2D Geometric Transformations

COMP 575/770
Spring 2016

A little quick math background

Notation for sets, functions, mappings
Linear transformations

Matrices

— Matrix-vector multiplication
— Matrix-matrix multiplication
« Geometry of curves in 2D

— Implicit representation
— Explicit representation

Implicit representations

Equation to tell whether we are on the curve
{v[f(v) =0}

Example: line (orthogonal to u, distance k from 0)
{v|v-u+k=0}

Example: circle (center p, radius r)
{v[(v-p):(v-p)+r° =0}

Always define boundary of region

— (if fis continuous)

Explicit representations

Also called parametric
Equation to map domain into plane

f(t)|te D}

Example: line (containing p, parallel to u)
{p+tult eR}

Example: circle (center b, radius r)
{p+r[cost sint]? |t €[0,2m)}

Like tracing out the path of a particle over time

Variable t is the “parameter”

Transforming geometry

* Move a subset of the plane using a mapping from
the plane to itself
S—{T(v)|vesS}
« Parametric representation:
{f@)[te D} = {T(f(¢))|t € D}
* |Implicit representation:

WIf(v)=0; = T(v)| f(v) =0}
={v[f(T(v)) =0}

Translation

» Simplest transformatior’7’'(v) = v + u
+ Inverse: T '(v)=v —u
« Example of transforming circle

Linear transformations

* One way to define a transformation is by matrix
multiplication:

T(v)=Mv
* Such transformations are linear, which is to say:
T(au+v)=al(u)+T(v)
(and in fact all linear transformations can be written this
way)

Geometry of 2D linear trans.

« 2x2 matrices have simple geometric
Interpretations
— uniform scale
— non-uniform scale
— rotation
— shear
— reflection

* Reading off the matrix

Linear transformation gallery

 Uniform scale

S

0

0

S

Sx
SY

1.5
0

0
1.5

Linear transformation gallery

« Nonuniform scale

Sx

0

0"

Sy_

x
Y

Sy
Syl |

1.5

0.3

10

Linear transformation gallery

 Rotation

cos 6

sin @

—sin6

cos 6

I

zcosf — ysinf

Y

0.866
0.5

xsinf + ycos b

—.05
0.866

11

Linear transformation gallery

 Reflection

— can consider it a special case
of nonuniform scale

12

Linear transformation gallery

« Shear

0
O 1 . -

o ay_

Y

13

Composing transformations

Want to move an object, then move it some more
- p—T(p) = ST(p))=(5T)(p)
We need to represent So T (S compose T7)

— and would like to use the same representation as for S
and T

Translation eas
yT(p) =p+ur;S(p) =p + us

(SoT)(p) =p+ (ur + us)

Translation by uthen by ug is translation by u, +
Us

14

Composing transformations

 Linear transformations also straightforward

- T(p) = Mrp; S(p) = Msp
(S O T)(p) — MsMTp

 Transforming first by M;then by Mg is the same
as transforming by McM+
— only sometimes commutative
* e.g. rotations & uniform scales

* €.g. hon-uniform scales w/o rotation
— Note MgM,, or So T, is T first, then S

15

Combining linear with translation
* Need to use both in single framework

« Can represent arbitrary seq.as T (p) = Mp+u
- T(p)=Mrp+ur
- S(p) = Msp+us
- (8oT)(p) = Ms(Mrp +ur) + us

= (MsMr)p + (Msur + us)

~5 % S(1(0) = S(ur)

 Transforming by M+ and u4, then by Mg and ug, is
the same as transforming by McM+and ug+tMgu+

— This will work but is a little awkward

16

Homogeneous coordinates

A trick for representing the foregoing more
elegantly

« Extra component w for vectors, extra row/column
for matrices

— for affine, can always keep w = 1

* Represent linear transformations with dummy
extra row and column

a b 0] [az + by |
c d 0] |yl = |cx+dy
0 0 1] [1] 1

Homogeneous coordinates

* Represent translation using the extra column

1
0
0

0
1

0

X
Y
1

18

Homogeneous coordinates

« Composition just works, by 3x3 matrix
multiplication

Ms ugl| [Mr ur]| |p
0o 1]lo 1)1

(MsM7)p + (Mgsur + ug)
1

* This is exactly the same as carrying around M and
u

— but cleaner
— and generalizes in useful ways as we’'ll see later

Affine transformations

* The set of transformations we have been looking
at is known as the “affine” transformations
— straight lines preserved; parallel lines preserved

