5 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]
Affine transformation gallery

- Nonuniform scale

\[
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1.5 & 0 & 0 \\
0 & 0.8 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Affine transformation gallery

- Rotation

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0.866 & -0.5 & 0 \\
0.5 & 0.866 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Affine transformation gallery

- Reflection
 - can consider it a special case of nonuniform scale

\[
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Affine transformation gallery

- Shear

\[
\begin{bmatrix}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \quad \begin{bmatrix}
1 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
General affine transformations

• The previous slides showed “canonical” examples of the types of affine transformations
• Generally, transformations contain elements of multiple types
 – often define them as products of canonical transforms
 – sometimes work with their properties more directly
Composite affine transformations

• In general **not** commutative: order matters!

rotate, then translate

translate, then rotate
Composite affine transformations

• Another example

scale, then rotate

rotate, then scale
Rigid motions

- A transform made up of only translation and rotation is a *rigid motion* or a *rigid body transformation*

- The linear part is an orthonormal matrix

\[
R = \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}
\]

- Inverse of orthonormal matrix is transpose
 - so inverse of rigid motion is easy:

\[
R^{-1}R = \begin{bmatrix} Q^T & -Q^T u \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}
\]
Composing to change axes

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

\[M = T^{-1}RT \]
Composing to change axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 - so translate to the origin and rotate to align axes

\[M = T^{-1}R^{-1}SRT \]
Transforming points and vectors

• Recall distinction points vs. vectors
 – vectors are just offsets (differences between points)
 – points have a location
 • represented by vector offset from a fixed origin

• Points and vectors transform differently
 – points respond to translation; vectors do not

\[
\begin{align*}
\mathbf{v} &= \mathbf{p} - \mathbf{q} \\
T(\mathbf{x}) &= M\mathbf{x} + \mathbf{t} \\
T(\mathbf{p} - \mathbf{q}) &= M\mathbf{p} + \mathbf{t} - (M\mathbf{q} + \mathbf{t}) \\
&= M(\mathbf{p} - \mathbf{q}) + (\mathbf{t} - \mathbf{t}) = M\mathbf{v}
\end{align*}
\]
Transforming points and vectors

• Homogeneous coords. let us exclude translation
 – just put 0 rather than 1 in the last place

\[
\begin{bmatrix}
M & t \\
0^T & 1 \\
\end{bmatrix}
\begin{bmatrix}
p \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
M p + t \\
1 \\
\end{bmatrix}
\begin{bmatrix}
M & t \\
0^T & 1 \\
\end{bmatrix}
\begin{bmatrix}
v \\
0 \\
\end{bmatrix}
=
\begin{bmatrix}
M v \\
0 \\
\end{bmatrix}
\]

– and note that subtracting two points cancels the extra coordinate, resulting in a vector!

• Preview: projective transformations
 – what’s really going on with this last coordinate?
 – think of \(R^2 \) embedded in \(R^3 \): all affine xfs. preserve \(z=1 \) plane
 – could have other transforms; project back to \(z=1 \)
More math background

• Coordinate systems
 – Expressing vectors with respect to bases
 – Linear transformations as changes of basis
Affine change of coordinates

- Six degrees of freedom

\[
\begin{bmatrix}
a_1 & a_2 & a_3 \\
a_4 & a_5 & a_6 \\
0 & 0 & 1
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
u & v & p \\
0 & 0 & 1
\end{bmatrix}
\]
Affine change of coordinates

• Coordinate frame: point plus basis
• Interpretation: transformation changes representation of point from one basis to another
• “Frame to canonical” matrix has frame in columns
 – takes points represented in frame
 – represents them in canonical basis
 – e.g. [0 0], [1 0], [0 1]
• Seems backward but bears thinking about
Affine change of coordinates

• A new way to “read off” the matrix
 – e.g. shear from earlier
 – can look at picture, see effect on basis vectors, write down matrix

• Also an easy way to construct transforms
 – e.g. scale by 2 across direction (1,2)
Affine change of coordinates

• When we move an object to the origin to apply a transformation, we are really changing coordinates
 – the transformation is easy to express in object’s frame
 – so define it there and transform it

\[T_e = F T_F F^{-1} \]

– \(T_e \) is the transformation expressed wrt. \{e₁, e₂\}
– \(T_F \) is the transformation expressed in natural frame
– \(F \) is the frame-to-canonical matrix \([u \ v \ p]\)

• This is a similarity transformation
Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

\[
F = \begin{bmatrix}
 u & v & p \\
 0 & 0 & 1
\end{bmatrix}
\]

- Move points to and from frame by multiplying with \(F \)

\[
\mathbf{p}_e = F\mathbf{p}_F, \quad \mathbf{p}_F = F^{-1}\mathbf{p}_e
\]

- Move transformations using similarity transforms

\[
T_e = F T_F F^{-1}, \quad T_F = F^{-1} T_e F
\]