— ratios of lengths along lines preserved (midpoints
preserved)

A

20

Affine transformation gallery

 Translation

e &

o = O

)

~~ o
<

2.15]
0.85

21

Affine transformation gallery

 Uniform scale

S
0
0

Va

0
0
1

-

22

Affine transformation gallery

« Nonuniform scale

0
0
1

-

23

Affine transformation gallery

e Rotation

cos 6

sin @

0

—sin 0
cosf O
0 1

10.866
0.5

—0.9
0.860

24

Affine transformation gallery

 Reflection

— can consider it a special case
of nonuniform scale

(-

-

25

Affine transformation gallery

« Shear

o O

O = Q

0
0
1

-

26

General affine transformations

* The previous slides showed “canonical” examples
of the types of affine transformations

* Generally, transformations contain elements of
multiple types

— often define them as products of canonical transforms
— sometimes work with their properties more directly

27

Composite affine transformations

* In general not commutative: order matters!

A

rotate, then translate

A

Y

translate, then rotate

28

Composite affine transformations

* Another example

scale, then rotate rotate, then scale

29

Rigid motions

* A transform made up of only translation and
rotation is a rigid motion or a rigid body
transformation

* The linear part is an nrthanarmal matrix
R—|@ U
0 1

* |Inverse of orthonormal matrix is transpose
— so inverse of rigid motion is easy:

1, @Y —QTul [@Q u
S e [

Composing to change axes

* Want to rotate about a particular point
— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin

e M =T 'RT

A

31

Composing to change axes

* Want to scale along a particular axis and point

* Know how to scale along the y axis at the origin
— so translate to the origin and rotate to align axes

3

M=T"'RISRT

32

Transforming points and vectors

* Recall distinction points vs. vectors
— vectors are just offsets (differences between points)
— points have a location
 represented by vector offset from a fixed origin
* Points and vectors transform differently
— points respond to translation; vectors do not
v=p—dq
T(x)=Mx+t
T'p—q)=Mp+t—(Mq+t)
=Mp-q)+(t—t)=Mv

33

Transforming points and vectors

 Homogeneous coords. let us exclude translation
— just put O rather than 1 in the last place

M t||p| |Mp+t M t||v] |Mv
ol 1| 1] 1 o 1]|0| | O
— and note that subtracting two points cancels the extra

coordinate, resulting in a vector!

* Preview: projective transformations
— what’s really going on with this last coordinate?

— think of R2 embedded in R3: all affine xfs. preserve z=1
plane

— could have other transforms; project back to z=1 s

More math background

* Coordinate systems
— EXxpressing vectors with respect to bases
— Linear transformations as changes of basis

35

Affine change of coordinates

« Six degrees of freedom

alp d4az as {u v p]
e G5 de| BT g g
0O O 1_

A
€ 3

® L V

0 e u

36

Affine change of coordinates

» Coordinate frame: point plus basis

 |nterpretation: transformation v
changes representation of u
point from one basis to another p

* “Frame to canonical” matrix has
frame in columns

>
1_

— takes points represented in frame 8 Bf
— represents them in canonical basis -~
—e.g.[00],[10], [0 1]

« Seems backward but bears thinking about

37

Affine change of coordinates

* A new way to “read off” the matrix
— e.g. shear from earlier _

— can look at picture, see effect
on basis vectors, write
down matrix -

* Also an easy way to construct transforms
— e. g. scale by 2 across direction (1,2)

38

Affine change of coordinates

 WWhen we move an object to the origin to apply a
transformation, we are really changing
coordinates

— the transformation is easy to express in object’s frame
— so define it there and transform it

T, = FTrF1

— T, is the transformation expressed wrt. {e4, &5}
— Tgis the transformation expressed in natural frame
— F is the frame-to-canonical matrix [u v p]

* This is a similarity transformation

39

Coordinate frame summary

 Frame = point plus basis
* Frame matrix (frame-to-canonical) is

Cju v p
b= 0o 0 1
* Move points to and from frame by multiplying with
F Pe =Fpp prp=F""pe

* Move transformations using similarity transforms
Tp = F 'T,F

T, = FTpF~ !

40

